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Abstract: The inversion of directions is an important operation with directions which plays an important
role in qualitative spatial reasoning and spatial queries. In this work, we address on the inversion operation
of the basic cardinal direction relations in the model of Goyal. The direction relation matrix model proposed
by Goyal is a projection-based model for spatial direction relations between regions. This model is simple in
calculation and easy to carry out formal reasoning, which is considered as currently one of the most
excellent models for representation and qualitative reasoning with cardinal direction relations in two-
dimensional space. This work aims to realize the automatic inference and calculation of the inverse of
the basic cardinal direction relations in the model of Goyal and further to improve the ability of spatial
reasoning and spatial analysis of spatial database. In order to avoid the complicated manual reasoning, an
algorithm for automatically performing the inverse operation on this model is devised by means of the
operations of direction relation matrix. Theorems are provided to prove formally that our algorithm is
correct and complete, which is also verified by comparing the result of our algorithm with that of manual
reasoning for each basic cardinal direction relation. This study realized the automatic inference and
calculation of the inverse of the basic cardinal direction relations in the model of Goyal and further
improved the ability of spatial reasoning and spatial analysis of spatial database.

Keywords: inversion, cardinal direction relations, direction relation matrix, spatial database

1 Introduction

Spatial direction relation as one of the basic concepts in spatial cognitive, is used to describe the position
information with one object relative to another which reflects the ordering relations between spatial objects
[1]. It is an indispensable part of spatial relation theory as well as topological relation and qualitative
distance relation. With the further application of direction relations, people are no longer satisfied with
simply describing and storing, but also need the ability of spatial reasoning to deal with the inference of the
unknown information and the consistence checking of the existing information for direction relations. In
recent years, qualitative spatial reasoning with direction relations has received a lot of attention in the areas
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of Geographic Information System [2–4], Spatial Database [5–7], and Artificial Intelligence [8–10]. Several
problems in reasoning with direction relations have been studied so far, e.g., composition [10–15], inver-
sion [16–19], and consistence checking [20–23] with cardinal direction relations, which play an important
role in spatial query, spatial analysis, and planning decision.

In this work, we focus on the inversion operation for cardinal direction relations. The inverse operation
for direction relations allows to infer the direction of object B with respect to A, given the direction of object
A with respect to B, which plays an important role in saving storage and improving the efficiency of spatial
queries and spatial reasoning [18]. For example, in an intelligent transportation system, the results of
inverse operation for direction relations can be used as the constraints for path selection to reduce the
search space and then improve the query efficiency, which can provide supports for choosing reasonable
travel or rescue routes when traffic jams or accidents occur. Therefore, it is important to develop the
automatic reasoning techniques for the inversion operation of direction relations.

In our work, we aim to solve the problem of automatically computing the inverse of cardinal direction
relations in the model of Goyal and Egenhofer [24,25]. This model is currently one of the most expressive
models for cardinal directions between regions because it is simple in calculation and it is easy to perform
formal reasoning. The specific contributions of this work are summarized as follows.
• We introduce the operations of direction matrix to study the inversion operation for cardinal direction
relations in the model of Goyal. We give the representation of the rectangular cardinal direction relations
in the form of interval matrix. We get the results of the inversion operation of interval matrix by using the
inference rules of interval algebra.

• Then, we give several important theorems which provide the solution for the target problem by using the
operations of direction matrix, and their proofs to build up our theoretical framework.

• By our theoretical framework, we study the problem of deciding whether a Boolean matrix is geometri-
cally realized or not and the problem of computing all possible original matrices of the given rectangular
direction matrix. Then, we give the algorithmic solutions for the two problems.

• Then, we propose our algorithm to compute all possible results of the inverse of the basic cardinal
direction relations directly. Several theorems are provided to prove that our algorithms are correct.

• We implement our algorithm in C programs. The results of running the programs show that our algorithm
is correct and complete. In this work, we realized the automatic calculation of the inverse of the basic
cardinal direction relations in the model of Goyal. Our study makes that model of Goyal has the power of
automated reasoning for the inverse operation because our solution does not require the help of reference
tables and any manual calculation.

This article is structured as follows. In Section 2, we survey related work. Section 3 presents the
direction relation matrix model. In Sections 4 and 5, we introduce the rectangle algebra, and build the
inference mechanism of the inverse operation for interval matrix and the correlations between interval
matrix and rectangular direction matrix. Section 6 presents our algorithms for the inverse operation of basic
cardinal direction relations and proves their correctness. Section 7 discusses the implementation of the
proposed algorithms and presents the results of analysis and verification. Finally, Section 8 gives the
conclusion and discusses future work.

2 Related work

As the basis of the spatial cognition and reasoning with directions, the formal description of spatial
directions has received a lot of attention in recent years. Many models for cardinal directions have been
proposed in the literature [2,5,24–29]. The model of Goyal and Egenhofer [24,25] is currently one of the most
expressive models for cardinal directions in two dimensional space because it can more realistically express
the direction relations between regions, and it is simple in calculation and easy to perform formal rea-
soning. This model is widely used in many fields related to the cognition of spatial direction. For example,
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the direction information represented by the model of Goyal can be used in the point of interest recom-
mendation for more effective recommendation. To be specific, it is easy to get interested restaurants in a
certain direction by means of this model. Research have been carried out on this interesting model. Goyal
and Egenhofer [25] first studied the composition operation on this model and gave a method for computing
the consistency-based composition. Skiadopoulos and Koubarakis [10] pointed out that the above compo-
sition method of Goyal cannot work correctly for some cases and revised this method, but the corrected
method is relatively complicated and it requires the use of composition tables.

Spiros and Manolis [20] also studied the problem of checking the consistency of cardinal directions,
and proposed the first algorithm for this problem on the model of Goyal which can be performed in O(n5).
Navarrete et al. [22] proposed an O(n4) algorithm to check the consistency of the basic cardinal directions
between regions in the model of Goyal. As a matter of fact, the consistency checking of a set of unrestricted
cardinal directions is a NP-hard problem [23], which is difficult to be solved. Most methods solve this
problem on the model of Goyal by using different composition methods based on the traditional path-
consistency method, which are generally computationally expensive and inefficient.

In a previous line of work, Liu and Hao [21,30] proposed algorithms for the problems of composition,
inversion, and consistency checking with cardinal directions involving only rectangular cardinal directions
which is an important class of direction relations in the model of Goyal. The above works can only solve these
problems with the condition regions should be rectangles or are approximately substituted by their minimum
bounding box which may be too crude and thus reduces the precision of expression and reasoning. With the
above problem in mind, Chen et al. [12] and Wang et al. [17] extended these methods presented in ref. [30] to
deal with the composition and inversion operations for the general case based on the concepts of rectangular
cardinal direction and its original relation. However, the above methods still require manual calculations or
the use of reference tables in computing the possible original relations of rectangular cardinal directions.

In addition, several improved models [7,31–33] based on the model of Goyal have been proposed by
researchers. In these models, the space is further subdivided on the basis of the model of Goyal in different
ways. In summary, these models have a finer granularity of space division and can describe the spatial
arrangements more accurately. Thus, directions in these models are clearly more expressive than the model
of Goyal, but it is difficult to perform formal reasoning and calculation for these models.

In this work, we will focus on the inversion operation of directions which is a fundamental problem in
qualitative spatial reasoning. In earlier studies on this problem, the concerned spatial objects mainly
involve points, intervals [34], and rectangles [17,21,30]. Obviously, it is necessary to deal with the above
problem for general regions. Summarizing, the model of Goyal is a more expressive model of qualitative
reasoning with cardinal directions between regions. We will employ this model to handle the inversion
operation for cardinal direction relations between regions. Although, there are several works [10,13,17,20]
on qualitative reasoning with cardinal directions in this model, the ability of automated reasoning is still
very poor. Especially for the inversion operation, the only published method presented in ref. [17] still needs
to employ inference tables and manual calculations. In the following sections, we will present an algorithm
that automatically performs the inversion operation for cardinal directions in the model of Goyal. This
algorithm can be widely used in a lot of areas such as resource allocation, emergency rescue, disaster
prevention and mitigation, and intelligent transportation. For example, in an intelligent transportation
system, the results of inverse operation computed by our algorithm for direction relations can be used as the
constraints for path selection to reduce the search space and then improve the query efficiency, which can
provide supports for choosing reasonable travel or rescue routes when traffic jams or accidents occur.

3 Direction relation matrix model

In this work, we employ the model introduced by Goyal and Egenhofer [24,25] for cardinal direction relations
which are used to describe how one region called primary region is placed relative to another called reference
region. The concerned regions are homeomorphic to the closed unit disk ({(x, y) ∈ R2|x2 + y2 ≤ 1}). Such a set of
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these regions will be denoted by REG. Briefly, regions in REG are closed, connected, and have connected
boundaries. Let a be a region in REG. The projection of a on the x-axis (respectively y-axis) is denoted by ax
(respectively ay). The greatest lower bound or infimum of ax (respectively ay) is denoted by infx(a) (respectively
infy(a)). The least upper bound or the supremum of ax (respectively ay) is denoted by supx(a) (respectively supy
(a)). Theminimum bounding box of region a, denoted bymbb(a), is the box formed by the straight lines x = infx
(a), x = supx(a), y = infy(a), and y = supy(a).

The model of Goyal adopts a projection-based system placed around the reference region. Let region a in
REG be the reference region. Such a system induced by the axes forming mbb(a), divides the plane into nine
areas NW(a), N(a), NE(a),W(a), B(a), E(a), SW(a), S(a), and SE(a) which we call direction tiles of a (Figure 1).

If the primary region b in REG is included in tile N(a), then we say that b is north of a and we write b N a.
Similarly, we can define northwest (NW), northeast (NE), west (W), bounding box (B), southwest (SW), east
(E) and southeast (SE) relations. The above relations called single-tile cardinal direction relations are
defined formally as following:

b NW a iff supx(b) ≤ infx(a) and supy(a) ≤ infy(b)
b N a iff supy(a) ≤ infy(b), infy(a) ≤ infx(b), and supx(b) ≤ supy(a)
b NE a iff supx(b) ≤ infx(a) and supy(a) ≤ infy(b)
b W a iff supx(b) ≤ infx(a), infy(a) ≤ infx(b), and supy(b) ≤ supy(a)
b B a iff infx(a) ≤ infx(b), supx(b) ≤ supx(a), infy(a) ≤ infy(b), and supy(b) ≤ supy(a)
b E a iff supx(a) ≤ infx(b), infy(a) ≤ infx(b), and supy(b) ≤ supy(a)
b SW a iff supx(b) ≤ infx(a) and supy(b) ≤ infy(a)
b S a iff supy(b) ≤ infy(a), infx(a) ≤ infx(b), and supx(b) ≤ supy(a)
b SE a iff supx(a) ≤ infx(b) and supy(b) ≤ infy(a)
However, the primary region b may fall into more than one tile. For instance the primary region b lies

partly in the tile NW(a) and partly in the tile W(a) of a (Figure 1), then we say that b is partly northwest and
partly east of a and we write a NW:W b.

Without loss of generality, the definition of basic cardinal direction relation is provided as following on
the basis of the single-tile cardinal direction relations.

Definition 1. A basic cardinal direction relation is an expression R1:…:Rk where R1,…,Rk ∈ {B, S, SW,W, NW,
N, NE, E, SE},1 ≤ k ≤ 9, and Ri ≠ Rj for every i, j such that 1 ≤ i, j ≤ k and i ≠ j, and there exist regions b1,…,bk ∈
REG such that b1R1 a,…,bk Rk a and b1 ∪ ··· ∪ bk ∈ REG for any reference region a ∈ REG.

The set of basic cardinal direction relations that contains 218 elements is denoted by D. Then, a cardinal
direction relation is defined as an element of the power set 2D of D. A cardinal direction relation can be seen
as the union of basic cardinal direction relations, which can be used to describe not only definite but also
indefinite information about cardinal directions, e.g., b {NW,E} a means that b is northwest or east of a.
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Figure 1: Reference tiles.
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In this model, the cardinal direction relation of the primary region b relative to the reference region a is
stored in a Boolean 3 × 3 matrix (equation (1)) called the direction relation matrix. Such matrix is generated
by checking whether the intersection of the primary object and the tiles of the reference object is empty or
not. For each tile, if such intersection is non-empty, it means that the primary object falls into this direction
tile. In this work, for convenience, if such intersection is empty, it is recorded by 0, else recorded by 1 in
such matrix. For instance, as shown in Figure 1, the direction c with respect to a can be represented by the
direction matrix M1 and we write c P1 b.

⎡

⎣
⎢

⎤

⎦
⎥=P

0 0 0
0 0 1
0 1 1

.1 (2)

Definition 2. A basic cardinal direction relation R is called rectangular, if there exist two rectangles (with
sides parallel to the x- and y-axes) a and b such that a R b is satisfied; otherwise, it is called non-rectangular.

Definition 3. A basic cardinal direction relation matrix P is called rectangular if all the non-zero elements in
P form a rectangle; otherwise, it is called non-rectangular.

By Definition 2, we have that there are 36 rectangular cardinal direction relations as follows: NW, N,
NE, W, B, E, SW, S, SE, NW:N, N:NE, NW:W, N:B, NE:E, W:B, B:E, W:SW, B:S, E:SE, SW:S, S:SE, NW:N:NE,
W:B:E, SW:S:SE, NW:W:SW, N:B:S, NE:E:SE, NW:N:W:B, N:NE:B:E, W:B:SW:S, B:E:S:SE, NW:N:NE:W:B:E,
W:B:E:SW:S:SE, NW:W:SW:N:B:S, N:B:S:NE:E:SE, and NW:N:NE:W:B:E:SW:S:SE. The set of these rectan-
gular cardinal direction relations is denoted by Drec. By Definition 3, we can conclude that the direction
relation matrix corresponding to each relation in Drec is rectangular.

Example 1. The direction matrix P2 corresponding to the rectangular cardinal direction relation NW:N:W:B
is rectangular, while P3 is non-rectangular for the non-rectangular relation N:NE:E:SE:S.

⎡

⎣
⎢

⎤

⎦
⎥=P

1 1 0
1 1 0
0 0 0

,2 (3)

⎡

⎣
⎢

⎤

⎦
⎥=P

0 1 1
0 0 1
0 1 1

.3 (4)

In Sections 4 and 5, we aim to solve the problem of computing the inverse of basic cardinal direction
relations which is defined formally as following.

Definition 4. Let R ∈ 2D. The inverse of relation R, denoted by INV(R), is another cardinal direction relation
which satisfies the following. For arbitrary regions a, b ∈ REG, a R b holds, iff b INV(R) a holds.

4 Rectangle algebra and rectangular cardinal direction relation

Interval algebra was introduced by Allen [34] for temporal reasoning. There are 13 basic relations between
two temporal intervals which form a set of jointly exhaustive and pairwise disjoint relations (Table 1). The
set of symbols Aint = {p,m,o,s,d,f,pi,mi,oi,si,di,fi,eq} is used to denote the 13 basic relations.

Similar to cardinal direction relation matrix, we can also use a Boolean matrix called interval relation
matrix to describe the relations between the intervals. The one dimensional space is divided into three parts
by the reference interval a (Figure 2). This matrix records into which parts the primary interval b falls by
checking whether the intersection of the primary interval b and each part is empty or not. As shown in
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Figure 2, the relation of bwith respect to a can be represented by interval relation matrix [1 1 0] and we write
b[1 1 0]a.

There are six basic interval relation matrices defined as follows:
b [1 0 0] a iff sup(b) ≤ inf(a).
b [1 1 0] a iff inf(b) < inf(a) < sup(b) ≤ sup(a).
b [1 1 1] a iff inf(b) < inf(a) and sup(a) < sup(b).
b [0 1 0] a iff inf(a) ≤ inf(b) and sup(b) ≤ sup(a).
b [0 1 1] a iff inf(a) ≤ inf(b) and sup(a) < sup(b).
b [0 0 1] a iff sup(a) ≤ inf(b).

According to the definitions of interval relation matrix and interval algebra relations, there exists a
mapping between interval relation matrix and interval algebra relations as shown in Table 2. For each pair
of mapping, the corresponding interval relation matrix and interval algebra relation have the same spatial
constraints between the intervals.

Rectangular algebra proposed by Balbiani et al. [35,36] is the extension of interval algebra to the bi-
dimensional space. It describes the spatial configurations between rectangles whose sides are parallel to
the axes of some orthogonal basis in a bi-dimensional Euclidean space. A basic rectangular algebra relation
is defined as an element of the set Arec = {(Rx,Ry)|Rx,Ry ∈ Aint}. For each relation (Rx,Ry) ∈ Arec, there exist two
rectangles a and b such that b (Rx,Ry) a holds iff bx Rx ax and by Ry ay hold.

Table 1: Interval algebra relations

b

ainf(a) sup(a)

inf(b) sup(b)

Figure 2: Example of interval relation matrix.

Table 2: The mapping between interval relation matrices and interval algebra relations

Interval matrix Constraints Interval algebra

[1 0 0] sup(b) ≤ inf(a) {p,m}
[1 1 0] inf(b) < inf(a) < sup(b) ≤ sup(a) {o,fi}
[1 1 1] inf(b) < inf(a) ∧ sup(a) < sup(b) {di}
[0 1 0] inf(a) ≤ inf(b) ∧ sup(b) ≤ sup(a) {d,s,f,e}
[0 1 1] inf(a) ≤ inf(b) ∧ sup(a) < sup(b) {si,oi}
[0 0 1] sup(a) ≤ inf(b) {pi,mi}
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Example 2. As shown in Figure 3, there exist rectangles a and b such that b (p,m) a holds. We can also see
that bx p ax and by m ay hold.

Then, a rectangular algebra relation is defined as an element of the power set 2Arec of Arec. It can be used
to describe not only definite but also indefinite information about spatial configurations between rectan-
gles. If there exist rectangles a and b such that b R a is satisfied, where R is a rectangular algebra relation, if
and only if one of the basic relation in R is satisfied, e.g., b{(pi,f), (d,e)} a denotes that b (pi,f) a or b (d,e) a
for rectangles a and b.

Both rectangular cardinal direction relation and rectangular algebra can be used to describe the spatial
configurations between rectangles in REG. Let us consider two rectangles a and b and assume that b R a,
where R is a basic rectangular cardinal direction relation, then there exists a rectangular algebra relation r
such that b r a holds, and vice versa. Thus, there must be a mapping between rectangular cardinal direction
and rectangular algebra relations. Let us consider the basic rectangular cardinal direction relation SW:S and
assume that there exist rectangles a and b such that b SW:S a holds. According to the definition of basic
cardinal direction relation (Definition 1), we have b SW:S a if and only if infx(b) < infx(a) < supx(b) ≤ supx(a)
and supy(b) ≤ infy(a), from which we have bx {o, fi} ax and by {p,m} ay according to the definition of interval
algebra relations presented in Table 1, namely, b {o, fi} × {p,m} a. Thus, rectangular cardinal direction
relation SW:S and rectangular algebra relation {o, fi} × {p,m} are a pair of mapping. In similar way, we build
a mapping between rectangular cardinal directions and rectangular algebra relations which is presented in
the form of matrix as shown in Table 3.

x

y

a

b

bx ax

ay

by

p

m

Figure 3: Illustration of Example 2.

Table 3: The mapping between rectangular cardinal direction relations and rectangular algebra relations

Y/X [ ]1 0 0 [ ]1 1 0 [ ]1 1 1 [ ]0 1 0 [ ]0 1 1 [ ]0 0 1

⎡

⎣

⎢
⎤

⎦

⎥

1
0
0

⎡

⎣

⎢
⎤

⎦

⎥

1 0 0
0 0 0
0 0 0

⎡

⎣

⎢
⎤

⎦

⎥

1 1 0
0 0 0
0 0 0

⎡

⎣

⎢
⎤

⎦

⎥

1 1 1
0 0 0
0 0 0

⎡

⎣

⎢
⎤

⎦

⎥

0 1 0
0 0 0
0 0 0

⎡

⎣

⎢
⎤

⎦

⎥

0 1 1
0 0 0
0 0 0

⎡

⎣

⎢
⎤

⎦

⎥

0 0 1
0 0 0
0 0 0

⎡

⎣
⎢

⎤

⎦
⎥

1
1
0

⎡

⎣

⎢
⎤

⎦

⎥

1 0 0
1 0 0
0 0 0

⎡

⎣

⎢
⎤

⎦

⎥

1 1 0
1 1 0
0 0 0

⎡

⎣
⎢

⎤

⎦
⎥

1 1 1
1 1 1
0 0 0

⎡

⎣

⎢
⎤

⎦

⎥

0 1 0
0 1 0
0 0 0

⎡

⎣

⎢
⎤

⎦

⎥

0 1 1
0 1 1
0 0 0

⎡

⎣

⎢
⎤

⎦

⎥

0 0 1
0 0 1
0 0 0

⎡

⎣
⎢

⎤

⎦
⎥

1
1
1

⎡

⎣

⎢
⎤

⎦

⎥

1 0 0
1 0 0
1 0 0

⎡

⎣

⎢
⎤

⎦

⎥

1 1 0
1 1 0
1 1 0

⎡

⎣
⎢

⎤

⎦
⎥

1 1 1
1 1 1
1 1 1

⎡

⎣

⎢
⎤

⎦

⎥

0 1 0
0 1 0
0 1 0

⎡

⎣

⎢
⎤

⎦

⎥

0 1 1
0 1 1
0 1 1

⎡

⎣

⎢
⎤

⎦

⎥

0 0 1
0 0 1
0 0 1

⎡

⎣

⎢
⎤

⎦

⎥

0
1
0

⎡

⎣

⎢
⎤

⎦

⎥

0 0 0
1 0 0
0 0 0

⎡

⎣

⎢
⎤

⎦

⎥

0 0 0
1 1 0
0 0 0

⎡

⎣

⎢
⎤

⎦

⎥

0 0 0
1 1 1
0 0 0

⎡

⎣

⎢
⎤

⎦

⎥

0 0 0
0 1 0
0 0 0

⎡

⎣

⎢
⎤

⎦

⎥

0 0 0
0 1 1
0 0 0

⎡

⎣

⎢
⎤

⎦

⎥

0 0 0
0 0 1
0 0 0

⎡

⎣
⎢

⎤

⎦
⎥

0
1
1

⎡

⎣

⎢
⎤

⎦

⎥

0 0 0
1 0 0
1 0 0

⎡

⎣

⎢
⎤

⎦

⎥

0 0 0
1 1 0
1 1 0

⎡

⎣
⎢

⎤

⎦
⎥

0 0 0
1 1 1
1 1 1

⎡

⎣

⎢
⎤

⎦

⎥

0 0 0
0 1 0
0 1 0

⎡

⎣

⎢
⎤

⎦

⎥

0 0 0
0 1 1
0 1 1

⎡

⎣

⎢
⎤

⎦

⎥

0 0 0
0 0 1
0 0 1

⎡

⎣

⎢
⎤

⎦

⎥

0
0
1

⎡

⎣

⎢
⎤

⎦

⎥

0 0 0
0 0 0
1 0 0

⎡

⎣

⎢
⎤

⎦

⎥

0 0 0
0 0 0
1 1 0

⎡

⎣

⎢
⎤

⎦

⎥

0 0 0
0 0 0
1 1 1

⎡

⎣

⎢
⎤

⎦

⎥

0 0 0
0 0 0
0 1 0

⎡

⎣

⎢
⎤

⎦

⎥

0 0 0
0 0 0
0 1 1

⎡

⎣

⎢
⎤

⎦

⎥

0 0 0
0 0 0
0 0 1
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5 Correlations between interval relation matrix and rectangular
cardinal direction matrix

There exist equivalent correlations between interval relation matrix and interval algebra relations, so that
we can get the inverse matrix by means of the inference rules of interval algebra for basic interval relation
matrix. For interval relation matrix [1 0 0], we have its equivalent interval algebra relation {p,m} from
Table 3. Thus, the interval algebra corresponding to INV([1 0 0]) is {p,m}−1 which equals {pi,mi}. From
Table 2, we have {pi,mi} is equivalent to [0 0 1], so we have INV([1 0 0]) = [0 0 1]. In the same way, we have
the inverse of basic interval relation matrices presented in Table 4.

Definition 5. Let P be a basic cardinal direction relation matrix, the projection of P on the x-axis, denoted by
Px, is a 1 × 3 matrix, if there exists at least one P(i,j) = 1 for each I ∈ {1,2,3}, then Px(1,j) = 1, else Px(1,j) = 0,
j ∈ {1,2,3}.

Definition 6. Let P be a basic cardinal direction relation matrix, the projection of P on the y-axis, denoted by
Px, is a 3 × 1 matrix, if there exists at least one P(i,j) = 1 for each j ∈ {1,2,3}, then Py(i,1) = 1, else Px(i,1) = 0,
I ∈ {1,2,3}.

Example 3. For direction matrix
⎡

⎣
⎢

⎤

⎦
⎥=P

0 1 1
0 0 1
0 0 0

, we have = [ ]P 0 1 1x and
⎡

⎣
⎢

⎤

⎦
⎥=P

1
1
0

y .

Lemma 1. Let P be a rectangular direction matrix, the rectangular algebra (Px, Py) presented by interval
relation matrix is the equivalent relation of P.

Proof. This proof is given by case analysis. There are 36 basic rectangular direction matrices. Let us fist

consider that
⎡

⎣
⎢

⎤

⎦
⎥=P

1 1 0
1 1 0
0 0 0

. Then, we have = [ ]P 1 1 0x and
⎡

⎣
⎢

⎤

⎦
⎥=P

1
1
0

y . We have that the equivalent

rectangular algebra of P represented by interval relation matrix is
⎛

⎝
⎜

⎡

⎣
⎢

⎤

⎦
⎥

⎞

⎠
⎟[ ]1 1 0 ,

1
1
0

, namely, (Px, Py), thus

the lemma holds for this case. Similarly, we have the lemma hold for any other basic rectangular direction
matrix and thus the lemma holds. □

Lemma 2. Let P be a rectangular direction matrix, then P = Py × Px.

Proof. This proof is given by case analysis. There are 36 basic rectangular direction matrices. Let us fist

consider that
⎡

⎣
⎢

⎤

⎦
⎥=P

0 1 0
0 1 0
0 0 0

. Then we have = [ ]P 0 1 0x and
⎡

⎣
⎢

⎤

⎦
⎥=P

1
1
0

y . According to the definition of matrix

Table 4: Inverse of interval matrix

Interval matrix (M) Inverse (INV(M))

[1 0 0] [0 0 1]
[1 1 0] [0 1 0], [0 1 1]
[1 1 1] [0 1 0]
[0 1 0] [0 1 0], [0 1 1], [1 1 0], [1 1 1]
[0 1 1] [0 1 0], [1 1 0]
[0 0 1] [1 0 0]

Computing the inverse of cardinal direction relations between regions  1167



multiplication, we have
⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥× [ ] =

1
1
0

0 1 0
0 1 0
0 1 0
0 0 0

. Thus, the lemma holds for this case. Similarly, the

lemma holds for any other basic rectangular direction matrix and thus the theorem holds. □

6 Computing the inverse of basic cardinal direction relations

In this Section, we will focus on the problem of computing the inverse of basic cardinal direction relations.
We will need the following definitions and theorems.

Definition 7. Let P, Q be two basic cardinal direction matrices. For each i,j ∈ {1,2,3}, if Qij = 1, then we must
have Pij = 1, then we say that P includes Q.

Definition 8. Let P be a basic direction matrix. The bounding matrix of P, denoted by Br(R) is the smallest
rectangular direction matrix (with respect to the number of non-zero elements) that includes P.

Definition 9. Let P be a rectangular direction matrix, the original matrix of P is a basic direction matrix with
that its bounding matrix is P. The set of original matrices of P is denoted by ORG(P).

Example 4.
⎡

⎣
⎢

⎤

⎦
⎥

1 1 1
1 1 1
0 0 0

includes
⎡

⎣
⎢

⎤

⎦
⎥

1 1 1
1 1 0
0 0 0

, and
⎡

⎣
⎢

⎤

⎦
⎥

1 1 1
1 1 0
0 0 0

is the original matrix of
⎡

⎣
⎢

⎤

⎦
⎥

1 1 1
1 1 1
0 0 0

.

Lemma 3. Let P be a basic direction matrix, and a, b be regions in REG such that a P b holds, then mbb(a) Br
(P) b also holds.

Proof. It is easy to see that if a P b holds, then mbb(a) Br(P) b also holds.

For instance, if a
⎡

⎣
⎢

⎤

⎦
⎥

0 1 1
0 0 1
0 0 0

b, then mbb(a) ⎡

⎣
⎢

⎤

⎦
⎥

0 1 1
0 1 1
0 0 0

b (Figure 4), where

⎛

⎝
⎜

⎡

⎣
⎢

⎤

⎦
⎥

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥=Br

0 1 1
0 0 1
0 0 0

0 1 1
0 1 1
0 0 0

. □

Theorem 1. Let P be a rectangular direction matrix, INVrec(P) be the set of rectangular matrices in the
inverse matrices of P, then

INVrec(P) = {p × q|p ∈ INV(Py) ∧ q ∈ INV(Px)}.

Proof. ∀t ∈ INVrec(P), there exist two rectangles a, b such that a t b and b P a hold. Then, according to
Lemma 1, we have ax tx bx ∧ ay ty by ∧ bxPxax ∧ byPyay. Thus, we have tx ∈ INV(Px) ∧ ty ∈ INV(Py). Then,
according to Lemma 2, we have t = ty × tx. □

Therefore, we have t ∈ {p × q|p ∈ INV(Py) ∧ q ∈ INV(Px)}.

b

mbb(a)

a

Figure 4: Proving Lemma 3.
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Conversely, ∀t ∈ p × q|p ∈ INV(Py) ˄ q ∈ INV(Px)}, according to Lemma 2, we have t = ty × tx, and since t
∈{p × q|p ∈ INV(Py) ∧ q ∈ INV(Px), then, ty ∈ INV(Py) ∧ tx ∈ INV(Px), and then ty × tx ∈ INVrec(P). Since t = ty × tx,
then t ∈ INVrec(P) and thus the theorem holds.

Theorem 2. Let Q be a basic direction matrix, INV(Q) be the set of the inverse matrices of Q, then,
INV(Q) = {ORG(p × q)|p ∈ INV(Br(Q)y) ∧ q ∈ INV(Br(Q)x)}

Proof. Let us first prove that INV(Q) = {ORG(t)|t∈ INVrec(Br(Q))} holds. ∀q∈ INV(Q), let a, b be regions in REG
and a q b ∧ b Q a holds. Then,mbb(a) Br(q) b ∧ mbb(b) Br(Q) a holds by Lemma 3. Equivalently,mbb(a) Br(q)
mbb(b) ∧ mbb(b) Br(Q)mbb(a) holds. Then, according to the definition of inverse, Br(q)∈ INVrec(Br(Q)) holds.
Therefore, according to the definition of original matrix (Definition 9), q∈ {ORG(t)|t∈ INVrec(Br(Q))}holds. □

Conversely, ∀t∈ INVrec(Br(Q)), there exist rectangles a and b such that a t b ∧ b Br(Q) a holds. ∀q∈ ORG
(t), assume that r1:…: rk is the cardinal direction corresponding to q, assume also that R1:…: Rj is the cardinal
direction corresponding to Q, let us form region b0 = b ∩ (R1(a) ∪… ∪ Rj (a)) and region a0 = a ∩ (r1(b) ∪… ∪ rk
(b)). By the construction of regions a0 and b0, havembb(a0) = a andmbb(b0) = b. Then, we have b0 R1:…: Rj

a0∧a0 r1:…: rk b0 holds by the construction of regions a0 and b0 and the definition of basic cardinal direction
relation (Definition 1), namely, b0 Q a0 ∧ a0 q b0 holds.

For instance, if aBr(N:NE:E)b ∧ bBr(W:SW:S) a holds (Figure 5(a)), then a0 N:NE:E b0∧b0 W:SW:S a0
also holds, where a0 = a ∩ (N(b) ∪ NE(b) ∪ E(b)) and b0 = b ∩ (W(a) ∪ SW(a) ∪ S(a)) (Figure 5(b)).

Since b0 Q a0 ∧ a0 q b0 holds, then we have q ∈ INV(Q) holds by Definition 4. Thus, INV(Q) = {ORG(t)|
t∈INVrec(Br(Q))} holds. We have INVrec(Br(Q)) = {p × q|p ∈ INV(Br(Q)y) ∧ q ∈ INV(Br(Q)x)} by Theorem 1, and
thus the Theorem holds.

The above theorem offers a method to compute the inverse of basic cardinal direction relation. By this
theorem, we have to get the set ORG(P) for a rectangular direction matrix P. The set ORG(P) can be obtained
by manual reasoning and calculating. First, the invalid direction matrices are eliminated from the set of
matrices included by P. Then, all the possible original matrices of P will be found by manual checking
according to Definition 9.

We illustrate the above manual operation with the following example.

Example 5. Let P be
⎡

⎣
⎢

⎤

⎦
⎥

1 1 0
1 1 0
0 0 0

. There are fifteen matrices included by P, as follows:

⎡

⎣
⎢

⎤

⎦
⎥

0 1 0
1 0 0
0 0 0

,
⎡

⎣
⎢

⎤

⎦
⎥

1 0 0
0 1 0
0 0 0

,
⎡

⎣
⎢

⎤

⎦
⎥

1 0 0
0 0 0
0 0 0

,
⎡

⎣
⎢

⎤

⎦
⎥

0 1 0
0 0 0
0 0 0

,
⎡

⎣
⎢

⎤

⎦
⎥

0 0 0
0 1 0
0 0 0

,
⎡

⎣
⎢

⎤

⎦
⎥

0 0 0
1 0 0
0 0 0

,
⎡

⎣
⎢

⎤

⎦
⎥

1 0 0
1 0 0
0 0 0

,
⎡

⎣
⎢

⎤

⎦
⎥

1 1 0
0 0 0
0 0 0

,
⎡

⎣
⎢

⎤

⎦
⎥

0 1 0
0 1 0
0 0 0

,

⎡

⎣
⎢

⎤

⎦
⎥

0 0 0
1 1 0
0 0 0

,
⎡

⎣
⎢

⎤

⎦
⎥

0 1 0
1 1 0
0 0 0

,
⎡

⎣
⎢

⎤

⎦
⎥

1 0 0
1 1 0
0 0 0

,
⎡

⎣
⎢

⎤

⎦
⎥

1 1 0
1 0 0
0 0 0

,
⎡

⎣
⎢

⎤

⎦
⎥

1 1 0
0 1 0
0 0 0

,
⎡

⎣
⎢

⎤

⎦
⎥

1 1 0
1 1 0
0 0 0

we cannot find out the two regions a,b in REG such that a M b holds, so thatM is invalid by Definition 9.
The other matrices are direction matrices.

b

b0

a0

a

b

a

(a) (b)

Figure 5: Proving Theorem 2.
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⎛

⎝
⎜

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎞

⎠
⎟∀ ∈M

1 0 0
0 0 0
0 0 0

,
0 1 0
0 0 0
0 0 0

,
0 0 0
0 1 0
0 0 0

,
0 0 0
1 0 0
0 0 0

,
1 0 0
1 0 0
0 0 0

,
1 1 0
0 0 0
0 0 0

,
0 1 0
0 1 0
0 0 0

,
0 0 0
1 1 0
0 0 0

Br(M) = M, so that the eight direction matrices are not the original matrices of P.

( )
⎛

⎝
⎜

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎞

⎠
⎟=ORG P

0 1 0
1 1 0
0 0 0

,
1 0 0
1 1 0
0 0 0

,
1 1 0
1 0 0
0 0 0

,
1 1 0
0 1 0
0 0 0

,
1 1 0
1 1 0
0 0 0

, we have Br(M) = P. Then,

according to Definition 9, we have

( )
⎛

⎝
⎜

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎞

⎠
⎟=ORG P

0 1 0
1 1 0
0 0 0

,
1 0 0
1 1 0
0 0 0

,
1 1 0
1 0 0
0 0 0

,
1 1 0
0 1 0
0 0 0

,
1 1 0
1 1 0
0 0 0

Notice that the above process of manual reasoning is very complicated as it needs to check all the
matrices included by the rectangular direction matrix P to find out the target matrices. By Definition 7, there
are 2n − 1 matrices included by a given rectangular direction matrix P with n(1 ≤ n ≤ 9) non-zero elements.
Therefore, the amount of work on manual reasoning increases sharply as the number of non-zero elements
in P grows. So, it is impractical to employ manual reasoning. Therefore, to solve above problem the
following problem should be solved.

Problem 1. Given an arbitrary rectangular direction matrix P, ORG(P) is calculated automatically.

By Definition 9, if matrix M in the set of the Boolean 3 × 3 matrices is a valid direction matrix such that
Br(M) = P holds, then M ∈ ORG(P) holds, for a rectangular direction matrix P. Thus, we can get ORG(P) by
checking each matrixM in the set of the Boolean 3× 3 matrices. Therefore, to solve problem 1, we first have
to solve the following problem.

Problem 2. Given an arbitrary Boolean 3 × 3 matrix M, decide whether M is a valid direction matrix or not.

The following Lemma provides necessary and sufficient conditions to determine the validity of a given
matrix.

Lemma 4. Given an arbitrary Boolean 3 × 3 matrix M, M is a valid direction matrix if and only if it is non-
empty and 4-connected.

We provide an approach to determine whether a given matrix is 4-connected or not by using auxiliary
queue in the following way.

Initially, start with any non-zero element in matrixM, record its row and column number into the queue
and then set it to be zero. Then, repeat the following process we call 4-neighbors, search when the queue is
non-empty. Remove an element from the front of the queue and then, for each non-zero element in the four
neighbors which are horizontally or vertically adjacent to the removed element, add its row and column
number to the queue and set it to be zero. When the queue is empty, if there does not exist non-zero element
in M, then M is 4-connected, else it is not.

By using the above approach and Lemma 4, we get the following algorithm to solve problem 2.

Algorithm. VALID-CDM

Input: An arbitrary Boolean 3×3 matrix M
Output: true or false

begin
int row[4] = {0,0,-1,1};int col[4] = {1,-1,0,0};
struct Point {int x,y;}; queue < Point > que;
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int cnt: = 0; bool flag: = false;
for int i: = 1 to 3 do
for int j: = 1 to 3 do

if(M[i][j] = 1), then
M[i][j] = 0; flag = true; cnt ++;
que.push(Point{i,j});
while(!que.empty()) do

{Point q = que.front();}
que.pop();

for int k: = 0 to 3 do
{int x = q.x + row[k]; int y = q.y + col[k];}

if (x > = 1&&x < = 3&&y > = 1&&y < = 3&& M[x][y] = 1) then
M[x][y]: = 0; que.push(Point{x,y});
end if

end if
if (cnt > 1 or flag = false) then return false;
else return true;

end if
end

Theorem 3. Algorithm VALID-CDM is correct, i.e., it returns whether a Boolean 3 × 3 matrix M is a valid
direction matrix or not.

Proof. This algorithm adopts the non-zero element encountered first in executing the for loop as the
starting element. Then, the iterative 4-neighbors search that starts with this non-zero element is performed
by executing the inner while loop. When the queue becomes empty and then the while loop terminates, if
there does not exist non-zero element in M, then the for loop terminates with cnt = 1 and this algorithm
ultimately returns true. For this case, we have the fact that all the non-zero elements in M can be found by
once iterative four-neighbors search which indicates M is 4-connected. By Lemma 4, we have that M is a
valid direction matrix. Therefore, the result of this algorithm is correct for this case. □

Otherwise, the for loop terminates when cnt > 1∨flag = false holds and then this algorithm returns false.
If flag = false, which implies M is empty, then M is invalid by Lemma 4. If cnt > 1 which indicates the non-
zero elements ofM cannot be found by once iterative four-neighbors search, then we can conclude that the
primary object corresponding to M consists of at least two regions in REG, which contradicts with the
definition of basic cardinal direction relation (Definition1). Therefore, the result of this algorithm is correct
and thus this theorem holds

We give an example of Algorithm VALID-CDM in operation as following.

Example 6. Given two Boolean 3 × 3 matrices M1 and M2 (Figure 6), it is easy to see that M1 is a valid
direction matrix, while M2 is not. By using Algorithm VALID-CDM to examine the above two matrices, we
can see that there exists non-zero element M2[2][1] in M2, while it does not in M1 when the query is empty
(Figure 6). Thus, the results of Algorithm VALID-CDM are in agreement with the actual states.

In the following, we will combine Algorithm VALID-CDM to solve Problem 1. We know that the set of
Boolean 3 × 3 matrices can be represented by a full binary tree with depth 9. Thus, the original matrices of a
rectangular direction matrix can be computed by implementing depth-first search in such binary tree. During
this search, a Boolean 3× 3 matrix is obtained whenever a leaf node is reached. For each obtained matrix, we
check whether it is a direction matrix or not by calling algorithm VALID-CDM. If it is valid, then we check
whether it is the original matrix of the given rectangular matrix or not. By the above method, an algorithm for
computing all the original matrices of a given rectangular direction matrix is presented as follows.

Computing the inverse of cardinal direction relations between regions  1171



Algorithm. COMPUTE-ORG
Input: An arbitrary rectangular direction matrix P, integer a
Output: ORG(P)
begin

int i, j;
if (a > 9)

q: = p;
if (VALID-CDM(q) and Br(p) = P), then
R: = R ∪ {p};
return;

end if
end if

if (a mod 3 = 0), then
i = a/3; j = 3;

else
i = (a/3) + 1; j = a mod 3;

end if
p[i][j]: = 1;
COMPUTE-ORG(P,a + 1);
p[i][j]: = 0;
COMPUTE-ORG(P,a + 1);

end

1 1 1

1 1 0

0 0 0

� �
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Figure 6: Illustration of Algorithm VALID-CDM in operation.

1172  MiaoWang et al.



Theorem 4. Algorithm COMPUTE-ORG is correct and complete, i.e., it returns all the possible original
matrices of a rectangular direction matrix P.

Proof. This algorithm performs a naive search in the set of Boolean 3 × 3 matrices by using recursive call.
During the execution, a Boolean 3 × 3 matrix p is obtained whenever the integer a becomes 10. Then,
it invokes Algorithm VALID-CDM to decide whether p is a valid cardinal direction matrix or not. The
correctness of Algorithm VALID-CDM has been proved in Theorem 3. If p is a valid direction matrix and
Br(p) = P also holds, then p is recorded into R. We have that p is the original matrix of P by Definition 9.
Thus, R ultimately records ORG(P) as there is no omission by this naive search. Therefore, this algorithm is
correct and complete. □

In the remainder of this section, we will give an algorithm for computing the inverse of the basic
cardinal direction relation.

By Theorem 2, the inverse of a basic direction matrix P can be computed by the following way. The
rectangular matrix Br(P) is calculated first. Then, Br(P) is projected to the x-axis and y-axis, respectively.
Furthermore, we take the inverse operation for the projection matrix of Br(P) on x-axis and y-axis, respec-
tively. Then, we get the set INV(Br(P)y) × INV(Br(P)x). Finally, we employ algorithm COMPUTE-ORG to
compute the original matrices for each matrix in INV(Br(P)y) × INV(Br(P)x). Notice that the set of the original
matrices obtained is the result of the inversion operation of P. Based on the above discussion, we present
our algorithm as following.

Algorithm. COMPUTE-INV
input: An arbitrary basic direction matrix P
Output: inverse of P
begin
Q = Br(P);
for i: = 1 to 3 do

for j: = 1 to 3 do
if(Q[i][j] = 1) then
{Y[i] = 1; break;}

for i: = 1 to 3 do
for j:= 1 to 3 do
if(Q[j][i] = 1), then
{X[i] = 1; break;}

R:= INV(Y);
S:= INV(X);
C:= ∅

for each r ∈ R
for each s ∈ S
C = C ∪ Computer-ORG(r × s,1);

return C;
end

Theorem 5. Algorithm COMPUTE-INV is correct and complete, i.e., it returns the inverse of a basic cardinal
direction matrix P.

Proof. It is easy to see that this algorithm follows the approach presented in Theorem 2 and invokes
Algorithm COMPUTE-ORG. Thus, the correctness and completeness of this algorithm follows from the
correctness and completes of Algorithm COMPUTE-ORG and the correctness of Theorem 2 which have
been proved. □
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7 Algorithm analysis and discussion

In Section 6, we have presented algorithm COMPUTE-INV that computes the inverse of basic cardinal direc-
tion relations. In this section, we will verify the correctness and completeness of the proposed algorithm by
comparing the result of this algorithmwith that of manual reasoning for each basic cardinal direction relation.

We have implemented the AlgorithmVALID-CDM, COMPUTE-ORG, and COMPUTE-INV in C programming
language that runs on Visual C++ 6.0. We employ two dimensional arrays to store direction relation matrices.
The queue used in Algorithm VALID-CDMwith element <i,j> (i and j are two integers) is implemented by using
the C++ Standard Template Library. Algorithm COMPUTE-ORG performs the depth-first search in the set of
Boolean 3 × 3 matrices which is implemented by recursive programming. Although the set of Boolean 3 × 3
matrices can be seen as a full binary tree with depth 9, there is no need to use the data structure binary tree as
such binary tree can be simulated by each element in the direction matrix set to be 0 or 1 randomly.

The inverse of each basic direction matrix has been generated by Algorithm COMPUTE-INV and manual
reasoning, respectively. The results and the code are available from us. Then, we will check whether the
result of Algorithm COMPUTE-INV is consistent with that of manual reasoning for each basic cardinal
direction relation.

An example of the inverse of the basic direction matrix generated by Algorithm COMPUTE-INV is
presented as follows.

For instance, we want to calculate the basic direction matrix
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. Br(M) is calculated first.

We have ( )
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.

So, the projection of Br(M) on the y-axis is⎡
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, and the projection of Br(M) on the x-axis is [0 1 1].

Then, we take the inverse operation for the projection matrix of Br(Q) on x-axis and y-axis, respectively.

We have
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Therefore, we have
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Equivalently, we have
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Therefore, we have
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Then, the inverse of the basic direction matrix is generated by manual reasoning, shown as follows.

Assume that a and b are regions in REG such that a
⎡
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b holds (Figure 7). We have the possible

spatial configurations of b with respect to a (also see Figure 7).
We have
b B a ∨ bW:B a ∨ b N:B a ∨ b N:W:B a ∨ b NW:W:B a ∨ b NW:N:Wa ∨ b NW:N:B a ∨ b NW:N:W:B a holds.
Equivalently, we have
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By Definition 4, we can conclude that the inverse of M generated by Algorithm COMPUTE-INV is
consistent with that of manual reasoning. Therefore, the proposed algorithm can calculate INV(M) cor-
rectly. We compared the result of Algorithm COMPUTE-INV with that of manual reasoning for each basic
cardinal direction relation. We find that the results of this algorithm are in good agreement with those of
manual reasoning without exception. The results of comparison show that Algorithm COMPUTE-INV is
correct and complete.

From the above example, we know that the manual reasoning has to find out all the possible spatial
configurations between the primary region and reference region. It is easy to miss some possible case. There
needs to make a lot of hypotheses and inferences with the spatial configurations between the primary
region and reference region. To make sure there are no omissions, the results need to be checked completely
and thoroughly. Obviously, the manual reasoning is a very complicated operation and requires a lot of
work. The proposed algorithm COMPUTE-INV can calculate the inverse of any basic cardinal direction
relation directly which does not need to use reference tables and any manual operation.

We know that the time cost of this algorithm depends on that of the depth-first search. The search space
is a binary tree with depth 9 which only has 29 = 512 elements. During this search, when a Boolean 3 × 3
matrix is obtained, Algorithm VALID-CDM is performed where at most 9 elements are processed by means
of the queue. By Theorem 2, we know that the depth-first search is performed at most 16 times. The time
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Figure 7: All possible spatial configurations of b with respect to a.
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complexity of algorithm COMPUTE-INV is constant. Therefore, it is unnecessary to concentrate on the time
efficiency of Algorithm COMPUTE-INV.

In this section, the correctness and completeness of algorithm COMPUTE-INV has been verified. So far,
the problem of computing the inverse of basic cardinal direction relations in the mode of Goyal is solved.

8 Conclusion and future work

In this work, we have addressed on the problem of automatically computing the inverse of cardinal direc-
tion relations in the model of Goyal. We first provided a solution by theorems for this problem. Then, we
gave an algorithm for deciding whether a Boolean matrix is a valid direction matrix or not and an algorithm
for computing the original matrices of the rectangular direction matrix. Finally, we provided our algorithm
for computing the inverse of cardinal direction relations by means of the operations of direction matrix
including the inverse operation of interval matrix, projection of direction matrix, and multiplication of
matrix. Theorems were provided to prove formally that our algorithms are correct and complete. The
verification was carried out by comparing the result of our algorithm with that of manual reasoning. The
results of comparison also demonstrate that our algorithm can work correctly.

Notice that our solution does not need any manual reasoning and calculation, and the help of the
reference tables. The proposed algorithm completely realized the automatic inference and calculation of the
inverse of the basic cardinal direction relations in the model of Goyal, which improved the ability of
intelligent reasoning and prediction of this model and then enhanced the usability of this model. This
work is of great significance for improving the ability of spatial reasoning and spatial analysis of spatial
database.

However, the real world is a three-dimensional space. In a recent paper [11], we provided a model for
cardinal directions in three-dimensional space, which is the extension of the model of Goyal in the three-
dimensional space. We found that this model has as many as 38,209,336 basic cardinal direction relations
by programming calculation. For such a large number of direction relations, it is undoubtedly a huge
challenge to perform spatial reasoning with cardinal directions in this model. We plan to extend our
algorithms to solve the problem of computing the inverse of cardinal direction relations defined by the
above three-dimensional model in a separate paper.
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