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Abstract. This paper considers the geometric properties of the Relin-
earisation algorithm and of the XL algorithm used in cryptology for equa-
tion solving. We give a formal description of each algorithm in terms of
projective geometry, making particular use of the Veronese variety. We
establish the fundamental geometrical connection between the two algo-
rithms and show how both algorithms can be viewed as being equivalent
to the problem of finding a matrix of low rank in the linear span of a col-
lection of matrices, a problem sometimes known as the MinRank prob-
lem. Furthermore, we generalise the XL algorithm to a geometrically
invariant algorithm, which we term the GeometricXL algorithm. The
GeometricXL algorithm is a technique which can solve certain equation
systems that are not easily soluble by the XL algorithm or by Groebner
basis methods.
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1 Introduction

The solution of a multivariate polynomial equation system is a classical prob-
lem in algebraic geometry and computer algebra [11, 12]. There has also been
much recent interest in cryptology in techniques for solving multivariate equa-
tion systems over finite fields. Various classical methods, such as Buchberger’s
algorithm [3] and other related algorithms for computing a Gröbner basis [14, 15,
23], have been considered in a cryptographic context. Furthermore, the obvious
method to attempt to solve such equation systems is the Linearisation algo-
rithm [21], which has been considered in cryptology. In the Linearisation algo-
rithm, the equation system is regarded as a linear system. This naive Linearisation
algorithm has been adapted to give other methods, such as the Relinearisation
algorithm [21] and the XL (extended linearisation) algorithm [10], which have
been proposed as being particularly appropriate in cryptology. The geometric
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aspects of the Relinearisation algorithm and the XL algorithm are the main
concern of this paper.

The comments and methods of this paper about solution methods for multi-
variate equation systems always apply in a field of characteristic zero. However,
we are concerned with solution methods for the multivariate equation systems
that arise in cryptology, so in this paper we consider such systems over a finite
field F. We sometimes require that the positive characteristic p of the finite field
F is not too small, and we make this statement more precise in Section 2.2. We
usually consider multivariate polynomial systems f1 = . . . = fm = 0 consisting
of m homogeneous polynomials f1, . . . , fm ∈ F[x0, x1, . . . , xn] of the same degree
d. This condition is not at all restrictive as any polynomial f of degree d in n
variables can be transformed into a homogeneous polynomial in n+ 1 variables
by the homogenising transformation

f(x1, . . . , xn) 7→ xd
0f

(
x1

x0
, . . .

xn

x0

)
.

For simplicity, our discussion is based on multivariate quadratic systems (d = 2),
though our comments are usually more generally applicable.

The general geometrical structures that are required to analyse properties
of the Relinearisation and XL algorithms are discussed in Section 2. In our
geometric analysis, we make particular use of a structure known as the Veronese
Variety, which we discuss in Section 3. The Relinearisation algorithm is based
on the Linearisation algorithm, and we consider the geometric properties of
the Linearisation algorithm in Section 4, before discussing the geometric prop-
erties of the Relinearisation algorithm in Section 5. The related XL algorithm
is then discussed in Section 6, which leads to the definition of a new geometrically
invariant version of the XL algorithm, the GeometricXL algorithm, in Section 7.
The paper finishes with some general comments and observations in Section 8.

2 Vector Spaces and Projective Geometry

In this section, we give a brief description of the general algebraic and geometric
structures that we use in our analysis of the Relinearisation algorithm and
the XL algorithm.

2.1 The Symmetric Power of a Vector Space

In this paper, we make extensive use of the symmetric power of a vector space,
which we now define. This is most naturally done in the language of the tensor
product of vector spaces [7]. For simplicity, we give an approach that uses vector
space bases, but it is just as possible to give an abstract explanation of a tensor
product.

Suppose that {e0, e1, . . . , en−1, en} is the basis for the (n + 1)-dimensional
vector space V over F. We can define a set of (n+ 1)2 formal symbols {ei ⊗ ej}
(0 ≤ i, j ≤ n). For our purposes, we regard the tensor product V

⊗
V as an



(n+1)2-dimensional vector space over F with these basis vectors ei⊗ej , together
with an “inclusion” bilinear mapping ι : V×V → V

⊗
V that relates the 2(n+1)-

dimensional vector space V ×V to the (n+1)2-dimensional vector space V
⊗
V .

This inclusion mapping ι is defined in such a way that bilinear mappings on V ×V
are equivalent to linear mappings on the tensor product V

⊗
V .

A vector in V
⊗
V has (n+ 1)2 components and so is naturally represented

by a square (n+ 1)× (n+ 1) array or matrix, with the (i, j) component of the
vector in V

⊗
V being the (i, j)-entry of the matrix. Thus the tensor product

space V
⊗
V can be thought of as the vector space of (n+1)× (n+1) matrices,

with a basis vector ei ⊗ ej being the matrix with 1 in position (i, j) and 0
everywhere else. In this matrix formulation, the inclusion mapping ι from V ×V
to V

⊗
V is given by (v1, v2) 7→ v1v

T
2 for column vectors v1, v2 ∈ V .

One subspace of the tensor product vector space that is of particular interest
is the subspace of symmetric tensors. The definition of a symmetric tensor in
V
⊗
V is clear. If t = (tij) is a tensor in V

⊗
V , then t is a symmetric tensor

if tij = tji for all i and j. In the matrix formulation of V
⊗
V , t is a symmetric

matrix, so the set of all symmetric tensors is the subspace of symmetric matrices.
Thus the set of all symmetric tensors forms a subspace of V

⊗
V , which is called

the symmetric square or second symmetric power of V [17]. The symmetric
square has dimension 1

2 (n+ 1)(n+ 2), and we denote the symmetric square by
S2(V ). In the matrix formulation of V

⊗
V , a matrix is in the symmetric square

of V if and only if it is a symmetric matrix, so the symmetric square S2(V ) can
be thought of as the vector space of symmetric matrices.

We can of course generalise the above construction to the d-fold tensor prod-
uct V

⊗
. . .
⊗
V . A tensor t = (ti1...id

) is a symmetric tensor if

ti1...id
= tσ(i1)...σ(id)

for all i1, . . . , id, where σ is any permutation of d objects. The set of all symmetric
tensors forms a subspace of V

⊗
. . .
⊗
V , called the dth symmetric power of the

vector space V , and we denote it by Sd(V ). The dimension of vector space Sd(V )
is
(
n+d

d

)
[8], the number of monomials of degree d in n+ 1 variables [17].

2.2 The Symmetric Power of a Dual of a Vector Space

The dual space V ∗ of a finite-dimensional vector space V over F of dimension
n+ 1 is defined to be the vector space of all linear functionals on V , that is any
mapping σa : V → F, where a ∈ V , of the form x 7→ aTx for all x ∈ V . Thus
the dual space V ∗ also has dimension n+ 1 and can be thought of as the vector
space of all homogeneous linear polynomials a0x0 + . . . anxn in (n+ 1) variables
(with the 0-polynomial).

As V ∗ is a vector space, we can also define its dth symmetric power Sd(V ∗).
It can similarly be seen that this dth symmetric power of the dual space, Sd(V ∗),
can be thought of as the vector space of all homogeneous polynomials of degree
d in (n+ 1) variables (with the 0-polynomial).

In this paper, we are sometimes specifically concerned with the case that
d < p, where d is the degree of the homogeneous system and p the positive



characteristic of F. In this case, we can take formal partial derivatives of a
homogeneous polynomial of degree d. If we let Dxi denote taking such a formal
partial derivative with respect to xi, so Dxif = ∂f

∂xi
, then

Dxi
: Sd(V ∗) → Sd−1(V ∗),

that is taking a derivative maps a homogeneous degree d polynomial to a homo-
geneous degree d−1 polynomial. More generally, if x = xi1 . . . xik

is a monomial
of degree k (k ≤ d < p) and Dk

x denotes taking the kthorder partial derivative
with respect to the monomial x, then

Dk
x : Sd(V ∗) → Sd−k(V ∗).

Moreover, Dk
x is a linear transformation between these vector spaces.

We can also use such kthorder partial derivative mapping Dk
x to define sub-

spaces of Sd−k(V ∗). For a homogeneous polynomial f of degree d, so f ∈ Sd(V ∗),
we define

W
(k)
f =

〈
Dk

xf | x is a monomial of degree k
〉
,

a subspace of Sd−k(V ∗). We can represent all the possible kthorder partial deriva-
tives of f as a matrix in which each row is a vector Dk

xf ∈ Sd−k(V ∗). We
call such a matrix a partial derivatives matrix and denote it by C

(k)
f . By con-

struction, the row space of this partial derivatives matrix C
(k)
f is the subspace

W
(k)
f < Sd−k(V ∗) and its rank is the dimension of W (k)

f .

Example 1. Consider the polynomial f ∈ GF(37)[x0, x1, x2] given by

8x3
0+34x2

0x1+20x2
0x2+26x0x

2
1+8x0x1x2+28x0x

2
2+32x3

1+3x2
1x2+34x1x

2
2+25x3

2.

The first and second partial derivatives matrices of f are respectively given by

C
(1)
f =

24 31 3 26 8 28
34 15 8 22 6 34
20 8 19 3 31 1

 and C(2)
f =


11 31 3
31 15 8
3 8 19

15 7 6
8 6 31

19 31 2

 .

�

In order to use partial derivatives in this way, we generally assume that d < p
in this paper when considering partial derivatives. In particular, this means
that this paper is not directly concerned with the case when the finite field F
has characteristic 2 when discussing partial derivatives. The proper technical
approach for considering formal partial derivatives in nonzero characteristic is
to use a divided power ring and a contraction action in place of the multivariate
polynomial ring F[x0, . . . , xn] and the formal derivative [19]. However, these two
approaches are equivalent in the case when d < p, that is the degree of the
equation system is less than the positive field characteristic. In this case, the
“partial derivatives” matrix is equivalent to the catalecticant matrix [19] in the
divided power ring.



2.3 Projective Geometry

As in Section 2.1, we consider the vector space V of dimension n + 1 over the
finite field F. Any invertible linear transformation V → V gives a well-defined
mapping of the set of one-dimensional subspaces to itself, which is essentially just
a change of co-ordinates and is known as a collineation. The projective geometry
P(V ) is the geometry obtained by considering the one-dimensional subspaces of
V under the group of all collineations, so

P(V ) =
{ 〈

(x0, x1, . . . , xn)T
〉 ∣∣ (x0, x1, . . . xn)T ∈ V \ {0}

}
.

This projective geometry P(V ) is said to be of (projective) dimension n and
is generically denoted by PG(n,F) where there is no danger of confusion. The
vector subspaces of V define the projective subspaces of P(V ).

We now define some terms from projective geometry geometry that we use
in this paper. A (projective) line, plane, secundum and hyperplane are projec-
tive subspaces of (projective) dimension 1, 2, (n− 2) and (n− 1) respectively of
PG(V ). The (projective) variety V(f1, . . . , fm) of a set of homogeneous polyno-
mials {f1, . . . , fm} in (n+ 1) variables over F is the subset of PG(V ) for which
f1 = . . . = fm = 0. A primal of degree d is a variety of a single homogeneous
polynomial of degree d, and a quadric is a primal of degree 2, that is a quadric
is a variety defined by a single homogeneous quadratic polynomial.

The tangent space to a variety is defined in the following way. Suppose that
P is a point of a primal V(f) given by equation f = 0 for some homogeneous
polynomial f with the property that the formal partial derivatives

(
∂f
∂xi

∣∣∣
P

)
are

not all zero. The tangent space to V(f) at P is denoted by TP (V(f)) and is the
hyperplane defined by the equation(

∂f
∂x0

∣∣∣
P

)
x0 +

(
∂f
∂x1

∣∣∣
P

)
x1 + . . .+

(
∂f

∂xn

∣∣∣
P

)
xn = 0.

Suppose now that f1, . . . , fm are homogeneous polynomials of the same degree
and that P is a point of a variety V(f1, . . . , fm) =

⋂m
i=1 V(fi). Provided that

each tangent space in the intersection is well-defined, the tangent space to the
variety V(f1, . . . , fm) at P is defined as

TP (V(f1, . . . , fm)) =
m⋂

i=1

TP (V(fi)).

A chord or secant of a variety is a line joining a pair of points of that variety,
and the chordal variety or secant variety of a variety is the variety containing all
chords or secants to that variety. The pencil generated by two primal varieties
V(f1) and V(f2) of the same degree is the set of varieties

{ V (λ1f1 + λ2f2) | λ1, λ2 ∈ F not both 0 } .

The aspects of projective geometry relevant to this paper are discussed in [5, 18,
28].



The projective geometries of main interest in this paper are those formed by
the dth symmetric powers of the vector space V and its dual V ∗, namely

P(Sd(V )) and P
(
Sd(V ∗)

)
,

which have (projective) dimension Nd =
(
n+d

d

)
−1 (Section 2.1 and [17]). In par-

ticular, we denote the (projective) dimension of both P
(
S2(V )

)
and P

(
S2(V ∗)

)
by N , where N = N2 = 1

2 (n + 1)(n + 2) − 1 = 1
2n(n + 3). Furthermore, points

in either of these projective geometries P
(
S2(V )

)
or P

(
S2(V ∗)

)
can be thought

of as nonzero (n + 1) × (n + 1) symmetric matrices and their scalar multiples
(Section 2.1).

3 Veronese Varieties

Our geometric analysis of the Relinearisation algorithm and the XL algorithm
makes extensive use of the geometrical structure known as the Veronese variety.
In its most general form, the Veronese variety is a structure of P

(
Sd(V )

)
, the

projective geometry of the dth symmetric power of a vector space, though the
case of the symmetric square P

(
S2(V )

)
is of most interest to us.

3.1 The Veronese Surface

We first illustrate the Veronese variety by considering the Veronese variety gen-
erated by the projective geometry P(V ), where V is a vector space of dimension
3 (so n = 2) over F. This projective geometry

P(V ) =
{ 〈

(x0, x1, x2)T
〉 ∣∣ (x0, x1, x2)T ∈ V \ {0}

}
is also known as the projective plane PG(2,F). This Veronese variety is a subset
of P(S2(V )), a projective geometry of dimension N = 1

2 (2 · 5) = 5, so

P
(
S2(V )

)
=
{ 〈

(y00, y01, y02, y11, y12, y22)T
〉 ∣∣ (y00, . . . , y22)T ∈ S2(V ) \ {0}

}
.

The Veronese embedding is the mapping ϕV : P(V ) → P
(
S2(V )

)
defined by

(x0, x1, x2)T 7→
(
x2

0, x0x1, x0x2, x
2
1, x1x2, x

2
2

)T
.

The Veronese variety VV is the image of the projective plane P(V ) under this
mapping, so

VV = ϕV (P(V )) ⊂ P
(
S2(V )

)
.

In this particular case of the projective plane, the Veronese variety VV is known
as the Veronese surface. The Veronese embedding ϕV is a bijection, so VV con-
tains q2 + q + 1 points. Thus the Veronese surface VV is known as a variety of
dimension 2 as it is in one-to-one correspondence with a 2-dimensional projec-
tive space. Furthermore, the Veronese surface VV has order 4, as it intersects a
generic (5− 2) = 3-dimensional subspace in 4 points.



We also give another useful method of defining the Veronese surface. In Sec-
tion 2.1, we saw that the points of projective space P

(
S2(V )

)
can be identified

with the elements of the vector space of 3×3 symmetric matrices, that is matrices
of the form y00 y01 y02

y01 y11 y12
y02 y12 y22

 .

In this matrix formulation, the Veronese embedding ϕV : P(V ) → P
(
S2(V )

)
is

given by x0

x1

x2

 7→

x0

x1

x2

(x0 x1 x2

)
=

 x2
0 x0x1 x0x2

x0x1 x2
1 x1x2

x0x2 x1x2 x2
2

 .

It is clear to see that a point P ∈ P
(
S2(V )

)
is in VV = Im(ϕV ) if and only if

the matrix corresponding to P has rank 1, that is if and only if all the 2-minors
(2×2 sub-determinants) vanish. Thus the Veronese surface VV in P

(
S2(V )

)
can

be defined as the set of all points P =
〈
(y00, y01, y02, y11, y12, y22)T

〉
such that

all six 2-minors of the above matrix are zero, namely

0 = y00y11 − y2
01, 0 = y00y22 − y2

02, 0 = y11y22 − y2
12,

0 = y00y12 − y01y02, 0 = y02y11 − y01y12 and 0 = y01y22 − y02y12.

3.2 Veronese Varieties of Degree 2

We can define Veronese varieties of higher dimension by a similar process. The
projective geometry of a vector space V of dimension n+ 1 is defined as

P(V ) =
{ 〈

(x0, x1, . . . , xn)T
〉
| (x0, x1, . . . xn)T ∈ V \ {0}

}
,

a projective geometry of dimension n. The corresponding projective geometry
of the symmetric square of V , S2(V ), is defined by

P
(
S2(V )

)
=
{ 〈

(y00, y01, . . . , yij , . . . ynn)T
〉
| yij ∈ F, i ≥ j

}
.

This is a projective geometry of dimension N = 1
2n(n + 3) (Section 2.3). The

Veronese embedding
ϕV : P(V ) → P

(
S2(V )

)
of the first projective space in the second is defined by

(x0, x1, . . . , xn)T 7→ (x2
0, x0x1, . . . , x0xn, x

2
1, . . . , x1xn, . . . , x

2
n)T .

The Veronese variety VV of dimension n is the image of P(V ) under ϕV , so

VV = ϕV (P(V )) ⊂ P
(
S2(V )

)
.

The intersection of the Veronese variety VV with a generic (N − n)-dimensional
subspace has 2n points, so the Veronese variety is said to have order 2n.



The vector space S2(V ) can also be thought of as the vector space of sym-
metric (n + 1) × (n + 1) matrices of dimension (N + 1) (Section 2.1), that is
matrices of the form 

y00 y01 y02 . . . y0n

y01 y11 y12 . . . y1n

y02 y12 y22 . . . y2n

...
...

...
. . .

...
y0n y1n y2n . . . ynn

 .

We can also similarly define P
(
S2(V )

)
in terms of such symmetric (n+1)× (n+

1) matrices. In this matrix formulation, the Veronese embedding ϕV : P(V ) →
P
(
S2(V )

)
is defined by
x0

x1

...
xn

 7→


x0

x1

...
xn

(x0 x1 . . . xn

)
=


x2

0 x0x1 . . . x0xn

x0x1 x2
1 . . . x1xn

...
...

. . .
...

x0xn x1xn . . . x2
n

 .

As before, it is clear to see that a point P ∈ VV if and only if the matrix
corresponding to P has rank 1. An (n + 1) × (n + 1) symmetric matrix has
1
12n(n+1)2(n+2) independent 2-minors [16], which must all vanish if the matrix
has rank 1. However, each such 2-minor defines a quadric in P

(
S2(V )

)
, and a

point P ∈ P
(
S2(V )

)
is in the Veronese variety VV if and only if P lies in the

intersection of all the these quadrics. Thus the Veronese variety VV ⊂ P
(
S2(V )

)
can be defined as the intersection of 1

12n(n+ 1)2(n+ 2) quadrics in P
(
S2(V )

)
.

Further information about Vereonese varieties can be found in [2, 18, 27, 28].
A Veronese variety is an example of a determinantal variety [17, 19].

3.3 Higher Degree Veronese Varieties

The Veronese embedding ϕV : P(V ) → P
(
S2(V )

)
can be generalised to degrees

higher than 2. The higher degree Veronese embedding

ϕ
(d)
V : P(V ) → P

(
Sd(V )

)
is an embedding of P(V ) in a projective space of (projective) dimension Nd =(
n+d

d

)
− 1 and is defined by

(x0, x1, . . . , xn)T 7→ (xd
0, x

d−1
0 x1, . . . , xn−1x

d−1
n , xd

n)T .

The higher degree Veronese variety V(d)
V of dimension n is the image of P(V )

under ϕ(d)
V , so we have

V(d)
V = ϕ

(d)
V (P(V )) ⊂ P

(
Sd(V )

)
.



3.4 Veronese Varieties of the Dual Space

We now consider the projective geometry P
(
Sd(V ∗)

)
of the symmetric power of

the dual vector space V ∗ (Section 2.3). In particular, if we consider the elements
of P(V ∗) and P

(
S2(V ∗)

)
as (up to scalar multiplication) homogeneous linear

and quadratic polynomials respectively, then the ordinary Veronese embedding

ϕV ∗ : P(V ∗) → P
(
S2(V ∗)

)
,

is defined by the mapping

〈a0x0 + . . .+ anxn〉 7→
〈
(a0x0 + . . .+ anxn)2

〉
,

when the positive characteristic of F is more than 2 (p > 2) [17, 19]. In this case,
the corresponding Veronese variety VV ∗ = ϕV ∗ (P(V ∗)) can be characterised as
all homogeneous quadratic polynomials which are squares (up to scalar multi-
plication), that is

VV ∗ =
{ 〈
L2
〉
| L is a linear polynomial

}
⊂ P

(
S2(V ∗)

)
).

More generally, the higher degree Veronese variety of degree d has a similar
characterisation for d < p [17, 19]. The higher degree Veronese variety V(d)

V ∗ =
ϕ

(d)
V ∗ (P(V ∗)) of P

(
Sd(V ∗)

)
is given by

V(d)
V ∗ =

{ 〈
Ld
〉
| L is a linear polynomial

}
⊂ P

(
Sd(V ∗)

)
.

Thus the Veronese varieties arising from dual spaces in the case that d < p are
sets consisting of any polynomial which is the appropriate power of some linear
polynomial.

4 A Geometric View of the Linearisation Algorithm

The Linearisation algorithm [21] is a very well-known and long-standing gen-
eral technique to solve a multivariate equation system, in which the basic idea
is to regard every monomial as an independent variable. This turns the original
system of equations into a linear system of equations in the new variables. The
new linear system is known as the linearised system and can be easily solved
with basic linear algebra, and any solution of the original system is also a solu-
tion of the new linearised system. However, in situations where the rank of the
new linearised system is significantly less than the number of monomials in the
original system, the new linearised system can produce far too many possible
incorrect solutions to the original system.

From a geometrical perspective, the Linearisation algorithm is fundamen-
tally a technique in which a projective space is embedded in another projective
space of higher dimension, with the intention that a nonlinear variety in the first
space becomes a linear variety in the second larger space. This linear variety can



then be easily analysed using simple linear algebra, thus allowing us to reach
conclusions about the original variety in the smaller space. In particular, if the
original linear variety is the unique solution of a system of quadratic equations,
then it may be possible with the Linearisation algorithm to solve this system
using only linear algebra.

The Relinearisation algorithm and the XL algorithm are developments of
the basic Linearisation algorithm, and both algorithms use the Linearisation
algorithm. Thus any geometric analysis of the Relinearisation algorithm and
the XL algorithm requires a thorough geometric understanding of the Linearisation
algorithm.

4.1 Linearisation of a Quadric

The Veronese embedding ϕV : P(V ) → P
(
S2(V )

)
induces a linearisation map-

ping ϕV from the set of homogeneous quadratic polynomials in F[x0, x1, . . . , xn]
to the set of homogenous linear polynomials in F[y00, yij , . . . , ynn] defined by

n∑
i=0

i∑
j=0

aijxixj 7→
n∑

i=0

i∑
j=0

aijyij .

We then say that f = ϕV (f) =
∑

j≤i aijyij is the linearisation of the homoge-
neous quadratic polynomial f =

∑
j≤i aijxixj . For such a quadratic polynomial

f , the geometric structure defined by

Qf =
{ 〈

(x0, x1, . . . , xn)T
〉 ∣∣ f(x0, x1, . . . , xn) = 0

}
⊂ P(V )

is a quadric (Section 2.3). Geometrically, the linearisation mapping ϕV induces
a mapping from the quadrics in P(V ) to the hyperplanes of P

(
S2(V )

)
, which we

also denote by ϕV . Thus ϕV is also a mapping in which the quadric Qf in P(V )
is mapped to the hyperplane Hf in P

(
S2(V )

)
, so Hf = ϕV (Qf ), where

Hf =
{ 〈

(y00, . . . , yij , . . . ynn)T
〉 ∣∣ f(y00, . . . , yij , . . . ynn) = 0

}
⊂ P

(
S2(V )

)
.

4.2 Linearisation of a Quadratic Equation System

Suppose f ∈ F[x0, x1, . . . , xn] is a homogeneous quadratic equation with the
(projective) point P ∈ P(V ) as a solution of f = 0, so P ∈ Qf . By construction,
the point ϕV (P ) ∈ P

(
S2(V )

)
is a solution of f = ϕV (f) = 0, or equivalently

ϕV (P ) ∈ Hf . Suppose now that P ∈ P(V ) is a solution of a system of m
such independent homogeneous quadratic equations f1 = . . . = fm = 0, then
ϕV (P ) ∈ Hf1

, . . . ,Hfm
. We can define the projective subspace H ⊂ P

(
S2(V )

)
by

H =
m⋂

i=1

Hfi
⊂ P

(
S2(V )

)
,

so we clearly have
ϕV (P ) ∈ H ⊂ P

(
S2(V )

)
.



Thus the solutions in P(V ) of a system of homogeneous quadratic polynomi-
als are mapped to points in the intersection of hyperplanes in P

(
S2(V )

)
. The

intersection of hyperplanes can be efficiently calculated by row reduction of a
matrix, so a linear space containing ϕV (P ) can be easily obtained. If the original
equation system has a unique solution (so m > n) and this space H is a unique
(projective) point, then necessarily H is on the Veronese variety VV . We can
then obtain the unique (projective) solution P to the original equation system
as

P = ϕ−1
V (H) .

This geometric technique for equation solving is a geometric description of
the Linearisation algorithm. However, the Linearisation algorithm can give
“parasitic” solutions, which are elements of H which do not correspond to so-
lutions of the original equation system. In fact, if we define the linearisation
variety L by

L = VV

⋂
H ⊂ P

(
S2(V )

)
,

then the solution set of the original equation system is given by

ϕ−1
V (L) = ϕ−1

V

(
VV

⋂
H
)
⊂ P(V ),

so the solution set is given by the intersection of the Veronese variety with the
intersection of hyperplanes. Parasitic solutions can arise when this hyperplane
intersection is not contained in the Veronese variety. However, the Veronese
variety contains no non-trivial linear spaces, so the hyperplane intersection H is
only contained in the Veronese variety VV if it is a single point. The solutions
of the quadratic system f1 = . . . = fm = 0 are therefore given by the system of
linear equations f1 = . . . = fm = 0 and the quadratic equations that define the
Veronese variety VV . When the original equation system has a unique solution
given by the point P ∈ P(V ), then the Linearisation algorithm succeeds when
ϕV (P ) ∈ L = H, that is the Veronese quadratic equations are not needed to
obtain a unique solution.

Example 2. Consider the following quadratic equation system

0 = 1 + x1 + x2 − x1x2

0 = 2 + x2 + x2
1 − x2

2

0 = x1 + x2 − 2x2
1 + 2x1x2 − x2

2

0 = 3 + x1 + 9x2 + 8x2
1 + 18x1x2 + 22x2

2

0 = 1 + 4x1 + 3x2 + 2x2
1 − 3x1x2 − 5x2

2

with five equations in two variables over GF(37). Homogenising these equations
by the addition of a variable x0 gives

0 = f1 = x2
0 + x0x1 + x0x2 − x1x2

0 = f2 = 2x2
0 + x0x2 + x2

1 − x2
2

0 = f3 = x0x1 + x0x2 − 2x2
1 + 2x1x2 − x2

2

0 = f4 = 3x2
0 + x0x1 + 9x0x2 + 8x2

1 + 18x1x2 + 22x2
2

0 = f5 = x2
0 + 4x0x1 + 3x0x2 + 2x2

1 − 3x1x2 − 5x2
2.



We thus take V to be the vector space of dimension 3 over GF(37), so n = 2 and
N = 1

2 (2 ·5) = 5. The above equation system now defines a variety in P(V ). The
Veronese embedding ϕV : P(V ) → P

(
S2(V )

)
induces a linearisation mapping

ϕV , which we can use to obtain the equation system

0 = f1 = y00 + y01 + y02 − y12
0 = f2 = 2y00 + y02 + y11 − y22
0 = f3 = y01 + y02 − 2y11 + 2y12 − y22
0 = f4 = 3y00 + y01 + 9x02 + 8y11 + 18y12 + 22y22
0 = f5 = y00 + 4y01 + 3y02 + 2y11 − 3y12 − 5y22.

Each of these linear equations defines a hyperplane Hfi
, so we have

H =
5⋂

i=1

Hfi
=
〈
(1, 2, 3, 4, 6, 9)T

〉
⊂ P

(
S2(V )

)
.

Applying the inverse Veronese embedding gives

ϕ−1
V (H) =

〈
(1, 2, 3)T

〉
⊂ P(V ).

Thus we have (x0, x1, x2) = λ(1, 2, 3), which is the only solution as H contains a
single (projective) point. To obtain the solution to the original nonhomogeneous
equation system, we set x0 = 1, that is we take λ = 1 to obtain (x1, x2) = (2, 3).
�

In general, a system of m homogeneous quadratic equations in P(V ) leads to
m hyperplanes in P

(
S2(V )

)
. These hyperplanes intersect in a space of dimension

N −m. Thus linearisation transforms the original problem in n dimensions into
a problem in 1

2n(n+ 3)−m dimensions.

5 A Geometric View of the Relinearisation Algorithm

The Relinearisation algorithm [21] is a technique that can sometimes be used
when the Linearisation algorithm fails, that is the generated solution contains
parasitic solutions. The technique of linearisation gives a subspace of a projective
space that contains all solutions. The Relinearisation algorithm applies a
further linearisation mapping to this subspace with the aim of recovering this
solution.

5.1 Relinearisation of a Linearisation Variety

When the Linearisation algorithm fails, we know that the Veronese embedding
ϕV (P ) of a solution P ∈ P(V ) of the original homogeneous equation system lies
in the linearisation variety L = VV

⋂
H. However, the linearisation variety is the

intersection of quadrics, so we have

L =
s⋂

i=1

Qf̂i
,



where i = 1, . . . , s with s ≤ 1
12n(n+1)2(n+2) and f̂i is a homogeneous quadratic

polynomial in F[y00, . . . , yij , . . . , ynn].
The Relinearisation algorithm is essentially the algorithm obtained by

applying a further linearisation mapping to the linearisation variety L. The
Veronese embedding

ϕS2(V ) : P
(
S2(V )

)
→ P

(
S2
(
S2(V )

))
is a mapping of a projective space of dimension N = 1

2n(n + 3) to a projective
space of dimension at most 1

2N(N+3). The corresponding linearisation mapping
ϕS2(V ) maps quadrics in P

(
S2(V )

)
to hyperplanes in P

(
S2
(
S2(V )

))
. This map-

ping ϕS2(V ) is the relinearisation mapping, and applying it to the linearisation
variety gives

ϕS2(V ) (L) =
s⋂

i=1

ϕV

(
Qf̂i

)
=

s⋂
i=1

H
f̂i

.

Suppose a point P ∈ P(V ) is a solution of the original homogeneous quadratic
equation f1 = . . . = fm = 0 in F[x0, x1, . . . , xn], then (by construction) we have

ϕS2(V ) (ϕV (P )) ∈ ϕS2(V ) (L) .

Thus a mapping of a solution lies in the intersection of hyperplanes in a projective
space, which can be easily calculated with basic algebra. If the original equation
system has a unique solution and

⋂s
i=1Hf̂i

is a unique (projective) point, then

P = ϕ−1
V

(
ϕ−1

S2(V )

(
ϕS2(V ) (L)

))
.

Thus the Relinearisation algorithm offers a technique for finding the solution
to a system of quadratic equations. Furthermore, even if the Relinearisation
algorithm fails to find the solution, the variety ϕS2(V ) (L) could itself be relin-
earised to find a solution and so on.

5.2 An Efficient Relinearisation Algorithm

The Relinearisation algorithm is actually performed in a slightly different
manner to that described above for reasons of efficiency [21]. The projective
subspace

H =
m⋂

i=1

Hfi
⊂ P

(
S2(V )

)
given by the intersection of the hyperplanes defined by the polynomials f1, . . . , fm

has (projective) dimension N − m. Thus H is the projectivisation of a vector
space over F of dimension N + 1 −m. If we suppose that U is a generic vector
space over F of dimension N +1−m, then we can define a bijective substitution
mapping

ψU : P(U) → H ⊂ P
(
S2(V )

)
.



As ψU is bijective, there exists an inverse mapping ψ−1
U : H → P(U), so we

can then define an equivalent linearisation variety L′ = ψ−1
U (L) ⊂ P(U). This

equivalent linearisation variety L′ is the intersection of s quadrics, where s ≤
1
12n(n+ 1)2(n+ 2).

The Veronese embedding for P(U) is ϕU : P(U) → P(S2(U)), where the pro-
jective geometry P(S2(U)) has dimension 1

2 (N −m)(N −m+3). Relinearisation
of the equivalent linearisation variety L′ is achieved by applying the correspond-
ing linearisation mapping ϕU . The resulting variety ϕU (L′) is the intersection
of hyperplanes, so is easily calculated. If P is a solution of the original equation
system, then

ϕU

(
ψ−1

U (ϕV (P ))
)
∈ ϕU (L′) .

Thus if the original equation system has a unique solution and ϕU (L′) is a
unique (projective) point P , then the solution of the original equation system is
given by

P = ϕV
−1
(
ψU

(
ϕU

−1 (ϕU (L′))
))
.

This is clearly a more efficient way of implementing the Relinearisation algo-
rithm as it is performing calculations in the projective geometry P(S2(U)), which
has smaller dimension than the original projective geometry P

(
S2
(
S2(V )

))
.

Example 3. Consider the following quadratic equation system

0 = 1 + x1 + x2 − x1x2

0 = 2 + x2 + x2
1 − x2

2

0 = x1 + x2 − 2x2
1 + 2x1x2 − x2

2

with three equations in two variables over GF(37). This is the equation system
given by the first three equations of Example 2 and has the unique solution
(x1, x2) = (2, 3). There are clearly not enough equations in this equation system
to obtain this solution by the Linearisation algorithm. As before, we can
homogenise these equations by the addition of a variable x0 to give

0 = f1 = x2
0 + x0x1 + x0x2 − x1x2

0 = f2 = 2x2
0 + x0x2 + x2

1 − x2
2

0 = f3 = x0x1 + x0x2 − 2x2
1 + 2x1x2 − x2

2,

which also defines a variety in P(V ), where V is a vector space of dimension 3, so
n = 2. We can now apply the linearisation mapping ϕV induced by the Veronese
embedding ϕV : P(V ) → P

(
S2(V )

)
to give

0 = f1 = y00 + y01 + y02 − y12
0 = f2 = 2y00 + y02 + y11 − y22
0 = f3 = y01 + y02 − 2y11 + 2y12 − y22.

The projective subspace H defined by the intersection of the subspaces Hfi
of

S2(V ) defined by these equations is given by

H =
〈
(1, 0, 0, 0, 1, 2)T , (0, 1, 0, 1, 1, 1)T , (0, 0, 1, 13, 1, 14)T

〉
⊂ P

(
S2(V )

)
.



If we let U be a 3-dimensional vector space over GF(37), then we can define
a substitution mapping ψU : P(U) → H based on a 6 × 3 matrix A with the
property that if u is a nonzero vector in U , then 〈z〉 = ψU (〈u〉) ∈ H ⊂ P(V ),
where z = Au ∈ S2(V ). The columns of A define H, so A is given by

A =

1 0 0 0 1 2
0 1 0 1 1 1
0 0 1 13 1 14

T

.

The Veronese surface VV ⊂ P
(
S2(V )

)
is defined as the intersection of the six

quadrics

0 = y00y11 − y2
01, 0 = y00y22 − y2

02, 0 = y11y22 − y2
12,

0 = y00y12 − y01y02, 0 = y02y11 − y01y12 and 0 = y01y22 − y02y12.

There exist six symmetric 6×6 matrices Mi (1 ≤ i ≤ 6) such that the above
quadrics defining the Veronese variety VV ⊂ P

(
S2(V )

)
are given by 0 = yTMiy.

The linearisation variety L = VV

⋂
U is contained in P

(
S2(V )

)
. We use the

equivalent linearisation variety L′ = ψ−1
U (L) ⊂ P(U) in a space of smaller di-

mension. Applying the substitution mapping y = Az we obtain quadrics defining
the equivalent linearisation variety L′ ⊂ P(U) given by 0 = (Az)TMi(Az) =
zT (ATMiA)z. Thus the equivalent linearisation variety L′ is defined by the in-
tersection of the quadrics

0 = u0u1 + 13u0u2 + 36u2
1

0 = 2u2
0 + u0u1 + 14u0u2 + 36u2

2

0 = 36u2
0 + 24u0u2 + 25u1u2 + 33u2

2

0 = u2
0 + u0u1 + u0u2 + 36u1u2

0 = 36u0u1 + 36u2
1 + 13u2

2

0 = 2u0u1 + 36u0u2 + u2
1 + 13u1u2 + 36u2

2.

We can now relinearise L′ ⊂ P(U) by applying the linearisation mapping ϕU

induced by the Veronese embedding ϕU : P(U) → P
(
S2(U)

)
to obtain ϕU (L′) as

the intersection of the hyperplanes defined by
0 1 13 36 0 0
2 1 14 0 0 36

36 0 24 0 25 33
1 1 1 0 36 0
0 36 0 36 0 13
0 2 36 1 13 36




w00

w01

w02

w11

w12

w22

 =


0
0
0
0
0
0

 .

Reducing this linear system to echelon form, we obtain
1 0 0 0 0 4
0 1 0 0 0 8
0 0 1 0 0 12
0 0 0 1 0 16
0 0 0 0 1 24
0 0 0 0 0 0




w00

w01

w02

w11

w12

w22

 =


0
0
0
0
0
0

 .



We can thus solve this linear system to obtain

ϕU (L′) =
〈
(4, 8, 12, 16, 24,−1)T

〉
=
〈
(1, 2, 3, 4, 6, 9)T

〉
∈ P

(
S2(U)

)
.

Having obtained this solution, we can now back-track through the various map-
pings to obtain the unique solution to the original equation system. Applying
the first inverse Veronese embedding, we have

ϕ−1
U (ϕU (L′)) =

〈
(1, 2, 3)T

〉
∈ P(U).

Applying the substitution mapping ψU by calculating A(1, 2, 3)T gives us

ψU

(
ϕ−1

U (ϕU (L′))
)

=
〈
(1, 2, 3, 4, 6, 9)T

〉
∈ P

(
S2(V )

)
.

We can now apply the last inverse Veronese embedding to give the solution as

ϕ−1
V

(
ψU

(
ϕ−1

U (ϕU (L′))
))

=
〈
(1, 2, 3)T

〉
∈ P(V ).

Thus we have (x0, x1, x2) = λ(1, 2, 3), so taking x0 = 1 gives (x1, x2) = (2, 3) as
the unique solution of the original nonhomogeneous equation system. �

5.3 A Matrix Rank Formulation of the Relinearisation Algorithm

The quadratic equation system defines a collection of quadrics in P(V ). After
linearisation, we obtain a subspace H of P

(
S2(V )

)
of (projective) dimension

N−m. However, the projective geometry P
(
S2(V )

)
can be defined by the vector

space of symmetric (n + 1) × (n + 1) matrices (Section 2.1). Thus, in terms of
the vector space of symmetric matrices, the subspace H is generated by N −m
symmetric matrices H1, . . . ,HN−m, that is

H = 〈H1, . . . ,HN−m〉 ,

so any point in H is a linear combination of the above matrices.
The original quadratic equation system is analysed by considering H

⋂
VV .

However, in terms of the vector space of symmetric matrices, the points of the
Veronese surface VV are given by the matrices of rank 1 (Section 3.2). Thus
H
⋂
VV is given by the matrices of rank 1 in H. We can thus potentially solve

the equation system by finding λ0, . . . , λN−m−1 ∈ F such that

Rank

(
N−m−1∑

l=1

λlMl

)
= 1.

The 2-minors or 2×2 sub-determinants of a matrix of rank 1 are all 0.
Thus evaluating the 2-minors of

∑N−m−1
l=1 λlMl gives a system of multivariate

quadratic equations in the variables λ1, . . . , λN−m−1. This equation system de-
fines the linearisation variety L′ used in the efficient Relinearisation technique
of Section 5.2.



Example 4. Consider the quadratic equation system of Example 3, namely

0 = 1 + x1 + x2 − x1x2

0 = 2 + x2 + x2
1 − x2

2

0 = x1 + x2 − 2x2
1 + 2x1x2 − x2

2.

We saw that after homogenisation and linearisation (Example 3) we obtain the
subspace H of P

(
S2(V )

)
given by

H =
〈
(1, 0, 0, 0, 1, 2)T , (0, 1, 0, 1, 1, 1)T , (0, 0, 1, 13, 1, 14)T

〉
.

Expressing P
(
S2(V )

)
in terms of symmetric matrices, we obtainH = 〈H1,H2,H3〉,

where

H1 =

1 0 0
0 0 1
0 1 2

 , H2 =

0 1 0
1 1 1
0 1 1

 and H3 =

0 0 1
0 13 1
1 1 14

 .

An arbitrary linear combination of these generating matrices gives

λ1H1 + λ2H2 + λ3H3 =

λ1 λ2 λ3

λ2 λ2 + 13λ3 λ1 + λ2 + λ3

λ3 λ1 + λ2 + λ3 2λ1 + λ2 + 14λ3

 .

Evaluating the 2-minors of λ1H1+λ2H2+λ3H3 gives the system of nine quadratic
equations described by the matrix equation

0 1 13 36 0 0
1 1 1 0 36 0
0 1 0 1 0 24

36 36 36 0 1 0
35 36 23 0 0 1
0 35 1 36 24 1
0 1 0 1 0 24
0 2 36 1 13 36

36 0 24 0 25 33




λ2

1

λ1λ2

λ1λ3

λ2
2

λ2λ3

λ2
3

 =



0
0
0
0
0
0
0
0
0


.

We reduce this linear system of rank 5 to obtain
1 0 0 0 0 4
0 1 0 0 0 8
0 0 1 0 0 12
0 0 0 1 0 16
0 0 0 0 1 24




λ2

1

λ1λ2

λ1λ3

λ2
2

λ2λ3

λ2
3

 =


0
0
0
0
0

 .

We thus have λ1 = −12λ3 and λ2 = −24λ3, so λ3 = 3λ1 and λ2 = 2λ1, so we
obtain 1 0 0

0 0 1
0 1 2

+ 2

0 1 0
1 1 1
0 1 1

+ 3

0 0 1
0 13 1
1 1 14

 =

1 2 3
2 4 6
3 6 9

 .



The matrix on the right has rank 1 and corresponds to the projective point
〈(1, 2, 3)〉, which is the solution of Example 3. We note that the final linear
system of both this example and that of Example 3 defining the equivalent
linearisation variety L′ are identical. �

5.4 Failure of the Relinearisation Algorithm

Example 3 illustrates one of the complications that can arise during relineari-
sation. The six quadratic equations defining the Veronese surface in P

(
S2(V )

)
(projective dimension 5) are linearly independent. However, there is no guar-
antee that their respective restrictions to a given subspace are independent. In
Example 3, the restriction of the six quadratic equations to the projective sub-
space H (projective dimension 2) gives a system of rank 5. The analysis of the
Relinearisation algorithm given in [21] does not take this issue into account, so
the estimates given there for its successful application can be overly optimistic.
Example 5 illustrates this point.

Example 5. We consider eight homogeneous polynomials in four variables over
GF(37) given by



17 18 18 12 5 21 11 22 4 32
15 32 17 23 4 33 18 13 26 8
10 32 20 20 8 27 32 19 20 10
11 30 23 31 14 5 2 35 14 14
9 11 3 17 24 10 16 3 27 23

23 25 11 4 13 8 8 32 31 18
13 17 5 29 19 18 23 34 17 16
8 28 25 19 35 8 36 21 1 1





x2
0

x0x1

x0x2

x0x3

x2
1

x1x2

x1x3

x2
2

x2x3

x2
3


.

If we let S denote the above 8×10 matrix over GF(37) and x the vector of
quadratic monomials, then the equation system Sx = 0 has the unique (projec-
tive) solution 〈(1, 6, 14, 5)T 〉. If this equation system had a ninth independent
equation, then we could solve this system by the Linearisation algorithm.
Thus the equation system Sx = 0 is almost fully linearised.

We consider the above equation system in terms of the vector space V of
dimension 4 over GF(37), so n = 3. This equation system gives eight quadrics in
P(V ). The Veronese embedding ϕV : P(V ) → P

(
S2(V )

)
embeds this projective

geometry of dimension 3 in one of dimension N = 1
2 (3 · 6) = 9. This Veronese

embedding ϕV induces a linearisation mapping ϕV . Applying ϕV to this equation
system gives the linear system Sy = 0, where (y00, . . . , yij , . . . , y33)T are the
variables used to define P

(
S2(V )

)
. Solutions to this linear system are contained

in the intersection H ⊂ P
(
S2(V )

)
of the 8 hyperplanes, a projective subspace H

with (projective) dimension 1 and defined by

H =
〈
(1, 0, 13, 21, 1, 31, 22, 20, 30, 0)T , (0, 1, 31, 22, 12, 15, 26, 17, 19, 35)T

〉
.



If we let U denote a generic vector space of dimension 2 over GF(37), then P(U)
is a projective geometry of dimension 1 (a projective line). We can now define a
bijective substitution mapping ψU : P(U) → H based on the 10×2 matrix

A =
(

1 0 13 21 1 31 22 20 30 0
0 1 31 22 12 15 26 17 19 35

)T

.

The Veronese variety VV ⊂ P
(
S2(V )

)
can be defined as the intersection of

20 quadrics. Thus there exist twenty 10×10 matrices Mi such that yTMiy = 0.
The linearisation variety is given by L = VV

⋂
H ⊂ P

(
S2(V )

)
. The substitu-

tion mapping ψU allows us to define an equivalent linearisation variety L′ =
ψ−1

U (L) ⊂ P(U) in a space of dimension 1. Applying the substitution mapping
gives twenty quadrics zT (ATMiA)z (i = 1, . . . , 20) defining the equivalent lin-
earisation variety L′. Thus the equivalent linearisation variety L′ is given by
Lu = 0, where u =

(
u2

0, u0u1, u
2
1

)T and LT is the 3×20 matrix

 1 31 22 36 16 3 24 16 4 15 19 5 7 36 21 14 34 9 6 25
12 2 5 25 7 36 29 7 11 32 6 23 10 25 30 20 1 34 35 4
36 6 15 1 21 34 13 21 33 22 18 32 30 1 16 23 3 28 31 12

 .

The Relinearisation algorithm requires us to linearise the above linearisa-
tion variety L′. The Veronese embedding ϕU : P(U) → P

(
S2(U)

)
embeds P(U)

in a projective space of dimension 1
2 (1 · 4) = 2. When we apply this embedding

to the above variety, we obtain the variety

X =
{ 〈

(w00, w01, w11)T
〉
∈ P

(
S2(U)

)∣∣ L(w00, w01, w11)T = 0
}
⊂ P

(
S2(U)

)
.

For the Relinearisation algorithm to succeed, we require that X ⊂ P
(
S2(U)

)
is a unique (projective) point. This condition requires that the matrix L has rank
2. However, the matrix L has rank 1 as every row is a multiple of (1, 12, 36). Thus
the direct Relinearisation algorithm fails to find the solution of this equation
system.

This system could be easily solved from information given by the above
process. For example, we know that u2

0 + 12u0u1 + 36u2
1 = (u0 + 6u1)2 = 0.

However, such a technique would not work if we were solving a system with
seven of the original eight equations. In any case, the main point of this example
is to illustrate that even in an almost fully linearised equation system, the direct
Relinearisation algorithm can fail. �

5.5 Tangent Spaces

An interesting characterisation for when Relinearisation succeeds or fails can
be obtained by considering the tangent spaces to the Veronese variety. Suppose
we have a system of m quadrics intersecting in a unique (projective) point P
in P(V ). The linearisation variety L is the intersection of the Veronese variety
VV with the subspace H defined by linearising the original quadratic system



(Section 4.2). This linearisation variety L can be defined as the intersection of s
quadrics, so we have

L = VV

⋂
H =

s⋂
i=1

Qf̂i
⊂ P

(
S2(V )

)
.

We first suppose that the Relinearisation algorithm succeeds for this sys-
tem. In this case, we know that

ϕV (P ) = L =
s⋂

i=1

Qf̂i
,

so we have a full-rank system of quadrics whose intersection is ϕV (P ). The
(projective) (N−m−1)-dimensional tangent space to the quadric Qf̂i

at ϕV (P )
is denoted by TϕV (P )(Qf̂i

) (Section 2.3). The intersection of all these tangent
spaces is the unique point ϕV (P ), that is

ϕV (P ) =
s⋂

i=1

TϕV (P )

(
Qf̂i

)
.

Conversely, if the intersection of these tangent spaces is not a unique point, then
the Relinearisation algorithm fails. We now consider the linear subspace

H
⋂

TϕV (P ) (VV ) ⊂ P
(
S2(V )

)
,

which has the same dimension as
s⋂

i=1

TϕV (P )

(
Qf̂i

)
.

This gives us a criterion for the success or failure of the Relinearisation al-
gorithm to provide a unique solution without actually having to relinearise. If
the intersection of the linear space H, given directly by linearising the quadratic
system, and the tangent space to the Veronese variety at ϕV (P ) is not a single
point, then the Relinearisation algorithm fails.

Example 6. We consider the equation system of Example 3 with unique solution
P = 〈(1, 2, 3)T 〉. In this case, the vector space V has dimension 3 over GF(37)
(so n = 2). The space H is the (projective) 2-dimensional subspace of P

(
S2(V )

)
given by the kernel of the matrix1 1 1 0 −1 0

2 0 1 1 0 −1
0 1 1 −2 2 −1

 .

The tangent space to the Veronese surface VV at ϕV (P ) is a (projective) 2-
dimensional subspace of P

(
S2(V )

)
given by the kernel of the matrix1 0 24 0 0 33

0 1 24 0 12 29
0 0 0 1 11 21

 .



We can construct a 6×6 matrix by combining these two matrices. This larger
matrix has rank 5, so the intersection of the tangent space to the Veronese surface
at ϕV (P ) with H is the unique (projective) point P . Thus the Relinearisation
algorithm succeeds for Example 3.

By contrast, we can consider the equation system of Example 5 with unique
(projective) solution P = 〈(1, 6, 14, 5)T 〉. In this case, the vector space V has
dimension 4 over GF(37) (so n = 3). The space H is a (projective) 1-dimensional
subspace of the 9-dimensional projective geometry P

(
S2(V )

)
and is given by the

kernel of a 8×10 matrix. The tangent space to the Veronese variety at ϕV (P )
is a 3-dimensional subspace of P

(
S2(V )

)
given by the kernel of a 6×10 matrix.

Combining these two matrices gives an 14×10 matrix that only has rank 8, so
the intersection of the tangent space to the Veronese surface at ϕV (P ) with H is
not a unique (projective) point. Thus the Relinearisation algorithm fails for
Example 5. �

6 A Geometric View of the XL Algorithm

The XL or extended linearisation algorithm was proposed to be a “simplified
and improved version of relinearisation” [10]. We now consider some geometric
properties of the XL algorithm. The original description of the XL algorithm of
[10] is given for a non-homogeneous equation system. We thus term the original
XL algorithm description the AffineXL algorithm. There is a natural generali-
sation of the AffineXL algorithm to a homogeneous equation system, which we
term the ProjectiveXL algorithm. The ProjectiveXL algorithm is thus more
mathematically natural, and we also consider its properties.

6.1 The AffineXL Algorithm

Without loss of generality, we consider the application of the AffineXL algorithm
to a quadratic equation system. The basic idea of the AffineXL algorithm is
to multiply the polynomials of this original equation system by monomials of
degree up to D − 2 to obtain many polynomials of degree at most D. We then
regard this degree D polynomial system as a linear system in the monomials
of degree at most D. It is then hoped that the linear span of the generated
polynomials in this larger system contains a univariate polynomial in one of
the variables xi. An ordering of the monomials of degree at most D is chosen
such that such a univariate polynomial in xi can be found simply by reducing
the matrix of this system to echelon form. The generated univariate polynomial
can be factored using Berlekamp’s algorithm [25] or some other method to give
values for one of the variables xi. We could then substitute these values for xi to
obtain a smaller quadratic system. This smaller system could then potentially
be analysed using the AffineXL algorithm or some other technique to enable
a full solution to be found. Clearly, the smaller the value of D, the degree of
the generated polynomials for which this is possible, the faster the AffineXL



– Input. m homogeneous independent quadratic equations in n + 1 variables.

1. Generate the m
(

D−2+n
D−2

)
possible polynomials of degree at most D that are formed

by multiplying each of the polynomials of the original system by monomials of
degree at most D − 2.

2. Choose an ordering of the monomials of degree at most D. Linearise this new
system of polynomials of degree at most D and perform a Gaussian reduction.
The ordering of monomials should be chosen in such a way that this process yields
a univariate polynomial in just one of the variables.

3. Note that it is not always possible to find such an ordering, and in this case the
AffineXL algorithm fails for degree D.

4. This univariate polynomial can be factored using Berlekamp’s algorithm [25]. This
potentially allows the elimination of a variable from the original system of equa-
tions.

5. This process is repeated on the new smaller system and so on, potentially elimi-
nating further variables.

6. Substitution is used to find values for the eliminated variables.

– Output. Solution set for the original equation system (if method is successful).

Fig. 1. Basic Description of the AffineXL Algorithm for a Quadratic System

algorithm works. We give a fuller description of the basic form of the AffineXL
algorithm in Figure 1 and a simple example in Example 7.

We note that such an ordering of monomials does not have to be a monomial
ordering, in the sense of compatibility with multiplication, and which is required
for Gröbner basis calculations [11]. The only requirement for the ordering of
monomials in the AffineXL algorithm is that the ordering naturally partitions
the set of monomials into two classes, with one class containing all the monomials
in xi alone and the complementary class not containing any monomials in xi.
However, we do note that the lexicographic monomial ordering [11] naturally
gives this partition, and it has been noted that the AffineXL algorithm works in
a similar manner to the F4 algorithm [14] for the calculation of a Gröbner basis
using the lexicographic ordering [1].

Example 7. We consider the homogenised version of the equation system defined
by two quadratic polynomials f1 and f2 in two variables over GF(37) given by

f1 = x2
1 + 5x1x2 + 15 and f2 = x2

2 + 9x1x2 + 23.

We wish to find solutions to f1 = f2 = 0. The application of the XL algorithm to
such a quadratic system is discussed in [6, 10]. In order to apply the AffineXL
algorithm with D = 2, that is using the original equation system with no mono-
mial multiplication, we would need to find a linear combination λ1f1 + λ2f2
which is a univariate polynomial in either solely in x1 or solely in x2.



The equation system f1 = f2 = 0 can be represented as the kernel of the
matrix (

0 5 0 1 0 15
1 9 0 0 0 23

)
with respect to the column ordering (x2

2, x1x2, x2, x
2
1, x1, 1). Reducing this matrix

to echelon form gives (
1 0 0 13 0 23
0 1 0 25 0 5

)
.

Thus there is no polynomial in the linear span of f1 and f2 which is a univariate
polynomial in x1 alone. Similarly, there is no polynomial in the linear span of f1
and f2 which is a univariate polynomial in x2 alone.

We next consider the linear span of the cubic polynomials xifj , that is the
D = 3 case. However, this linear span does not contain any polynomials in x1

alone or in x2 alone. We therefore consider the D = 4 case and calculate all
quartic polynomials xixi′fj , and find that the linear span of these polynomials
contains

x4
1 + 10x2

1 + 26 = (x1 − 1)(x1 − 10)(x1 − 27)(x1 − 36).

We would thus obtain the four solutions to f1 = f2 = 0 in GF(37), namely

(x1, x2) = (1, 19), (10, 31), (27, 6), or (36, 18).

Thus the application of the AffineXL algorithm requires that we multiply the
two original polynomials by all monomials of degree 2 for the AffineXL algorithm
to succeed, that is we take D = 4. �

6.2 The ProjectiveXL Algorithm

The AffineXL algorithm is designed for non-homogeneous polynomial equa-
tion systems (despite the comment to the contrary in [10]). However, any non-
homogeneous equation system in variables x1, . . . xn can be transformed into
a homogeneous system in the variables x0, x1, . . . xn by the inclusion of a ho-
mogenising variable x0. We thus give a description of an XL -type algorithm as it
applies to a homogeneous multivariate quadratic system defined by f1, . . . , fm ∈
F[x0, x1, . . . xn], and we term this version of the XL algorithm for a homogeneous
equation system the ProjectiveXL algorithm.

Without loss of generality, we consider the application of the ProjectiveXL
algorithm to a homogeneous quadratic equation system. In a similar manner to
the AffineXL algorithm, we multiply the polynomials of this original equation
system by monomials of degree D − 2 to obtain many polynomials of degree
D. We then regard this homogeneous degree D polynomial system as a linear
system in the monomials of degree D. The aim of the ProjectiveXL algorithm
is that the linear span of the generated polynomials in this larger system con-
tains a bivariate polynomial in two of the variables xi and xj . An ordering of
the degree D monomials is then chosen such that such a bivariate polynomial



can be easily found by a simple matrix reduction. Such a homogeneous bivariate
polynomial f(xi, xj) of degree D could then potentially be factored directly. One
common technique when xj 6= 0 is to apply a univariate factorisation technique
to x−D

j f(xi, xj), which can be regarded as a univariate polynomial in xi

xj
. A fac-

torisation of f(xi, xj) would allow us to substitute values of xi by some multiple
of xj , thus obtaining a smaller equation system.

In a similar manner to the AffineXL algorithm (Section 6.1), the ordering
used by the ProjectiveXL algorithm does not have to be a monomial ordering,
but merely one that partitions the monomials into a class containing mono-
mials in xi and xj alone and the complementary class. Furthermore, we have
already noted the connection between the AffineXL algorithm and Gröbner
basis algorithms under the lexicographic ordering (Section 6.1). Similarly, the
ProjectiveXL algorithm can be viewed as a variant of the R1 and R2 algorithms
of [23], as these algorithms are Gröbner basis techniques based on monomial
orderings in a homogenised equation system.

This ProjectiveXL algorithm thus retains all the features of the AffineXL
algorithm, yet the homogeneous description can provide greater flexibility and
fits more naturally into a geometric setting. We give a fuller description of the
ProjectiveXL algorithm in Figure 2. The original or AffineXL algorithm can be
thought of as the special case of the special case of the ProjectiveXL algorithm
in which one of the two variables xi and xj is restricted to being the homogenising
variable x0. Consequently, the bivariate equation produced by the algorithm in
this case can be regarded as a univariate equation in xi

x0
. The greater power

offered by the ProjectiveXL algorithm is illustrated by Example 8.

Example 8. We consider the homogenised version of the equation system of Ex-
ample 7. We thus consider the homogeneous quadratic polynomials f1 and f2 in
three variables over GF(37) given by

f1 = 15x2
0 + x2

1 + 5x1x2 and f2 = 23x2
0 + x2

2 + 9x1x2.

We wish to the ProjectiveXL algorithm with D = 2, that is using the original
equation system with no monomial multiplication. We consider the monomial or-
dering (x2

0, x0x1, x0x2, x
2
1, x1x2, x

2
2), and the echelon form of the defining matrix

of Example 7 is given by (
1 0 0 0 2 29
0 0 0 1 12 9

)
with respect to this ordering. Thus the linear span of f1 and f2 contains

23f1 − 15f2 = x2
1 + 12x1x2 + 9x2

2 = (x1 − 2x2)(x1 − 23x2),

so we obtain x1 = 2x2 or x1 = 23x2. Substituting these two values into f1 gives

15x2
0 + 14x2

2 = 15(x0 − 2x2)(x0 − 35x2)
and 15x2

0 + 15x2
2 = 15(x0 − 6x2)(x0 − 31x2)

respectively. We thus obtain the full (projective) solution as〈
(x0, x1, x2)T

〉
∈
{〈

(1, 1, 19)T
〉
,
〈
(1, 10, 31)T

〉
,
〈
(1, 27, 6)T

〉
,
〈
(1, 36, 18)T

〉}
.



– Input. m homogeneous independent quadratic equations in n + 1 variables.

1. Generate the m
(

D−2+n
D−2

)
possible polynomials of degree D that are formed by

multiplying each of the polynomials of the original system by some monomial of
degree D − 2.

2. Choose an ordering of the degree D monomials. Linearise the new system of poly-
nomials of degree D and perform a Gaussian reduction. The ordering of monomials
should be chosen in such a way that this process yields a polynomial in just two
of the original variables, say xi and xj .

3. Note that it is not always possible to find such an ordering, and in this case the
ProjectiveXL algorithm fails for degree D.

4. This bivariate polynomial in xi and xj can be considered to be a univariate polyno-
mial equation in xi

xj
. This univariate polynomial can be factored using Berlekamp’s

algorithm [25]. This potentially allows the elimination of a variable from the orig-
inal system of equations.

5. This process is repeated on the new smaller system and so on, potentially elimi-
nating further variables.

6. Substitution is used to find values for the eliminated variables.

– Output. Solution set for the original equation system (if method is successful).

Fig. 2. Basic Description of the ProjectiveXL Algorithm for a Quadratic System

�

Examples 7 and 8 show that the ProjectiveXL algorithm can be much more
efficient than the AffineXL algorithm. On essentially the same equation system,
the ProjectiveXL algorithm only required the use of quadratic polynomials
(D = 2), whereas the AffineXL algorithm required the use of quartic polynomi-
als (D = 4). Furthermore, the ProjectiveXL algorithm offers far more scope for
minimising the value of D than the AffineXL algorithm. In an equation system
with n variables, the AffineXL algorithm offers n different methods of construct-
ing a suitable univariate polynomial of minimal degree (D), one for each variable.
By contrast, the ProjectiveXL algorithm applied to the equivalent homogeneous
equation system offers

(
n+1

2

)
≈ 1

2n
2 different methods of constructing a suitable

bivariate polynomial. Thus the AffineXL algorithm can be seen as a very small
special case of the ProjectiveXL algorithm which restricts itself to a small and
usually arbitrary set of special cases of the ProjectiveXL algorithm.

6.3 Geometric Aspects of the ProjectiveXL ALgorithm

We now discuss the geometric aspects of the ProjectiveXL algorithm. This re-
quires the use of the geometric terms primal, secundum and collineation, which
are defined in Section 2.3. We suppose that the homogeneous quadratic system
has a unique (projective) solution. The homogeneous quadratic system defines



a system of quadrics in P(V ) which intersect in a unique projective point P cor-
responding to this unique solution. In the ProjectiveXL algorithm with degree
D, we multiply each polynomial by monomials of degree D − 2. Geometrically,
this gives a system of primals of degree D that have a unique intersection at the
(projective) point P . Clearly any linear combination of the defining polynomi-
als of the above primals gives another primal which also contains P . The next
step in the ProjectiveXL algorithm is to find a degree D primal whose defining
polynomial is in the linear span of the polynomials defining the generated degree
D primals, but which involves only two coordinates xi and xj . Such a primal is
defined by some bivariate polynomial

g(xi, xj) = a0x
D
i + a1x

D−1
i xj + . . . aD−1xix

D−1
j + aDx

D
j .

We note that the secundum S = {x ∈ P(V )|xi = xj = 0} is contained in
the primal defined by g(xi, xj). The bivariate polynomial g factorises over some
extension field F of F as

g(xi, xj) = (θ1xi − θ′1xj) . . . (θDxi − θ′Dxj).

If we define V to be the vector space of dimension n+1 over this extension field
F, then each of these factors defines a hyperplane in P

(
V
)
. Thus the primal

defined by g is a product of hyperplanes in P
(
V
)
, each of which contain the

secundum S. However, if the original equation system has a unique (projective)
solution in F, then we need only consider the hyperplanes defined by the linear
factors of g(xi, xj) which are defined over F. Thus we know the solution point P
lies on one such hyperplane. We can analyse each such hyperplane by projecting
the whole system into that hyperplane. This effectively removes a variable from
the original system, and we can now examine the smaller system by the same
method and so on.

In the ProjectiveXL algorithm, the fundamental aim is to find a primal
defined by a bivariate polynomial. However, the property of being defined by a
bivariate polynomial is not a geometrical property of the primal. A collineation
of the projective geometry can transform a primal defined by a bivariate equation
into a primal defined by a polynomial that is not bivariate. This is illustrated
by Example 9.

Example 9. We consider the homogeneous quadratic polynomials in three vari-
ables over GF(37) given by

f1 = 6x2
0 + 2x0x1 + 3x0x2 + x2

1 + 16x1x2 + 3x2
2

and f2 = 18x2
0 + 35x0x1 + 15x0x2 + 26x2

1 + 12x1x2 + x2
2.

We wish to apply the ProjectiveXL algorithm to the system f1 = f2 = 0, and
there are three possible pairs of variables, namely (x0, x1), (x0, x2) and (x1, x2),
in which we can construct a bivariate polynomial. Unfortunately, in all three
cases, we are forced to use quartic polynomials (D = 4) before we can do so.



However, this polynomial system is derived from that of Example 8 by the linear
mapping x0

x1

x2

 7→

 2 26 10
26 4 13
33 21 2

x0

x1

x2

 ,

but the equation system of Example 8 can be solved by only using quadratic
polynomials (D = 2). In geometrical terms, both this equation system and that
of Example 8 define a pair of intersecting quadrics in PG(2,GF(37)), and there
is a collineation mapping one pair to the other. Thus this equation system and
that of Example 8 are geometrically equivalent. �

7 A Geometrically Invariant XL Algorithm

The aim of the ProjectiveXL algorithm for a homogeneous equation system with
a small number of (projective) solutions is to find a primal defined by a bivariate
polynomial which contains the points corresponding to the solutions. However,
as we saw in Section 6.3 the property of being defined by a bivariate primal is
not a geometrical property of the primal. Nonetheless, a primal defined by a
bivariate polynomial does have definite geometric properties that are geomet-
rically invariant. This section considers these properties, using the geometrical
terms defined in Section 2.3, to derive the GeometricXL algorithm, which is in-
variant under collineations of the projective space. By contrast, Gröbner basis
algorithms and XL -type algorithms are not geometrically invariant, though we
note that the equation solving algorithm of [22, 24] is geometrically invariant.

7.1 The GeometricXL Algorithm

Suppose we have a homogeneous equation system f1 = . . . = fm = 0 in (n+ 1)
variables x0, x1, . . . , xn over a finite field F, and that this system has a few
(projective) solutions. As before, we suppose that V denotes the vector space
of dimension (n + 1) over F. The ProjectiveXL algorithm generates a number
of primals of degree D whose intersection contains the (projective) points cor-
responding to the solutions. As discussed in Section 6.3, the next step of the
ProjectiveXL algorithm is to find a primal of degree D defined by a bivariate
polynomial g, which factorises over some extension field F as

g(xi, xj) = (θ1xi − θ′1xj) . . . (θDxi − θ′Dxj).

If V denotes the vector space of dimension (n + 1) over the extension field F,
then the variety in P

(
V
)

defined by g(xi, xj) consists of D (not necessarily
distinct) hyperplanes from the pencil of hyperplanes in P

(
V
)

generated by the
hyperplanes given by the equations xi = 0 and xj = 0. Over F, the polynomial g
splits into factors that are irreducible over F. The variety in P(V ) described by
an irreducible factor of g consists of the intersection of P(V ) with the conjugate
hyperplanes of P

(
V
)

defined by this irreducible factor. This intersection is a



secundum of P(V ) since all of the conjugate hyperplanes come from a single
pencil. This property of the primal being composed of hyperplanes from a pencil
is clearly invariant under collineations, and it is this property of the primal,
rather than that of being defined by a bivariate polynomial, that we exploit. A
collineation of P(V ) maps the primal defined by g to one defined by

(θ1L− θ′1L
′) . . . (θDL− θ′DL

′),

where L and L′ are some linear polynomials over F. The GeometricXL algorithm
is the generalisation of the ProjectiveXL algorithm which attempts to find
primals of the above generalised form.

Suppose the multiplication step of the ProjectiveXL algorithm yields ho-
mogeneous polynomials h1, . . . , hk of degree D. In order to use a primal of the
above form, we need to find a homogeneous polynomial h of degree D and
λ1, . . . , λk ∈ F such that

h =
k∑

i=1

λihi =
D∏

j=1

(
θjL− θ′jL

′)
for some linear polynomials L and L′. Geometrically, a factor

(
θjL− θ′jL

′) of
the above expression defines a hyperplane in a pencil of hyperplanes defined by
the hyperplanes L = 0 and L′ = 0 (Section 2.3). Thus the primal V(h) defined
by h can be thought as a product of D hyperplanes all from the same pencil.

We now suppose that D is smaller than the positive characteristic p of the
finite field F. We can take the formal (D − 1)th partial derivative of the above
expression with respect to any monomial x = xj1 . . . xjD−1 of degree (D− 1). As
in Section 2.2, we use the notation DD−1

x to denote the formal (D− 1)th partial
derivative with respect to a degree (D − 1) monomial x, so we can obtain the
linear polynomial

DD−1
x h =

k∑
i=1

λiDD−1
x hi = axL+ a′xL

′,

where ax and a′x are constants. However, any such linear polynomial can be
represented by a (row) vector of length n+1, so this expression can be interpreted
as a vector expression. Thus the partial derivatives matrix C(D−1)

hi
of Section 2.2,

whose rows are the various (D − 1)th partial derivatives of hi, is given by

C
(D−1)
hi

=
(
DD−1

x hi

)
,

so we obtain the matrix equation

C
(D−1)
h =

k∑
i=1

λiC
(D−1)
hi

= (axL+ a′xL
′) .

The matrix on the right-hand side clearly has rank 2 as its rows are linear
combinations of two vectors, so in the notation of Section 2.2, the vector subspace



– Input. m homogeneous independent quadratic equations in n + 1 variables.

1. Generate the m
(

D−2+n
D−2

)
possible polynomials of degree D that are formed by

multiplying each of the polynomials of the original system by some monomial of
degree D − 2. The degree D is required to be less than the characteristic of the
finite field.

2. Find a basis S of the linear span of all the polynomials generated by the first step.
3. Calculate the matrix CD−1

f of (D − 1)th partial derivatives for each polynomial
f ∈ S.

4. Find a linear combination of these partial derivative matrices CD−1
f which has

rank 2 (or lower) by considering the 3-minors or some other method.
5. Note that this it is not always possible to find such a linear combination, and in

this case the GeometricXL algorithm fails for degree D.
6. Using this linear combination, construct a polynomial in the linear span of S that is

known to have factors, and then factorise this polynomial. This potentially allows
the elimination of a variable from the original system of equations.

7. This process is repeated on the new smaller system and so on, potentially elimi-
nating further variables.

8. Substitution is used to find values for the eliminated variables.

– Output. Solution set for the original equation system (if method is successful).

Fig. 3. Basic Description of the GeometricXL Algorithm for a Quadratic System

W
(D−1)
h of P (V ∗) has dimension 2. Thus if there is a polynomial h ∈ 〈h1, . . . , hk〉

with a factorisation of the above type, then there is a linear combination of
partial derivatives matrices C(D−1)

hi
that has rank 2. The converse is also true.

One method to solve an equation system is therefore to try to find a linear
combination of the partial derivative matrices C(D−1)

h1
, . . . , C

(D−1)
hl

with rank 2.
We term this process the GeometricXL algorithm. The GeometricXL algo-

rithm is a geometrically invariant generalisation of the ProjectiveXL algorithm.
Having generated the polynomials of degree D, we then analyse their partial
derivatives matrices to try to determine a solution to the original equation sys-
tem. We give a fuller description of the GeometricXL algorithm in Figure 3 and
a simple illustration in Example 10. Furthermore, the GeometricXL algorithm
may still be applicable even if the original condition that D < p is not true. In
this case, a factorisation of the above type still gives rise to a linear combination
of partial derivative matrices with rank 2, though a linear combination of partial
derivative matrices with rank 2 does not necessarily correspond to a factorisation
of that type.

Example 10. We consider the homogeneous quadratic polynomials in three vari-
ables over GF(37) of Example 9 given by

h1 = 6x2
0 + 2x0x1 + 3x0x2 + x2

1 + 16x1x2 + 3x2
2

and h2 = 18x2
0 + 35x0x1 + 15x0x2 + 26x2

1 + 12x1x2 + x2
2.



The matrix of the linear combination of partial derivatives is thus given byλ1Dx0h1 + λ2Dx0h2

λ1Dx1h1 + λ2Dx1h2

λ1Dx2h1 + λ2Dx2h2

 =

12λ1 + 36λ2 2λ1 + 35λ2 3λ1 + 15λ2

2λ1 + 35λ2 2λ1 + 15λ2 16λ1 + 12λ2

3λ1 + 15λ2 16λ1 + 12λ2 6λ1 + 2λ2

 .

This matrix has rank 2, so on taking its determinant, we obtain

0 = 34λ3
1 + 28λ2

1λ2 + 23λ1λ
2
2 + 7λ3

2 = 34(λ1 − 10λ2)(λ1 − 28λ2)(λ1 − 33λ2),

so λ1 = 10λ2, λ1 = 28λ2 or λ1 = 33λ2. We thus obtain the following polynomials
in the linear span of h1 and h2,

10h1 + h2 = 4x2
0 + 18x0x1 + 8x0x2 + 36x2

1 + 24x1x2 + 31x2
2

28h1 + h2 = x2
0 + 17x0x1 + 25x0x2 + 17x2

1 + 16x1x2 + 11x2
2

33h1 + h2 = 31x2
0 + 27x0x1 + 3x0x2 + 33x2

1 + 33x1x2 + 26x2
2.

We have given all three for completeness, even though these three polynomials
are necessarily linearly dependent. Each of these polynomials factorises, so we
have

10h1 + h2 = 4(x0 + 8x1 + 25x2)(x0 + 15x1 + 14x2)
28h1 + h2 = (x0 + 24x1 + 16x2)(x0 + 30x1 + 36x2)
33h1 + h2 = 31(x0 + 25x1 + 15x2)(x0 + 26x1 + 3x2).

We can now substitute x0 = −(8x1 + 25x2) into h1 (for example) to obtain

36x2
1 + 11x1x2 + 15x2

2 = 36(x1 − 18x2)(x1 − 30x2)

Taking the first factor, we have x1 = 18x2 so x0 = −(8x1 +25x2) = 16x2, which
gives

〈
(16, 18, 1)T

〉
=
〈
(1, 15, 7)T

〉
as a solution. This is the image of the solution〈

(1, 27, 6)T
〉

of Example 8 under the matrix of Example 9. We can calculate all
four solutions similarly to obtain〈

(x0, x1, x2)T
〉
∈
{〈

(1, 8, 31)T
〉
,
〈
(1, 14, 14)T

〉
,
〈
(1, 15, 7)T

〉
,
〈
(1, 32, 6)T

〉}
.

These are the images of the solutions of Example 8 under the matrix of Exam-
ple 9. �

In general, computing the (D − 1)th partial derivatives in terms of the
λ1, . . . , λk in a successful application of the GeometricXL algorithm yields a
linear system in λ1, . . . , λk of rank 2. However, the matrix of this linear system
has rank two if and only all its 3-minors vanish. Thus evaluating all the 3-minors
of this partial derivatives matrix gives a homogeneous cubic equation system in
λ1, . . . , λk. If we can find any solution of this cubic system by any method, then
can obtain a factorisation of the above type for some polynomial in the linear
span of h1, . . . , hk.

The most obvious method to try to solve this cubic system is the Linearisation
algorithm. There are

(
n+D−1

D−1

)
monomials in (n+1) variables of degree (D−1), so

the partial derivatives matrix is an
(
n+D−1

D−1

)
×(n+1) matrix. There are

(
l
3

)
·
(
n+1

3

)



3-minors of an l×(n+1) matrix, where in this case l =
(
n+D−1

D−1

)
∼ nD−1

(D−1)! for large
n. Thus for an equation system with many variables (large n), the GeometricXL

algorithm gives a homogeneous cubic system containing about 1
6

(
nD

(D−1)!

)3

cubic

equations in k variables λ1, . . . , λk, that is about
(
k
3

)
≈ 1

6k
3 cubic monomials.

Thus if k < nD

(D−1)! , it may be possible to find a solution by linearisation, and
hence a factorisation that may allow us to eliminate a variable from the original
equation system. Furthermore, if we have vastly more cubic equations than cu-
bic monomials, we may be able to analyse the system much more efficiently by
only selecting a random subset of cubic equations for linearisation and still have
reasonable confidence in our solution.

The GeometricXL algorithm is considerably more efficient than either XL -
type algorithms or Gröbner basis techniques for certain equation systems, and
an example of such an equation system is given in Example 11. This example
illustrates the method of the GeometricXL algorithm in generating a succession
of cubic systems using the 3-minors of partial derivatives matrices and then
solving these cubic systems in order to find solutions to the original equation
system.

Example 11. We give five homogeneous quartic polynomials f1, f2, f3, f4, f5 in
five variables over GF(37) in Appendix A. The Appendix then describes how to
find the unique (projective) solution for the system f1 = f2 = f3 = f4 = f5 = 0
using the GeometricXL algorithm. The solution method does not require the
generation of any higher degree polynomials, so D = 4.

For comparison, we also calulated the unique solution of the system of Ap-
pendix A using both Gröbner basis techniques (including F4 [14]) and traditional
XL algorithms. Calculation of this solution using Gröbner basis techniques with
either lexicographic or graded reverse lexicographic monomial orderings typi-
cally requires the generation of polynomials of degree D = 14. Similarly, solving
this equation system using the AffineXL or ProjectiveXL algorithm typically
requires the generation of polynomials of degree D = 14. In a typical exam-
ple of the ProjectiveXL algorithm, the final stage is the row reduction of a
5005×3060 matrix of rank 3055 to give a quintic bivariate equation, which can
then be solved. �

7.2 Geometric Analysis of the GeometricXL ALgorithm

We have seen that the GeometricXL algorithm works by constructing a poly-
nomial h ∈ 〈h1, . . . , hk〉 such that h ∈ F[L,L′], that is h is a polynomial in
two linear polynomials L and L′. We construct such a polynomial of degree D
by finding a polynomial h for which the rank of the partial derivatives matrix
C

(D−1)
h has rank 2. A basis for the row space of C(D−1)

h then gives L and L′.
This is the situation (for rank 2) discussed by Proposition 1 of [4].

Geometrically, the constructed polynomial h of degree D is an element of the
projective geometry of the Dth symmetric power of the dual space P

(
SD (V ∗)

)
.



This projective geometry contains the degree D Veronese variety

V(D)
V ∗ = ϕ

(D)
V ∗ (P (V ∗)) .

In the case that D < p, the positive characteristic of F, the polynomial h is in
this Veronese variety V(D)

V ∗ if and only if h = λLD for some linear polynomial L
and λ ∈ F (Section 3.4). An equivalent condition is that its partial derivatives
matrix C

(D−1)
h has rank 1. Geometrical aspects of this situation are discussed

in [26]. Thus we could define a rank-one version of GeometricXL in which we
find a partial derivatives matrix C(D−1)

h of rank 1. In certain situations, this can
give a very efficient algorithm, as illustrated in Example 12.

Example 12. Consider the equation system over GF(37) given by the first four
homogenised equations of Example 2, namely

0 = f1 = x2
0 + x0x1 + x0x2 − x1x2

0 = f2 = 2x2
0 + x0x2 + x2

1 − x2
2

0 = f3 = x0x1 + x0x2 − 2x2
1 + 2x1x2 − x2

2

0 = f4 = 3x2
0 + x0x1 + 9x0x2 + 8x2

1 + 18x1x2 + 22x2
2.

By calculating the partial derivatives matrix
∑4

i=1 λiCfi
and evaluating its 2-

minors, we can find two linear combinations of partial derivatives matrices having
rank 1. We thus obtain

f1 + 11f2 + 6f3 + 20f4 = 9(x0 + 20x1 + 11x2)2 = 0
and f1 + 29f2 + 20f3 + 7f4 = 6(x0 + 27x1 + 31x2)2 = 0,

from which we can easily deduce that x1 = 2x0 and x2 = 3x0. We note that
there is no linear combination of the first three equations that has a similar
factorisation as a square. Thus rank-one GeometricXL cannot be applied to the
equation system f1 = f2 = f3 = 0. �

We are primarily interested in the GeometricXL algorithm in the situation
where the partial derivatives matrix C

(D−1)
h has rank 2. However, any matrix

of rank 2 can be written as the sum of two matrices of rank 1, but a partial
derivatives matrix of rank 1 indicates a point in the Veronese variety V(D)

V ∗ . We
can therefore show that any polynomial h of degree D has a partial derivatives
matrix C(D−1)

h of rank 2 if and only if h is on a line joining some pair of points
in the Veronese variety V(D)

V ∗ , that is h lies on a chord or secant of the Veronese
variety (Section 2.3). We denote the chordal or secant variety of the Veronese
variety V(D)

V ∗ , that is the set of all points in P
(
SD (V ∗)

)
on some chord of V(D)

V ∗ ,
by S(D)

V ∗ . Geometrical properties of the secant variety of the Veronese variety are
extensively discussed in [19, 20].

The natural geometrical interpretation of the GeometricXL algorithm is that
it is a method that attempts to calculate the intersection of the variety V(h1, . . . , hk)
generated by the polynomials h1, . . . , hk of degreeD with the secant variety S(D)

V ∗ .



The algebraic interpretation of the GeometricXL algorithm or any XL -type al-
gorithm, is that it is a method that attempts to find a linear combination of a
collection of matrices that has rank 2, a problem sometimes termed MinRank.

Certain other XL -type algorithms can now be seen geometrically as special
cases of the GeometricXL algorithm. The rank-one GeometricXL algorithm of
Example 12 is the special case when this intersection contains a point of the
Veronese variety itself. When the Linearisation algorithm works, it would
typically produce a polynomial of the form xix

D−1
0 + λxD

0 = xD−1
0 (xi + λx0).

Polynomials of this type form a subset of the secant variety S(D)
V ∗ . Thus the

Linearisation algorithm can typically be viewed as a special case of the GeometricXL
algorithm in which we are constrained to take the intersection of the polynomial
variety V(h1, . . . , hk) with a subset of the secant variety of the Veronese variety.

The AffineXL and ProjectiveXL algorithms (Section 6.1 and 6.2) can also
be considered special cases of the GeometricXL algorithm in which we are con-
strained to take the intersection of the polynomial variety V(h1, . . . , hk) with
particular subsets of the secant variety S(D)

V ∗ . In the ProjectiveXL algorithm,
this subset is defined by the hyperpanes xi = 0 and xj = 0, whereas in the
AffineXL algorithm we are constrained to take to the hyperplanes xi = 0 and
x0 = 0. We illustrate this in Example 13.

Example 13. Suppose V is a vector space of dimension 3 over F. We consider he
degree 3 Veronese embedding ϕ(3)

V : P (V ) → P
(
S3 (V )

)
. An element of the pencil

defined by x0 = 0 and x1 = 0 is defined by x0 + θx1 = 0 for some θ ∈ F ∪ {∞}
(with the usual interpretation of∞). The Veronese embedding of such an element
of the pencil is defined by (1, θ, 0, θ2, 0, 0, θ3, 0, 0, 0). The set of such Veronese
embeddings forms a normal rational curve, in this case a twisted cubic, in the
subspace defined by equations w002 = w012 = w022 = w112 = w122 = w222 = 0,
and these points span this space. �

7.3 The GeometricXL Algorithm and the Relinearisation Algorithm

The Relinearisation algorithm can also be viewed in some sense as a special
case of the AffineXL algorithm [10] and hence of the GeometricXL algorithm
However, the relationship between these algorithms is geometrically more com-
plicated than the other special cases we have considered. We discuss this by con-
sidering the application of the GeometricXL algorithm and Relinearisation
algorithm to a quadratic system that produces degree 4 equations.

During the degree 4 version of the GeometricXL algorithm, the points of P(V )
are mapped to points on a variety V(4)

V in P
(
S4(V )

)
, with generic quadrics being

mapped to varieties of dimension n− 1 and order 8 that are the intersection of
V(4)

V with subspaces of P
(
S4(V )

)
of dimension N4−1−N2 = N4−N −1, where

N4 and N = N2 are the dimensions of P
(
S4(V )

)
and P

(
S2(V )

)
respectively

(Section 2.3). In relinearizing the same original system, the points are initially
mapped to the Veronese variety VV ⊂ P

(
S2(V )

)
, and the equations become

hyperplanes in that space. If we were to apply the Veronese embedding ϕS2(V )



to the points of P
(
S2(V )

)
, then they would be mapped to points on a larger

Veronese variety VS2(V ) in the projective geometry P
(
S2
(
S2(V )

))
of dimension

N ′ =
1
8
n(n+ 3)(n2 + 3n+ 6) > N4.

However, the Veronese variety VV ⊂ P
(
S2(V )

)
is contained in 1

12n(n+1)2(n+2)
linearly independent quadrics, which are mapped to linearly independent hyper-
planes in P

(
S2
(
S2(V )

))
. These hyperplanes intersect in a subspace of dimension

N4, and this subspace intersects the Veronese variety VS2(V ) in precisely the vari-
ety V(4)

V obtained by a degree 4 version of the GeometricXL algorithm. This can
be seen by considering the fact that the quadrics in question have equations of
the form yiiyjj −y2

ij = 0, yijyik−yiiyjk = 0 or yijykl−yilykj = 0, and observing
that they are mapped into hyperplanes with equations z(ij)(ik) = z(ii)(jk) and so
on, so the points contained in the intersection of all these hyperplanes have the
same coordinates as those arising from degree 4 XL, but with some repeated.

Both the Relinearisation algorithm and the GeometricXL algorithm have
the problem that they may consider polynomials that are not independent. In
the Relinearisation algorithm, this can occur when restricting the Veronese
equations to a subspace; whereas in the GeometricXL algorithm this can occur
when generating higher degree equations. This is fundamentally the same prob-
lem in two different guises. However, in the case where the original equation
system has a unique solution over the given field, then if (the possibly repeated
application of) relinearisation succeeds in finding this solution, then carrying
out an XL procedure of the corresponding degree also finds this solution without
having to carry out the latter stages of the XL procedure.

7.4 Properties of the GeometricXL Algorithm

We have seen that the first stages of the GeometricXL algorithm can be inter-
preted as a search for points on the secant variety S(D)

V ∗ of the Veronese variety
V(D)

V ∗ , and that there is correspondence of this secant variety with a set of ma-
trices of rank 2. Thus the points of this secant variety can be described by a set
of cubic equations which are given by the 3-minors of these matrices. In order
to formally specify the GeometricXL algorithm as a well-defined algorithm, it
would be necessary to provide an algorithm for finding points on this variety. Un-
fortunately, this is likely to be difficult in general as there is no efficient method
for solving a general system of cubic equations.

We therefore consider some more specialised algorithms. Suppose WD de-
notes the subspace of P

(
SD (V ∗)

)
spanned by all the polynomials of degree

D generated by an XL -type process. Given a projective space Σ contained in
S(D)

V ∗ we can compute the subspace WD

⋂
Σ very efficiently using linear algebra.

There are particular subspaces Σ of the secant variety S(D)
V ∗ for which there are

well established methods for finding points on the subspace. By choosing such a
subspace, we can produce an efficient version of an XL -type algorithm.



We can regard the projective geometry P
(
SD (V ∗)

)
as the space of all ho-

mogeneous polynomials of degree D. For a polynomial h in the Veronese variety
VD

V ∗ , we denote the tangent space to VD
V ∗ at h by Th

(
VD

V ∗

)
. This tangent space

has dimension n and is contained in in the secant variety S(D)
V ∗ . For example, the

tangent space at the polynomial xD
0 is given by

TxD
0

(
VD

V ∗

)
=
{ 〈

LxD−1
0

〉 ∣∣ L is a linear polynomial
}
.

If our homogeneous equation system is derived from some original non-homogeneous
system, then we may not actually be interested in solutions with x0 = 0, that is
solutions lying in the “hyperplane at infinity”. In this case, if the space WD of
generated polynomials of degree D contains

〈
LxD−1

0

〉
, then we can immediately

deduce that any solutions of the original nonhomegeneous system lie in the hy-
perplane with equation L = 0. This essentially eliminates a variable from the
system.

To determine whether WD contains such a polynomial, we have only to cal-
culate its intersection with TxD

0

(
VD

V ∗

)
. If this intersection WD

⋂
TxD

0

(
VD

V ∗

)
has

dimension r > 0, then we can find a space of dimension n − r containing the
solution, and the process can be repeated on the smaller system. There is a
sense in which this process can be thought of a geometrically invariant version
of the Linearisation algorithm in which a co-ordinate specific linear polyno-
mial xi − x0 is replaced by an arbitrary linear polynomial. We note that this
procedure is essentially equivalent to the method called ElimLin of [9], where
it is derived in the context of considering the application of a SAT-solver to
cryptololgy.

This general technique cannot be applied in the case whenWD

⋂
TxD

0

(
VD

V ∗

)
=

∅. It is then necessary to consider methods for choosing the smallest possible
value of D that enables this intersection to be non-empty. We restrict our atten-
tion now to a system of equations that has a single solution over the algebraic
closure of a field F, so as to increase the likelihood of this intersection being
non-empty. A sufficient condition for the intersection of WD and TxD

0

(
VD

V ∗

)
to

be non-empty is for the dimension of WD to be greater than or equal to ND−n.
The consideration of Hilbert series in [13] suggests that if the system of equations
consists of n+1 quadrics then the degree d must be at least n+1 for this to oc-
cur. However, for a generic system of n+1 quadrics with an empty intersection,
the dimension of WD is ND − 1. This suggests that it might be advantageous to
seek a D such that WD

⋂
TxD

0

(
VD

V ∗

)
has dimension n − 1, which occurs if the

dimension of WD is N − 1. This makes it possible to find n hyperplanes whose
(affine) intersection determines the solution precisely. However, if for some D
the dimension of WD is ND − 1, then linearisation of WD directly yields the
solution.

7.5 Problems with the GeometricXL ALgorithm

An XL -type algorithm, including the GeometricXL algorithm, aims to produce a
polynomial which can potentially be factored into many linear factors. However,



we usually have no a priori method of determining which linear factor pertains
to the true solution, and we may have to test each linear factor in turn. We would
usually test each linear factor by using it to make a substitution and then ap-
plying the same technique to the smaller system. However, each of these smaller
systems could give rise to a number of linear factors, only one of which pertains
to the true solution, and so on. It is thus possible, in principle, that for a large
enough D such a proliferation of linear factors could lead to more possibilities
than can be efficiently checked. In this case, a useful heuristic approach would
seem to be to increase the degree D, which should generally greatly lower the
number of linear factors.

8 Conclusions

We have given an extensive discussion of the geometrical properties of the XL
-type algorithms for finding the solution to a multivariate equation system and
put these algorithms on a firm geometrical footing. In particular, we have shown
how XL -type algorithms are different techniques for finding points on the inter-
section of some subspace determined by the equations with the secant variety of
the Veronese variety of some degree D. The different XL -type techniques which
have been proposed are essentially those obtained by considering some subset of
this secant variety rather than the full secant variety. The new method of this pa-
per, the GeometricXL algorithm, generalises the previous methods by considering
the full secant variety. As we demonstrated in Example 11, the GeometricXL al-
gorithm can be considerably more efficient in some cases then either a standard
XL algorithm or a Gröbner basis algorithm.

There are a number of obvious areas for future research. Firstly, the GeometricXL
algorithm requires us to find a linear combination of a collection of matrices hav-
ing rank 2. We can do this by considering the 3-minors of these matrices to obtain
a cubic equation system, which we may be able to solve. However, it may be
that there is a more efficient way in some cases of finding such a linear com-
bination of matrices having rank 2. Secondly, the reducible linear combinations
of polynomials produced by the GeometricXL algorithm are of a very particular
form. Ideally, we would like some efficient method of determining in many cases
when a linear combination of polynomials is reducible. Finally, the GeometricXL
algorithm as described in Figure 3 is only generally applicable when the positive
characteristic of the field is not too small. However, the fundamental geometric
results we have been discussing are true in any characteristic [4, 19, 20]. In par-
ticular, a point on the secant variety of the Veronese variety corresponds to a
factorisation of a homogeneous polynomial to give

∏(
θjL− θ′jL

′) (Section 7.1).
Furthermore, this secant variety is defined by a set of cubic polynomials ([19]
Theorem 1.56). Thus it may be possible to construct an algorithm to find a so-
lution to a multivariate equation system by finding the intersection of the span
of this system with the secant variety of the Veronese variety. Such an algorithm
would work over a field of any characteristic.
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A Using the GeometricXL Algorithm to solve Example 11

We specify the five quartic polynomials f1, . . . , f5 of Example 11 below. These are
homogeneous quartic polynomials f1, f2, f3, f4, f5 in five variables over GF(37).
We describe how to solve this equation system using the GeometricXL algorithm
with D = 4 to systematically eliminate variables from the system.

Five Variables

The coefficients of these polynomials fi with respect to lexicographic monomial
ordering x4

0, x
3
0x1, . . . , x3x

3
4, x

4
4 are given below.

16 30 32 36 13 11 0 0 36 28 12 5 15 29
4 19 12 2 12 9 28 2 27 33 8 13 22 17

27 20 20 17 27 5 28 32 2 29 3 2 15 5
17 17 13 22 16 9 4 29 13 8 10 5 33 27
27 34 32 32 0 0 21 2 31 12 33 11 17 9

22 2 17 7 24 5 25 13 32 31 28 19 24 22
36 6 5 13 33 9 28 30 0 16 9 9 4 5
22 31 29 5 17 34 16 16 15 7 35 2 27 2
23 10 15 25 6 31 0 26 13 18 1 2 23 8
22 7 20 32 36 2 30 24 24 19 35 9 35 12

36 24 12 27 7 35 19 6 6 1 20 27 36 10
11 30 1 33 17 8 35 27 11 18 13 36 29 13
5 21 21 8 8 16 28 12 29 20 31 16 29 13

23 6 12 31 28 9 26 23 27 34 9 36 20 5
32 5 14 24 34 20 20 17 0 30 2 25 2 4

36 30 28 35 1 35 9 7 16 28 29 23 24 35
19 21 33 28 24 32 15 6 36 18 15 26 11 1
18 33 17 10 8 4 21 3 1 4 13 29 10 13
24 4 23 10 8 10 36 6 19 5 26 2 36 28
11 20 27 24 25 10 8 24 2 31 0 34 20 36

25 11 30 32 22 7 26 26 32 17 11 3 20 23
3 8 1 18 23 35 34 3 7 7 32 22 23 17

32 4 5 33 4 22 25 21 31 7 22 0 17 27
35 6 4 2 6 23 10 19 0 4 11 33 10 6
1 36 32 36 32 23 33 7 25 10 7 1 26 25

We apply the GeometricXL algorithm to this equation system. Thus we need
to find λ1, . . . , λ5 such that

λ1C
(3)
f1

+ λ2C
(3)
f2

+ λ3C
(3)
f3

+ λ4C
(3)
f4

+ λ5C
(3)
f5

has rank 2, where C(3)
fi

is the matrix of third partial derivatives for each poly-
nomial fi. There are 35 monomials of degree 3, so the matrices Cfi

are 35×5
matrices. We give the transpose of each of these matrices C(3)

fi
below, where each

row has 35 entries and is written below across two rows.



14 32 7 31 4 7 0 0 35 1 24 10 23 21 16 3 24 4
24 18 28 2 17 33 16 4 7 34 17 20 3 28 17 10 20

32 7 0 0 35 3 24 4 24 18 28 2 17 33 16 28 12 26
18 8 30 10 31 34 15 21 32 18 8 29 26 11 20 10 13

7 0 1 24 10 24 18 28 2 4 7 34 17 20 3 12 8 30
10 21 32 18 8 29 26 19 14 19 17 27 0 0 5 4 1

31 0 24 23 21 4 28 17 33 7 17 20 28 17 10 26 30 31
34 32 8 29 11 20 10 14 17 27 0 5 4 29 13 7 28

4 35 10 21 16 24 2 33 16 34 20 3 17 10 20 18 10 34
15 18 29 26 20 10 13 19 27 0 5 4 1 13 7 28 31

10 12 28 5 33 20 13 26 27 13 19 1 22 7 33 36 10 26
29 18 28 30 0 16 18 17 8 10 7 31 21 30 34 31 22

12 20 13 26 27 36 10 26 29 18 28 30 0 16 18 14 16 5
25 8 17 4 18 20 23 2 12 25 0 26 26 34 2 4 27

28 13 13 19 1 10 18 28 30 17 8 10 7 31 21 16 8 17
4 2 12 25 0 26 26 7 21 5 6 27 33 12 23 11 33

5 26 19 22 7 26 28 0 16 8 7 31 30 34 31 5 17 18
20 12 0 26 34 2 4 21 6 27 12 23 11 12 25 36 25

33 27 1 7 33 29 30 16 18 10 31 21 34 31 22 25 4 20
23 25 26 26 2 4 27 5 27 33 23 11 33 25 36 25 29

13 33 35 14 5 29 1 12 12 4 3 17 33 20 7 32 2 29
34 16 35 27 22 18 26 31 21 26 10 21 5 11 16 32 20

33 29 1 12 12 32 2 29 34 16 35 27 22 18 26 29 26 9
1 27 21 26 18 12 11 1 19 18 15 23 17 19 18 35 9

35 1 4 3 17 2 16 35 27 31 21 26 10 21 5 26 27 21
26 1 19 18 15 23 17 9 7 30 19 11 25 9 3 34 0

14 12 3 33 20 29 35 22 18 21 10 21 11 16 32 9 21 18
12 19 15 23 19 18 35 7 19 11 9 3 34 17 12 26 12

5 12 17 20 7 34 27 18 26 26 21 5 16 32 20 1 26 12
11 18 23 17 18 35 9 30 11 25 3 34 0 12 26 12 22

13 32 20 25 6 29 18 14 32 1 21 9 22 33 2 15 29 19
11 27 15 6 35 18 30 8 22 2 36 33 34 23 16 8 15

32 29 18 14 32 15 29 19 11 27 15 6 35 18 30 35 6 24
4 5 20 26 22 8 18 23 16 20 35 6 1 30 15 4 31

20 18 1 21 9 29 27 15 6 8 22 2 36 33 34 6 5 20
26 23 16 20 35 6 1 6 29 9 34 11 26 23 16 11 12

25 14 21 22 33 19 15 35 18 22 36 33 23 16 8 24 20 22
8 16 35 6 30 15 4 29 34 11 23 16 11 4 0 25 9

6 32 9 33 2 11 6 18 30 2 33 34 16 8 15 4 26 8
18 20 6 1 15 4 31 9 11 26 16 11 12 0 25 9 13

8 29 32 7 21 28 15 15 27 31 22 6 6 9 12 11 2 36
9 33 34 3 14 7 27 21 9 34 27 4 10 13 8 7 2

29 28 15 15 27 11 2 36 9 33 34 3 14 7 27 23 1 5
21 0 34 17 29 12 16 12 12 9 20 19 0 24 22 29 23

32 15 31 22 6 2 33 34 3 21 9 34 27 4 10 1 0 34
17 12 12 9 20 19 0 33 6 31 17 35 17 27 29 14 2

7 15 22 6 9 36 34 14 7 9 27 4 13 8 7 5 34 29
12 12 20 19 24 22 29 6 17 35 27 29 14 18 5 4 8

21 27 6 9 12 9 3 7 27 34 4 10 8 7 2 21 17 12
16 9 19 0 22 29 23 31 35 17 29 14 2 5 4 8 8

We now consider the 3-minors (3×3 sub-determinants) of the matrix
∑5

i=1 λiCfi

as polynomials in λ1, λ2, λ3, λ4, λ5. There are 65450 3-minors of a 5×35 matrix,
so we obtain 65450 homogeneous cubic equations in λ1, λ2, λ3, λ4, λ5. We give
below as an example the coefficients of the “upper left” such minor with respect
to the lexicographical ordering λ3

1, λ
2
1λ2, . . . , λ4λ

2
5, λ

3
5.

11 33 28 14 4 32 22 2 16 0 31 11 18 27 14 25 27 24
2 31 17 7 9 20 7 1 18 2 17 3 33 5 11 35 3

As there are only 35 cubic monomials in λ1, . . . , λ5, this cubic system clearly
has the potential for solution by linearisation (Section 4.1), and the linearisation



matrix is a 65450×35 matrix. This matrix has rank 34 and the first 34 rows of
the echelon form are the matrix (I34|v), where the components of the vector v
of length 34 are given below.

23 7 35 3 16 15 1 17 29 5 11 34 2 23 24 11 18
10 4 16 13 20 36 7 25 6 28 26 32 35 14 26 3 16

By considering the appropriate components of v, we obtain

0 =
(
λ1λ

2
5 + 24λ3

5

)
=
(
λ2λ

2
5 + 25λ3

5

)
=
(
λ3λ

2
5 + 14λ3

5

)
=
(
λ4λ

2
5 + 16λ3

5

)
.

As λ5 = 0 would give a matrix of rank 0, we obtain

λ1 = 13λ5, λ2 = 12λ5, λ3 = 23λ5 and λ4 = 21λ5.

We can now construct the polynomial g = 13f1 + 12f2 + 23f3 + 21f4 + f5.
The coefficients of this polynomial with respect to the lexicographic monomial
ordering x4

0, x
3
0x1, . . . , x3x

3
4, x

4
4 are given by the array below.

9 16 34 16 32 11 27 23 26 32 18 31 22 1
29 15 8 30 27 6 4 26 35 14 7 8 34 26
30 36 10 5 23 22 1 6 0 13 24 28 7 22
11 14 2 31 25 4 10 31 13 27 18 30 7 9
29 24 23 5 32 14 36 32 18 33 14 24 23 24

The 35×5 matrix C
(3)
g = 13C(3)

f1
+ 12C(3)

f2
+ 23C(3)

f3
+ 21C(3)

f4
+ C

(3)
f5

of third
partial derivatives can be used to find the factorisation of g. The transpose of
C

(3)
g is given by the array below.

31 22 19 22 7 7 17 9 15 17 36 25 14 2 5 16 16 23
17 12 4 26 33 14 14 11 31 15 23 36 20 30 9 7 6

22 7 17 9 15 16 16 23 17 12 4 26 33 14 14 33 0 4
33 1 14 7 7 28 8 1 13 8 20 31 26 14 36 23 5

19 17 17 36 25 16 12 4 26 11 31 15 23 36 20 0 1 14
7 1 13 8 20 31 26 31 26 33 18 10 17 10 35 27 34

22 9 36 14 2 23 4 33 14 31 23 36 30 9 7 4 14 7
28 13 20 31 14 36 23 26 18 10 10 35 27 15 10 22 27

7 15 25 2 5 17 26 14 14 15 36 20 9 7 6 33 7 28
8 8 31 26 36 23 5 33 10 17 35 27 34 10 22 27 21

This matrix C(3)
g has rank 2 (by construction) and any row is a linear combina-

tion of the rows (1, 0, 7, 24, 12) and (0, 1, 28, 21, 12). Thus the linear factors of g
are a linear combination of x0 +7x2 +24x3 +12x4 and x1 +28x2 +21x6 +12x4.
The factorisation of g is Quadratic×Linear2, so in this case we need only find
this unique linear factor of g. If g had more distinct linear factors, then we
would be in the situation discussed in Section 7.4. We can now factorise g by a
small search through all the possible such linear combinations or by some other
method to find that the only linear factor of g is

x4 + 21x3 + 31x2 + 6x1 + 28x0.

Four Variables

We can now eliminate a variable from the equation system. We use the linear
factor of g to make the substitution x4 = −(21x3 + 31x2 + 6x1 + 28x0) in the



original equation system. This gives a new equation system f ′1 = f ′2 = f ′3 =
f ′4 = 0 of four independent quartic equations in the four variables x0, x1, x2, x3.
The coefficients of these polynomials with respect to lexicographic monomial
ordering are given below.

35 13 21 26 13 10 0 33 15 23 5 13 13 8 2 34 5 28
4 19 23 3 3 7 28 14 35 14 15 34 17 7 10 4 31

14 32 10 5 35 11 18 2 23 25 6 28 20 8 0 9 33 29
23 18 15 23 7 5 27 35 30 21 15 9 30 23 1 23 16

27 21 34 15 2 3 27 1 1 32 19 16 17 4 2 6 3 32
7 35 12 17 23 25 25 31 34 25 27 13 5 2 5 15 1

9 21 9 12 17 19 6 7 6 30 22 14 15 17 18 10 8 28
4 27 6 25 31 14 0 4 27 30 32 5 36 17 24 21 33

We now apply the GeometricXL algorithm to this new equation system. The ma-
trices C(3)

f ′i
of third partial derivatives for each polynomial f ′i are 20×4 matrices,

and we give the transpose CT
f ′i

of each of these matrices below.

26 4 15 8 15 20 0 21 30 18 30 26 26 16 2 31 30 19 8 3
4 15 20 0 30 26 26 16 2 31 34 18 18 28 19 19 25 28 30 19

15 20 21 30 26 16 2 30 19 8 18 28 19 25 28 30 1 5 3 24
8 0 30 18 26 2 31 19 8 3 18 19 19 28 30 19 5 3 24 4

3 7 23 30 29 22 36 8 9 26 36 19 3 16 0 18 13 21 9 34
7 29 22 36 36 19 3 16 0 18 27 27 5 20 17 29 32 5 30 17

23 22 8 9 19 16 0 13 21 9 27 20 17 32 5 30 17 27 4 27
30 36 9 26 3 0 18 21 9 34 5 17 29 5 30 17 27 4 27 14

19 15 19 16 8 6 17 4 2 17 3 32 34 8 2 12 18 27 14 25
15 8 6 17 3 32 34 8 2 12 29 28 27 26 13 13 19 13 17 4
19 6 4 2 32 8 2 18 27 14 28 26 13 19 13 17 9 12 20 16
16 17 2 17 34 2 12 27 14 25 27 13 13 13 17 4 12 20 16 24

31 15 17 35 31 1 12 28 12 9 21 28 30 34 18 20 11 19 8 14
15 31 1 12 21 28 30 34 18 20 33 2 1 19 0 16 14 23 27 30
17 1 28 12 28 34 18 11 19 8 2 19 0 14 23 27 13 28 22 15
35 12 12 9 30 18 20 19 8 14 1 0 16 23 27 30 28 22 15 15

As before, we need to find a linear combination of these matrices with rank
2, so we consider the 3-minors of the matrix

∑4
i=1 λiCf ′i

. There are 4560 3-
minors of a 20×4 matrix, so we obtain 4560 homogeneous cubic equations in the
20 cubic monomials in λ1, λ2, λ3, λ4. The 4560×20 linearisation matrix for this
cubic system in λi has rank 19, and the first 19 rows of the echelon form are
the matrix (I19|v′), where the vector v′ is of length 19 with components given
below.

23 34 30 12 2 17 29 15 6 32 11 1 30 27 33 28 26 3 16

By considering the appropriate components of v, we obtain

0 =
(
λ1λ

2
4 + 32λ3

4

)
=
(
λ2λ

2
4 + 28λ3

4

)
=
(
λ3λ

2
4 + 16λ3

4

)
As λ4 = 0 would give a matrix of rank 0, we obtain

λ1 = 5λ4, λ2 = 9λ4 and λ3 = 21λ4.

We can now construct the polynomial g′ = 5f ′1 + 9f ′2 + 21f ′3 + f ′4. The coeffi-
cients of this polynomial with respect to the lexicographic monomial ordering



x4
0, x

3
0x1, . . . , x2x

3
3, x

4
3 are given by the array below.

26 1 30 21 32 9 32 26 13 6 19 1 25 28 33 17 23 28
8 20 27 12 0 27 20 4 2 0 32 11 15 5 3 8 20

We calculate C(3)
g′ = 5C(3)

f ′1
+ 9C(3)

f ′2
+ 21C(3)

f ′3
+ C

(3)
f ′4

, the 20×4 matrix of third
partial derivatives of g′. Its transpose is given by the array below.

32 6 32 15 17 18 27 30 26 24 3 2 13 19 33 34 27 19 16 9
6 17 18 27 3 2 13 19 33 34 19 35 0 34 3 16 12 0 27 29

32 18 30 26 2 19 33 27 19 16 35 34 3 12 0 27 27 30 12 11
15 27 26 24 13 33 34 19 16 9 0 3 16 0 27 29 30 12 11 36

The matrix C(3)
g′ has rank 2, so any row of C(3)

g′ is a linear combination of the
two rows (1, 0, 23, 24, 12) and (0, 1, 6, 4, 12). Thus the linear factors of g are a
linear combination of x0 + 23x2 + 12x3 and x1 + 6x2 + 4x3. This allows us to
factorise g′ by a small search through all the possible linear factors or by some
other method to find that the only linear factor of g is

x3 + 32x2 + 21x1 + 11x0.

Three Variables

We can now eliminate a second variable. The substitution x3 = −(32x2 +21x1 +
11x0) in the four variable equation system gives an equation system f ′′1 = f ′′2 =
f ′′3 = 0 of three independent quartic equations in the three variables x0, x1, x2.
The coefficients of these polynomials f ′′1 , f

′′
2 , f

′′
3 with respect to lexicographic

ordering are given by the array below.

31 30 35 11 0 33 23 22 6 22 8 7 6 6 36

1 11 3 14 3 36 35 32 5 0 30 21 12 13 4

19 15 30 8 0 9 14 13 29 6 5 27 3 28 0

We give the transpose of the 10×3 matrices C(3)
f ′′i

of third partial derivatives for
each polynomial f ′′i below.

4 32 25 7 0 21 27 7 12 21
32 7 0 27 7 12 7 5 24 36
25 0 21 7 12 21 5 24 36 13

24 29 18 19 6 33 25 27 10 0
29 19 6 25 27 10 17 15 11 4
18 6 33 27 10 0 15 11 4 22

12 16 32 32 0 36 10 26 21 36
16 32 0 10 26 21 9 14 12 20
32 0 36 26 21 36 14 12 20 0

We consider the 3-minors of the matrix
∑3

i=1 λiCf ′′i
to obtain 120 homogeneous

cubic equations in the 10 cubic monomials in λ1, λ2, λ3. The 120×10 linearisation
matrix for this system has rank 9, and the first 9 rows of the echelon form are
the matrix (I9|v′′) where v′′ is a vector of length 9 with components given below.

31 18 10 20 7 8 14 16 13



We thus obtain the equations

λ1λ
2
3 + 8λ3

3 = λ2λ
2
3 + 13λ3

3 = 0, so λ1 = 29λ3 and λ2 = 24λ3,

as only nonzero solutions are permissible. We can now construct the polynomial
g′′ = 29f ′′1 + 24f ′′2 + f ′′3 . The coefficients of this polynomial with respect to the
lexicographic monomial ordering are given below.

17 2 7 34 35 17 4 13 27 15 32 31 21 33 30

The transpose of the matrix Cg′′ = 29Cf ′′1
+ 24Cf ′′2

+ Cf ′′3
of third partial

derivatives is given by the array below.

1 12 5 25 33 31 24 26 17 16
12 25 33 24 26 17 28 1 10 13
5 33 31 26 17 16 1 10 13 17

This matrix has rank 2 and is spanned by the rows (1, 0, 20) and (0, 1, 8), so the
linear factors of g′′ are linear combinations of (x0 + 20x2) and (x1 + 8x2). Thus
we find that the only linear factor of g′′ is

x2 + 27x1 + 17x0.

Two Variables

We can now make the substitution x2 = −(17x0 + 27x1) to obtain the bivariate
equation system f ′′′1 = f ′′′2 = 0, where the polynomials are given by

f ′′′1 = 35x4
0 + 25x3

0x1 + 5x2
0x

2
1 + 31x0x

3
1 + 8x4

1

= (x1 − 2x0)(x1 − 31x0)(8x2
1 + 36x1x0 + 31x2

0)
and f ′′′2 = 5x4

0 + 14x3
0x1 + 27x2

0x
2
1 + 35x0x

3
1 + 13x4

1

= (x1 − 2x0)(13x3
1 + 24x2

1x0 + x1x
2
0 + 16x3

0).

Thus we can deduce that x1 = 2x0, and hence find the unique (projective)
solution to the original equation system as

(x0, x1, x2, x3, x4)
T =

〈
(1, 2, 3, 4, 5)T

〉
.


