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1 Introduction

Let p > 2 be a prime and denote by Fp the finite field of order p which we identify with
the set of integers {0, 1, . . . , p− 1}.

The linear complexity L(S) of an N -periodic sequence S = σ0, σ1, . . . over Fp is
the smallest nonnegative integer L for which there exist coefficients d1, d2, . . . , dL ∈ Fp

such that
σi + d1σi−1 + · · ·+ dLσi−L = 0 for all i ≥ L.

The linear complexity is of fundamental importance as a complexity measure for
periodic sequences (see [14, 15, 16, 17, 8]). Motivated by security issues of stream
ciphers, in [19] Stamp and Martin proposed a different measure of the complexity of
periodic sequences, the k-error linear complexity, which is defined by

Lk(S) = min
T

L(T ),

where the minimum is taken over all N -periodic sequences T = τ0, τ1, . . . over Fp for
which the Hamming distance of the vectors (σ0, σ1, . . . , σN−1) and (τ0, τ1, . . . , τN−1)
is at most k. Evidently we have

N ≥ L0(S) = L(S) ≥ L1(S) ≥ L2(S) ≥ . . . ≥ LN (S) = 0.

The concept of k-error linear complexity was built on the earlier concepts of sphere
complexity SCk(S) introduced in the monograph [7] and weight complexity introduced
in [4], see also [3, Chapter 2.3.4]. The sphere complexity SCk(S) of an N -periodic
sequence over Fp can be defined by

SCk(S) = min
T

L(T ),
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where the minimum is taken over all N -periodic sequences T 6= S over Fp for which
the Hamming distance of the vectors (σ0, σ1, . . . , σN−1) and (τ0, τ1, . . . , τN−1) is at
most k. Obviously we have

Lk(S) = min(SCk(S), L(S)).

The weight complexity WCk(S) of S is the minimal linear complexity of all sequences
with Hamming distance to S exactly k.

Let d > 1 be a divisor of p − 1 and α a fixed primitive element of Fp. Then the
cyclotomic classes of order d give a partition of F∗p = Fp \ {0} defined by

D0 = {αdn : 0 ≤ n ≤ (p− 1)/d− 1} and Dj = αjD0, 1 ≤ j ≤ d− 1.

For fixed c0, c1, . . . , cd−1 ∈ Fp the cyclotomic sequence of order d is the p-periodic
sequence C = ζ0, ζ1, . . . defined by

ζi =

{
0, p|i,
cj , (i mod p) ∈ Dj , 0 ≤ j ≤ d− 1,

i = 0, 1, . . . . (1.1)

As p-periodic sequence, C is defined by its first p terms. Hence it is sufficient to define
ζi for 0 ≤ i ≤ p− 1.
In the case that

cj = j, 0 ≤ j ≤ d− 1,

we have
ζi = indd i, 1 ≤ i ≤ p− 1, (1.2)

where indd i denotes the discrete logarithm modulo d of i, i.e. the unique j with i = αj0

for some j0 ≡ j mod d and 0 ≤ j ≤ d − 1. Some cryptographic properties of the
sequence C with (1.2) were analyzed in [5, 10, 12, 13, 21]. In particular, these results
support the assumption of the hardness of the discrete logarithm problem. This paper
provides further indications on how hard the discrete logarithm problem is. In the case
d = 2 the sequence (1.2) is called Legendre sequence, see [6, 20]. The k-error linear
complexity over Fp of the Legendre sequence L was determined for all k in [1],

Lk(L) =


p, k = 0,

(p + 1)/2, 1 ≤ k ≤ (p− 3)/2,

0, k ≥ (p− 1)/2.

(1.3)

A cyclotomic sequence of order 4 defined with

c0 = c3 = 1 and c1 = c2 = 0 (1.4)

is investigated in [3, Chapter 8]. Hall’s sextic residue sequence H [11, 9] is the cyclo-
tomic sequence of order 6 with

c0 = c1 = c3 = 1 and c2 = c4 = c5 = 0.
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The main objectives of this paper are to find systematically sequences with high k-
error linear complexity in view of their suitability for stream ciphers and to analyze
some famous sequences suggested in the literature. In particular, we extend (1.3) to
arbitrary cyclotomic sequences. Under a certain necessary restriction on the choice of
the cj we prove that

Lk(C) =
(d− 1)(p− 1)

d
+ 1, 1 ≤ k ≤ p− 1

d
− 1.

For the above mentioned special examples we also prove explicit results on the k-error
linear complexity for k ≥ (p− 1)/d.

2 Preliminary results

First we recall [2, Theorem 8].

Lemma 2.1. Let f(X) ∈ Fp[X] be a polynomial of degree at most p − 1 and S =
σ0, σ1, . . . the p-periodic sequence over Fp defined by

σi = f(i) for 0 ≤ i ≤ p− 1.

Then we have
L(S) = deg(f) + 1.

Next we prove a result on the stability of the linear complexity.

Lemma 2.2. Let S be a p-periodic sequence over Fp and 0 ≤ k0 ≤ (p − 1)/2. Then
we have

Lk(S) = Lk0(S) for k0 ≤ k ≤ p− Lk0(S)− k0.

Proof. By the definition of the k-error linear complexity and by Lemma 2.1 for 0 ≤
m ≤ p−1 there exists a polynomial fm(X) ∈ Fp[X] of degree Lm(S)−1 and a subset
Sm ⊆ Fp of cardinality at least p−m such that σi = fm(i) for all i ∈ Sm. Hence, for
any k ≥ k0 we have

fk(i)− fk0(i) = 0 for all i ∈ Sk ∩ Sk0

and
deg(fk − fk0) ≤ Lk0(S)− 1.

Since |Sk ∩ Sk0 | ≥ p − k − k0 we have either fk(X) = fk0(X) or p − k − k0 ≤
deg(fk − fk0) ≤ Lk0(S) − 1, or equivalently, either Lk(S) = Lk0(S) or k ≥ p −
Lk0(S)− k0 + 1.

Now we describe the standard method for finding the unique polynomial f(X) ∈
Fp[X] of degree at most p− 1 satisfying f(i) = ζi for all i ∈ Fp.
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Let α, d be as defined above, and put ρ = α(p−1)/d. First we construct the unique
polynomial g(X) = a0+a1X+· · ·+ad−1X

d−1 of degree at most d−1 with g(ρj) = cj .
We consider the Vandermonde matrix

V = (ρij)d−1
i,j=0.

The inverse of V is given by

V −1 = (d−1ρi(d−j))d−1
i,j=0.

Consequently the solution

(a0, a1, . . . , ad−1) = (c0, c1, . . . , cd−1)V −1

of the linear equation system (X0, X1, . . . , Xd−1)V = (c0, c1, . . . , cd−1) is explicitely
given by

aj = d−1
d−1∑
i=0

ciρ
i(d−j), 0 ≤ j ≤ d− 1.

Evidently the polynomial

f̄(X) = g(X(p−1)/d) = a0 + a1X
p−1

d + · · ·+ ad−1X
(d−1) p−1

d (2.1)

satisfies f̄(i) = ζi = cj if i(p−1)/d = ρj , i.e. (i mod p) ∈ Dj , for i = 1, 2, . . . , p − 1.
Moreover, the polynomial

f(X) = a0X
p−1 + a1X

p−1
d + · · ·+ ad−1X

(d−1) p−1
d (2.2)

of degree at most p− 1 satisfies f(i) = ζi for all i = 0, 1, . . . , p− 1.

3 General results on the k-error linear complexity

The following theorem indicates how to determine the exact value for the k-error linear
complexity of a sequence defined by (1.1) for a certain range of k.

Theorem 3.1. Let p > 2 be a prime, d a divisor of p − 1, c0, c1, . . . , cd−1 ∈ Fp, α a
primitive element of Fp and C the p-periodic sequence over Fp defined by (1.1). Put
ρ = α(p−1)/d and

bj =
d−1∑
i=0

ciρ
ij , 0 ≤ j ≤ d− 1.

Let t be the smallest index such that bt 6= 0 then

Lk(C) = p− t(p− 1)/d for 0 ≤ k ≤ t(p− 1)/d.

Additionally, if b0 6= 0 and τ is the smallest index with τ ≥ 1 and bτ 6= 0, then

L(C) = p and Lk(C) = p− τ(p− 1)/d for 1 ≤ k ≤ τ(p− 1)/d− 1.
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Proof. Note that b0 = da0 and bj = dad−j for 1 ≤ j ≤ d− 1.
If t is the smallest index such that bt 6= 0 then the corresponding polynomial (2.2)

has degree (d− t)(p− 1)/d. With Lemmas 2.1 and 2.2 we get the first assertion of the
theorem.

If b0 6= 0 and τ is the smallest index with τ ≥ 1 and bτ 6= 0, then the polynomial
(2.2) has degree p− 1, and the polynomial (2.1) has degree (d− τ)(p− 1)/d. Conse-
quently with Lemma 2.1 we have L(C) = p, and since f̄(i) = ζi, 1 ≤ i ≤ p − 1, we
have L1(C) = p−τ(p−1)/d since each polynomial that coincides with f̄(X) in at least
p − 2 positions is either equal to f̄(X) or has degree at least p − 2. With Lemma 2.2
we obtain Lk(C) = L1(C) for 1 ≤ k ≤ τ(p− 1)/d− 1.

Theorem 3.2. For a p-periodic sequence C over Fp defined by (1.1) and an integer
0 ≤ t ≤ d we have

Lk(C) ≤ (d− t− 1)(p− 1)/d + 1 for k ≥ t(p− 1)/d + 1.

Proof. We choose d − t different cyclotomic cosets Dj1 , . . . , Djd−t
and calculate the

polynomial h(X) = a0 +a1X + · · ·+ad−t−1X
d−t−1 of degree at most d− t−1 which

satisfies h(ρji) = cji , i = 1, . . . , d−t. Then the polynomial g(X) = a0 +a1X
(p−1)/d+

· · ·+ad−t−1X
(d−t−1)(p−1)/d satisfies g(j) = ζj for at least (d−t)(p−1)/d = p−(t(p−

1)/d + 1) different j with 0 ≤ j ≤ p− 1. With Lemma 2.1 we get the assertion.

4 k -error linear complexity for some selected generators

4.1 Discrete logarithm sequences

Applying Theorems 3.1 and 3.2 and using ideas from [18, Chapter 8] we obtain the
following results.

Theorem 4.1. For d > 1 the sequence C = ζ0, ζ1, . . . defined by (1.2) with ζ0 = 0
satisfies

Lk(C) =


p : k = 0

(d− 1)(p− 1)/d + 1 : 1 ≤ k ≤ (p− 1)/d− 1
0 : k ≥ (d− 1)(p− 1)/d.

For d > 3 and (p− 1)/d < k ≤ (d− 1)(p− 1)/(2d) we have

(d− 1)(p− 1)
d

− 2k + 1 ≤ Lk(C) ≤ (d− 1 − bd(k − 1)/(p− 1)c) (p− 1)
d

+ 1.

Proof. With

b0 =
d−1∑
j=0

cj =
d−1∑
j=0

j = d(d− 1)/2 6= 0
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and

(ρ− 1)2b1 = (ρ− 1)2
d−1∑
j=0

cjρ
j = (ρ− 1)2

d−1∑
j=0

jρj

= ρ− dρd + (d− 1)ρd+1 = d(ρ− 1) 6= 0,

Theorem 3.1, and the fact that the cyclotomic sequence produces (d − 1)(p − 1)/d
nonzero terms per period we obtain the first part of the theorem. The upper bound of
the second part follows from Theorem 3.2.

Finally, we prove the lower bound of the second part. Let f(X) ∈ Fp[X] be a
polynomial with f(i) = ζi = indd i for at least (d− 1)(p− 1)/d− k elements 1 ≤ i ≤
p− 1 with i 6∈ Cd−1. For at least (d− 1)(p− 1)/d− 2k of these elements we also have

f(αi) = indd (αi) = 1 + indd i = 1 + f(i).

Hence, the polynomial F (X) = f(αX) − f(X) − 1 of degree at most deg(f) has at
least (d− 1)(p− 1)/d− 2k zeros. Since F (0) = −1 6= 0 we get deg(f) ≥ deg(F ) ≥
(d− 1)(p− 1)/d− 2k and the result follows by Lemma 2.1.

Theorem 4.1 gives only a nontrivial lower bound if k < (d− 1)(p− 1)/2d. Next we
prove a lower bound which is nontrivial for all k < (d− 1)(p− 1)/d.

Theorem 4.2. We have

Lk(C) ≥ (p− 1 − k)((d− 1)(p− 1)− dk)
2(d− 1)(p− 1)

+ 1.

Proof. Let S ⊆ F∗p be any set of cardinality |S| ≥ p − 1 − k and f(X) ∈ Fp[X] any
polynomial with

f(i) = ζi, i ∈ S.

Let us consider the set

D = {a = i−1j : indd a 6= 0, i, j ∈ S}.

We have |D| ≤ (d− 1)(p− 1)/d and there exists an a ∈ D such that there are at least

|S|(|S| − (p− 1)/d)
|D|

≥ d(p− 1 − k)(p− 1 − k − (p− 1)/d)
(d− 1)p

representations a = i−1j, i, j ∈ S. Select this a and let

R = {i ∈ F∗p : f(i) = ζi and f(ai) = ζai}.

We see that |R| ≥ (p− 1 − k)((d− 1)(p− 1)− dk)/(d− 1)p.
Moreover, we have either indd (ai) = indd a + indd i or indd (ai) = −d + indd a +

indd i. Hence, at least one of the polynomials

h1(X) = f(aX)− f(X)− indd a and h2(X) = f(aX)− f(X) + d− indd a
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has at least |R|/2 zeros. Since h1(0) = p− indd a 6= 0 and h2(0) = d− indd a 6= 0 we
get

deg f ≥ max{deg h1, deg h2} ≥ |R|/2

and the result follows by Lemma 2.1.

For concrete values of d we can improve the lower bounds of Theorems 4.1 and 4.2.
We present the result for d = 3.

Theorem 4.3. For p > 7 and d = 3 the sequence C of Theorem 4.1 satisfies

Lk(C) =


p : k = 0

2(p− 1)/3 + 1 : 1 ≤ k ≤ (p− 1)/3 − 1
(p− 1)/3 + 1 : (p− 1)/3 + 1 ≤ k < (p− 1)/2

0 : k ≥ 2(p− 1)/3,

and additionally

4(p− 1)/9 + 1 ≤ L(p−1)/3(C) ≤ 2(p− 1)/3 + 1.

Proof. For k ≤ (p− 1)/3− 1 and k ≥ 2(p− 1)/3 the result immediately follows from
Theorem 4.1.

Next we assume k ≥ (p− 1)/3 + 1 and annotate that the polynomials

g0(X) =
1

ρ− 1

(
ρ− 2 +

1
ρ
X(p−1)/3

)
,

g1(X) =
2

ρ2 − 1

(
−1 + X(p−1)/3

)
,

g2(X) =
1

ρ− 1

(
−1 + X(p−1)/3

)
,

satisfy
ζj = gi(j) for j ∈ F∗p \Di,

but
ζj 6= gi(j) for j ∈ Di ∪ {0},

i = 0, 1, 2. (Note that if p = 7 we may have ρ = 2 and thus g0(0) = 0.) From
Lemma 2.1 we get Lk(C) ≤ deg gi+1 = (p−1)/3+1. We remark that the polynomials
gi(X) can easily be obtained with the method described in Section 2 for finding the
unique polynomial f̄(X) ∈ Fp[X] of smallest degree satisfying f(j) = ζj for all
j ∈ F∗p.

In order to prove the theorem it remains to show that L(p−1)/3(C) ≥ 4(p− 1)/9 + 1,
and that Lk(C) ≥ (p− 1)/3 + 1 for k < (p− 1)/2.

Let T = τ0, τ1, . . . , be any p-periodic sequence obtained from C by at most k
changes per period. Let t(X) ∈ Fp[X] be the polynomial with t(j) = τj , 0 ≤ j ≤ p−1.
We obtain that t(j) = gi(j) for at least 2(p−1−k)/3 elements j of Fp for an appropriate
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choice of i, i.e., the polynomial h(X) = t(X)−gi(X) has at least 2(p−1−k)/3 zeros.
If we put k = (p− 1)/3, then by the above considerations we have t(X) 6= gi(X) and
thus h(X) is not the zero polynomial. Consequently we must have deg(h) = deg(t) ≥
2(p−1−k)/3 = 4(p−1)/9 and thus L(p−1)/3(C) ≥ 4(p−1)/9+1. Trivially we have
the upper bound L(p−1)/3(C) ≤ L(p−1)/3−1(C) = 2(p− 1)/3 + 1.
For k < (p− 1)/2 we have either h(X) ≡ 0 and thus deg(t) = deg(gi) = (p− 1)/3 or
deg(h) = deg(t) ≥ 2(p−1−k)/3 > (p−1)/3 and we have Lk(C) ≥ (p−1)/3+1.

4.2 Cyclotomic sequences of order 4

Theorem 4.4. The cyclotomic sequences C of order 4 defined by (1.1), and (1.2) for
p 6= 5, 17 or (1.4), respectively, satisfy

Lk(C) =


p : k = 0

3(p− 1)/4 + 1 : 1 ≤ k ≤ (p− 1)/4 − 1
(p− 1)/2 + 1 : (p− 1)/4 + 1 ≤ k < (p− 1)/3

0 : k ≥ (p− 1)/2.

Additionally we have

9(p− 1)/16 + 1 ≤ L(p−1)/4(C) ≤ 3(p− 1)/4 + 1,

and

(p− 1)/4 + 1 ≤ Lk(C) ≤ (p− 1)/2 + 1 for (p− 1)/3 ≤ k < (p− 1)/2.

Proof. Since
d−1∑
j=0

cj = 2 6= 0 and
d−1∑
j=0

cjρ
j = 1 − ρ

for the sequence (1.2) with d = 4, and

d−1∑
j=0

cj = 6 6= 0 and
d−1∑
j=0

cjρ
j = −2(ρ + 1)

for the sequence (1.4), the cyclotomic sequence of order 4 satisfies L(C) = p and
Lk(C) = 3(p− 1)/4 + 1 for 1 ≤ k ≤ (p− 1)/4 − 1 by Theorem 3.1.
For 0 ≤ i ≤ 3 let gi(X) ∈ Fp[X] be the unique polynomial of degree at most (p−1)/2
satisfying

gi(j) = ζj , j ∈ F∗p \Di,

where ζj is defined with (1.2) for d = 4 and (1.4), respectively. For the sequence (1.2)
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we have

g0(X) =
1
2ρ

(
4ρ− 1 − 2X(p−1)/4 −X(p−1)/2

)
,

g1(X) =
1
2

(
4 − ρ− 2X(p−1)/4 + (ρ− 2)X(p−1)/2

)
,

g2(X) =
1
2ρ

(
2ρ + 1 − 2X(p−1)/4 − (2ρ− 1)X(p−1)/2

)
,

g3(X) =
1
2

(
ρ + 2 − 2X(p−1)/4 − ρX(p−1)/2

)
,

and for the sequence (1.4),

g0(X) =
1
4

(
ρ + 1 + 2ρX(p−1)/4 + (ρ− 1)X(p−1)/2

)
,

g1(X) =
1
4

(
ρ + 3 + 2X(p−1)/4 − (ρ + 1)X(p−1)/2

)
,

g2(X) =
1
4

(
3 − ρ + 2ρX(p−1)/4 + (1 − ρ)X(p−1)/2

)
,

g3(X) =
1
4

(
1 − ρ + 2X(p−1)/4 + (ρ + 1)X(p−1)/2

)
.

It is easy to check that gi(X) satisfies gi(0) 6= 0 and deg(gi) = (p − 1)/2 (since
p 6= 5, 17 for the first sequence). Consequently we can apply the same technique as in
the proof of Theorem 4.3 to prove the result for (p − 1)/4 + 1 ≤ k < (p − 1)/3 and
k = (p− 1)/4.

Moreover the existence of the (unique) polynomials b0(X), b1(X) of degree (p −
1)/4 that satisfy

b0(j) = ζj if j ∈ D0 ∪D2

and
b1(j) = ζj if j ∈ D1 ∪D3,

enables us to use this technique for a further step. We have

b0(X) = 1 −X(p−1)/4,

b1(X) = 2 − ρ−1X(p−1)/4,

or

b0(X) =
1
2

(
1 + X(p−1)/4

)
b1(X) =

1
2

(
1 + ρX(p−1)/4

)
,

respectively. Suppose that T = τ0, τ1, . . . is a p-periodic sequence obtained from C by
at most k changes per period and let t(X) be the polynomial with t(j) = τj , 0 ≤ j ≤
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p − 1. Then for at least one i ∈ {0, 1} we have t(j) = bi(j) for at least (p − 1 − k)/2
elements j ∈ Fp. Then the polynomial h(X) = bi(X)− t(X) has at least (p−1−k)/2
zeros. Hence, h(X) ≡ 0 and thus deg(t) = deg(bi) = (p− 1)/4 or deg(h) = deg(t) ≥
(p − 1 − k)/2 > (p − 1)/4. As a consequence we have Lk(C) ≥ (p − 1)/4 + 1 if
k < (p− 1)/2.

4.3 Hall’s sextic residue sequence

For Hall’s sextic residue sequence we can show the following result.

Theorem 4.5. For the k-error linear complexity over Fp, p > 7, of Hall’s sextic residue
sequence H we have

Lk(H) = p : k = 0,

Lk(H) = 5(p− 1)/6 + 1 : 1 ≤ k ≤ (p− 1)/6 − 1,

25(p− 1)/36 < Lk(H) ≤ 5(p− 1)/6 + 1 : k = (p− 1)/6,

Lk(H) = 2(p− 1)/3 + 1 : (p− 1)/6 < k < (p− 1)/5,

2(p− 1)/3 − 2k/3 < Lk(H) ≤ 2(p− 1)/3 + 1 : (p− 1)/5 ≤ k < (p− 1)/4,

(p− 1)/3 < Lk(H) ≤ 2(p− 1)/3 + 1 : (p− 1)/4 ≤ k < (p− 1)/3,

(p− 1)/6 < Lk(H) ≤ (p + 1)/2 : k = (p− 1)/3,

(p− 1)/6 < Lk(H) ≤ (p− 1)/3 + 1 : (p− 1)/3 < k < (p− 1)/2,

Lk(H) = 0 : k ≥ (p− 1)/2.

Proof. Since

d−1∑
j=0

cj = 3 6= 0 and
d−1∑
j=0

cjρ
j = 1 + ρ + ρ3 = ρ 6= 0,

we obtain L(H) = p and Lk(H) = 5(p − 1)/6 + 1 for 1 ≤ k ≤ (p − 1)/6 − 1 by
Theorem 3.1. Theorem 3.2 yields Lk(H) ≤ 2(p− 1)/3 + 1 for k ≥ (p− 1)/6 + 1 and
thus also for k ≥ (p − 1)/4. Since H has exactly (p − 1)/2 nonzero terms per period
we have Lk(H) = 0 if and only if k ≥ (p− 1)/2.

The polynomial

g1,2(X) =
ρ2

ρ + 1
X(p−1)/6 + X(p−1)/3 − ρ2

ρ + 1
X(p−1)/2

satisfies
g1,2(j) = ζj , j ∈ Fp \ (D1 ∪D2),

and the polynomial

g1,4(X) =
1

ρ + 1

(
ρ + X(p−1)/3

)
satisfies

g1,4(j) = ζj , j ∈ F∗p \ (D1 ∪D4).
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Consequently Lk(H) ≤ (p− 1)/2 + 1 if k ≥ (p− 1)/3 and Lk(H) ≤ (p− 1)/3 + 1 if
k ≥ (p− 1)/3 + 1.
From the table given below we see that the polynomials gi(X), i = 0, . . . , 5, of degree
at most 2(p− 1)/3 with

gi(j) = ζj , j ∈ F∗p \Di,

satisfy gi(0) 6= 0 and deg(gi) = 2(p − 1)/3. (Here we need p > 7.) Consequently we
again can apply the technique of the proof of Theorem 4.3 and obtain L(p−1)/6(H) ≥
25(p − 1)/36 + 1, and Lk(H) ≥ 2(p − 1)/3 + 1 for k < (p − 1)/5 which yields
Lk(H) = 2(p− 1)/3 + 1 for (p− 1)/6 + 1 ≤ k < (p− 1)/5.
The following remains to be shown: (I) Lk(H) ≥ 2(p − 1)/3 + 1 − 2k/3 for (p −
1)/5 ≤ k < (p − 1)/4, (II) Lk(H) ≥ (p − 1)/3 + 1 for k < (p − 1)/3, and (III)
Lk(H) ≥ (p−1)/6+1 for k < (p−1)/2. We will prove (I), (II) and (III) by extending
the technique of the proof of Theorem 4.3.
(I) We consider the 6 different polynomials

gi1,i2(X) ∈ Fp[X], (i1, i2) ∈ {(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (0, 5)},
of degree at most (p− 1)/2, which satisfy

gi1,i2(j) = ζj , j ∈ F∗p \ (Di1 ∪Di2),

and observe that all of these polynomials are of degree (p−1)/2. W.l.o.g. suppose that
gi1,i2(X) also satisfies gi(j̄) = ζj̄ for an element j̄ ∈ Di1 . Then among the considered
polynomials we can choose a polynomial g such that g(j) = ζj for j 6= 0 and for
all j 6∈ Di2 ∪ Di3 , i3 6= i1, i2. Then the polynomial h(X) = gi1,i2(X) − g(X) has
at least (p − 1)/2 + 1 solutions which is not possible. Consequently gi1,i2(j) 6= ζj if
j ∈ Di1 ∪Di2 , i.e. we have gi(j) 6= ζj for at least (p− 1)/3 elements of Fp.

Let T = τ0, τ1, . . . be a sequence obtained from H by at most k < (p−1)/4 changes,
and let t(X) be the polynomial with t(j) = τj . Then t(X) 6= gi1,i2(X) for all consid-
ered pairs (i1, i2), and for at least one pair (i1, i2) we have t(j) = gi1,i2(j) for at least
2(p − 1 − k)/3 elements j of Fp. Consequently h(X) = t(X) − gi1,i2(X) has at least
2(p−1−k)/3 zeros, and hence deg(h) ≥ 2(p−1−k)/3. Note that since 2(p−1−k)/3 >
(p− 1)/2 as long as k < (p− 1)/4 we have deg(h) = deg(t) ≥ 2(p− 1− k)/3 which
completes the proof of (I).
(II) Let b0(X) and b1(X) be the (unique) polynomials of degree (p − 1)/3 for which
we have b0(j) = ζj if j ∈ D0 ∪ D2 ∪ D4 and b1(j) = ζj if j ∈ D1 ∪ D3 ∪ D5,
and let again t(X) be a polynomial with t(j) = ζj for at least p − k terms. Then for
at least one i ∈ {0, 1} we have bi(j) = t(j) for at least (p − 1 − k)/2 elements of
Fq. Suppose that the degree of t(X) is smaller than (p − 1)/3. Then the polynomial
h(X) = bi(X)− t(X) of degree (p− 1)/3 has at least (p− 1 − k)/2 zeros which is a
contradiction as long as k < (p− 1)/3. This completes the proof of (II).
(III) Let d0(X), d1(X), d2(X) be the (unique) polynomials of degree exactly (p− 1)/6
and d0(j) = ζj if j ∈ D0∪D2, d1(j) = ζj if j ∈ D1∪D4 and d2(j) = ζj if j ∈ D3∪D5.
For at least one i ∈ {0, 1, 2}, a polynomial t(X) with t(j) = ζj for at least p− k terms
satisfies t(j) = di(j) for at least (p− 1− k)/3 elements of Fq. Suppose that the degree
of t(X) is smaller than (p − 1)/6. Then the polynomial h(X) = di(X) − t(X) of
degree (p − 1)/6 has at least (p − 1 − k)/3 zeros which is a contradiction as long as
k < (p− 1)/2.
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Appendix to the proof of Theorem 4.5:

g0(X) =
1
6

(
(3 − ρ)− (1 + 2ρ2)X(p−1)/6 − 2ρ2X(p−1)/3

−(1 + ρ)X(p−1)/2 + X2(p−1)/3
)

,

g1(X) =
1
3

(
1 + X(p−1)/3 + X2(p−1)/3

)
,

g2(X) =
1
6ρ

(
(3ρ− 1) + (1 + ρ)X(p−1)/6 + 2X(p−1)/3

−(1 + ρ)X(p−1)/2 + ρ(ρ + 2)X2(p−1)/3
)

,

g3(X) =
1
6

(
(3 + ρ)− (1 + 2ρ2)X(p−1)/6 + 2X(p−1)/3 − (1 + ρ)X(p−1)/2

+(1 + 2ρ)X2(p−1)/3
)

,

g4(X) =
1
3

(
2 − ρ2X(p−1)/3 + ρX2(p−1)/3

)
,

g5(X) =
1
6ρ

(
(3ρ + 1) + (1 + ρ)X(p−1)/6 + 2ρX(p−1)/3

−(1 + ρ)X(p−1)/2 + ρ2X2(p−1)/3
)

,

g0,1(X) =
1

ρ + 1

(
1 +

1
ρ
X(p−1)/6 +

1
ρ
X(p−1)/3 − ρX(p−1)/2

)
,

g2,3(X) =
1

ρ + 1

(
(ρ− 1)(ρ + 2)

2ρ
+ (2 − ρ)X(p−1)/6 −X(p−1)/3+

(ρ− 1)(1 − 2ρ)
2

X(p−1)/2
)

,

g3,4(X) =
1
3

(
3 + (ρ− 2)X(p−1)/6 + (3 − 3ρ)X(p−1)/3

+(2ρ− 1)X(p−1)/2
)

,

g4,5(X) =
1

ρ + 1

(
ρ2

ρ− 1
+ X(p−1)/6 − 1

ρ− 1
X(p−1)/3 −X(p−1)/2

)
,

g0,5(X) =
1
2

(
1 −X(p−1)/2

)
.
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