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Abstract. In this paper we provide a simple, concrete and improved security analysis of Paral-
lelizable Message Authentication Code or PMAC. In particular, we show that the advantage of any
distinguisherA at distinguishing PMAC from a random function is at most (5qσ − 3.5q2)/2n. Here,
σ is the total number of message blocks in all q queries made byA and PMAC is based on a random
permutation over {0, 1}n. In the original paper of PMAC by Black and Rogaway in Eurocrypt-2002,
the bound was shown to be (σ + 1)2/2n−1. In FSE-2007, Minematsu and Matsushima provided a
bound 5`q2/(2n − 2`), where ` is the number of blocks of the longest queried made by the distin-
guisher. Our proposed bound is sharper than these two previous bounds.
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1 Introduction

A keyed family of functions is known as a pseudorandom function or PRF if it is hard
to distinguish from a (uniform) random function. (whose output is uniformly and in-
dependently distributed on the output space). Similarly, if a family is indistinguishable
from (uniform) random permutation then we say it as a pseudorandom permutation
or PRP. Modes of operation is a method which extends a PRF (or PRP) of smaller
domain into a PRF (or PRP) of arbitrary domain. To our knowledge, the first known
modes of operation is Cipher Block Chaining or CBC [1] which extends small domain
PRP into a large domain PRF. It is a sequential modes of operation. There are many
literatures in extending the definition to arbitrary domain. We list some of these as
XCBC, TMAC [9], OMAC [6]. All these constructions are CBC type, sequential and
reducing key size mainly. On the other hand, Black and Rogaway [5] in Eurocrypt-
2002 proposed a parallelizable modes of operation called as a Parallelizable Message
Authentication Code or PMAC. It would be more suitable and efficient where a par-
allel environment is possible. At the same time it can be implemented in sequential
with almost same performance as CBC types modes of operations. Thus, it would be
worthwhile to have an improved PRF-security analysis of PMAC. Besides PMAC and
all CBC-type modes of operations, we have a wide class of directed acyclic graph or
DAG based modes of operations found in [7, 12]. There are other modes of operations
based on different universal hash families [8, 4, 13].

Message authentication code or MAC is an important object in cryptography, There
are two popular security notions for MAC, namely unforgability and PRF-security.
Since PRF is a strong security notion we mainly consider PRF security analysis. In
particular we consider PRF-security of PMAC based on a small domain PRP. Here, we
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consider a distinguisher which can make at most q queries altogether having at most
σ many blocks with ` as the maximum block length among all queries. Advantage of
a distinguisher roughly measures the success probability to distinguish a keyed family
of functions and arbitrary domain uniform random functions.

In all original papers of all known modes of operations, the advantages are O( σ2

2n )
(sometimes a weaker form O( `2q2

2n )). For example, Black and Rogaway in Eurocrypt-

2002 provided a security bound for PMAC which was (σ+1)2

2n−1 . Later Bellare, Pietrzak
and Rogaway [2] in Crypto-2005 provided a different (and improved in some cases)
bound of the form 12`q2

2n + o( `q2

2n ) for CBC with prefix-free messages. Recently, Mine-
matsu and Matsushima [11] in FSE-2007 have provided a new bound 5`q2

2n−2` (or a sim-

pler form 10`q2

2n ) for PMAC. Unfortunately, these bounds can be much weaker for some
kind of attackers. For example, for PMAC, if an attacker makes only one query of
large block length ` = q and all other queries have block length one then the original
bound [5] for PMAC is 8q2

2n whereas the recent bound is at least 5q3

2n [11] which is cubic
in q. Similarly, the improved bound of CBC for prefix-free message [2] would be an
improved bound only if ` ≥ 4.

Our work. In this paper we provide an improved bound (in a true sense) for PMAC
based on a random permutation for all possible distinguishers (in other words for all
choices of parameters `, q and σ). As we have discussed in the previous paragraph that
the two known new bounds for PMAC are not always improved bounds. We show that
the advantage for any distinguisher of PMAC is at most 5qσ−3.5q2

2n which is always less
than the original bound [5] as well as the recent bound [11].

Now we briefly describe why we are getting improved bound of the form qσ
N instead

of σ2

N . When adversary is making q queries with total σ many blocks then we have
roughly σ many intermediate inputs to the underlying block cipher. Among which q
many inputs are final inputs (output of which is the final output). Probability of colli-
sion between any final input and intermediate input is roughly 1

2n on the average and
there are qσ such pairs. Given that final inputs are completely new among all inter-
mediate inputs the distribution of final output is very close to the uniform distribution
and hence it is difficult to distinguish from an uniform random function. This is why,
we get an improved bound of the form qσ

2n . If we consider the event that all intermedi-
ate inputs are distinct then we would likely to get the bound of the form σ2

N . Thus, in
case of improved bound, collision among all intermediate non-final inputs are allowed.
Here, we provide a counting based, completely independent and concrete proof for the
computation of collision probability. A similar and probabilistic approach can be found
in [10].

Organization of the paper. In Section 2 we briefly state MAC and its related se-
curity notions. Then we provide some basic results and terminologies in Section 3
which would be used in this paper. In Section 4, we provide a complete definition of
PMAC. An improved security bound is proved in Section 5 and finally we conclude
with possible future works in Section 6.
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2 Message Authentication Codes (MAC) and its security notions

MAC or Message Authentication Code

A MAC is a family of functions {Fk}k∈K where Fk : M→ T , M is a message space,
T is a set of all tag space and k ∈ K is a secret key chosen uniformly from a key space.
If t = Fk(M) then t is called the tag of the message M . In this paper, we assume the
following :

(1) T = F2n , the finite field of size 2n. We can represent F2n by {0, 1}n with field
addition + (or ⊕, XOR) and field multiplication ∗ (for a suitably chosen primitive
polynomial of degree n). In this paper the choice of the polynomial is not impor-
tant and hence we fix a primitive polynomial and the multiplication ∗ on {0, 1}n

is defined based on the polynomial. We denote 0 = 0n for the additive identity.

(2) M = {0, 1}≤L = ∪i≤L{0, 1}i (for a sufficiently large integer L). For example,
L = 264.

(3) K = {0, 1}KeyLen. The value of KeyLen or key size depends on the construction.
For example, PMAC based on AES has key size 128 with n = 128.

A distinguisher and its advantage

Func(M, T ) is the set of all functions from M to T . Let {Fk}k∈K be a keyed function
family whose security is to be considered. Let K be the uniform random variable on K
and f = fK is the induced random variable taking values on Func(M, T ). Any random
variable taking values on Func(M, T ) is called as a random function. Let u denote
the uniform random variable on Func(M, T ) known as uniform random function.

A distinguisher AO is an oracle algorithm where O is an oracle from Func(M, T ).
A distinguisher can make at most q queries adaptively consisting of at most σ many
“blocks” (the definition of block will be given later) with ` as the number of blocks of
longest query. Finally, it returns either 1 or 0. Advantage for a distinguisher AO is
computed as follows :

Advf,u(A) ∆= Advf (A) ∆=
∣∣ Pr[Af = 1]−Pr[Au = 1]

∣∣.
Advf,u(q, σ, `) ∆= Advf (q, σ, `) ∆= maxA Advf (A)

where the maximum is taken over all distinguishers A making at most q queries con-
sisting of at most σ many blocks with ` as the maximum number of blocks of a query.
Since we consider the distinguisher without any time restriction it is enough to con-
sider a deterministic algorithm. A random function f is said to be (q, σ, `, ε)-PRF if
Advf (q, σ, `) ≤ ε. If we have a bound of advantage independent of ` (or σ) then we
simply drop ` (or σ respectively). MAC forgery security is also a popular security no-
tion for MAC algorithms. In this paper we only consider PRF security as it is a stronger
security notion than the MAC forgery security.
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3 Some useful results and terminologies

In this section we state two interpolation theorems. The strong version of the theorem
would be used to provide our improved security analysis. We also present some related
terminologies on tuples and permutations.

3.1 Interpolation theorem

We say that M = (M1, . . . ,Mq) is q-distinct if M i’s are distinct where M i ∈ M.
Suppose f ′ ∈ Func(M, {0, 1}n) and M is q-distinct. We write

f ′(q)(M) ∆= (f ′(M1), . . . , f ′(Mq))

and call as an q-interpolation of f ′. Now we describe our main tool which says that
if the q-interpolation probability for f is close to that of u then the advantage for any
distinguisher is also small. We denote ||M ||n = d |M |

n e and called it as the number of
blocks of M . A similar version of the result can be found in [3, 14].

Theorem 3.1. (interpolation theorem)
Suppose for each q-distinct M = (M1, . . . ,Mq) with

∑q
i=1 ||M i||n ≤ σ and any y =

(y1, . . . , yq) ∈ ({0, 1}n)q we have

Pr[f (q)(M) = y] ≥ (1− ε)× Pr[u(q)(M) = y]

then Advf (q, σ) ≤ ε where f is a random function and u is an uniform random func-
tion on Func(M, {0, 1}n).

For any y ∈ {0, 1}nq, and any distinct M, Pr[u(q)(M) = y] = 1
Nq where N = 2n.

Thus above theorem says that if

∀y ∈ ({0, 1}n)q, and ∀ q-distinct M, Pr[f (q)(M) = y] ≥ 1− ε

Nq

⇒ Advf (q, σ) ≤ ε.

In this paper we need the strong version of the theorem to prove our improved bound.

Theorem 3.2. (strong interpolation theorem)
Suppose, for all y ∈ ({0, 1}n)q \ Bad and for all q-distinct M, we have Pr[f (q)(M)
= y] ≥ 1−ε1

Nq where Bad ⊆ ({0, 1}n)q. Then, Advf (q, σ) ≤ ε1 +ε2 provided |Bad|
Nq ≤ ε2.

3.2 Some more results and terminologies

We denote P(m, r) = m(m−1) · · · (m−r+1) where r ≤ m are nonnegative integers.
The number of ways we can choose distinct a1, . . . , ar from a set of size m is P(m, r).
We denote P(N, q) = Nq(1− δN,q). Thus, δN,q = 1− P(N,q)

Nq .
Consider an s-tuple a = (a1, . . . , as). We call the size of the tuple, denoted as |a| by

the number of distinct elements. For example, |(1, 2, 2, 3, 5, 1, 3)| = 4. Two s-tuples
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a and b are said to be matching tuple (or a is matching tuple with respect to b) if
ai = aj if and only if bi = bj . For example, (x, y, y, z, w, x, z) is matching tuple w.r.t.
(1, 2, 2, 3, 5, 1, 3). Trivially, for any two matching tuples a and b, |a| = |b|. Now we
have a following simple and useful lemma. We leave readers to verify the lemma by
themselves.

Lemma 3.3. Given a tuple a of size r, the total number of matching tuples w.r.t. a
whose elements are from a set of size m is P(m, r).

Suppose a and b are matching tuples with elements from S. Then the total number
of permutations π on S such that π(a1) = b1, . . . , π(as) = bs is (|S| − |a|)!. The con-
ditions π(a1) = b1, . . . , π(as) = bs actually restrict on outputs of |a| inputs. Outputs
of remaining (|S| − |a|) many inputs can be defined in (|S| − |a|)! ways.

Now we state some elementary results which would be used in this paper frequently.

Lemma 3.4. (1) Suppose a ≤ b, c are positive integers then a
b ≤

a+c
b+c .

(2) For 0 < a1, a2, . . . , as < 1,
∏s

i=1(1− ai) ≥ 1−
∑s

i=1 ai.

4 Definition of PMAC

In this section we will describe PMAC. Later we will analyze the security of it. Let
π : {0, 1}n → {0, 1}n be a permutation. Now we define an extended function, known
as PMAC function, Pπ : M → {0, 1}n. We first define a padding rule which makes
message size a multiple of n if it is not so.

pad(M) = M ‖ 10s if n- |M |
= M otherwise

}
(4.1)

where s is the smallest nonnegative integer such that s + 1 + |M | is a multiple of n.

Algorithm PMAC : Y = Pπ(M)

step-1 Write pad(M) = x1 ‖ · · · ‖ x` ‖ z, where ` ≥ 0 and |x1| = · · · = |x`| = |z| =
n. \\ We say these xi’s and z as blocks. If ` = 0, then pad(M) is nothing but z.
Thus, ` + 1 is the total number of message blocks for pad(M).

step-2 Compute w = π(0). \\ Since π is a random permutation and kept secret the
value of π(0) has some distribution and can be used as a part of the key of the
algorithm.

step-3 Compute vi = xi + ci ∗ w, 1 ≤ i ≤ `. \\ ci’s are some fixed distinct nonzero
constants as given in [5]. For our security analysis, we only need that ci 6= 0 and
they are distinct. ({0, 1}n,+, ∗) is any Galois field GF (2n). One can think + as
⊕ as it is the simplest operation in both hardware and software.
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step-4 Compute wi = π(vi), 1 ≤ i ≤ `.

step-5 Compute v = z + ∆ +
∑

1≤i≤` wi, where ∆ = c ∗ w if |M | is multiple of n,
otherwise we set ∆ = 0. \\ Again, c is a nonzero fixed constant which is different
from c1, c2, . . . , and it is given in [5].

step-6 Finally, Y
∆= Pπ(M) = π(v).

Figure 1. PMAC Algorithm : pad(M) = x1 ‖ · · · ‖ x` ‖ z, vi = xi + ci ∗ w and
∆ = c ∗ w if n

∣∣ |M | otherwise ∆ = 0. Pf (M) = Y . Here the underlying permutation
is f .

0 and vi’s are intermediate inputs, w and wi’s are intermediate outputs and v is
the final input. The final input v is said to be new if v 6= 0 and v 6= vi, 1 ≤ i ≤ `.
Given a message M , all these intermediate inputs, intermediate outputs, final inputs
depend only on the underlying permutation π. If v is new then we also say that π is
new for M . We can define similarly for q distinct messages M1, . . . ,Mq.

(1) We say final inputs are new if all q final inputs are distinct and different from all
intermediate inputs.

(2) The underlying permutation π is said to be new for M = (M1, . . . ,Mq) if the
final inputs are new.

(3) A new permutation π is said to be a good permutation for M with respect to a
q-distinct y = (y1, . . . , yq) if the set of all intermediate outputs are disjoint from
the set {y1, . . . , y

q}.

5 Improved security analysis of PMAC

Now we give a lower bound of size of the set

Iy = {π : Pπ(M1) = y1, . . . , Pπ(Mq) = yq}
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where M = (M1, . . . ,Mq) and y = (y1, . . . , yq) are any q-distinct tuples. This esti-
mation provide a lower bound of interpolation probability and hence we can use strong
interpolation theorem.

Let ||M i||n = `i and write M i = M i
1 ‖ · · · ‖ M i

`i
‖ zi, where |M i

j | = |zi| = n,
1 ≤ i ≤ q and 1 ≤ j ≤ `i. We write σ′ =

∑q
i=1 `i and σ = σ′ + q and N = 2n. Let

∆ = c ∗ w if n
∣∣ |M | otherwise ∆ = 0. Given a permutation π,

(1) w[π] = π(0), vi
j [π] = ci ∗ w[π] + M i

j .

(2) wi
j [π] = π(vi

j [π]).

(3) vi[π] = zi + ∆i +
∑

1≤j≤`i
wi

j [π].

Thus, while we compute Pπ(M1), . . . ,Pπ(Mq), the elements 0, vi
j [π] are the set

of all intermediate inputs and vi[π] is final input for the message M i. Similarly,
w[π], wi

j [π] are the set of all intermediate outputs. We fix the message tuple M =
(M1, . . . ,Mq). Note that, the set of all intermediate inputs and final inputs are com-
pletely determined by the set of all intermediate outputs (not even on the permutation!).

(1) w[π] determines all intermediate inputs vi
j [π] = ci ∗ w[π] + M i

j , 1 ≤ j ≤ `i,
1 ≤ i ≤ q.

(2) {wi
j [π] : 1 ≤ j ≤ `i, 1 ≤ i ≤ q} determines all final inputs as vi[π] = zi + ∆i +∑
1≤j≤`i

wi
j [π].

Thus, we have the following definitions.

Definition 5.1.
(1) Given w ∈ F2n , we define corresponding intermediate input tuple as

V′
w = (0, v1

1 , . . . , v
1
`1

, . . . , vq
1 , . . . , vq

`q
) where vi

j = ci ∗ w + M i
j .

(2) W[π] = (w[π], w1
1[π], . . . , w1

`1
[π], . . . , wq

1 [π], . . . , wq
`q

[π]).

(3) V0[π] = (0, v1
1[π], . . . , v1

`1
[π], . . . , vq

1 [π], . . . , vq
`q

[π]) = V ′
π(0) (corresponding inter-

mediate input tuple).
(4) V[π] = (0, v1

1[π], . . . , v1
`1

[π], . . . , vq
1 [π], . . . , vq

`q
[π], v1[π], . . . , vq[π]) = VW [π] (cor-

responding input tuple).

Let Ts denote the set of s-tuples whose elements are from F2n . A tuple W =
(w,w1

1, . . . , w
1
`1

, . . . , wq
1 , . . . , wq

`q
) is said to be permutation compatible if W and V′

w

are matching tuples and we denote the set of all permutation compatible tuples by
T perm

σ′+1 ⊂ Tσ′+1. Trivially, V0[π] and W[π] are matching tuple as W[π] is the interme-
diate output tuple for the intermediate input tuple V0[π] with respect to the permutation
π.
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Conversely, if W and V′
w are matching tuples then we have a permutation π with

π(0) = w, π(vi
j) = wi

j . For any permutation π satisfying above, we have V0[π] = V′
w

and W[π] = W. We define a mapping

W : Perm(F2n) → Tσ′+1 : W(π) = W[π]

where Perm(F2n) denotes the set of all permutations of F2n . We denote N = 2n =
|F2n |.

Lemma 5.2. W(Perm(F2n)) = T perm
σ′+1 and for any tuple W ∈ T perm

σ′+1 of size s there are
(N − s)! permutations π such that W(π) = W.

Proof. The proof follows from the above discussion. Since |W| = s, we can choose
the above permutations in (N − s)! ways. 2

We partition the set of all permutation compatible (σ′+1)-tuples T perm
σ′+1 (or we simply

denote T since σ′ is fixed) by tσ′+1
i=1 T

perm
σ′+1 [i] where T perm

σ′+1 [i] or T [i] is the tuples of size
i. Let ni = |T [i]| then from the above Lemma 5.2 we have N ! =

∑σ′+1
i=1 ni× (N − i)!.

Two tuples are said to be disjoint if they do not have any common elements. Thus,
if X1 and X2 are two disjoint tuples then we have, |(X1, X2)| = |X1|+ |X2|. A tuple
W = (w,w1

1, . . . , w
1
`1

, . . . , wq
1 , . . . , wq

`q
) is said to be y-disjoint if W and y are disjoint.

We have already defined new permutation. We can describe these in terms of the new
terminologies as in below.

(1) A permutation π is said to be new if (v1[π], . . . , vq[π]) is q-distinct tuple and
disjoint from V0[π].

(2) For a q-distinct y, a good permutation π satisfies two conditions :

a) π is new : (v1[π], . . . , vq[π]) is q-distinct and disjoint from V0[π],
b) W[π] and y are disjoint.

Proposition 5.3. The number of permutations π such that W[π] is y-disjoint is at least
N !(1− qσ−q2−σ+2q

N ).

Proof. Let S = {0, 1}n \ {y1, . . . , yq}. Write S = ti≥1Si (disjoint union) where
Si = {a ∈ S : |V′

a| = i}. For a fixed choice of a ∈ Si, the number of matching
tuples W = (a,w1

i , . . . , w
q
`q

) with respect to Va where the elements are chosen from
S is P(N − q, i− 1) since we can choose (i− 1) distinct elements from the set of size
N−q. For any such W, there are (N− i)! many permutations π such that W[π] = W.
Hence we have

∑σ′+1
i=1 |Si|× (N − i)!×P(N −q, i−1) permutations π such that W[π]

is y-disjoint. Now for each 1 ≤ i ≤ σ′ + 1,

P(N−q, i−1) ≥ P(N−1, i−1)×(1− q − 1
N

)i−1 ≥ P(N−1, i−1)×(1− σ′(q − 1)
N

).
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and hence,
σ′+1∑
i=1

|Si| × (N − i)!×P(N − q, i− 1) ≥ N !(1− q

N
)(1− σ′(q − 1)

N
)

≥ N !(1− qσ − q2 − σ + 2q

N
).

2

Proposition 5.4. The number of new permutations for 2-distinct (M1,M 2) is at least
N !(1 − 4`1+4`2+3

N ). In general, the number of new permutations for q-distinct M =
(M1, . . . ,Mq) is at least N !(1− 4(q−1)σ′+1.5q(q−1)

N ).

Proof of the proposition is given at the end of the section. It needs several cases. The
second part of the proposition directly follows from the first part. Since a permutation
is new for M implies the permutation is new for M i1 ,M i2 for all choices of i1 and i2.
Note that

∑
i `i = σ′. From Proposition 5.3 and Proposition 5.4, we can say that the

total number of good permutations is at least N !(1− 5qσ−3.5q2

N ). Let IG be the set of all
good permutations.

Lemma 5.5. For q-distinct y, |Iy ∩ IG| ≥ |IG|
P(N,q) .

Proof. Consider the restricted function W : IG :→ Tσ′+1. Now for any W ∈ W(IG)
with |W| = i we have (N − i)! permutations π such that W(π) = W. Since all
these permutations are good (that is, final inputs are new and intermediate outputs
are disjoint from {y1, . . . , yq}) there are (N − i − q)! many permutations π such that
W(π) = W and π(vi) = yi, 1 ≤ i ≤ q. Let mi be the number of tuples from W(IG)
with size i. Thus, |IG| =

∑
i mi(N − i)! and |IG ∩ Iy| =

∑
i mi(N − i − q)! ≥

1
P(N,q)

∑
i mi(N − i)! ≥ |IG|

P(N,q) . 2

|Iy|
N !

≥ |IG|
P(N, q)×N !

≥ 1
Nq

×
(1− 5qσ−3.5q2

N )
1− δN,q

≥ (1− ε1)
Nq

where ε1 = 5qσ−3.5q2

N − δN,q. Let Bad = {y : y is not q-distinct }. So, |Bad|
Nq =

1 − P(N,q)
Nq = δN,q. By using strong interpolation theorem, we have AdvPΠ

(q, σ) ≤
5qσ−3.5q2

N .

Theorem 5.6. (Improved security bound for PMAC)
Let Π be a random function taking uniform distribution on Perm({0, 1}n). Let PΠ be
the PMAC random function based on the uniform random permutation Π. Then for
any distinguisher A making at most q many queries having at most σ many blocks in
total, has distinguishing advantage less than 5qσ−3.5q2

2n . Thus,

AdvPΠ
(q, σ) ≤ 5qσ − 3.5q2

2n
.



158 Mridul Nandi and Avradip Mandal

This is indeed an improved bound

Bellare, Pietrzak and Rogaway [2] have shown that AdvCBC(q, `) ≤ 12`q2

2n + 64`4q2

22n

where CBC is the cipher-block-chaining MAC algorithms for prefix-free messages and
` is the maximum block length among all q queries. The original bound of CBC [1] is
`2q2

2n . Bellare, Pietrzak and Rogaway [2] have claimed their new bound as an improved
bound. But it is easy to see that if we choose ` ≤ 3 then the original bound [1] is better
than the new bound [2].

In this paper we consider PMAC. Let us write down all the bounds till now we have
for PMAC. In the original paper by Black and Rogaway [5], the bound is (σ+1)2

2n−1 . Very

recently, Minematsu and Matsushima [11] in FSE-2007, have provided a bound 5`q2

2n−2` .
If an adversary is making (q − 1) queries of block length one and one query of block
length q. Then, σ = 2q − 1, ` = q and hence original bound becomes 8q2

2n , whereas
the recent bound is at least 5`3

2n which is in higher order of q. So, we should be careful
when we are looking for improved (in real sense) bounds.

In this paper, we have provided a bound 5σq−3.5q2

2n . The bound of the form σq/N is
better than `q2/N if the values of `i are more dispersed. If `i’s are close to ` then both
forms are similar. It is easy to see that for 1 ≤ q ≤ σ =

∑q
i=1 `i, and ` = maxi`i,

(1)
5qσ − 3.5q2

N
<

2(σ + 1)2

N
.

(2)
5qσ − 3.5q2

N
<

5`q2

N − 2`
.

The second inequality is trivial as σ ≤ `q. For the first inequality it is sufficient to show
that 4σ2 + 7q2 > 10qσ. This is trivially true since arithmetic mean of two positive
integers is always more than that of geometric mean. Thus, our bound is better than all
previously known bounds for PMAC.

From the above discussion we see that there are four forms of bounds are known,
namely, O(`2q2), O(σ2), O(`q2) and O(σq). Obviously O(`q2) is sharper than O(`2q2).
Above we have already made comparison between O(`q2) and O(σ2). Now we give
a comparison study between O(`q2) and O(σq). We know that σ ≤ `q and hence
σq = O(`q2). Note that σ =

∑q
i=1 `i and ` = maxi `i where `i denotes the number

of message blocks of ith query. If `i are scattered (in other words, σ � `q) then σq is
much sharper than `q2. On the other hand if `i’s are close to each other then σ ≈ `q
and hence both bounds are similar.

Proof of the Proposition 5.4

We first assume that `1, `2 > 0. We have four possible cases.
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Case-1 : `1 = `2 = ` (say), x1
1 = x2

1, . . . , x1
` = x2

`, z1 = z2

This case can happen only if pad(M1) = M1 = M2 ‖ 10s = pad(M2) (or in other
way). Let S = {w ∈ F2n : (v1

1 , v
2
1) is disjoint from (0, v1

2 , . . . , v
1
` , v

2
2 , . . . , v

2
`) and

∆1 + z1 6= ∆2 + z2}. Clearly, |S| ≥ N − `− 1 since

S = {0, 1}n \ ({
x2

j − x2
1

c1 − cj
: 2 ≤ j ≤ `} ∪ {

−x2
1

c1
} ∪ {z2 − z1

c
}).

We write S = tiSi (disjoint union) where Si = {a ∈ S : |Va| = i}. Now for each
a ∈ Si, there are P(N − 1, i− 2) tuples W1 = (a,w1

2, . . . , w
1
`1

, w2
2, . . . , w2

`2
) such that

W1 is matching with V1 = (0, v1
2 , . . . , v

1
`1

, v2
2 , . . . , v

2
`2

).

(1) For each such tuple we have at least (N − 2` − 2 − i) choices of w1
1 = w2

1
such that W = (a,w1

1, . . . , w
1
`1

, w2
1, . . . , w

2
`2

) is matching with Va and (v1, v2) is
disjoint from Va. This is true since we can choose

w1
1 ∈ {0, 1}n \ ({w1

j : 2 ≤ j ≤ `}∪{a}∪{w : v1 = 0, v1
j}∪{w : v2 = 0, v1

j , v
1}).

The size of the above set is at least N−(i−1)−(`+1)−(`+2) = N−2`−2− i.

(2) For each such tuple W, there are (N − i)! many permutations such that W(π) =
W. Hence, the number of new permutations is at least∑

i

|Si|P(N − 1, i− 2)(N − 2`− i− 2)(N − i)!

≥ N !× N − `− 1
N

× N − 2`− i− 2
N − i + 1

≥ N !(1− 3` + 4
N

).

Case-2 : `1 = `2 = ` (say) and x1
1 = x2

1, . . . , x1
` = x2

`, z1 6= z2

A similar analysis like Case-1 shows that there are at least N !(1− 3`+5
N ) many permu-

tations generating new final inputs. Thus, we ignore the detail proof of this case. Now
we assume that x1

1 · · ·x1
`1
6= x2

1 · · ·x2
`2

. Thus, we have either x1
1 = x2

1, . . . , x
1
`1

= x2
`2

or
x1

1 6= x2
1 (without loss of generality).

Case-3 : `2 > `1 : x1
1 = x2

1, . . . , x1
`1

= x2
`1

We want to choose W = (w,w1
1, . . . , w

1
`1

, w2
1, . . . , w

2
`2

)-tuple, such that (v1
1Z, v2

`2
, v1,

v2) is 4-distinct tuple and disjoint from (0, v1
2 , . . . , v

1
`1

, v2
2 , . . . , v

2
`2−1). Note that, here

we choose W such that w1
1 = w2

1, . . . , w
1
`1

= w2
`1

.

(1) Let S denote the set of all w such that (v1
1 , v

2
`2

) is 2-distinct and disjoint from
(0, v1

2 , . . . , v
1
`1

, v2
2 , . . . , v

2
`2−1).

Hence, w 6= x1
1−x2

j

cj−c1
,

x2
`2
−x2

j

cj−c`2
,−x1

1
c1

,−
x2

`2
c`2

for 2 ≤ j ≤ `2−1. Thus, |S| ≥ (N−2`2 +
2).
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We write S = tiSi, where Si = {a ∈ S : |Va| = i}. Now for each a ∈ Si, there
are P(N − 1, i− 3) tuples W1 = (a,w1

2, . . . , w
1
`1

, w2
2, . . . , w2

`2−1) such that W1 is
matching with V1 = (0, v1

2 , . . . , v
1
`1

, v2
2 , . . . , v

2
`2−1).

(2) We choose w1
1 6∈ (a,w1

2, . . . , w
1
`1

, w2
2, . . . , w

2
`2−1) such that v1 6= 0, v2

j : 1 ≤ j ≤ `2.
Thus, total number of choices of w1

1 is at least (N−i+2−`2−1) = (N−i−`2+1).
Similarly, we can choose w2

1 in (N − i − `2 − 1) ways (here we have two more
restrictions that w2

1 6= w1
1 and v2 6= v1).

(3) For each such tuple W, there are (N − i)! many permutations such that W(π) =
W. Hence, the number of new permutations is at least∑

i

|Si|P(N − 1, i− 3)(N − i)!(N − i− `2 − 1)(N − i− `2 + 1)

≥ N !× N − 2`2 + 2
N

× N − i− `2 − 1
N − i + 1

× N − i− `2 + 1
N − i + 2

≥ N !(1− 4`2 + 1
N

).

Case-4 : x1
1 6= x2

1

We want to choose (w,w1
1, . . . , w

1
`1

, w2
1, . . . , w

2
`2

)-tuple (some of them may be equal),
such that (v1

1 , v
2
1 , v

1, v2) is 4-distinct tuple and disjoint from (0, v1
2 ,. . . , v1

`1
, v2

2 , . . . ,v2
`2

).

(1) Let S denote the set of all w such that (v1
1 , v

2
1) is 2-distinct and disjoint from

(0, v1
2 , . . . , v

1
`1

, v2
2 , . . . , v

2
`2

).

Hence, w 6= x1
1−x1

i

ci−c1
,

x2
1−x2

i

ci−c1
,

x1
1−x2

j

cj−c1
,

x2
1−x1

j

cj−c1
,−x1

1
c1

,−x2
1

c1
for 2 ≤ i ≤ `1, 2 ≤ j ≤ `2.

Thus, |S| ≥ (N − 2`1 − 2`2 + 2).
We write S = tiSi, where Si = {a ∈ S : |Va| = i}. Now for each a ∈ Si, there
are P(N − 1, i − 3) tuples W1 = (a,w1

2, . . . , w
1
`1

, w2
2, . . . , w2

`2
) such that W1 is

matching with V1 = (0, v1
2 , . . . , v

1
`1

, v2
2 , . . . , v

2
`2

).

(2) We choose w1
1 6∈ (a,w1

2, . . . , w
1
`1

, w2
2, . . . , w

2
`2

) such that v1 6= 0, v1
i , v

2
j : 1 ≤ i ≤

`1, 1 ≤ j ≤ `2. Thus, total number of choices of w1
1 is at least (N − i + 2− `1 −

`2−1) = (N−i−`1−`2 +1). Similarly, we can choose w2
1 in (N−i−`1−`2−1)

ways (here we have two more restrictions that w2
1 6= w1

1 and v2 6= v1).

(3) For each such tuple W, there are (N − i)! many permutations such that W(π) =
W. Hence, the number of new permutations is at least∑

i

|Si|P(N − 1, i− 3)(N − i)!(N − i− `1 − `2 − 1)(N − i− `1 − `2 + 1)

≥ N !× N − 2`1 − 2`2 + 2
N

× N − i− `1 − `2 − 1
N − i + 1

× N − i− `1 − `2 + 1
N − i + 2

≥ N !(1− 4`1 + 4`2 + 1
N

).
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We note that in all these cases we have assumed that `1, `2 ≥ 1. Now we prove the
statement for other two possible cases where `1 or `2 can be zero.

(1) Let `1 = 0 = `2. Thus, v1 = c ∗ w + z1 or v1 = z1 (depending on the padding).
Similarly for v2. It is easy to see that there are at least (N − 3)(N − 1)! =
N !(1− 3

N ) new permutations.

(2) The last remaining case is `1 = 0, but `2 > 0. We choose w such that (v1, v2
1)

is disjoint from (0, v2
2 , . . . , v

2
`2

). There are at least (N − 2`2) such choices of
w. Now for each such choice w ∈ Si (as defined in case-3 or case-4), we have
(N − `2 − 1 − i) choices of w2

`2
such that v2 6∈ (0, v2

1 , . . . , v
2
`2

, v1) and w2
1 6∈

(w,w2
2, . . . , w

2
`2

). Thus, the number of new permutations is at least∑
i

|Si|P(N − 1, i− 2)(N − i)!(N − i− `2 − 1)

≥ N !× N − 2`2

N
× N − i− `2 − 1

N − i + 1

≥ N !(1− 3`2 + 2
N

).

Thus, the number of new permutations is at least N !(1− 4`1+4`2+3
N ).

6 Conclusion

This paper provides a simpler and improved upper bound 5qσ−3.5q2

2n for the distinguish-
ing advantage of PMAC. This bound is always better than the recent as well as the
original bound in a true sense. We have provided a purely combinatorial approach
which seems to be a strong tool in this areas of cryptography. As a future research
work, we hope our improved security analysis can be extended to have an improved
bound on a general class given in [7, 12] and other constructions such as XCBC, TMAC
and possibly OMAC.

Acknowledgments. We would like to thank the anonymous reviewers for their valu-
able comments on earlier drafts of this paper.
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