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Abstract. Recent progress on pairing implementation has made certain pairings
extremely simple and fast to compute. Hence, it is natural to examine if there are
consequences for the security of pairing-based cryptography.
This paper gives a method to compute eta pairings in a way which avoids the
requirement for a final exponentiation. The method does not lead to any improve-
ment in the speed of pairing implementation. However, it seems appropriate to
re-evaluate the security of pairing based cryptography in light of these new ideas.
A multivariate attack on the pairing inversion problem is proposed and analysed.
Our findings support the belief that pairing inversion is a hard computational
problem.

1 Introduction

The use of pairings as a component of protocols is a major topic in public key cryptog-
raphy [2]. The security of cryptosystems based on pairings depends on the difficulty of
various new computational problems. However, in comparison with many other prob-
lems in cryptography, there has been little scrutiny of these computational problems.

One of the most fundamental computational problems in this area is the pairing
inversion problem (see Section 2.1 for a statement of this problem). Results of Verheul
[11, 12] and Satoh [10] provide evidence that this problem is hard.

Recent progress on pairing implementation has made some pairings extremely sim-
ple and fast to compute. Hence, it seems appropriate to re-evaluate the security of pair-
ing based cryptography in light of such progress.

We show that, for some very specific curves, the final exponentiation in the pair-
ing computation is not required. This makes pairing computation very simple and it is
natural to wonder if the difficulty of the pairing inversion problem is affected for such
curves. The fact that the final exponentiation can sometimes be avoided may also have
implications for side-channel analysis of pairing implementations (see [9]).

We propose and analyse a multivariate attack on the pairing inversion problem.
Our findings further support the belief that pairing inversion is a hard computational
problem.



The paper is outlined as follows. In Section 2 we recall some well-known facts
about pairings. Section 3 details how to compute Tate pairings in a way which does
not require a final exponentiation. The remaining sections discuss and analyse various
possible attacks on the pairing inversion problem.

2 Pairings

Let E be an elliptic curve over a finite fieldFq (we will only consider supersingular
elliptic curves in this article). We denote the point at infinity by0. For anyn ∈ N we
denote byE(Fqn) the group of points onE defined overFqn . Supposer is a (large)
prime, coprime toq, which divides#E(Fq). Letk be the smallest positive integer such
thatr | (qk − 1). We defineµr = {z ∈ F∗qk : zr = 1} and defineE(Fqn)[r] = {P ∈
E(Fqn) : [r]P = 0}.

We are interested in non-degenerate bilinear pairings of the form

e : E(Fq)[r]× E(Fq)[r] → µr ⊆ F∗qk

For supersingular elliptic curves of cryptographic interest, we may obtain such a pairing
from the Tate pairing twisted by an endomorphismψ called a distortion map [11, 12].

For example, if the Tate pairing is used then we define

e(P,Q) = 〈P,ψ(Q)〉(q
k−1)/r

r .

2.1 Inverting pairings

A natural way to attack some pairing-based cryptosystems is to solve the following
computational problem:

Pairing inversion problem: Suppose

e : E(Fq)[r]× E(Fq)[r] → µr ⊆ F∗qk

is as above and supposeP ∈ E(Fq)[r] andz ∈ µr are given. Find a pointQ ∈ E(Fq)[r]
such that

e(P,Q) = z.

The pairing inversion problem is essentially to compute a specific group homo-
morphism fromµr to E(Fq)[r]. Hence it is also natural to consider the more general
problem of computing homomorphisms between finite fields and elliptic curves.

Verheul [11, 12] considered the problem of computing a group homomorphism from
µr toE(Fq)[r]. He showed a number of striking consequences of being able to compute
such a homomorphism, for example the fact that the Diffie-Hellman problem would
become easy for a number of finite fields. These results can be interpreted as evidence
that inverting pairings is a hard problem.

Satoh [10] has given further evidence that computing such a homomorphism is hard.
He showed that if the group homomorphism is represented as a polynomial then, in
many cases, the polynomial has large degree and all coefficients non-zero.
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2.2 The final exponentiation as a security feature

When computing the Tate pairing it is necessary to compute the value of a Miller func-
tion and then to perform a final exponentiation to the power of(qk − 1)/r to obtain a
unique and well-defined value. This final exponentiation seems to have a positive contri-
bution to the security of the resulting system as it destroys information. More precisely,
given a pairing valuez ∈ µr it is not at all clear what the actual output value of Miller’s
algorithm is. This issue was also noted in [9].

3 Computing eta pairings without a final exponentiation

The eta pairing [1] is a generalisation of the Duursma-Lee [4] method for computing
pairings. It greatly simplifies pairing computation for supersingular curves over fields
of small characteristic with even embedding degree. There are two variants of the eta
pairing, namely the basic version which is equivalent to the Duursma-Lee method and
the truncated version which has better performance. Our methods seem to only apply
in the case of the basic version.

We give the full details for the case of elliptic curves of embedding degree 4 in
characteristic 2. Later we give a brief discussion of the characteristic 3 case.

Our results seem to rely on the coincidence between the characteristic and the base
used for representing the multiplier in Miller’s algorithm. Hence these results do not
seem to immediately generalise to any other cases (e.g., [6]), though this is an interest-
ing question for future research.

3.1 The characteristic two case

We recall the case of elliptic curves in characteristic 2. The curveE : y2+y = x3+x+b
(whereb = 0 or 1) over F2m , wherem is odd, has embedding degree 4. LetP,Q ∈
E(F2m) be points of orderr and letψ be the usual distortion mapψ(x, y) = (x+s2, y+
sx + t) wheres ∈ F22 satisfiess2 + s + 1 = 0 andt ∈ F24 satisfiest2 + t + s = 0.
Denote byfn,P a function with divisor(fn,P ) = n(P )− ([n]P )− (n− 1)(0). The eta
pairing is defined to be the value

fT,P (ψ(Q)) ∈ F∗24m

whereT = 2m. To get a uniquely defined pairing one should exponentiate to the power
22m−1, which can be easily done by applying a linear map (22m-power Frobenius) and
a division. This exponentiation ostensibly transforms the output of Miller’s algorithm
to an element of order dividing22m +1, equivalently an element of norm 1 with respect
to the Galois field extensionF24m/F22m . In fact, the pairing value is then an element of
F∗24m of order equal to the orderr of the pointsP andQ.

It is shown in [1] how to compute the eta pairing efficiently, for example using de-
nominator elimination. Furthermore, a loop shortening method is given which reduces
the computation to just(m+ 1)/2 iterations.

We now show how the final exponentiation can be avoided. The key idea is to not
use the denominator elimination technique.
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We use the standard eta pairing notation from [1]. Recall that ifP = (xP , yP ), then
[2i]P = (x(2i)

P + i, y
(2i)
P + ix

(2i)
P + τ(i)) whereτ(i) = 1 if i ≡ 2, 3 (mod 4) and zero

otherwise (keeping in mind that we are working in characteristic 2).
We work in Fq2 whereq = 22m andm is odd. This field may be represented as

{a + bt : a, b ∈ Fq} wheret ∈ F24 satisfiest2 + t + s = 0 ands ∈ F22 satisfies
s2+s+1 = 0. By the conjugate ofa+btwe meana+ bt = a+b(t+1) = (a+b)+bt.
By the norm ofa+ bt we mean

(a+ bt)(a+ bt) = a2 + ab+ b2s.

If Q = (x, y) we denoteQ = (x, y). We require the observation that ifQ ∈ E(Fq) and
ψ(Q) = (x, y) then

ψ(Q) = (x, y + 1) = −ψ(Q). (1)

We denote bylP (x, y) = y − λ(x − xP ) − yP the equation of the tangent to the
curve atP (used in the addition formulae for doublingP ) andvP (x) = x − xP the
vertical line throughP .

Lemma 1. We havelP (ψ(Q))lP (ψ(Q)) = vP (ψ(Q))2v[2]P (ψ(Q)).
(More generally, iflP1,P2 is the line betweenP1 andP2 then
lP1,P2(ψ(Q))lP1,P2(ψ(Q)) = vP1(ψ(Q))vP2(ψ(Q))vP1+P2(ψ(Q)).)

Proof. The divisor of the functionlP (x, y) is (lP ) = 2(P ) + (−[2]P ) − 3(0). As
noted above,lP (ψ(Q)) = lP (ψ(Q)) + 1. The divisor of the functionlP (x, y) + 1 is
(lP + 1) = 2(−P ) + ([2]P ) − 3(0). The functionvP (x, y) = (x − xP ) has divisor
(vP ) = (P ) + (−P )− 2(0) (and similarly forv[2]P (x, y)). Hence,

(lP (lP + 1)) = 2(P ) + 2(−P ) + ([2]P ) + (−[2]P )− 6(0) = (v2
P v[2]P )

As the functionslP (x, y)(lP (x, y) + 1) andv2
P (x, y)v[2]P (x, y) have the same divisor,

they are equal up to a scalar multiple.
But lP (x, y)(lP (x, y)+1) = (y−λx+c)(y−λx+c+1) = y2 +y+λ2x2 + · · · =

x3+x+b+λ2x2+· · ·. Similarly,v2
P (x, y)v[2]P (x, y) = (x−xP )2(x−x[2]P ) = x3+· · ·.

Since the coefficients ofx3 are 1 in both cases it follows thatlP (x, y)(lP (x, y) + 1) =
v2

P (x, y)v[2]P (x, y) and hence the values when evaluated atψ(Q) are equal.

Now, consider computing the function valuefT,P (ψ(Q)) whereT = 2m using
Miller’s algorithm and keeping the denominators.

Theorem 1. Suppose we compute the function valuez = fT,P (ψ(Q)) whereT = 2m

using Miller’s algorithm and keeping the denominators. Thenz already has norm 1.

Proof. We show thatzz = 1 wherez = zq2
. We abuse notation by writingl[2i]P for

l[2i]P (ψ(Q)).
By the eta pairing formulation in [1] (ignoring the denominator elimination) we can

computez as
m−1∏
i=0

(
l[2i]P

v[2i+1]P

)2m−1−i

.
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Hence

zz =
m−1∏
i=0

(
l[2i]P l[2i]P

v2
[2i+1]P

)2m−1−i

=
m−1∏
i=0

(
v2
[2i]P v[2i+1]P

v2
[2i+1]P

)2m−1−i

.

Cancelling thev[2i+1]P and expanding the powers gives (using the notationα(i) = α2i

)

zz =
m−1∏
i=0

v
(m−i)
[2i]P

v
(m−1−i)
[2i+1]P

.

We can setj = i+ 1 and note that the above product is(
m−1∏
i=0

v
(m−i)
[2i]P

)
/

 m∏
j=1

v
(m−j)
[2j ]P

 =
vP (ψ(Q))2

m

v[2m]P (ψ(Q))
.

One can check that

vP (ψ(Q))2
m

= (xQ + s2 + xP )2
m

= xQ + s2 + xP + 1 = v[2m]P (ψ(Q))

and so the norm of the pairing is 1.

Since the value of Miller’s algorithm already has norm 1, there is no need to perform
the final exponentiation. Hence we can compute the eta pairing by including the vertical
lines and thus avoiding the final exponentiation. From a performance point of view there
is no saving: the final exponentiation is just a division and we have replaced this by
having denominators in the algorithm.

We note that we cannot seem to simultaneously utilise the loop shortening idea
(truncated eta pairing) and avoid the final exponentiation. In this case, letT = 2(m+1)/2±
1. Then the pairing is computed as

z =
(m−1)/2∏

i=0

(
l[2i]P

v[2i+1]P

)2(m−1)/2−i

l/v[T ]P

where the finall andv[T ]P come from adding[2(m+1)/2]P and±P . Again, one can
considerzz and much of the preceding proof applies. The problem is that after canceling
terms we get

vP (ψ(Q))2
(m−1)/2

vP (ψ(Q))
v[T ]P (ψ(Q))

and this is not equal to 1.

3.2 The characteristic three case

Similar arguments can be applied in this case. LetE : y2 = x3 − x+ b whereb = ±1
over F3m , wherem is coprime to 6. This curve has embedding degree 6. This curve
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has a point tripling formula, such that given a pointP = (x, y), one computes[3]P =
(x3, y3) as

x3 = (x9 − b), y3 = −(y9)

The distortion map is
ψ(x, y) = (ρ− x, σy)

whereσ ∈ F32 satisfiesσ2 = −1 andρ ∈ F33 satisfiesρ3 − ρ− b = 0. It is easy to see
that ifψ(Q) = (x, y) thenψ(Q) = (x,−y) = −ψ(Q).

We consider the function

gP (x, y) = y3
P y − (x3

P − x+ b)2

which has divisor(gP ) = 3(P ) + (−3P ) − 4(0). The following lemma is proven in a
similar manner to Lemma 1.

Lemma 2. We havegP (ψ(Q))gP (ψ(Q)) = vP (ψ(Q))3v3P (ψ(Q)).

Proof. The divisor of the functiongP (x, y) is (gP ) = 3(−P ) + (3P ) − 4(0). The
divisor of the functionv3

P (x, y) is (v3
P ) = 3(P ) + 3(−P )− 6(0) and the divisor of the

functionv3P (x, y) is (v3P ) = (3P ) + (−3P )− 2(0). Therefore,

(gP gP ) = 3(P ) + 3(−P ) + (3P ) + (−3P )− 8(0) = (v3
P v3P )

We havelP (x, y)lP (x, y) = (ay − x2 + c)(−ay − x2 + c) = x4 − a2y2 + · · · =
x4−a2(x3−x+b)+· · ·. Similarly,v3

P (x, y)v3P (x, y) = (x−xP )3(x−x3P ) = x4+· · ·.
As the coefficients ofx4 are1 in both cases it follows thatgP (x, y)gP (x, y) = v3

P v3P .

Theorem 2. Suppose we compute the function valuez = fT,P (ψ(Q)) whereT = 3m

using Miller’s algorithm and keeping the denominators. Thenz already has norm 1.

Proof. The eta pairing method computesz as

m−1∏
i=0

(
l[3i]P (ψ(Q))
v[3i+1]P (ψ(Q))

)3m−1−i

.

As with the proof of Theorem 1, one considerszz, expands the functions and simplifies
to get

zz =
vP (ψ(Q))3

m

v[3m]P (ψ(Q))

One sees that

vP (ψ(Q))3
m

= (ρ− xQ − xP )3
m

= −xQ − xP + ρ+ b = v[3m]P (ψ(Q))

and therefore the norm of the pairing is 1.

As before, we cannot seem to avoid the final multiplication when using the truncated
eta pairing.
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4 Security concerns

In this section we look at two possible resulting attacks on the system.

4.1 Inverting pairings using SLP representation

Assume an attacker has access to the ‘raw’ valuefT,P (ψ(Q)) of some efficient version
of the Tate pairing.

One natural attack is to represent the Tate pairinge(P,ψ(·)) as a function of a
generic curve point. That is, to run Miller’s algorithm on a generic point(x, y) and to
compute the corresponding functionf(x, y) = fT,P (ψ(x, y)).

This function has exponential degree if written in expanded form. However, by con-
struction it has a polynomial sized representation as a straight line program (SLP).

Hence, given a targetz ∈ µr the task is simply to solve the equation

f(x, y) = z

wheref(x, y) is represented as an SLP. Consultations with experts on SLPs [7] indicate
that this is a known hard problem.

4.2 Multivariate attack on pairing inversion

Given the simple nature of Tate pairing computation on supersingular curves, and the
fact that the final exponentiation can be avoided in some cases, it seems natural to
attempt to express the pairing inversion problem as a problem of solving a system of
multivariate equations.

We consider a simplified situation of the characteristic 2 case. More precisely we
suppose that the eta pairing can be computed, without a final exponentiation, as

z =
m−1∏
i=0

(
y
(i)
Q +Aix

(i)
Q +Bix

(−i)
P + Ciy

(−i)
P +Di

)
(2)

where theAi, . . . , Di are explicit constants and wherex(i) meansx2i

.
This attack assumes thatxP andyP are fixed and that a target valuez is specified.

The goal is to find values forxQ andyQ. We write the unknownxQ over some basis as
x0θ0 + x1θ1 + · · ·+ xm−1θm−1 where all thexi lie in F2 and similarly foryQ. Since
we are working in characteristic two,x2

Q can be expressed in terms of the variablesxi

(and similarly fory2
Q etc) by applying a known linear transformation.

Equation (2) therefore becomes a product of linear equations overF24m in the2m
variablesxj , yj . Equating coefficients overF2 gives a system of4m non-linear equa-
tions of degreem in 2m variables.

In fact, the methods of Section 3 show that the pairing can be computed as a product
of ratios ∏

i

li
vi

= z.
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We obtain a system of equations by means analogous to the above as

(
∏

i

li)− z(
∏

i

vi) = 0.

The number of monomials in an equation of degreeD in M variables is bounded
by (

M +D − 1
D

)
.

Hence, for the eta pairing we have a system of equations, each consisting of roughly
(2m)m monomials. This is grows exponentially inm so it seems unlikely that lineari-
sation or Gr̈obner basis methods can be successfully applied to solve this problem.

Nevertheless, we have implemented the method for extremely small parameters us-
ing Magma [3] and can invert the pairing using Gröbner basis reduction fairly easily.
Hence, there is clearly no conceptual obstacle to the method.

If it were possible to consider the truncated eta pairing, then we would require only
2(m + 1)/2 = m + 1 variables and would obtain a system of4m equations of degree
(m+ 1)/2. This is a considerably simpler system, but it still has exponential size.

We conclude that the multivariate attack on pairing inversion is not feasible. How-
ever, it should be noted that any further progress in loop shortening could potentially
jeopardise security.

Some possible variants/improvements on the attack are briefly listed below.

– The attack can also be developed in the characteristic three case, exploiting the fact
that cubing is linear. In this case the values ofm are typically smaller than in the
characteristic two case, but the attack still seems to be infeasible in practice.

– Instead of solving
∏m

i=1 fi = z it could be split as

m/2∏
i=1

fi = z
m∏

i=m/2+1

f−1
i .

This does not seem to be a feasible option, since the operationf−1
i is not well-

behaved.
– If m is not prime, the variablesxi could take values in some extension field ofF2.

This would reduce the number of variables, but squaring would no longer be linear.

5 Conclusion

We have presented a method to compute the eta pairing which does not require a final
exponentiation. It would be very interesting if a similar idea can be applied to ordinary
curves.

We have suggested several methods to attack the pairing inversion problem, none
of which appear to lead to any practical attack on the system. This adds weight to the
belief that pairing inversion is a hard problem.
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A more general pairing inversion problem is: givenz find pointsP andQ such that
e(P,Q) = z. Our results do not shed any light on this problem.

The central computational problem in pairing based cryptography is the bilinear
Diffie-Hellman problem. Our results do not say anything about this problem, and further
research on it is required.
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