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Two attacks on a sensor network key distribution scheme
of Cheng and Agrawal
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Abstract. A sensor network key distribution scheme for hierarchical sensor networks was recently
proposed by Cheng and Agrawal. A feature of their scheme is that pairwise keys exist between any
pair of high-level nodes (which are called cluster heads) and between any (low-level) sensor node
and the nearest cluster head. We present two attacks on their scheme. The first attack can be applied
for certain parameter sets. If it is applicable, then this attack can result in the compromise of most if
not all of the sensor node keys after a small number of cluster heads are compromised. The second
attack can always be applied, though it is weaker.
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1 Introduction

There has been considerable recent interest in sensor networks that have a hierarchical
architecture. A commonly-studied model (see, for example, [10, 5]) is to assume the
existence of a powerful base station, a number of m high-level nodes (called cluster
heads) and a larger number, n, of (low level) sensor nodes. Typical values for these
parameters are n = 10000 and m = 100.

After deployment, any two cluster heads are assumed to be able to communicate
directly. A sensor node is only required to communicate with the nearest cluster head.
It is assumed that these communications can all be done directly (no intermediate nodes
required). It is also assumed that n/m sensor nodes are deployed in the vicinity of each
cluster head. Additional details of this model can be found in [10, 5].

It is not assumed that cluster heads are tamperproof, and therefore there is the pos-
sibility that cluster heads might be compromised. The attack model is the standard
“node capture” model. The adversary can observe all communications that take place
between nodes in the network, and the adversary can capture a number of nodes and
extract all the keys that are stored in them. We will mainly focus on a special attack
where the adversary compromises s out of the m cluster heads.

There have been many proposals for key distribution protocols for sensor networks.
See [3, 4, 7, 9, 12, 13] for several different approaches to this problem. The special case
of hierarchical networks has also received considerable attention, and key distribution
schemes for hierarchical networks have been presented in [5, 6, 8, 10, 14, 15, 17, 18].
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In this paper, we present an attack on the scheme proposed by Cheng and Agrawal
[5]. This scheme can be viewed as a generalization of a well-known scheme due
to Jolly, Kuscu, Kokate and Younis ([10]). A main motivation for the Jolly-Kuscu-
Kokate-Younis scheme is the low energy consumption overhead. Cheng and Agrawal’s
modification is intended to provide enhanced security, even when cluster heads are not
assumed to be tamperproof and they can be compromised by an adversary.

First, we summarize how the Cheng-Agrawal scheme works. Denote the cluster
heads by C1, . . . , Cm and the sensor nodes by S1, . . . , Sn. [5] assumes that there is a
predeployed pairwise key between the base station and every other node (a pairwise
key is a key that is held by exactly two nodes). The main objective of [5] is to describe
how pairwise keys are created between

• any two cluster heads (we call these cluster head keys), and
• any sensor node and the closest cluster head (we will refer to these keys as sensor

node keys).

The first objective is accomplished by using a Blom Scheme [1, 2]. We briefly sum-
marize the construction of a t-resilient Blom Key Predistribution Scheme as it would
be applied in the context of setting up pairwise keys for the m cluster heads. In what
follows, we assume for simplicity that the IDs of the m cluster heads are 1, . . . ,m,
respectively. We will denote by KC

i,j the cluster head key that is held by Ci and Cj .
Here is the Blom Scheme:

step 1 A prime number p is chosen, and for 0 ≤ i, j ≤ t, random elements ai,j ∈ Zp
are chosen such that ai,j = aj,i for all i, j. Then define the polynomial

f(x, y) =
t∑
i=0

t∑
j=0

ai,j x
iyj mod p.

step 2 For each cluster head Cr, define the polynomial

gCr
(x) = f(x, r) mod p =

t∑
i=0

ar,i x
i.

step 3 For each cluster head Cr, the coefficient vector (ar,0, . . . , ar,t) ∈ (Zp)t+1 is
stored in Cr.

step 4 For any two cluster heads Cr and Cs, the pairwise key is KC
r,s ∈ Zp is defined

to be KC
r,s = f(r, s), where Cr computes

KC
r,s = gCr(s)

and Cs computes
KC
r,s = gCs

(r).
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From well-known properties of the Blom Scheme (see, for example [16, Ch. 10]), it
follows that no set of t cluster heads can determine any information about the pairwise
key of two other cluster heads, but any set of t + 1 cluster heads can compute all
the pairwise keys in the scheme. In order to provide complete resilience of the cluster
node keys against any compromise of other cluster heads, it is suggested in [5] to set the
resilience of the Blom Scheme (namely, t) to be higher than the number of cluster nodes
(which is denoted by m). However, in this situation, it would be simpler and more
efficient (from the point of view of storage, see step 3) just to predeploy independent
pairwise keys between any two cluster heads, without using a Blom Scheme. However,
this modification does not affect the security of the scheme, nor does it affect the attacks
we will describe.

The second objective is realized using an “improved key distribution mechanism”
(IKDM) described in [5, §3]. Each sensor node Si is given one key, say Ki, before
deployment. Si is also given a list of ` identifiers of cluster heads, sayBi ⊆ {1, . . . ,m}.
Ki is computed as the sum of ` shares, each of which can be computed by one of the
cluster heads identified in Bi (recall that the number of cluster heads is m, so we
assume that m ≥ `).

Additional Blom Schemes are also used in the IKDM. In fact, a different Blom
scheme is associated with each cluster head. However, the bivariate polynomials as-
sociated with any of these Blom Schemes always have the first variable set equal to
the ID of that cluster head. So there is no point in using bivariate polynomials for the
cluster heads; it suffices for a different degree t univariate polynomial to be associated
with each cluster head. These polynomials, which will have coefficients defined over
the finite field Zp, will be termed CH-polynomials. The CH-polynomial assigned to Cj
will be denoted by gj(x).

Now, each share of a key Ki is computed by evaluating a CH-polynomial at the
point i. To be precise, Ki is defined as follows:

Ki =
∑
j∈Bi

gj(i), (1)

where the terms gj(i) are the shares of Ki. The shares and the keys are all elements of
Zp.

After deployment, the following protocol is carried out so the nearest cluster head
to Si, say Cp, can learn the value of the key Ki.

step 1 Si sends the list Bi to Cp (it is possible, but not required that p ∈ Bi).
step 2 For every j ∈ Bi, j 6= p, Cp obtains an encrypted share from Cj . That is, Cj

computes sj = eKC
j,p

(gj(i)) and sends sj to Cp (observe that share sj is encrypted
with the cluster head key KC

j,p). If p ∈ Bi, then Cp computes the share gp(i) by
itself.

step 3 Cp decrypts all the encrypted shares and computes the sum (1) to get Ki. Now
Si and Cp have a pairwise key.

The scheme in [10] is basically the case ` = 1 of the Cheng-Agrawal scheme. In
this situation, each sensor node key has only one share, namely the key itself.
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The authors of [5] argue that because all the keys in their scheme are pairwise keys,
the network is resilient to node compromise (even when allowing compromise of clus-
ter heads). They say “Even if all the 100 cluster heads are compromised, none of the
keys preloaded in the sensor nodes could be compromised in the network”. However,
this cannot be true, because the keys preloaded in the sensor nodes can be computed
from the information that is stored in the cluster heads. In fact, Das and Sengupta [6]
observe that the compromise of s cluster heads, after the IKDM process has terminated,
will result in the compromise of 100s of the sensor node keys.

1.1 Our contributions

We describe two attacks on the Cheng-Agrawal scheme in this paper. In Section 2, we
present an attack that we call the “interpolation attack”. In this attack, the compromise
of a small number of cluster heads (after the IKDM process is completed) can result
in the compromise of all or almost all of the sensor node keys in the network. The
interpolation attack can possibly be thwarted by a careful choice of the parameters of
the scheme. However, we describe another attack in Section 3; this attack is called the
“reconstruction attack”. The reconstruction attack can always be applied, though it is
usually a weaker attack than the interpolation attack, in the sense that it will not result
in the compromise of all the keys in the network.

2 Interpolation attack

Suppose an adversary records the communications that take place during the IKDM.
Then the adversary compromises s out of the m cluster heads (we will assume that
s < m, because the compromise of all m cluster heads clearly reveals all the sensor
node keys). This allows the adversary to decrypt all the messages that were sent to
these s cluster heads during the IKDM. After their decryption, the adversary has in-
formation pertaining to various CH-polynomials evaluated at various points. If any
CH-polynomial has been evaluated at at least t + 1 points, then the polynomial can
be reconstructed using Lagrange interpolation, e.g., as is done in Shamir secret shar-
ing (see, for example [16, Ch. 13]). So the adversary can potentially recover many
CH-polynomials by compromising a small number of cluster heads.

We now present an attack that we call the “interpolation attack”. The attack has two
phases, as follows:

Phase I

Capture s cluster heads and recover the keys stored in them. Use these keys to
decrypt all the encrypted shares sent to these s cluster heads during the IKDM
process. Then interpolate the obtained shares (using Lagrange interpolation) to
recover CH-polynomials .

Phase II

Use the recovered CH-polynomials to compute sensor node keys.
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2.1 Phase I of the attack

In this section, we discuss phase I of the interpolation attack. Recall that each sensor
node Si contains a list Bi consisting of ` of the m cluster heads. This list is sent in the
clear to a cluster head, so it is known to the adversary. We assume each list is a random
`-subset (which we will call a block) of the m points in the set {1, . . . ,m} (i.e., cluster
head IDs). By compromising s cluster heads, the adversary gets sn/m such blocks.
The average number of occurrences of a point x ∈ {1, . . . ,m} in the sn/m blocks is
sn`/m2.

The idea of our attack is to compromise a sufficient number s of cluster heads so
that the average number of occurrences of a point in the sn/m blocks is 25% higher
than t. To be concrete, we suppose that we choose s so that the following holds:

sn`

m2 = 1.25t, (2)

Because we require s < m and we also want (2) to be satisfied, it must be the case that
` > 1.25mt/n.

There is nothing “magic” about the choice of the constant 1.25 in (2). If this con-
stant is made larger, it would increase the success probability of our attack (but more
cluster heads would be have to be compromised). Smaller values of this constant would
decrease the success probability.

Having chosen s so that (2) holds, we will argue that almost every point occurs more
than t times in the set of sn/m blocks. This is proven by using a standard tail inequality
for binomial distributions, which can be found in [11, p. 502 ], for example.

Lemma 2.1. Suppose X1, . . . , XN are independent random variables such that

Pr[Xi = 1] = p and Pr[Xi = 0] = 1− p

for all i. Define X = X1 + · · ·+XN . Then

Pr[X ≤ N(p− ε)] ≤ e−ε
2N/(2p). (3)

Note that Np is the expected value of X , so this estimate gives an upper bound on
the probability that X is somewhat below its expectation.

We will apply the inequality (3), setting N = sn/m, p = `/m, and ε = .2`/m.
Simplifying and using (2), we get

Pr[X ≤ t] ≤ e−.025t.

Define a point to be good if it occurs at least t + 1 times in s random `-subsets of
{1, . . . ,m}. We have shown that, if s = 1.25tm2/(n`), then any given point is good
with probability at least 1.0 − e−.025t. By linearity of expectation, it follows that the
expected number of good points is at least m(1.0 − e−.025t) under these assumptions.
For each good point j, the adversary can reconstruct the polynomial gj(x). Therefore,
we have the following theorem.
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Theorem 2.2. Suppose the hierarchical sensor network has m cluster heads, n sensor
nodes, each sensor node is given ` random IDs of cluster heads, and sensor node
keys are defined using CH-polynomials of degree t. If an adversary compromises s =
1.25tm2/(n`) cluster heads after the IKDM process, then the expected number of CH-
polynomials that can be reconstructed using the interpolation attack is at leastm(1.0−
e−.025t).

We present an example to illustrate the application of Theorem 2.2.

Example 2.3. The parameters suggested in [5] are m = 100, n = 10000 and t = 128.
[5] does not discuss appropriate values for ` except to say that “To achieve sufficient
security, large ` is desired” ([5, p. 42]). In order to apply Theorem 2.2, we choose
s = 160/`. Then

Pr[X ≤ 128] ≤ e−3.2 ≈ .04076.

Therefore the interpolation attack recovers (on average) at least 96 of the 100 CH-
polynomials by compromising 160/` cluster heads.

Note that phase I of the interpolation attack becomes easier as ` gets bigger. If
` = 10, then we take s = 16; if ` = 20, then we take s = 8, etc. That is, as ` is
increased, the number of compromised cluster heads required by the attack decreases.

In practice, the interpolation attack will probably work better than the estimates
derived above would indicate. This is because the inequality (2) overestimates the tail
probability in the relevant binomial distribution. For specified values of the parameters,
it is a simple matter to compute the tail probability exactly. This is illustrated in the
next example.

Example 2.4. We use the same parameters as in the previous example: m = 100,
n = 10000 and t = 128. Then we can compute Pr[X ≤ 128] exactly using the
following formula:

Pr[X ≤ 128] =
128∑
j=0

(
100s
j

)(
`

100

)j (
1− `

100

)100s−j

. (4)

For example, when ` = 20 and s = 8, the formula (4) yields .00218, as compared to
the estimate (3) of .04076. When ` = 10 and s = 16, the exact value is about .00349,
as compared to the estimate of .04076. The expected number of reconstructable CH-
polynomials in the interpolation attack is 100(1.0− Pr[X ≤ 128]).

2.2 Phase II

Now we turn to the second phase of the interpolation attack. Suppose the adversary
has recovered r of the m CH-polynomials. Then the adversary can compute the key
for a particular sensor node if the block corresponding to that node is a subset of the r
points corresponding to the recovered polynomials. This probability is easily seen to
be

(r`)
(m` )

. (5)
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Table 1. Expected number of sensor node keys that can be compromised

number of recovered CH-polynomials (r) ` = 10 ` = 20 ` = 40
expected value of r 99.65 99.78 99.94

95 5837 3193 725
96 6516 4033 1243
97 7265 5081 2116
98 8090 6383 3575
99 9000 8000 6000
100 10000 10000 10000

The following theorem is an immediate consequence of (5).

Theorem 2.5. Suppose the hierarchical sensor network has m cluster heads, n sensor
nodes, and each sensor node is given ` random IDs of cluster heads. Suppose that r
CH-polynomials are reconstructed during phase I of the interpolation attack. Then the
expected number of sensor node keys that can be computed in phase II of the interpo-
lation attack is

n(r`)
(m` )

.

If r < m, then it is clear that there will (probably) be some keys that are not com-
promised. In phase II of the interpolation attack, the number of uncompromised keys
increases as ` increases. However, it is very likely that phase I will recover all m of the
CH-polynomials (i.e., r = m), in which case all n sensor node keys can be compro-
mised. We show some computations in the next example.

Example 2.6. We use the same parameters as in the previous examples: m = 100,
n = 10000 and t = 128.

In Table 1, we determine the expected number of sensor node keys that can be
compromised, for ` = 10, 20 and 40, computed as a function of the number of CH-
polynomials, denoted by r, that are reconstructed during the first phase of the attack.
We also indicate the expected number of reconstructed CH-polynomials when s =
160/` cluster heads are compromised during phase I. These values are computed using
the formula (4), as in Example 2.4.

3 The reconstruction attack

We have already noted that the interpolation attack described in the previous section
can be mounted only when ` > 1.25mt/n. It is of interest to point out a weaker attack
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that can be carried out for any values of the parameters. We call this the “reconstruc-
tion attack”. The interpolation attack only used the information received by the com-
promised cluster heads. In the reconstruction attack, we make use of the information
transmitted by the compromised cluster heads.

As before, we assume that s of them cluster heads are compromised after the IKDM
process has completed. We mentioned in Section 1 that [6] observed that the adversary
can immediately obtain the sn/m sensor node keys that are stored in the s compro-
mised cluster heads. We say that these sensor keys have been directly compromised.

In this section, we point out that some additional sensor node keys can be (pos-
sibly) be compromised by reconstructing them from compromised shares. Let J =
{j1, . . . , js} denote the set of IDs of the s compromised cluster heads. Suppose Si is
a sensor node whose nearest cluster head, say Cp, has not been compromised (hence
p 6∈ J ). Suppose it happens that Bi ⊆ J . Then all ` shares that were used to compute
Ki were encrypted with cluster head keys that have been compromised. Therefore the
adversary can compute Ki. In this situation, we say that the sensor node key Ki has
been reconstructed.

Now, the probability that Bi ⊆ J is

(s`)
(m` )

.

There are n − sn/m = n(m − s)/m sensor nodes whose nearest cluster head has not
been compromised. Therefore, the expected number of reconstructed sensor node keys
is

n(m− s)(s`)
m(m` )

.

The following theorem is now obvious.

Theorem 3.1. Suppose the hierarchical sensor network has m cluster heads, n sensor
nodes, and each sensor node is given ` random IDs of cluster heads. Suppose that s
cluster heads are compromised. Then the expected number of sensor node keys that
can be compromised as a result of a reconstruction attack is

n

m

(
s+

(m− s)(s`)
(m` )

)
. (6)

When we set ` = 1 and simplify (6), the total number of compromised sensor node
keys is

sn

m

(
2− s

m

)
. (7)

Remark: Because the scheme in [10] is essentially the case ` = 1 of the Cheng-
Agrawal scheme, it follows that this attack can also be applied to the scheme in [10].

Example 3.2. Suppose that n = 10000, m = 100 and t = 160. The interpolation
attack is applicable only if ` > 2, However, when ` = 1 or 2, then we can use the
reconstruction attack.
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From (7), the expected number of compromised sensor node keys when ` = 1 is
100s(2 − s/100). If s = 10, for example, then we expect to compromise 1900 sensor
node keys. That is, compromising 10% of the cluster heads results in 19% of the sensor
node keys being compromised.

When ` = 2, the expected number of compromised sensor node keys can be com-
puted from (6); it is 100s + (100 − s)s(s − 1)/99. If we again take s = 10, then we
expect to be able to compromise 1082 sensor node keys. So compromising 10% of the
cluster heads results in 10.8% of the sensor node keys being compromised.

3.1 Analysis

The interpolation and reconstruction attacks can be mitigated by a careful choice of
parameters. It is clear from Example 3.2 that the reconstruction attack is much less
effective when ` ≥ 2 than it is when ` = 1. So an appropriate strategy might be to
choose ` = 2 and t = 1.6n/m. This would prevent the interpolation attack from being
applied.

To measure the effectiveness of the reconstruction attack when ` = 2, we consider
the ratio of the number of reconstructed sensor node keys to the number of directly
compromised sensor node keys. This ratio is easily computed to be

(m− s)(s− 1)
m(m− 1)

.

This ratio is maximized by setting s = (m+ 1)/2, in which case the ratio is approxi-
mately 1/4. For this value of s, about n/2 sensor node keys are directly compromised,
and an additional n/8 sensor node keys (approximately) are reconstructed.

4 Conclusion

In the communication model studied in [5], each sensor node communicates with only
one cluster head. This has the advantage that sensor nodes do not have to communicate
with each other. However, an unavoidable consequence is that the compromise of s
cluster heads will result in the compromise of sn/m sensor node keys. Therefore the
best we can hope for is to ensure that no additional sensor node keys are compromised.

There is a straightforward way to ensure this if cluster heads are permitted to com-
municate with the base station during the key establishment phase. Each sensor node
Si will send its ID to the nearest cluster head. Then the cluster head forwards the sensor
node ID to the base station and the base station encrypts the key Ki and sends it to the
cluster head. Finally, the cluster head decrypts Ki.

This approach might not be acceptable in some application scenarios. For example,
the base station might not be available during the key establishment phase for some
reason. In such a situation, we would be required to use a protocol where cluster heads
communicate with each other, such as the Cheng-Agrawal scheme. If this scheme is to
be used, then it is important to choose parameters in such a way that the consequences
of the possible attacks are minimized. Our suggestion is to divide each key into only
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two shares. This provides a good level of security under appropriate parameter choices
and it also requires lower communication complexity than if keys are split into larger
number of shares.
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