
c© de Gruyter 2007
J. Math. Crypt. 1 (2007), 125–150 DOI 10.1515 / JMC.2007.008

Perfect Hash Families: Constructions and Existence

Robert A. Walker II and Charles J. Colbourn

Communicated by Spyros S. Magliveras

Abstract. A perfect hash family PHF(N ; k, v, t) is an N × k array on v symbols with v ≥ t,
in which in every N × t subarray, at least one row is comprised of distinct symbols. Perfect hash
families have a wide range of applications in cryptography, particularly to secure frameproof codes,
in database management, and indirectly in software interaction testing. New recursive constructions,
new direct constructions, and PHFs found using tabu search are provided here. The first general
tables of the best known sizes of PHFs are presented; in the process, the known direct and recursive
constructions are surveyed.

Keywords. Perfect hash family, interaction testing, three-term arithmetic progression.

AMS classification. 05B15.

1 Introduction

A perfect hash family PHF(N ; k, v, t) is an N×k array on v symbols, in which in every
N × t subarray, at least one row is comprised of distinct symbols. Figure 1 shows a
PHF(6; 12, 3, 3). For instance, in columns 1, 3, and 5, the first row contains 1 0 2.
An older survey on PHFs is given in [15].

1 0 0 2 2 2 1 1 2 1 0 2
2 0 1 1 2 0 2 0 1 1 2 1
2 0 2 1 2 1 0 2 2 1 1 0
0 1 2 2 1 2 2 0 1 1 0 0
2 0 1 2 1 1 2 2 0 1 2 1
0 2 1 0 2 2 2 1 0 1 2 1


Figure 1. A PHF(6; 12, 3, 3)

The smallest N for which a PHF(N ; k, v, t) exists is the perfect hash family number,
denoted PHFN(k, v, t).

Mehlhorn [23] defined perfect hash families as follows: A (k, v)-hash function is a
function h : A → B, where |A| = k and |B| = v. For any given subset X ⊆ A, the
function h is perfect if h is injective on X , i.e., if h|X is one-to-one. Given integers
k, v, t so that k ≥ v ≥ t ≥ 2, letH (|H| = N) be a set of (k, v)-hash functions for which
h : A → B for each h ∈ H, where |A| = k and |B| = v. Then H is a PHF(N ; k, v, t)
whenever, for any X ⊆ A with |X| = t, there exists at least one h ∈ H such that h|X

126 Robert A. Walker II and Charles J. Colbourn

is one-to-one. This definition is equivalent to the array definition. Consider each row
of the array to be a function h, and take A = {1, 2, . . . , k}. Then the value in column i
of the row for h is the value of h(i).

Mehlhorn [23] introduced perfect hash families as an efficient tool for compact stor-
age and fast retrieval of frequently used information, such as reserved words in pro-
gramming languages or command names in interactive systems.

Stinson, Trung, and Wei [28] establish that perfect hash families, and a variation
known as “separating hash families”, can be used to construct separating systems, key
distribution patterns, group testing algorithms, cover-free families, and secure frame-
proof codes. Perfect hash families have also recently found applications in broadcast
encryption [16] and threshold cryptography [10]. Finally, perfect hash families arise as
ingredients in some recursive constructions for covering arrays [14]. Covering arrays
have a wide range of applications, most prominently in software interaction testing.

The goal of this paper is threefold. Primarily, we produce the first comprehensive
existence tables for perfect hash families for a wide range of parameters. This is mo-
tivated by the need not only to produce explicit sets for applications, but also in order
to assess the utility of constructions both known and new. Secondly, we review the
known constructions available for PHF construction. Thirdly, we develop new con-
structions. The new direct methods include a somewhat unexpected construction using
sets of integers with no three-term arithmetic progression, and the new recursive con-
structions include “Roux-type” methods that have proven powerful in the construction
of covering arrays.

2 Direct constructions

Previous research on perfect hash families has focused on producing direct construc-
tions based on related combinatorial objects. We first present known results and then
turn to new direct constructions.

2.1 Known direct constructions

All optimal perfect hash families are known for strength 1 and 2. Given any k and v it
is possible to construct the PHF with minimum possible N , and given any N and v it
is possible to construct the PHF with maximum possible k.

For strength 1, one row is always sufficient (any single element set is vacuously
composed of distinct elements). For strength 2, the construction is slightly more com-
plicated.

Theorem 2.1. PHFN(k, v, 2) = dlogv ke.

Proof. To construct an array with N rows, use all possible distinct N -tuples on v sym-
bols as columns. Then we have k = vN columns. There cannot be an N × 2 sub-array
containing no row with distinct symbols, since if there were, the two columns would be
identical. Therefore, the array is a perfect hash family. Adding further columns would
require duplication of an existing column.

Perfect Hash Families: Constructions and Existence 127

For strengths 3 and higher exact results are in general not known. The simplest
construction gives optimal PHFs for one row.

Lemma 2.2. There exists a PHF(1; v, v, t), and it is optimal. The array consists of one
copy of every symbol.

The first interesting construction produces a PHF from codes. We first provide a few
definitions. Let x = (x1, x2, . . . , xN) and y = (y1, y2, . . . , yN) be any q-ary vectors
of length N . The Hamming distance between x and y is d(x, y) = |{i : xi 6= yi}|.
An (N,K,D, q)-code is a set C of K vectors in {1, . . . , q}N such that the Hamming
distance between any two distinct vectors in C is at least D. Codes over an alphabet of
size q are often referred to as q-ary codes.

Theorem 2.3 ([1]). If there is an (N,K,D, q) code C, then there is a PHF(N ; K, q, t)
when (N −D)(t

2) < N .

Using Reed-Solomon codes, we obtain:

Corollary 2.4 ([1]). Suppose N and v are given, with v a prime power and N ≤ v+1.

Then there exists a PHF(N ; v

�
N

(t
2)

�
, v, t).

In constructing so-called “IPP-codes” [33], Trung and Martirosyan [33] prove:

Lemma 2.5 ([33]). For any prime power v ≥ 3 and any i ≥ 1, there exists a
PHF((i + 1)2; vi+1, v, 3).

Lemma 2.6 ([33]). For any prime power v ≥ 4 and any i ≥ 1, there exists a
PHF(5

6(2i3 + 3i2 + i) + i + 1; vi+1, v, 4).

Trung and Martirosyan [32] develop a class of codes to give:

Theorem 2.7 ([32]). Let q0 and q1 be prime powers such that q1 ≥ q0, and i ≥ 1 is an
integer. Then, for any integer N with N ≤ q0q

i
1 + qi

1 + qi−1
1 + · · ·+ q1 + 1 there exists

a PHF(N ; k, v, t) with k = q2
0q

i
1, v = q0q

i
1, and t =

⌈√
8N+1−1

2

⌉
.

An m × n latin rectangle is an m × n array, m ≤ n, in which each cell contains a
symbol from an n-set; no symbol occurs twice in any row or in any column. Two m×n
latin rectangles are orthogonal if, when superimposed, every ordered pair of symbols
arises at most once. A set of k latin rectangles, each m × n, is mutually orthogonal
if every two latin rectangles in the set is orthogonal; such a set is called k MOLR. An
equivalent structure, an “(n; m, k + 2)-difference function family”, is defined in [31].
When m = n, this is the more standard combinatorial structure, mutually orthogonal
latin squares, or MOLS.

Theorem 2.8 ([29]). Suppose there are at least s = (t
2)−1 MOLR of size m×n. Then

there exists a PHF(s + 2; mn, n, t).

Corollary 2.9 ([29]). Suppose there are at least s = (t
2) − 1 MOLS of order v. Then

there exists a PHF(s + 2; v2, v, t).

128 Robert A. Walker II and Charles J. Colbourn

Using a class of orthogonal arrays developed by Bierbrauer, the following is proved:

Theorem 2.10 ([29]). For q a prime power and for any positive integers n, m, i such
that n ≥ m, 2 ≤ i ≤ qn, and (t

2) < qm

i−1 , there exists a PHF(qn; qm+(i−1)n, qm, t).

Blackburn [9] uses the Cartesian product {1, . . . , a}t to show:

Theorem 2.11. For every integer a ≥ 2 there exists a PHF(t, at, at−1, t).

Blackburn [8] gives a construction based on affine planes for t = 4 and v prime:

Theorem 2.12. There exists a PHF(6; v2, v, 4) for v = 11 and every prime v ≥ 17.

Finally, Atici et al. [4] provide a construction from resolvable balanced incomplete
block designs (RBIBDs):

Theorem 2.13. Suppose there exists a (v, b, r, k, λ)-RBIBD, where r > λ(t
2). Then

there exists a PHF(r; v, v
k , t).

2.2 A new direct construction

We start not with a construction, but with a lower bound.

Theorem 2.14. PHFN(v + 1, v, t) >
⌊

t
2

⌋
.

Proof. Let A be a PHF(N ; k = v + 1, v, t). At least one symbol is duplicated in each
row of A since k > v. Assume that N ≤

⌊
t
2

⌋
. Choose every column that is part of a

duplicate in any row to obtain c ≤ 2N ≤ t columns. Restricting A to these c columns
maintains a duplicate entry in every row, and hence is not a strength c perfect hash
family. Since c ≤ t, A is not a strength t PHF.

Given
⌊

t
2

⌋
+ 1 rows, we can do better.

Theorem 2.15 (First-N Construction). For s ≥ 1 and m ≥ 2, PHFN(ms + m,ms +
1, 2s + 1) = s + 1.

Proof. By Theorem 2.14, PHFN(ms + m,ms + 1, 2s + 1) ≥ PHFN(ms + 2,ms +
1, 2s + 1) > s. We show that PHFN(ms + m,ms + 1, 2s + 1) ≤ s + 1.

Create an array with ms + m columns and s + 1 rows. Partition the rows into s + 1
blocks of m symbols each; the jth block of the jth row is the primary block for the
row. In each column of the primary block of row j, place symbol v where v = ms + 1.
There remain ms unfilled positions in each row, so place the symbols 1, . . . , v−1 once
each.

Consider any set T of t columns. For 1 ≤ i ≤ s+1, the ith row fails to be distinct for
T if and only if two or more of the columns are in its primary block. Since t < 2(s+1),
at least one primary block contains no two columns of T . Hence, the array is a PHF.

Perfect Hash Families: Constructions and Existence 129

3 Strength three with three rows

We next consider a specific case in which the bound on the number of rows provided
by the First-N Construction is exceeded by one.

The dual of a PHF(N ; k, v, t) P is obtained as follows. Let K be a set of k elements,
the column indices of the PHF. For row i and symbol j, form a set Bij = {` : Pi,` = j}
called a block. Define B = {Bij : 1 ≤ i ≤ N, 1 ≤ j ≤ v}; the set system B is N -regular
in that each of the k points appears in exactly N blocks. Now Bi = {Bij : 1 ≤ j ≤ v}
is a partition of K, called a parallel class of blocks on K. The set system B then has a
partition into N parallel classes B1, . . . ,BN ; this partition is called a resolution and the
set system is resolvable when it admits a resolution. Thus a PHF(N ; k, v, t) gives rise
to an N -regular, resolvable set system on k points.

Fix N = t = 3. Now suppose that some pair occurs in more than one block. If pair
{x, y} occurs in both B11 and B21, without loss of generality, both x and y must appear
as singleton sets in B3; otherwise if x appears with z in B3, then there is no row that
separates x, y, and z. This does not preclude x and y being together twice, but it does
force singleton classes in the partition. A linear space is a set system in which no pair
occurs in more than one block (sometimes this definition excludes blocks of size 0 or
1; we do not).

Now restrict attention to 3-regular, resolvable linear spaces, and ask: Which are
duals of PHF(3; k, v, 3)s? Consider three elements {x, y, z} ⊆ K. If {x, y} is contained
in a block of B1, {x, z} is contained in a block of B2, and {y, z} is contained in a block
of B3, again this fails to be the dual of a PHF. Hence we also require that B be triangle-
free.

Our goal then is to construct a triangle-free, 3-regular, resolvable linear space (a
tfrrls for short). The number of symbols v of the PHF(3; k, v, 3) is the largest number
of blocks in one of the classes Bi, i ∈ {1, 2, 3}, and the number of columns k is the
size of the underlying point set of the tfrrls. So we use tfrrls(v, k) to denote a tfrrls on
k points with at most v blocks in each parallel class.

3.1 Tfrrls

We examine a specific construction for tfrrls(v, `v) over Zv × {f0, f1, . . . , f`−1}. Let
A = (a0, . . . , a`−1); we associate the integer ai modulo v with the point (ai, fi). The
jth translate of a point (ai, fi) under Zv is the point (ai+j mod v, fi), and the jth trans-
late of a set of points consists of the jth translates of the points in the set. Form B1 as
the translates of ((0, f0), (0, f1), . . . , (0, f`−1)), B2 as the points associated with trans-
lates of A, and B3 as the points associated with translates of −A (here and elsewhere
arithmetic is done modulo v, so that −ab = v− ab mod v). The result is a 3-regular re-
solvable set system. It is a linear space when ai 6≡ aj (mod v) and ai−aj 6≡ −(ai−aj)
(mod v); in other words, 2ai 6≡ 2aj (mod v). Hence we require that A contain integers
that are distinct modulo v when v is odd, and modulo v/2 when v is even.

Now we treat the harder question of when the result is triangle-free. Without loss
of generality, in a triangle we may assume that the points associated with A form a
block in the triangle. Now suppose that a corner of the triangle involves the point

130 Robert A. Walker II and Charles J. Colbourn

(ai, fi). Then the block of B1 forming the second side of the triangle is {(ai, fm) :
0 ≤ m < `}. The question then is whether among the blocks arising from translates
of −A there is one containing (ai, fk) and (aj , fj) for some choice of j and k. The
only possible translate is −A + (ai + ak), and hence to form a triangle we require that
−aj + ai + ak = aj , Thus a triangle is formed precisely when two entries in A sum to
twice a third element.

A set A = {a0, . . . , a`−1} has no three-term arithmetic progression modulo v when-
ever for distinct i, j, k ∈ {0, . . . , `−1}, ai +aj 6≡ 2ak (mod v) when i 6= k. We permit
that i = j to exclude cases in which 2ai ≡ 2ak (mod v) as before. If the congruence
were to hold, ak is the “average” of ai and aj . The term non-averaging set is some-
times applied when the arithmetic mean of some set of two or more elements in the
sequence also belongs to the sequence [11]; in our case we are only concerned with
sums of two elements.

This gives the main theorem.

Theorem 3.1. Given a set of size ` with no three-term arithmetic progression modulo
v, we immediately obtain a tfrrls(v, `v) and hence a PHF(3; `v, v, 3).

Wanless [36] recasts the existence problem for three-row PHFs in terms of partial
latin squares and also derives the relationship with integer sequences having no three-
term arithmetic progression.

3.2 Constructions

We treat the simple “greedy” construction: start with the empty set A and consider
the nonnegative integers in sequence, adding each to A exactly when no three-term
arithmetic progression is introduced. This has a well understood behaviour that we
exploit here. Let v ≥ 3α and ` = 2α. We claim that a tfrrls(v, `v) exists. Let 0 ≤
x < 2α be an integer and write x =

∑α−1
i=0 bi2i. Then define τ(x) =

∑α−1
i=0 bi3i. Now

define A = {τ(x) : 0 ≤ x < 2α}. Then A has no three-term arithmetic progression,
as follows. Every ternary representation of an entry of A contains only ‘0’ and ‘1’
entries, and hence summing ternary representations of two causes no carry. Since any
two differ in at least one position in the ternary representation, their sum contains at
least one position with a ‘1’ entry, and hence is not equal to the average of any two.
The largest entry in A is (3α − 1)/2, and hence provided v ≥ 3α the negatives and
doubles are all disjoint.

Proceeding in the same manner, any subset of A has no three-term arithmetic pro-
gression in the integers, and this remains true modulo v when v > 2 ∗ max(A). For
example, {0, 1, 3, 4, 9, 10} has no three-term arithmetic progression modulo 21.

An exhaustive search with v ≤ 96 establishes that the largest size of a set having no
three-term arithmetic progression modulo v is 2 for v ∈ {5, 6}; 3 for v ∈ {7, 8}; 4 for
v ∈ {9− 16}; 5 for v ∈ {17, 18, 20}; 6 for v ∈ {19, 21− 24}; 7 for v ∈ {25, 26}; 8 for
v ∈ {27−34, 36, 38}; 9 for v ∈ {35, 40−44}; 10 for v ∈ {37, 39, 45−50}; 11 for v ∈
{51, 53 − 56, 58}; 12 for v ∈ {52, 57, 59, 60, 62}; 13 for v ∈ {61, 63, 64, 66, 67, 68};
14 for v ∈ {65, 69 − 78}; 15 for v ∈ {79, 80}; 16 for v ∈ {81 − 84, 86 − 90, 92, 94};
17 for v ∈ {85, 91, 93, 95, 96};

Perfect Hash Families: Constructions and Existence 131

This results in the creation of the following PHFs:

PHF(3; 10, 5, 3) PHF(3; 12, 6, 3) PHF(3; 21, 7, 3) PHF(3; 24, 8, 3)
PHF(3; 36, 9, 3) PHF(3; 40, 10, 3) PHF(3; 44, 11, 3) PHF(3; 48, 12, 3)
PHF(3; 52, 13, 3) PHF(3; 56, 14, 3) PHF(3; 60, 15, 3) PHF(3; 64, 16, 3)
PHF(3; 85, 17, 3) PHF(3; 90, 18, 3) PHF(3; 114, 19, 3) PHF(3; 126, 21, 3)
PHF(3; 132, 22, 3) PHF(3; 138, 23, 3) PHF(3; 144, 24, 3) PHF(3; 175, 25, 3)
PHF(3; 182, 26, 3) PHF(3; 216, 27, 3) PHF(3; 224, 28, 3) PHF(3; 232, 29, 3)
PHF(3; 240, 30, 3) PHF(3; 248, 31, 3) PHF(3; 256, 32, 3) PHF(3; 264, 33, 3)
PHF(3; 272, 34, 3) PHF(3; 315, 35, 3) PHF(3; 370, 37, 3) PHF(3; 390, 39, 3)
PHF(3; 396, 44, 3) PHF(3; 450, 45, 3) PHF(3; 460, 46, 3) PHF(3; 470, 47, 3)
PHF(3; 480, 48, 3) PHF(3; 490, 49, 3) PHF(3; 500, 50, 3) PHF(3; 561, 51, 3)
PHF(3; 624, 52, 3) PHF(3; 684, 57, 3) PHF(3; 708, 59, 3) PHF(3; 720, 60, 3)
PHF(3; 793, 61, 3) PHF(3; 819, 63, 3) PHF(3; 832, 64, 3) PHF(3; 910, 65, 3)
PHF(3; 966, 69, 3) PHF(3; 980, 70, 3) PHF(3; 994, 71, 3) PHF(3; 1008, 72, 3)
PHF(3; 1022, 73, 3) PHF(3; 1036, 74, 3) PHF(3; 1050, 75, 3) PHF(3; 1064, 76, 3)
PHF(3; 1078, 77, 3) PHF(3; 1092, 78, 3) PHF(3; 1185, 79, 3) PHF(3; 1200, 80, 3)
PHF(3; 1296, 81, 3) PHF(3; 1312, 82, 3) PHF(3; 1328, 83, 3) PHF(3; 1344, 84, 3)
PHF(3; 1445, 85, 3) PHF(3; 1547, 91, 3) PHF(3; 1581, 93, 3) PHF(3; 1615, 95, 3)
PHF(3; 1632, 96, 3)

It is reasonable to ask whether the construction here yields results close to the best
possible. In the next subsection we demonstrate that asymptotically it does not; how-
ever it appears to be useful for small values of v.

3.3 The connection with additive combinatorics

Let r(n) be the size of the largest subset of {0, 1, . . . , n} that contains no three-term
arithmetic progression. It may seem that the greedy algorithm yields a large value of
r(n), showing that r(n) is Ω(nlog3 2−1). In 1946 Behrend [6] improved dramatically
on this lower bound. A progression-free set in R` can be obtained using a sphere. So,
consider an d-dimensional cube [1, `]d∩Zd and family of spheres x2

1 +x2
2 + · · ·+x2

d = t
for t = 1, . . . , d`2. Each point in the cube is contained in one of the spheres, and so at
least one of the spheres contains a set A of at least `d/d`2 lattice points. Now A does
not contain any progressions since the sphere does not. A Freiman isomorphism [17] of
order s is a bijective mapping f : A → B such that a1+a2+· · ·+as = a′1+a′2+· · ·+a′s
holds if and only if f(a1) + f(a2) + · · ·+ f(as) = f(a′1) + f(a′2) + · · ·+ f(a′s).

Set f(x) = x1 + x2(2`) + x3(2`)2 + · · ·+ xd(2`)d−1 for x = {x1, x2, . . . , xd} ∈ A;
that is, we treat xi as i’th digit of f(x) in base 2`. Then f is a Freiman isomorphism of
order 2 from A to a subset of Z; f(A) ⊂ {1, 2, . . . , n = (2n)d}. Set d = c

√
ln n

to establish that there is a progression-free subset of {1, 2, . . . , n} of size at least
ne−

√
ln n(c ln 2+2/c+o(1). To maximize, set c =

√
2/ ln 2. Consequently, there exists

a progression-free set of size at least ne−
√

8 ln 2 ln n(1+o(1)). Related work appears in
[3, 25, 26]. Alon [2] treated the modular version of the problem, in the language of
cyclic groups Zn. Generalizations to finite abelian groups appear in [22, 24].

132 Robert A. Walker II and Charles J. Colbourn

Roth [27] proved that r(n) < cn/ log log n. This was improved by Heath-Brown
[21] to O(n(log n)−c), for an unspecified constant c > 0. Szemerédi [30] obtains the
same bound and shows that c = 1

4 is admissible; see also [19]. Bourgain [12] improved
this to O(n(log log n/ log n)1/2).

In our context, the importance of this prior research is that for sufficiently large
number v of symbols, the greedy approach does not produce the best available tfrrls;
however for “small” numbers of symbols, it appears to be a useful technique. It remains
interesting to find other constructions of tfrrls that do not require progression-free se-
quences; also showing that k = o(v2) for a PHF(3; k, v, 3) remains open.

4 Recursive constructions

Recursive constructions take one or more perfect hash families and produce a new
perfect hash family. Several recursive constructions are known, and several more are
introduced here.

Blackburn [7] gives a simple product construction, composition:

Theorem 4.1. Suppose there exist PHF(N0; k, x, t) A and PHF(N1; x, v, t) B. Then
there exists a PHF(N0N1; k, v, t).

Combine Corollary 2.9 and Theorem 4.1 to obtain:

Corollary 4.2 ([29]). If there exist (t
2) − 1 MOLS of order k and a PHF(N0; k, v, t),

then there exists a PHF(((t
2) + 1)N0; k2, v, t).

The existence of q MOLS of order k implies the existence of at least q MOLS of
order kj for j ≥ 1 [13]; hence this process can be iterated. Theorem 4.2 is equivalent
to Theorem 13 in [31]; it generalizes and improves upon two constructions given in
[4]. Tonien and Safavi-Naini [31] give a further generalization:

Theorem 4.3 ([31, Theorem 14]). If a PHF(N1; k1, v1, t), a PHF(N2; k2, v2, t), and
(t

2) − 1 MOLR of size k1 × k2 all exist, then a PHF((t
2)N1 + N2; k1k2, max(v1, v2), t)

exists.

Atici et al. [4] also give a Kronecker-product type construction:

Theorem 4.4. Suppose that the following exist:

• a PHF(N1; k0k1, v, t),
• a PHF(N2; k2, k1, t− 1),
• a PHF(N3; k2, v, t).

Then there is a PHF(N1N2 + N3; k0k2, v, t).

We next state two basic constructions that do not seem to appear in the literature,
but are almost certainly general knowledge. The first increases the number of columns
for “free” while increasing the number of symbols.

Lemma 4.5. PHFN(k + 1, v + 1, t) ≤ PHFN(k, v, t).

Perfect Hash Families: Constructions and Existence 133

Proof. Let A be a PHF(N ; k, v, t). Appending a column entirely comprised of a new
symbol gives us the desired result. Any set of columns not including the last is treated
in A. Any set of columns including the last has at least one distinct row because the
t − 1 in A have a distinct row and none of its symbols could possibly be the added
one.

Using a PHF(8; 8, 6, 6) we produce the PHF(8; 9, 7, 6) in Figure 2.



4 3 5 0 1 4 2 2
4 5 1 1 3 4 0 2
5 1 3 2 2 4 0 3
5 0 1 0 2 3 1 4
2 5 1 2 5 4 3 0
4 2 2 0 3 5 1 1
0 1 4 2 5 3 3 5
0 0 2 1 5 5 4 3





4 3 5 0 1 4 2 2 6
4 5 1 1 3 4 0 2 6
5 1 3 2 2 4 0 3 6
5 0 1 0 2 3 1 4 6
2 5 1 2 5 4 3 0 6
4 2 2 0 3 5 1 1 6
0 1 4 2 5 3 3 5 6
0 0 2 1 5 5 4 3 6



Figure 2. A PHF(8; 8, 6, 6) and a PHF(8; 9, 7, 6)

We can also multiply both the number of symbols and the number of columns by
the same factor.

Lemma 4.6. PHFN(`k, `v, t) ≤ PHFN(k, v, t).

Proof. Let A be a PHF(N ; k, v, t). Place ` copies of A side by side, using a different
set of v symbols for each copy. Any set of t columns arises from t or fewer columns
of the original A, and therefore there is a distinct row in the original A. This row is
now spread out among copies of A, and may contain duplicate symbols if any of the t
columns correspond to the same column in A. However, the copies of A all use disjoint
symbol sets, so the duplicate columns arise from different symbol sets. Hence the row
is distinct in the new array.

Now we turn our attention to new constructions. We can generalize Lemma 4.6
when t = 3; juxtapose any two arrays, not just two copies of the same array:

Theorem 4.7. Let A be a PHF(N1; k1, v1, 3) and B be a PHF(N2; k2, v2, 3). There
exists a PHF(N1; k1 + k2, v1 + v2, 3) when N1 ≥ N2.

Proof. Ensure that the v1 symbols used in A are different from the v2 symbols used for
B. If N1 > N2, extend B to have N1 rows by filling in the additional rows with any
symbol from B. Then juxtapose the arrays horizontally to obtain an array of the desired
parameters. Any set of t columns entirely in A or entirely in B is handled by that array.
It remains to consider the case of two columns from one block and one column from
the other. The two columns are distinct in at least one row, and the remaining column
arises from a different symbol set.

134 Robert A. Walker II and Charles J. Colbourn

We use a similar idea to create a “Roux-type” construction for arrays with many
symbols. Roux-type constructions are recursive constructions that place copies of an
object side by side and handle omitted cases by using additional rows. A comprehen-
sive discussion for covering arrays appears in [14]. In the following proofs we will use
arithmetic modulo v to describe symbol manipulation concisely. The first Roux-type
construction for perfect hash families is:

Theorem 4.8. PHFN(k`, v, t) ≤ PHFN(k, v, t) + PHFN(k,
⌊

v
l

⌋
, t − 1) whenever

`(t− 1) ≤ v.

Proof. Suppose that the following exist:

• PHF(N1; k, v, t) A,
• PHF(N2; k,

⌊
v
l

⌋
, t− 1) B

We produce a perfect hash family PHF(N ′; k`, v, t) C where N ′ = N1 + N2. C is
formed by vertically juxtaposing arrays C1 of size N1 × k` and C2 of size N2 × k`. We
index k` columns by ordered pairs from {1, . . . , k} × {1, . . . , `}.

In row r and column (f, h) of C1 place the entry in cell (r, f) of A. Thus C1 consists
of ` copies of A placed side by side.

Set v′ =
⌊

v
l

⌋
. In row r and column (f, h) of C2 place the entry x + v′(h− 1) where

x is the entry in row r and column f of B. Since v′` ≤ v, C2 consists of ` structurally
equivalent copies of C2 on distinct symbol sets placed side by side. This is essentially
the construction given in Theorem 4.6.

We show that C is a perfect hash family. Consider (f1, h1), (f2, h2), . . . , (ft, ht), a
set of t columns of C. If f1, f2, . . . , ft are all distinct, then these columns restricted to
C1 arise from t distinct columns of A. Hence, at least one row has distinct symbols.

It remains to consider the case where not all columns are distinct. If any fi = fj

there are w distinct columns for some w ≤ t − 1. Since B is a perfect hash family of
strength t − 1, these columns restricted to C2 arise from w columns of B. Therefore,
at least one row r in B contains distinct entries in these w columns. Consider the
translated copies of B that make up C2: if fi = fj then hi 6= hj , so any column
equalities come from different copies of B. Since each translate of B is on a different
symbol set, row r of C2 contains distinct values in all t columns. Hence, C is a perfect
hash family.

This construction is limited to the case when v ≥ `(t − 1). When v is smaller, a
different approach is useful:

Theorem 4.9. PHFN(2k, v, 3) ≤ PHFN(k, v, 3) + 2PHFN(k, v, 2).

Proof. Suppose that there exist a

• PHF(N1; k, v, 3) A, and a
• PHF(N2; k, v, 2) B.

We produce a perfect hash family PHF(N ′; 2k, v, t) C where N ′ = N1 + 2N2. C is
formed by vertically juxtaposing arrays D of size N1 × 2k and E1 and E2 each of size
N2 × 2k. We index 2k columns by ordered pairs from {1, . . . , k} × {1, 2}.

Perfect Hash Families: Constructions and Existence 135

In row r and column (f, h) of D place the entry in cell (r, f) of A. Thus D consists
of 2 copies of A placed side by side.

Set x equal to the entry in cell (r, f) of B. In row r and column (f, 1) of Ei place x.
In row r and column (f, 2) of Ei place x + i.

To show that C is a perfect hash family, consider columns (f1, h1), (f2, h2), (f3, h3)
of C. If f1, f2, f3 are all distinct, then these columns restricted to D arise from t = 3
distinct columns of A. Hence, there is at least one row on distinct symbols.

Without loss of generality it remains to treat the case when f1 = f2. Then in the
three columns, Ei contains the values (x, x+i, y) in the row that contains distinct values
for columns f1 and f3 restricted to B. Then we must avoid the case where x + i = y.
Since this only eliminates one choice of i, the other E array must contain a distinct
row.

In order to extend this construction, define a partial difference covering array D =
(dij) over a group Γ (a PDCA(N, Γ; t, k, v, c) for short) to be an N × k array with
entries from Γ having the property that for any t distinct columns j1, j2, . . . , jt, the set
{(di,j1 � d−1

i,j2
, di,j1 � d−1

i,j3
, . . . , di,j1 � d−1

i,jt
) : 1 ≤ i ≤ N} contains at least c distinct

nonzero (t − 1)-tuples over Γ. When Γ = Zv we omit it from the notation. We
denote by PDCAN(t, k, v, c) the minimum N for which a PDCA(N ; t, k, v, c) exists. A
PDCA(N ; 2, k, v, 1) is equivalent to a PHF(N ; k, v, 2).

Now we extend Theorem 4.9:

Theorem 4.10. For any integer ` ≥ 3,
PHFN(k`, v, 3) ≤ PHFN(k, v, 3)+PHFN(`, v, 3)+PDCAN(2, `, v, 2)PHFN(k, v, 2).

Proof. Suppose that the following exist:

• PHF(N1; k, v, 3) A
• PHF(N2; `, v, 3) B
• PHF(N3; k, v, 2) K
• PDCA(M ; 2, `, v, 2) R

We produce a perfect hash family PHF(N ′; k`, v, t) C where N ′ = N1 +N2 +MN3.
C is formed by vertically juxtaposing arrays D of size N1 × k`, E of size N2 × k`, and
F1 through FM each of size N3 × k`. We describe the construction of each array in
turn. We index k` columns by ordered pairs from {1, . . . , k} × {1, . . . , `}.

In row r and column (f, h) of D, place the entry in cell (r, f) of A. Thus D consists
of ` copies of A placed side by side.

In row r and column (f, h) of E, place the entry in cell (r, h) of F. Thus E consists
of k copies of each column of B.

In row r and column (f, h) of Fi, place Krf + Rih. Thus the F arrays are obtained
from K by cyclic shifts of the symbols as directed by R.

We show that C is a perfect hash family. Consider columns (f1, h1), (f2, h2), (f3, h3)
of C. If f1, f2, f3 are all distinct, then these columns restricted to D arise from t distinct
columns of A. Hence there is at least one row on distinct symbols. If h1, h2, h3 are
all distinct, then these columns restricted to E arise from distinct columns in B. Hence
again there is at least one row on distinct symbols.

136 Robert A. Walker II and Charles J. Colbourn

Without loss of generality, it remains to consider the case where f1 = f2 6= f3,
h1 = h3 6= h2, i.e. two columns from one block and one duplicated column from
another. Therefore all tuples of the form (x, x + i, y) with x 6= y are covered, where i
can be any of the differences found in columns h1 and h2 of R. At least one of the two
distinct i values results in (x, x + i, y) being a distinct tuple. Therefore, all possible
column selections are covered.

In order to generate values for PDCAN, we use:

Theorem 4.11. PDCAN(2, k, v, 2) ≤ 2PHFN(k, v, 2) = 2 dlogv(k)e for v odd or a
prime power, v > 2.

Proof. In either case, begin with a PHF(logv(k); k, v, 2) A.
For v odd, append an array of equal size B where Bij = 2Aij (mod v). Then, in

any given pair of columns, at least one row in A is distinct, and thus covers one non-
zero difference d. Since v is odd, d 6= 2d (mod v) and 2d 6= 0 (mod v). Hence, the
corresponding row in B covers a second distinct non-zero difference. Thus at least two
differences are covered.

For v a prime power, choose an element x of GF(v) where x 6= 0 and x 6= 1.
We can guarantee a selection of x because v > 2. Append to A an array of equal
size B where Bij = xAij with arithmetic done in GF(v). Then, in any given pair
of columns, at least one row in A is distinct, and thus covers one non-zero difference
d. We know that xd 6= d because x 6= 1 and xd 6= 0 because x 6= 0 and d 6= 0.
Hence, the corresponding row in B covers a second non-zero difference and at least
two differences are covered.

For strength t = 4, Theorem 4.8 does not apply when v ∈ {4, 5}. We treat the case
when v = 4 here. Denote by [x, y, z] a function with f(0) = x, f(1) = y, f(2) = z.
For the following, assume that the symbol set of an array on three symbols is {0, 1, 2}.

Theorem 4.12. PHFN(2k, 4, 4) ≤ PHFN(k, 4, 4) + 3PHFN(k, 3, 3) + PHFN(k, 2, 2).

Proof. Suppose that the following exist:

• PHF(N1; k, 4, 4) A
• PHF(N2; k, 3, 3) B
• PHF(N3; k, 2, 2) K

We produce a perfect hash family PHF(N ′; 2k, 4, 4) C where N ′ = N1 + 3N2 +N3.
C is formed by vertically juxtaposing arrays D of size N1 × 2k, E1, E2, and E3 each
of size N2 × 2k, and F of size N3 × 2k. We index 2k columns by ordered pairs from
{1, . . . , k} × {1, 2}.

In row r and column (f, h) of D, place the entry in cell (r, f) of A.
Set x equal to the entry in cell (r, f) of B. In row r and column (f, 1) of Ei place x.

In row r and column (f, 2) of E1, place [3, 1, 2](x). In row r and column (f, 2) of E2,
place [0, 2, 3](x). In row r and column (f, 2) of E3, place [0, 3, 1](x).

Set x equal to the entry in cell (r, f) of K. We use 0 and 1 as the symbols of K. In
row r and column (f, 1) of F place x. In column (f, 2) of the same row, we place x+2.

Perfect Hash Families: Constructions and Existence 137

Consider four columns (f1, h1), (f2, h2), (f3, h3), (f4, h4) of C. If f1, f2, f3, f4 are
all distinct, then these columns restricted to D arise from t = 4 distinct columns of A.
Hence at least one row has distinct symbols.

It remains to consider three cases. In the first, three columns from one block and one
column with equal f from the other are selected. Without loss of generality, the equal
columns are the first and last (i.e. f1 = f4), and the three columns are from block 1, so
h1 = h2 = h3 = 1, h4 = 2.

In columns f1, f2, f3 of B there is at least one distinct row. If there are more than
one, consider only the first. We must consider each possible distinct row separately:

(0,1,2) : In E1 we have the row (0, 1, 2, [3, 1, 2](0)) = (0, 1, 2, 3).

(0,2,1) : In E1 we have the row (0, 2, 1, [3, 1, 2](0)) = (0, 2, 1, 3).

(2,0,1) : In E2 we have the row (2, 0, 1, [0, 2, 3](2)) = (2, 0, 1, 3).

(2,1,0) : In E2 we have the row (2, 1, 0, [0, 2, 3](2)) = (2, 1, 0, 3).

(1,0,2) : In E3 we have the row (1, 0, 2, [0, 3, 1](1)) = (1, 0, 2, 3).

(1,2,0) : In E3 we have the row (1, 2, 0, [0, 3, 1](1)) = (1, 2, 0, 3).

Therefore, there is a distinct row on four columns regardless of the distinct row
found for the three columns.

The second and third cases arise when selecting two columns from each block. First
consider when three of these columns are distinct, and hence one pair is equal. Without
loss of generality, f1, f2, f4 are distinct, f1 = f3, and h1 = h2 = 1, h3 = h4 = 2.

In columns f1, f2, f4 of B there is at least one distinct row. If there are more than
one, consider only the first. We consider each possible distinct row separately:

(0,1,2) : In E1 we have the row (0, 1, [3, 1, 2](0), [3, 1, 2](2)) = (0, 1, 3, 2).

(0,2,1) : In E1 we have the row (0, 2, [3, 1, 2](0), [3, 1, 2](1)) = (0, 2, 3, 1).

(1,0,2) : In E2 we have the row (1, 0, [0, 2, 3](1), [0, 2, 3](2)) = (1, 0, 2, 3).

(2,1,0) : In E2 we have the row (2, 1, [0, 2, 3](2), [0, 2, 3](0)) = (2, 1, 3, 0).

(1,2,0) : In E3 we have the row (1, 2, [0, 3, 1](1), [0, 3, 1](0)) = (1, 2, 3, 0).

(2,0,1) : In E3 we have the row (2, 0, [0, 3, 1](2), [0, 3, 1](1)) = (2, 0, 1, 3).

Again all cases are handled. Finally, consider the case selecting two identical columns
from each block. Here, employ F. At least one row in K is distinct for these columns;
hence the 4-tuple found in that row is also distinct since each block is defined on
different symbol sets.

We now discuss several recursive constructions that are not Roux-type. A simple
construction exists to increase k by 1:

Theorem 4.13. For t ≥ 3,

PHFN(k + 1, v, t) ≤ PHFN(k, v, t) + PHFN(k − 1, v − 2, t− 2).

138 Robert A. Walker II and Charles J. Colbourn

Proof. Suppose that there exist a PHF(N1; k, v, t) A, and a PHF(N2; k−1, v−2, t−2)
B. We produce a perfect hash family PHF(N ′; k + 1, v, t) C where N ′ = N1 + N2.
C is formed by vertically juxtaposing arrays C1 of size N1 × (k + 1) and C2 of size
N2 × (k + 1).

In row r and column c with c ≤ k of C1, place the entry in cell (r, c) of A. In column
k + 1 place the entry in cell (r, k) of A.

In row r and column c with c ≤ k − 1 of C2, place the entry in cell (r, c) of B. In
column k, place N2 copies of the (v − 1)-th symbol and in column k + 1, place N2
copies of the v-th symbol. These are the symbols not used in B.

We show that C is a perfect hash family. Consider t columns of C. If this set of
columns includes at most one of {k, k + 1} then restricted to C1 they arise from t
distinct columns of A, and hence at least one row has distinct symbols.

It remains to consider when both k and k + 1 are included. Then, the remaining
t − 2 columns restricted to C2 arise from t − 2 distinct columns of B. Hence at least
one row r has distinct symbols. Since B does not use the (v − 1)-th and v-th symbols,
the entries in columns k and k + 1 are also distinct and hence the row r is distinct in
the set of t columns.

In fact, when t = 3 we can do better:

Theorem 4.14. PHFN(k + v − 2, v, 3) ≤ PHFN(k, v, 3) + 1.

Proof. Let A be a PHF(N ; k, v, 3). We produce a perfect hash family PHF(N + 1; k +
v − 2, v, 3) C. C is formed by vertically juxtaposing arrays C1 of size N × (k + v − 2)
and C2 of size 1× (k + v − 2).

In row r and column c with c ≤ k of C1, place the entry in cell (r, c) of A. In column
k + 1 through k + v − 2, place the entry in cell (r, k) of A. Thus C1 consists of A
alongside v − 2 copies of its last column.

In column c with c ≤ k − 1 of C1, place the symbol v. In column k + i for 0 ≤ i ≤
v − 2, place the symbol i + 1.

Consider three columns of C. If these three have at most one among the last v − 1
columns, then, restricted to C1, they arise from t = 3 distinct columns of A, and hence
at least one row has distinct symbols.

C2 takes care of the case where either all of two of the three columns lie among the
last v−1 columns, since it is comprised of distinct symbols there and repeats a symbol
only within the first k − 1 columns.

5 Computational search

Walker and Colbourn [35] introduce a class of arrays and a method to search for arrays
in the class. The search employs tabu search, as introduced by Glover in [18]. The
class includes any type of array that can be formulated as follows. Let C = {Ci : i =
1, . . . , σ} be a set of subsets of same length tuples over an alphabet of size v. Let the
length of the tuples in set Ci be denoted ti. Define a C-(N, k)-array to be an N × k
array with entries from the same alphabet of size v, in which every N × t subarray has
the property that for every i with 1 ≤ i ≤ σ, there exists a row of the subarray equal to

Perfect Hash Families: Constructions and Existence 139

a t-tuple in Ci. No assumption is made that Ci and Cj are disjoint, nor that ti = tj , nor
that a given tuple appear in any of the sets.

Taking C to have a single set C1 in which t-tuples with distinct entries appear makes
a C∗-array a perfect hash family. The description of C is not an explicit listing of
tuples; rather it is an oracle to test membership of a tuple in Ci. Testing a t-tuple for
membership in C1 is trivial. Using a modification of any O(n log n) sorting algorithm
that stops whenever it finds two duplicate elements, we test in O(t log t) steps. When t
is small, it is equally effective to test every element for equality with every other using
exactly (n

2) steps.
The maximum values of k given N , v and t for which PHFs are found are shown

in Tables 1 through 4. Explicit solutions for each array appear in [34] and on the web
site http://www.phftables.com. A selection of the results appear in Figures 3
through 6. The searches themselves took no more than 1 hour per perfect hash family,
and often took 30 seconds to 5 minutes.

N

3 4 5 6 7 8 10 20 21
3 6 9 10 12 16 19 29 90 95
4 20 25 42
5 12 38 47
6 18 50

v 7 22 70
8 31
9 36
10 43
11 49
12 57

Table 1. PHF table for k, given N and v, where t = 3

N

3 4 5 6 7 8
v 4 5 6 8 9

5 7 8 10 11 12 14

Table 2. PHF table for k, given N and v, where t = 4

140 Robert A. Walker II and Charles J. Colbourn

N

3 4 6 7 8 10 11 13 18 23 28
v 5 6 7 8 9 10 11 12 13

6 7 8 9 10 11 12

Table 3. PHF table for k, given N and v, where t = 5

N

4 6 8 11 13 18
v 6 7 8 9 10

7 8 9 10 11

Table 4. PHF table for k, given N and v, where t = 6


0 2 0 1 2 2 1 0 0 1
2 2 0 2 0 1 0 1 1 1
0 2 2 2 0 2 2 1 0 0
0 1 1 2 2 0 0 2 2 1
2 1 0 0 2 0 1 0 1 2


Figure 3. A PHF(5; 10, 3, 3)



2 3 2 0 3 2 4 4 3 1 1
3 3 1 0 4 4 0 1 2 0 2
0 1 2 3 3 1 0 4 3 2 4
1 2 1 0 3 4 2 0 2 3 4
4 3 0 0 4 0 1 3 2 1 2
1 2 0 4 4 3 3 4 0 2 1


Figure 4. A PHF(6; 11, 5, 4)

Perfect Hash Families: Constructions and Existence 141



2 0 1 3 3 4 4 1 0
1 4 1 3 1 0 2 3 4
3 0 1 4 2 2 0 1 3
1 2 3 4 4 0 1 2 0
1 0 3 4 1 2 0 2 4
4 0 2 1 0 3 1 3 2
0 4 1 2 3 3 0 2 1
1 0 2 4 1 3 0 4 0
3 1 4 0 4 2 0 1 3
1 3 4 2 3 0 4 1 0
2 4 0 3 0 1 1 2 3


Figure 5. A PHF(11; 9, 5, 5)

0 3 5 1 4 4 2 0 6
4 2 6 3 5 3 0 5 1
0 1 1 5 4 6 2 3 0
0 3 5 1 6 1 1 2 4
2 5 6 4 0 1 2 3 0
4 6 2 3 5 1 2 6 0


Figure 6. A PHF(6; 9, 7, 6)

Many rows appear to be required when v = t, especially as t grows. Figure 2 given
earlier shows an array with N = k = 8, yet we can find no solution using fewer rows.

6 Tables

We adopt a bottom-up approach to building an existence table for PHFs. We start
with PHFs from direct constructions and computational search. We then create new
PHFs using recursive constructions. We iterate until we have the best known PHFs.
Atici, Stinson, and Wei [5] give algorithms for constructing perfect hash families from
known recursive constructions and direct constructions. Their approach is top-down,
and therefore produces one PHF at a time. Indeed it may miss complicated interactions
among PHFs that are reflected in our tables.

6.1 Implementation

We implemented a table generator in C++, based on a prototype written in Perl using
MySQL. It takes less than 45 minutes on a 3 GHz Pentium IV to generate the entire set

142 Robert A. Walker II and Charles J. Colbourn

of tables given in [34]. Updates can be done incrementally, so addition of a new PHF
incurs a significantly smaller cost than regenerating the tables.

We start with the set of perfect hash families from direct and computational con-
structions. We label the entire set as unprocessed. We then iterate through the list
of unprocessed PHFs. To process an array we attempt to use it in every recursive
construction. For instance, suppose we are processing PHF(7; 49, 7, 4), produced by
Corollary 2.4.

To use this array in a Roux-type construction, we must consider using it both as the
first array and the second array. We combine it with the best known PHF(N ; 49, 3, 3)
to form a PHF(7 + N ; 98, 7, 4). The second case is more complicated. Since we
tabulate ρ values instead of every possible PHF we must consider using this array as a
PHF(7; 48, 7, 4) and so on down to PHF(7; ρ(6, 4, 7) + 1, 7, 4).

In addition, whenever inserting a new array into the pool of arrays, we consider two
questions:

1. Is this array useful? I.e., does it change any ρ values?
2. Are any older arrays made obsolete by this aray? I.e., are there now arrays that do
not affect any ρ values?

If the new array is not useful, we need not consider it any further. Likewise, if other
arrays are made obsolete, we may remove them from the pool. Whenever we remove
an array from the pool, we also must remove all of its descendants. Often times, an
array becomes obsolete before it is processed, saving computation. In order to make
this happen frequently, we process arrays in breadth-first order.

Tables of MOLS and RBIBDs are used from [13]. The MOLR table used is in [20].

6.2 Results

To efficiently generate tables, we keep a rich data structure in memory that tracks gen-
erated PHFs and links them to their ingredients and children. Complete tables as well
as a system to browse these links exist at http://www.phftables.com. Using
this information we can get sense of which constructions provide the most results.

The score of an array is the number of arrays directly or indirectly dependent on
that array. The score of a construction is the number of arrays directly or indirectly
dependent on that construction. Table 5 ranks the constructions by score for the 7313
PHFs in the tables.

The construction based on MOLS is the most useful direct construction, followed
closely by the Reed-Solomon codes construction. The most useful “interesting” recur-
sive constructions are the Kronecker product and composition. Strangely, the symbol
product construction featured prominently in the tables until the introduction of the
tfrrls construction, which overtook it completely.

As a matter of interest, 78.6% of the PHFs constructed depend on an array or con-
struction presented in this paper for the first time.

Perfect Hash Families: Constructions and Existence 143

Construction Description Score Direct Indirect
Theorem 4.5 Symbol increase 3961 1689 2272
Theorem 2.2 PHF(1; v, v, t) 3478 386 3092
Corollary 2.9 MOLS 3258 211 3047
Corollary 2.4 Reed-Solomon 2723 176 2547
Theorem 4.13 Column increase, t 6= 3 2373 1811 562

Section 5 Tabu search 2241 49 2192
Theorem 4.4 Kronecker product 2213 769 1444
Theorem 4.1 Composition 2182 566 1616
Theorem 4.8 High Symbol Roux-type 1935 752 1183

Theorem 2.15 First N 1842 151 1691
Theorem 2.13 RBIBD 750 7 743
Theorem 2.12 Affine plane 727 20 707
Theorem 4.14 Column increase, t = 3 578 415 163
Theorem 3.1 tfrrls 245 57 188
Theorem 4.9 Roux-type t = 3, ` ≥ 3 237 108 129
Theorem 2.7 Martirosyan Code 193 2 191
Corollary 4.2 MOLS composition 148 31 117
Theorem 2.10 Bierbrauer OA 130 4 126
Theorem 4.12 Roux-type t = 4, v = 4, ` = 2 122 20 102

Lemma 2.5 IPP codes, t = 3 108 9 99
Theorem 4.7 t = 3 Juxtaposition 102 66 36
Lemma 2.6 IPP codes, t = 4 91 4 87

Theorem 2.11 Partition 48 6 42
Theorem 4.10 Roux-type t = 3, ` ≥ 3 10 2 8
Theorem 4.6 Symbol product 0 0 0

Table 5. Ranking of PHF constructions

6.3 PHF tables

We produce tables of upper bounds on PHFN for 3 ≤ t ≤ 6, t ≤ v ≤ 50, v ≤ k ≤
500 000. To the best of our knowledge, these are the first general tables for PHFN. In
Tables 6–9, we report results for t = v with t ∈ {3, 4, 5, 6}. Many further tables from
our computations are online at www.phftables.com. It is obviously not space-
conscious to give 500 000 results for every t and v, and fortunately there is no need to
do so. Let ρ(N ; t, v) be the largest k for which PHFN(k, v, t) ≤ N . As k increases, for

144 Robert A. Walker II and Charles J. Colbourn

many consecutive numbers of factors, the perfect hash family number does not change.
Therefore reporting those values of ρ(N ; t, v) for which ρ(N ; t, v) > ρ(N − 1; t, v),
along with the corresponding value of N , enables one to determine all perfect hash
family numbers when k is no larger than the largest ρ(N ; t, v) value tabulated. Since
the exact values for perfect hash family numbers are unknown in general, we in fact
report lower bounds on ρ(N ; t, v).

The authorities used in Tables 6–9 are as follows:

+ Column increase k Kronecker product
1 PHF(1; v, v, t) ` Roux-type
c Composition m MOLS or MOLR
f First N t Tabu search
i IPP codes

7 Conclusions

Perfect hash families admit a wide variety of constructions; here we have added Roux-
type recursive constructions, and the use of integer sequences with no three-term arith-
metic progression, to the tools available. However with the richness of constructions, it
becomes problematic to determine whether a specific PHF is implied by the available
constructions. Hence we have provided a tool for making tables of the best available
bounds.

Constructing tables for perfect hash families is beneficial in several ways. First and
foremost, it provides people in need of a perfect hash family of specific parameters
a resource to find out how to construct the object they need. Second, it causes one
to ask questions they might not otherwise ask. The strength three juxtaposition con-
struction and the column increase constructions were created based on a specific need
for the tables. Questions about what is possible with three rows were motivated by
patterns which emerged from computational search results. Thirdly, and perhaps most
importantly, beating the current “world record” is an intriguing challenge.

Perfect Hash Families: Constructions and Existence 145

3 11 37 131

4 2f 48 14f

6 3t 57 15t

9 4m 81 16m

10 5t 82 17t

12 6t 83 18t

16 7t 87 19t

19 8t 100 20t

27 9i 108 21i

29 10t 111 22t

30 11+ 144 23+

36 12c 171 24c

3-PHFs with 3 symbols

0

20

40

60

80

R
ow

s

2 4 6 8 10 12
Log(Number of Columns)

243 25i 746 39+ 4100 53+ 19687 67+ 130322 81+

244 26+ 1458 40` 4101 54+ 19688 68+ 130323 82+

245 27+ 2187 41` 4374 55` 19689 69+ 130324 83+

729 28c 2188 42+ 6859 56c 65536 70c 130325 84+

730 29+ 2189 43+ 6860 57+ 65537 71+ 130326 85+

731 30+ 2190 44` 6861 58+ 65538 72+ 130327 86+

732 31+ 2193 45` 6862 59+ 65539 73+ 130328 87+

736 32c 2196 46` 14642 60c 65540 74+ 130338 88c

737 33+ 2208 47` 14643 61+ 65541 75+ 130339 89+

738 34+ 2211 48` 14644 62+ 65542 76+ 531441 90c

739 35+ 4096 49c 19683 63c 65550 77c

743 36c 4097 50+ 19684 64+ 65551 78+

744 37+ 4098 51+ 19685 65+ 65552 79+

745 38+ 4099 52+ 19686 66+ 130321 80c

Table 6. Upper bounds of PHFN(k, 3, 3)

146 Robert A. Walker II and Charles J. Colbourn

4 11 21 361

5 3t 22 38t

6 5t 24 39t

8 6t 27 40t

9 8t 64 42t

10 12+ 65 48+

11 16+ 66 55+

12 17k 81 56k

16 21` 82 63`

18 24` 83 70`

19 29+ 84 77+

20 31` 85 84`

4-PHFs with 4 symbols

0

100

200

300

400

500

600

700

R
ow

s

2 4 6 8 10 12
Log(Number of Columns)

96 89k 292 162+ 4097 285+ 7450 423` 19683 520c

128 96c 512 168c 4098 298+ 8192 432` 19684 535+

130 103` 513 177+ 4099 311+ 8193 445+ 262144 546c

132 110` 514 187+ 4914 312c 8194 448` 262145 564+

162 111` 515 197+ 4915 325+ 8195 462+ 262146 583+

163 119+ 516 207+ 6243 336c 8196 464` 262147 602+

164 121` 517 217+ 6244 349+ 8197 478+ 262148 621+

165 129+ 729 224c 6245 362+ 8198 480` 262149 640+

166 131` 730 234+ 6246 375+ 8200 492k 262150 659+

167 139+ 731 244+ 6859 377c 9828 493` 262151 678+

168 141` 3724 252c 6860 390+ 9830 506` 262152 697+

290 144c 3725 264+ 6861 403+ 12168 507c 262153 716+

291 153+ 4096 273c 7448 411` 12486 517` 531441 728c

Table 7. Upper bounds of PHFN(k, 4, 4)

Perfect Hash Families: Constructions and Existence 147

5 11 17 561

6 3f 18 64f

7 6t 19 72t

8 8t 20 78t

9 11t 21 87t

10 13t 22 96t

11 18t 23 105t

12 23t 24 114t

13 28t 27 121t

14 35+ 28 130+

15 42+ 29 140+

16 49+ 30 150+

5-PHFs with 5 symbols

0

1000

2000

3000

4000

R
ow

s

2 4 6 8 10 12
Log(Number of Columns)

31 161+ 289 616c 530 1183+ 2024 1845+ 19689 2934+

40 169c 290 644+ 531 1211+ 2025 1886+ 24389 2940c

41 183+ 291 672+ 532 1239+ 2026 1927+ 24390 3010+

42 197+ 292 700+ 533 1267+ 2027 1968+ 24391 3080+

121 198c 293 728+ 534 1295+ 2166 1980k 24392 3150+

122 221+ 294 756+ 600 1298k 2172 2008k 24393 3220+

123 244+ 295 784+ 601 1326+ 2173 2049+ 24394 3290+

124 267+ 361 792c 729 1331c 2174 2090+ 24395 3360+

125 290+ 362 820+ 730 1359+ 2175 2131+ 29791 3381c

169 308c 363 848+ 1331 1386c 2176 2172+ 29792 3451+

170 332+ 364 876+ 1332 1426+ 14641 2178c 29793 3521+

171 356+ 365 904+ 1333 1466+ 14642 2238+ 50656 3549c

172 380+ 366 932+ 1334 1506+ 14643 2298+ 50657 3619+

173 405+ 367 960+ 1335 1546+ 14644 2359+ 50658 3689+

174 430+ 368 988+ 1336 1586+ 14645 2421+ 50659 3759+

175 455+ 369 1016+ 1337 1626+ 14646 2484+ 50660 3829+

176 480+ 370 1044+ 1338 1666+ 19683 2541c 68921 3843c

177 505+ 372 1059k 1521 1694k 19684 2604+ 68922 3923+

178 530+ 375 1082k 1792 1727k 19685 2668+ 68923 4003+

256 539c 480 1100k 1799 1755k 19686 2733+ 68924 4083+

257 567+ 481 1128+ 1806 1783k 19687 2799+ 912676 4158c

258 595+ 529 1155c 2023 1804k 19688 2866+

Table 8. Perfect Hash Family Numbers PHFN(k, 5, 5)

148 Robert A. Walker II and Charles J. Colbourn

6 11 18 1711

7 4t 19 195t

8 8t 20 224t

9 13t 21 255t

10 18t 22 291t

11 30+ 23 329+

12 46+ 24 368+

13 63+ 25 407+

14 84+ 26 447+

15 105+ 33 480+

16 126+ 34 522+

17 147+ 35 564+

6-PHFs with 6 symbols

0

10000

20000

30000

40000

R
ow

s

2 4 6 8 10 12 14 16
Log(Number of Columns)

36 606+ 258 2304+ 630 7632+ 1850 14652+ 79511 30084+

37 648+ 289 2352c 1025 7680c 32769 14880c 79512 30630+

38 690+ 290 2496+ 1026 7932+ 32770 15426+ 79513 31176+

39 732+ 291 2640+ 1027 8184+ 32771 15972+ 262145 31248c

40 774+ 292 2793+ 1028 8436+ 32772 16518+ 262146 31812+

41 816+ 293 2955+ 1029 8688+ 32773 17064+ 262147 32395+

42 858+ 361 3120c 1030 8940+ 32774 17610+ 262148 32997+

43 900+ 362 3288+ 1031 9192+ 32775 18156+ 262149 33618+

44 942+ 363 3456+ 1032 9444+ 32776 18702+ 262150 34258+

45 984+ 364 3624+ 1033 9696+ 32777 19248+ 300763 34441c

65 1008c 365 3792+ 1034 9948+ 32778 19794+ 300764 35169+

66 1056+ 366 3960+ 1035 10200+ 50653 20088c 300765 35897+

67 1111+ 512 4032c 1369 10368c 50654 20634+ 300766 36625+

68 1167+ 513 4200+ 1370 10620+ 50655 21180+ 300767 37353+

69 1223+ 514 4377+ 1371 10872+ 50656 21726+ 300768 38081+

70 1279+ 515 4564+ 1372 11124+ 50657 22272+ 300769 38809+

71 1335+ 516 4761+ 1373 11376+ 50658 22818+ 300770 39537+

72 1391+ 517 4968+ 1374 11628+ 50659 23364+ 300771 40265+

73 1447+ 518 5185+ 1375 11880+ 50660 23910+ 300772 40993+

74 1503+ 529 5264c 1376 12132+ 50661 24456+ 357911 41385c

75 1559+ 530 5488+ 1377 12384+ 50662 25002+ 357912 42113+

76 1615+ 531 5712+ 1378 12636+ 68921 25296c 357913 42841+

77 1671+ 532 5936+ 1379 12888+ 68922 25842+ 357914 43569+

78 1727+ 533 6160+ 1681 13056c 68923 26388+ 357915 44297+

79 1783+ 534 6384+ 1682 13308+ 68924 26934+ 389017 44857c

120 1785c 625 6512c 1683 13560+ 68925 27480+ 389018 45585+

121 1881+ 626 6736+ 1684 13812+ 79507 27900c 389019 46313+

122 1977+ 627 6960+ 1685 14064+ 79508 28446+ 16777217 46368c

256 2016c 628 7184+ 1686 14316+ 79509 28992+

257 2160+ 629 7408+ 1849 14400c 79510 29538+

Table 9. Perfect Hash Family Numbers PHFN(k, 6, 6)

Perfect Hash Families: Constructions and Existence 149

Acknowledgments. Thanks to Sosina Martirosyan for getting us started on this topic.

References
[1] N. Alon, Explicit construction of exponential sized families of k-independent sets, Discrete

Math. 58 (1986), pp. 191–193.
[2] , Subset sums, J. Number Theory 27 (1987), pp. 196–205.
[3] N. Alon, T. Kaufman, M. Krivelevich, and D. Ron, Testing triangle-freeness in general graphs.

Proc. Symposium on Discrete Algorithms (SODA), pp. 279–288, 2006.
[4] M. Atici, S. S. Magliveras, D. R. Stinson, and W. D. Wei, Some recursive constructions for

perfect hash families, J. Combin. Designs 4 (1996), pp. 353–363.
[5] M. Atici, D. R. Stinson, and R. Wei, A new practical algorithm for the construction of a perfect

hash function, J. Combin. Math. Combin. Comput. 35 (2000), pp. 127–145.
[6] F. A. Behrend, On sets of integers which contain no three terms in arithmetical progression,

Proc. Nat. Acad. Sci. U. S. A. 32 (1946), pp. 331–332.
[7] S. R. Blackburn, Combinatorics and threshold cryptography, Combinatorial Designs and their

Applications, Chapman and Hall, 1999, pp. 49–70.
[8] , Perfect hash families: probabilistic methods and explicit constructions, J. Comb.

Theory (A) 92 (2000), pp. 54–60.
[9] , Perfect hash families with few functions, unpublished manuscript, 2000.

[10] S. R. Blackburn, M. Burmester, Y. Desmedt, and P. R. Wild, Efficient multiplicative sharing
schemes, Lecture Notes in Computer Science 1070 (1996), pp. 107–118.

[11] A. P. Bosznay, On the lower estimation of nonaveraging sets, Acta Math. Hungar. 53 (1989),
pp. 155–157.

[12] J. Bourgain, On triples in arithmetic progression, Geom. Funct. Anal. 9 (1999), pp. 968–984.
[13] C. J. Colbourn and J. H. Dinitz (eds.), The CRC Handbook of Combinatorial Designs. CRC

Press, Boca Raton, FL, 1996.
[14] C. J. Colbourn, S. S. Martirosyan, Tran Van Trung, and R. A. Walker II, Roux-type construc-

tions for covering arrays of strengths three and four, Designs, Codes and Cryptography 41
(2006), pp. 35–57.

[15] Z. J. Czech, G. Havas, and B. S. Majewski, Perfect hashing, Theor. Comp. Sci. 182 (1997),
pp. 1–143.

[16] A. Fiat and M. Naor, Broadcast encryption, Lecture Notes in Computer Science 773 (1994),
pp. 480–491.

[17] G. Freiman, Foundations of Structural Theory of Set Addition, Translations of Mathematical
Monographs 37. AMS, 1973.

[18] F. Glover, Tabu search – Part I, ORSA J. Comput. 1 (1989), pp. 190–206.
[19] W. T. Gowers, A new proof of Szemerédi’s theorem, Geom. Funct. Anal. 11 (2001), pp. 465–

588.
[20] W. Harvey and T. Winterer, Solving the MOLR and social golfers problems, Lecture Notes in

Computer Science 3709 (2005), pp. 286–300.
[21] D. R. Heath-Brown, Integer sets containing no arithmetic progressions, J. London Math. Soc.

(2) 35 (1987), pp. 385–394.
[22] V. F. Lev, Progression-free sets in finite abelian groups, J. Number Theory 104 (2004), pp. 162–

169.

150 Robert A. Walker II and Charles J. Colbourn

[23] K. Mehlhorn, Data Structures and Algorithms 1: Sorting and Searching. Springer-Verlag,
Berlin, 1984.

[24] R. Meshulam, On subsets of finite abelian groups with no 3-term arithmetic progressions, J.
Combin. Theory Ser. A 71 (1995), pp. 168–172.

[25] L. Moser, On non-averaging sets of integers, Canadian J. Math. 5 (1953), pp. 245–252.
[26] R. A. Rankin, Sets of integers containing not more than a given number of terms in arithmetical

progression, Proc. Roy. Soc. Edinburgh Sect. A 65 (1962), pp. 332–344.
[27] K. F. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), pp. 104–109.
[28] D. R. Stinson, Tran van Trung, and R. Wei, Secure frameproof codes, key distribution patterns,

group testing algorithms and related structures, J. Statist. Plan. Infer. 86 (2000), pp. 595–617.
[29] D. R. Stinson, R. Wei, and L. Zhu, New constructions for perfect hash families and related

structures using combinatorial designs and codes, J. Combin. Designs 8 (2000), pp. 189–200.
[30] E. Szemerédi, Integer sets containing no arithmetic progressions, Acta Math. Hungar. 56

(1990), pp. 155–158.
[31] D. Tonien and R.Safavi-Naini, Recursive constructions of secure codes and hash families using

difference function families, J. Combinat. Theory (A) 113 (2006), pp. 664–674.
[32] Tran van Trung and S. S. Martirosyan, On a class of traceability codes, Designs Codes Crypt.

31 (2004), pp. 125–132.
[33] , New constructions for IPP codes, Designs Codes Crypt. 35 (2005), pp. 227–239.
[34] R. A. Walker II, Covering Arrays and Perfect Hash Families, Ph.D. thesis, Department of

Computer Science and Engineering, Arizona State University, USA, 2005.
[35] R. A. Walker II and C. J. Colbourn, Tabu search for covering arrays using permutation vectors,

submitted, 2006.
[36] I. M. Wanless, A partial latin squares problem posed by Blackburn, Bull. Inst. Comb. Appl. 42

(2004), pp. 76–80.

Received 27 March, 2006; revised 27 September, 2006

Author information
Robert A. Walker II, Computer Science and Engineering, Arizona State University, P.O. Box
878809, Tempe, AZ 85287, USA.
Email: robby.walker@gmail.com

Charles J. Colbourn, Computer Science and Engineering, Arizona State University, P.O. Box
878809, Tempe, AZ 85287, USA.
Email: charles.colbourn@asu.edu

	Introduction
	Direct constructions
	Known direct constructions
	A new direct construction

	Strength three with three rows
	Tfrrls
	Constructions
	The connection with additive combinatorics

	Recursive constructions
	Computational search
	Tables
	Implementation
	Results
	PHF tables

	Conclusions

