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Abstract. Let G1 be a cyclic multiplicative group of order n. It is known that the computational
Diffie–Hellman (CDH) problem is random self-reducible in G1 if φ(n) is known. That is, given
g, gx ∈ G1 for some generator g and oracle access to a “Diffie-Hellman Problem solver” for g,
it is possible to compute g1/x ∈ G1 in polynomial time (with which we can then solve the CDH
problem w.r.t. any other generator). On the other hand, it is not clear if such a reduction exists when
φ(n) is unknown. We exploit this “gap” to construct a novel cryptographic primitive, which we call
an Oracle-based Group with Infeasible Inversion (O-GII). O-GIIs have applications in multiparty
protocols. We demonstrate this by presenting a novel multi-party key agreement protocol that does
not require interaction between the parties. Instead, the protocol requires each party to query a
remote stateless device. Our method relies on the observation that it is considerably more expensive
to interact with every party connected via an unreliable network, than it is to query one of several
identical stateless devices, some of which may be located in a more reliable sub-network.

Keywords. Groups with infeasible inversion, non-interactive key agreement, multiparty computa-
tion, broadcast encryption.
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1 Introduction

The problem of efficient key agreement in ad-hoc groups is a challenging one, primarily
because membership in such groups does not follow any specified pattern. We envisage
an ad-hoc group as a broadcast group where members do not have one-to-one channels;
rather, they share the communication medium such that everyone within range is able
to receive any broadcast message. An efficient group key agreement protocol in this
scenario should satisfy the property that the shared group key is computable without
interaction with the other members. Such protocols are often called one-round key
agreement protocols where the only round consists of an initial key distribution phase.
Two notable examples of one-round key agreement protocols are the classic two-party
Diffie–Hellman key exchange [15] and the Joux tripartite key exchange using bilinear
maps [26]. However, to date, the construction of a generalized one-round n-party key
agreement protocol has remained a challenging and open problem.

OUR CONTRIBUTION. In this paper, we present a practical one-round key agree-
ment protocol for arbitrary size groups. Although our construction enables the group
key to be computed non-interactively, it comes with a caveat: a stateless third-party
computing device is needed. The advantages of our approach compared to conven-
tional hardware-based approaches are:
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(1) Location independence. The device may be located remotely.

(2) Transparency. We do not require any registration process for new members.

(3) Replicability. The device may be replicated arbitrarily many times and may even
be locally implemented in a tamper-proof manner. In the latter case, we have zero
communication cost.

(4) Statelessness. The device needs a small amount of computing power and no mem-
ory. In other words, the device is stateless – it does not maintain information about
the users or its other copies.

a) This precludes the possibility of secure channels existing between the device
and its users, a common assumption in many third-party based approaches.
Our device is completely oblivious to the identity and number of users.

b) Due to the statelessness and replicability of the device, our approach pro-
vides fault tolerance. In a large group of geographically disparate users, sev-
eral independent copies of this device could be operated such that members
are not tied to any particular one. Although members located geographically
close would share a copy located in their neighborhood, they could switch
to a different copy in case of network failures.

(5) Overhead. For a set of n users, each user sends one O(n) sized message to the
device. The response size is O(1). However, the results of earlier computations
can be cached and stored at insecure locations (for join/leave/merge operations),
reducing the sent message size to O(1). Furthermore, the size and number of
transmitted messages can be greatly reduced by arranging members in data struc-
tures such as trees. All information transmitted/stored is considered public.

Our approach can be summarized using Figure 1.

MOTIVATION. We refer the reader to [41, 57] for a survey of key agreement pro-
tocols for ad-hoc groups. In the literature, most group key agreement protocols are
categorized as (a) Centralized, (b) Distributed and (c) Fully Contributory. The main
problems with distributed and centralized approaches is that (1) they require group con-
trollers that need to main a large amount of internal state information (i.e., the session
and pairwise long-term keys) for the users it is managing; and (2) the group controller
forms a central point of failure for its managed members. On the other hand, contribu-
tory key agreement approaches (which do not rely on group controllers) require several
rounds of interaction between the members. Our motivation was to design a protocol
that does not suffer from any of these weaknesses.

RELATED WORK. Our basic idea arises due to the paper of Rabi and Sherman [39],
where they described a cryptographic primitive called a Strong Associative One-Way
Function (SAOWF), and discussed as an application a one-round key agreement proto-
col in ad-hoc groups. SAOWFs with a group structure are called Groups with Infeasible
Inversion (GIIs). In related work, Boneh and Silverberg also proposed a one-round key
agreement protocol for ad-hoc groups based on a similar primitive called a multilinear
map [9]. However, as of now, no practical construction of either primitive is known. In
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Figure 1. In our model, secure group communication is facilitated by the Oracle. As-
suming that public keys are known in advance, users can use this Oracle to compute a
shared secret key independently of the other users such that no (active or passive) ad-
versary has the ability to compute this key. Essentially the oracle is used as a “verifiable
computing device” and the adversary as the communication medium.

this paper, we extend the work of Rabi and Sherman and give a practical construction
of a GII under a restricted model of computation, namely black-box computation. Our
construction also provides an example of a Trapdoor Group with Infeasible Inversion
(TGII) discussed in [24].

ORGANIZATION OF THIS PAPER. The rest of the paper is organized as follows. In
Section 2, we give some background and notation. We define GIIs in Section 2.2 and
extend this definition to include black-box computation in Section 3.1. Our construc-
tion is presented in Section 5 and some applications are given in Section 6. Finally, we
discuss implementation issues in Section 7.

2 Preliminaries

Around 1984, Rivest and Sherman suggested a one-round fully contributory key agree-
ment protocol for ad-hoc groups using a class of cryptographic primitives that they
called Strong Associative One-Way Functions (SAOWFs) [51, 28]. Later in 1993, Rabi
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and Sherman suggested the use of SAOWFs in digital signatures [38]. We give the
definitions from [38] with some simplifications.

2.1 Strong associative one-way functions

Definition 2.1. A binary function f : Σ∗ × Σ∗ 7→ Σ∗ is a Strong Associative One-Way
Function (SAOWF) if the following properties are satisfied.1

(1) Associativity: ∀X,Y, Z ∈ Σ∗ : f(f(X,Y ), Z) = f(X, f(Y, Z)).
(2) Computability: ∀X,Y ∈ Σ∗ : f(X,Y ) is efficiently computable.
(3) Strong Non-Invertibility: It is infeasible to invert f w.r.t. any input. That is,

∀PPTA ∃`′ ∈ N ∀` > `′ : Pr
[
X,Y

R← Σ
` : f(X,A(X, f(X,Y )) = f(X,Y )

]
≤ negl(`).

SAOWFs have many interesting applications such as one-round multiparty key
agreement and homomorphic signatures [39, 49].

MULTIPARTY KEY AGREEMENT USING SAOWFS. As early as 1984, Rivest and
Sherman noted that SAOWFs can be used for non-interactive multiparty key agreement
(however, the first published reference we found is from 1993 [38, 39]). Their protocol,
described below, requires f to commute (i.e., ∀X,Y ∈ Σ∗ : f(X,Y ) = f(Y,X)).

Initial Key Distribution. All users agree on a common parameter P R← Σ∗ and each
user i (1 ≤ i ≤ n) generates random Xi

R← Σ∗ and computes Yi = f(Xi, P ). The
values Xi and Yi are the private and public keys respectively.

Key Agreement. To agree on a key, each user i (1 ≤ i ≤ n) computes independently

Ki = f(Xi, f(Y1, f(Y2, . . . , f(Yi−1, f(Yi+1, f(Yi+2, . . . , f(Yn−1, Yn) . . .))) . . .))).

Due to the associativity and commutativity of f , each user will compute the same
value Ki, which will be used as the secret key. The security lies in the apparent dif-
ficulty of inverting f with respect to P . A security analysis of this protocol in Yao’s
model of information theory [56, 55] is given in [38]. Although the above protocol
fails if the commutativity requirement is relaxed, a minor modification allows us to use
it with non-commutative SAOWFs [48].

SUBSEQUENT WORK. Subsequently, Rabi and Sherman [39] gave an existence
proof of complexity-theoretic2 SAOWFs under the P 6= NP hypothesis. Other authors
studied complexity-theoretic SAOWFs with respect to different properties such as low
ambiguity, strong invertibility, totality and commutativity [25, 4, 22]. Finally, in [23],
Hemaspaandra, Rothe and Saxena gave a complete characterization of complexity-
theoretic SAOWFs.

1Since we later restrict the algebraic structure of SAOWFs to finite abelian groups, we avoid mentioning
properties such as honesty, non-commutativity and totality used in [22, 23] for describing SAOWFs.

2In complexity-theoretic SAOWFs, the strong non-invertibility property is satisfied in the worst case but not
necessarily in the average case.
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2.2 Groups with infeasible inversion

In this work, we restrict the structure of SAOWFs to finite abelian groups. The resulting
object is called a Group with Infeasible Inversion (GII) [24].

Definition 2.2. We say that a finite abelian group (G, ?, I) with identity element I is a
Group with Infeasible Inversion (GII) if the following four properties are satisfied:

(1) Efficient and unique representation: Elements of G are efficiently and uniquely
representable (i.e., in O(log |G|) bits).

(2) Samplability: It is easy to sample pairs (P, P−1) R← G2 such that I = P ? P−1.

(3) Efficient Composability: Given any pair (X,Y ) ∈ G2, it is possible to compute
X ? Y efficiently.

(4) Strong Non-invertibility: Given P ∈R G, it is infeasible to compute P−1 effi-
ciently. Formally, for all PPT algorithms A, and for all sufficiently large |G|,

Pr[P R← G : A(P ) ? P = I] ≤ negl(|G|).

The following result is well known.

GIIS MUST HAVE HIDDEN ORDER. This is stated as Lemma 2.3.

Lemma 2.3 ([50, 45, 24]). If (G, ?, I) is a GII then |G| must be unknown.

Proof. Let |G| = m. We will show that Properties 3 and 4 of Def. 2.2 cannot simul-
taneously hold if m is known. Let P ∈ G. To compute P−1, it suffices to compute
Pm−1, which can be done efficiently using the Repeat and Square algorithm [30] for
generic groups if Property 3 holds. 2

2.2.1 Gap-CDH groups

A possible construction of GIIs is based on the hardness of the discrete logarithm
problem in certain groups. Our idea is based on this approach.

Let G1 be a cyclic multiplicative group of order n and let g generator of G1. Define
the following three problems:

(1) Computational Diffie–Hellman (CDHg) Problem: Input: (gx, gy) ∈ G1
2 (for

some x, y ∈ Zn). Output: gxy ∈ G1.

(2) Inverse Diffie–Hellman (IDHg) Problem: Input: gx ∈ G1 (for some x ∈ Z∗n).
Output: g1/x ∈ G1.

(3) Discrete Logarithm (DLg) Problem: Input: gx ∈ G1 (for some x ∈ Zn). Out-
put: x.

We say thatG1 is a Gap-CDH group if there is a “gap” between IDHg and the CDHg

problems; that is, if the CDHg problem is easy but the IDHg problem is hard. We define
this formally below.
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Let G be an algorithm taking as input a securty parameter τ ∈ {1}∗ and outputting a
tuple (G1, g, n) such that n is a |τ | bit integer, G1 is (the description of) a cyclic group
of order n and g is a generator of G1. We say G is a Gap-CDH generator if there exists
a negligible function ν : N 7→ [0, 1] such that the following two conditions hold:

Condition 1. The CDHg problem is easy. That is, ∃PPT A ∀τ ∈ N:

Pr

[
A(G1, g, n, h, g

x) = hx
(G1, g, n) R← G(τ),
h
R← G1, x

R← Zn

]
= 1. (2.1)

Condition 2. The IDHg problem is hard. That is, ∀PPT A ∃τ ′ ∈ N ∀τ > τ ′:

Pr

[
A(G1, g, n, g

x) = g
1
x

(G1, g, n) R← G(τ),
x
R← Z∗n

]
≤ ν(τ). (2.2)

Condition 2 is equivalent to the following two:

Condition 2a. The DLg problem is hard. That is, ∀PPT A ∃τ ′ ∈ N ∀τ > τ ′:

Pr

[
A(G1, g, n, g

x) = x
(G1, g, n) R← G(τ),

x
R← Zn

]
≤ ν(τ). (2.3)

Condition 2b. The CDH problem is not random-self reducible in G1. In particular,
the CDHh problem for a random generator h R← G1 (with h 6= g) is hard and not
reducible to the CDHg problem. That is, ∀PPT A ∃τ ′ ∈ N ∀τ > τ ′:

Pr

[
A(G1, g, n, h, h

x, i) = ix
(G1, g, n) R← G(τ),

(h, i) R← G1
2, x

R← Zn

]
≤ ν(τ). (2.4)

Remark 2.4. The restriction of Condition 2b, Eq. 2.4 (i.e., the CDHg problem is easy
but CDHh problem is hard for some randomly selected element h ∈ G1) is necessary
to ensure that the IDHg problem is hard, since otherwise, IDHg(h) = CDHh(g, g).

GIIS FROM GAP-CDH GROUPS. Let G be a Gap-CDH generator algorithm. Let
(G1, g, n) R← G(τ). Define the set G ( G1 as G = {h|∃x ∈ Z∗n : h = gx}. Thus,
|G| = φ(n). Define an operation ? in G equivalent to solving the CDHg problem in G.
That is, for gx, gy ∈ G, define gx ? gy = gxy ∈ G. Clearly, (G, ?) has the structure
of an abelian group. Assuming that the CDHg problem is easy, it is always possible to
compute the group operation in (G, ?). To turn (G, ?) into a GII we simply keep the
value of φ(n) hidden by keeping the factorization of n hidden.

Thus, a possible construction of a GII arises from Gap-CDH groups of composite
order with hidden factorization. We hypothesize the existence of such groups and as a
starting point present a practical black-box construction of a Gap-CDH group.
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KNOWN RESULTS ABOUT GAP-CDH GROUPS. It is noteworthy that a result of
Maurer (1994) states that for any prime n, if a smooth elliptic curve of order n is
known, then the CDHg and DLg problems in all groups of order n are equivalent [32].
Another related result states that in a group of order n, the DLg problem can be poly-
time reduced to the CDHg problem if the factors of n are “small” [34]. However, it
is shown in [33, Theorem 7] that the DLg problem is not computationally equivalent
to the CDHg problem in generic groups if the order of the group contains large prime
factors. Therefore, the above results leave open the possibility of Gap-CDH groups
with composite order n having large prime factors – exactly the ones we desire.

CONNECTION WITH THE PAIRING INVERSION PROBLEM. One method to con-
struct Gap-CDH groups is to exhibit an efficiently computable non-degenerate sym-
metric bilinear map ê : G1 × G1 7→ G2 [8] such that the discrete log problem in G1
and G2 is hard but the pairing inversion problem w.r.t. some special generator g ∈ G1
is easy. The pairing inversion problem is the problem of inverting the bilinear map
w.r.t. some given element of G1 [14]. See [46, 20] for a recent study of this problem.

3 Black-Box GII constructions

Loosely speaking, a black-box GII is defined by extending the definition of “efficient
computation” in Property 3 of Def. 2.2 to include efficient black-box computation.

In our black-box model although the group (G, ?, I) is easily samplable, we do
not have access to the algorithm for computing f . Instead, access to the computing
algorithm is only provided via a black-box with public access. However, for a black-
box construction to have any practical significance it must support (a) verifiable and
(b) private computation as elaborated next.

PV-ORACLES. To justify the use of a black-box (a.k.a. an oracle) as one-way func-
tion in a cryptographic protocol, we must provide the same guarantees that a real func-
tion provides. Specifically, a real function is private and verifiable. We define similar
properties for oracle-computed functions. We restrict ourselves to an oracle that com-
putes a binary commutative function.

Definition 3.1 (Verifiable Oracle). Let f be a binary commutative function computed
by an oracle. We say that the oracle allows verifiable computation if for all X,Y ∈
domain(f) and all Z ∈ image(f), there exists a PPT verification algorithm Verify such
that Verify(X,Y, Z) = 1 iff C = f(A,B). An oracle allowing verifiable computation
is called a Verifiable Oracle (V-Oracle).

Definition 3.2 (Private and Verifiable Oracle). Let f be a binary commutative function
computed by a V-Oracle. We say that the V-Oracle allows private computation if there
exist two PPT algorithms Blind and Unblind satisfying correctness and perfect privacy
defined below.
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Blind is a randomized algorithm and takes as input an element X ∈ domain(f) and
outputs a tuple (X ′, σ), where X ′ ∈ domain(f) and σ is some auxiliary informa-
tion (called the Unblinding Value).

Unblind takes as input a tuple (Z ′, σ), where Z ′ ∈ image(f) and σ is an unblinding
value. It outputs a value Z ∈ image(f).

(1) We say that (Blind,Unblind) satisfy correctness if ∀X,Y ∈ domain(f):

Pr
[
(X ′, σ) R← Blind(X) : Unblind(f(X ′, Y ), σ) = f(X,Y )

]
= 1.

(2) Let α, β be any functions and A be any algorithm. We say that Blind satisfies
perfect privacy if ∀A ∀α ∀β ∀X ∈ domain(f):

Pr
[
A(|X|, α(X)) = β(X)

]
= Pr

[
(X ′, σ) R← Blind(X) : A(X ′, |X|, α(X)) = β(X)

]
the probability taken over the coin tosses of A and Blind.

We call a V-Oracle allowing private computation a Private V-Oracle (PV-Oracle).

3.1 Oracle GIIs (O-GIIs)

We now extend the definition of computation in in Property 3 of Def. 2.2 to include
computation by PV-Oracles. We call such a construction an Oracle-GII (O-GII).

Definition 3.3. An O-GII construction has four PPT “algorithms” as described below
(One of the algorithms, PV-Compute, is not an algorithm in the usual sense; it involves
a call to a PV-Oracle).

Setup (τ): This randomized algorithm takes in as input a security parameter τ and
outputs the system parameters params (containing the description of a group
(G, ?, I)) and a master key master-key.

Sample (params): This randomized algorithm outputs a uniformly selected element
X

R← G along with some auxiliary information σX , which we will call the sam-
pling information in our construction.

Compute (params, master-key, X,Y ): If (X,Y ) /∈ G2 this algorithm outputs I (recall
that I is the identity element), otherwise it outputs X ? Y .

Define a PV-Oracle O such that O(X,Y ) = Compute(params,master-key, X, Y ).

PV-Compute (params, X, Y ): This algorithm uses the Verify,Blind and Unblind algo-
rithms of Def. 3.2 to compute Z ← O(X,Y ) privately and verifiably. It outputs
Z ∈ G.
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3.1.1 Security of O-GIIs

We say that a PPT algorithm A breaks the O-GII if it is able to compute inverses
in G having access to Compute via a PV-Oracle. We call this the (black-box) Group
Inversion Problem (GIPG). Formally, the advantage of A in solving GIPG is defined as

AdvGIP
A (τ) = Pr

[
AO(P, params) = P−1

∣∣∣∣∣ (params,master-key) R← Setup(τ),
(P, σP ) R← Sample(params)

]
,

where the oracle O is defined as:

O(·, ·) = Compute(params,master-key, ·, ·).

Definition 3.4. We say that algorithmA (kO, δ, ε)-breaks the O-GII f ifA runs at most
time δ; A makes at most kO adaptive queries to O; and AdvGIP

A (τ) is at least ε. We say
that the O-GII is (kO, δ, ε)-secure if no such A exists.

Remark 3.5. It should be noted an O-GII is different from a generic black-box group,
a notion introduced by Babai and Szemerédi [1] (see also, [43]), where access to the
entire group (G, ?, I) is provided through black-box routines and the representation of
group elements is opaque. In an O-GII, the representation of group elements is not
opaque and sampling can be done outside of the black-box.

4 The underlying primitives

In this section, we give a brief overview of the two main underlying primitives of our
construction: (i) composite order bilinear maps, and (ii) the Paillier encryption scheme
(although a variation of El-Gamal can also be used – see [47, §5.2.1]).

4.1 Bilinear maps

Let G1 and G2 be two cyclic multiplicative groups both of the same order n such that
computing discrete logarithms in G1 and G2 is intractable. A bilinear pairing is a map
ê : G1 ×G1 7→ G2 that satisfies the following properties:

(1) Bilinearity: ê(ax, by) = ê(a, b)xy ∀a, b ∈ G1 and x, y ∈ Zn.

(2) Non-degeneracy: If g is a generator of G1 then ê(g, g) is a generator of G2.

(3) Computability: The map ê is efficiently computable.

Additionally, we assume that it is easy to sample elements from G1. In a practical
implementation, G1 is the (additive) group of points on an elliptic curve and G2 is the
multiplicative subgroup of a finite field. The map ê is derived either from the modified
Weil pairing [7, 5] or the Tate pairing [2].
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4.1.1 Problems in bilinear maps

Fix some generator g of G1 and define the following problems.

Computational Diffie–Hellman Problem [CDH(g,G1)] Input: g, gx, gy ∈ G1 (for
some x, y ∈ Z). Output: gxy.

Decision Diffie–Hellman Problem [DDH(g,G1)] Input: g, gx, gy, gz ∈ G1 (for some
x, y, z ∈ Z). Output: 1 if z ≡ xy (mod n), otherwise 0.

Inverse Diffie–Hellman Problem [IDH(g,G1)] Input: g, gx ∈ G1 (for some x ∈ Z∗n).
Output: g1/x.

The following result was noted by Joux and Nguyen [27].

Lemma 4.1. DDH(g,G1) (the decision Diffie–Hellman problem) is easy.

Proof. Clearly, from the properties of the mapping, z ≡ xy (mod n) if and only if
ê(g, gz) = ê(gx, gy). Thus, solving DDH(g,G1) is equivalent to computing the mapping
ê twice. 2

The following result is also well known.

Lemma 4.2. IDH(g,G1) ⇒ CDH(g,G1) if φ(n) is known.

Proof. We must show that given an IDH(g,G1) instance gx ∈ G1 for some x ∈ Z∗n and
access to a CDH(g,G1) oracle, we can efficiently compute g1/x ∈ G1. This follows from
the following facts.

(1) We know that ∀u ∈ Z∗n : uφ(n)−1 ≡ 1/u mod n (Euler’s theorem [35, p.69]).

(2) For every (gu, gv) ∈ G1
2 and u, v ∈ N we can compute guv ∈ G1 using the

CDH(g,G1) oracle.

(3) For every gu ∈ G1 and i ∈ N, we can compute gu
2i

using the CDH(g,G1) oracle.

Therefore, from gx we can efficiently compute h = gx
φ(n)−1 ∈ G1 using the CDH(g,G1)

oracle and the “repeated squaring and multiply” method of [35, p. 71] (via facts 2
and 3). From fact 1, h = g1/x. 2

Although Lemma 4.2 states that IDH(g,G1) ⇒ CDH(g,G1) if φ(n) is known, it is not
clear if the same reduction holds when φ(n) is unknown. In light of this, we make the
following hypothesis:

Conjecture 4.3. IDH(g,G1) 6⇒ CDH(g,G1) if φ(n) is unknown.
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4.1.2 BDH parameter generator

We will further assume that n = |G1| = |G2| = pq where p, q are large primes such
that given the product n = pq, factoring n is intractable. We refer the reader to [6] for
details on generating composite order bilinear maps for any given n that is square free.

Using the idea of [5], we define a Bilinear Diffie–Hellman (BDH) parameter gen-
erator as a randomized PPT algorithm BDH that takes a single parameter τ ∈ N and
outputs a tuple (ê, G1, G2, p, q) such that p, q are distinct primes of τ bits each, G1, G2
are two cyclic multiplicative groups of the same order pq, and ê : G1 × G1 7→ G2 is a
bilinear mapping as defined in §4.1.

4.1.3 Hardness assumptions

For any PPT algorithm A, define the advantage of A in solving CDH(g,G1) for some
security parameter τ as

AdvCDH
A (τ) =

Pr

 A(ê, n,G1, G2, g, g
x, h) = hx

∣∣∣∣∣∣∣∣∣∣
(ê, G1, G2, p, q)

R← BDH(τ)
s.t. |G1| = |G2| = pq,

g, h
R← G1 s.t. 〈g〉 = G1,

n← pq, x
R← Zn

 . (4.1)

Similarly, define the advantage of A in solving IDH(g,G1) as

AdvIDH
A (τ) =

Pr

 A(ê, n,G1, G2, g, g
x) = g

1
x

∣∣∣∣∣∣∣∣∣∣
(ê, G1, G2, p, q)

R← BDH(τ)
s.t. |G1| = |G2| = pq,

g
R← G1 s.t. 〈g〉 = G1,

n← pq, x
R← Z∗n

 . (4.2)

Our assumptions: There exists a negligible function ν : N 7→ [0, 1] such that:

CDH Assumption: ∀PPTA ∃τ ′ ∈ N ∀τ > τ ′ : AdvCDH
A (τ) ≤ ν(τ).

IDH Assumption: ∀PPTA ∃τ ′ ∈ N ∀τ > τ ′ : AdvIDH
A (τ) ≤ ν(τ).

4.2 The Paillier cryptosystem

Our idea of constructing the O-GII is to take an “ordinary” group G1 of order n and
convert it into a Gap-CDH group using an oracle as a ‘Diffie–Hellman problem solver’.
Since the only known way to solve the Diffie–Hellman problem is to compute discrete
logarithms, we provide the discrete logarithms to the oracle in an encrypted form using
an asymmetric cryptosystem. The requirement here is that the encryption algorithm
E must possess the following multiplicative homomorphic property: for any messages
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m1,m2 ∈ Z∗n, given {E(m1),m2} or {m1,E(m2)}, it must be possible to compute
E(m1m2 mod n) directly without knowing the corresponding decryption algorithm D.
The Paillier cryptosystem [37] has this property.3

Let n = pq, where p, q are distinct odd primes. Let λ = lcm(p − 1, q − 1) and
φ(n) = (p− 1)(q − 1). For any integer x ≡ 1 (mod n) define L(x) = (x− 1)/n. The
following facts are trivial to verify.

(1) |Z∗
n2 | = n · φ(n).

(2) For all w ∈ Z∗
n2 it is true that wnλ ≡ 1 (mod n2); and (wλ mod n2) ≡ wλ ≡ 1

(mod n).
(3) Let t ∈ Z∗

n2 such that the order of t is nν for some 1 ≤ n ≤ λ. Then:

a) (tν mod n) ≡ 1 (mod n) and L(tν mod n2) ∈ Z∗n.
b) For all x ∈ Z, it is true that

x ≡ L(txν mod n2)
L(tν mod n2)

(mod n). (4.3)

Thus given (t, tx mod n2), we can efficiently compute x mod n if ν is known.

We are now ready to describe the Paillier cryptosystem (see [37] for details).

Key Generation: Generate p, q R← N, where p, q are distinct primes. Set n = pq and
λ = lcm(p − 1, q − 1). Generate t R← Z∗

n2 such that the order of t is a non-zero
multiple of n. This can be done by checking that L(tλ mod n2) is invertible in
Zn. The public key is (t, n) and the private key is (λ, n).

Encrypt: To encrypt a message m ∈ Zn, generate random r
R← Z∗n and set

c← E(m) = tmrn mod n2.

The ciphertext is c ∈ Z∗
n2 .

Decrypt: To decrypt, compute

m← D(c) =
L(cλ mod n2)
L(tλ mod n2)

mod n.

The correctness follows from Eq. 4.3. The semantic security of the above encryption
scheme is proved under the Decision Composite Residuosity Assumption (DCRA) [37],
which states that the following problem is hard unless the factors of n are known.

Decision Composite Residousity Problem [DCRPn] Input: x ∈ Z∗
n2 . Output: 1 if

∃y ∈ Z∗
n2 s.t. x ≡ yn (mod n2), otherwise 0.

The DCRA is a stronger assumption than factoring [37]. See [12, 11] for a discussion
on the bit-security of the Paillier cryptosystem.

3Although this property is necessary, it is not sufficient; the RSA [42] and Rabin [40] cryptosystems also have
this property. However, our construction based on RSA or Rabin is insecure. For details, see [47, Appendix B.2].
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4.2.1 Homomorphic properties

The Paillier cryptosystem has the following homomorphic properties [37].

(1) Plaintext multiplication:

∀m1,m2 ∈ Zn D(E(m1)
m2 mod n2) = D(E(m2)

m1 mod n2) = m1m2 mod n.

(2) Self Blinding:

∀m ∈ Zn ∀r ∈ N D(E(m)rn mod n2) = m.

5 Our O-GII construction

Our construction will describe the four algorithms Setup,Sample,Compute,
PV-Compute defined in §3.1. First we describe the Setup procedure. Then we elaborate
on the structure of the group (G, ?) defined by params before describing the remaining
algorithms.

5.1 Setup

This algorithm generates the system parameters. The input is a single parameter τ ∈ N.

(1) Use the BDH parameter generator BDH of §4.1.2 to output (ê, G1, G2, p, q) ←
BDH(τ), where p, q are large distinct primes of ≈ τ bits each, G1, G2 are de-
scriptions of two groups both of order pq and ê : G1 ×G1 7→ G2 is a bilinear map
(of §4.1). Then pick a generator g of G1.

(2) Set n ← pq and λ ← lcm(p − 1, q − 1). Then generate an element t R← Z∗
n2 such

that the order of t is a non-zero multiple of n. The pair (t, n) is the public key for
the Paillier cryptosystem. The corresponding private key is (λ, n). We will denote
the corresponding encryption and decryption algorithms by E and D respectively.

(3) Generate α, r R← Z∗n. Then set h← gα ∈ G1 and β ← E(α) = tαrn ∈ Z∗
n2 .

(4) Output params← (ê, G1, G2, g, t, n, h, β) and master-key← λ.

Recall that Compute requires as input the parameter master-key and is accessible
only as a black-box routine via oracle O that implements this algorithm. The value
master-key is sent to O via a secure channel and the value params is made public.

5.2 Description of the underlying group

From params, the tuple (ê, G1, G2, g, t, n) defines the structure of the group (G, ?) and
the pair (h, β) represents a random element of this group. We now describe the struc-
ture of this group.
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(1) Consider the set S ( G1 defined as

S = {x|x = gy for some y ∈ Z∗n}.

Clearly, |S| = φ(n) and S is exactly the set of elements of G1 having order n.
(2) Define the set G ( S× Z∗

n2 as

G = {(x, y)|x = gD(y)} (5.1)

and define a binary operation ? on G using the multi-valued mapping

f : G×G 7→ G
(A,B) 7→ A ? B

as follows. Let A = (xA, yA) and B = (xB , yB). Then A ? B = (xC , yC), where

xC ← xA
D(yB) = gD(yA)D(yB) = xB

D(yA) ∈ G1 (5.2)

yC ← E(D(yA)D(yB) mod n) ∈ Z∗n2 . (5.3)

Thus, xC = gD(yC) and therefore (xC , yC) ∈ G.
(3) Finally, define a congruence relation∼ on G as follows. For any A,B ∈ G, where

A = (xA, yA) andB = (xB , yB), we say thatA ∼ B if and only if xA = xB . This
relation is symmetric, reflexive and transitive. Thus, it indeed forms a congruence
relation.

We state without proof the following lemmas:

Lemma 5.1. For any A,B ∈ G, it is true that A ? B ∼ B ? A. That is, the relation ∼
transforms ? into an commutative operation over G.

Lemma 5.2. For any A,B,C ∈ G, it is true that (A ? B) ? C ∼ A ? (B ? C). That is,
the relation ∼ transforms ? into an associative operation over G.

For any A ∈ G, denote by [A] ( G the congruence class of A with respect to the
relation ∼. Therefore we can define an congruence class [I] ( G as follows:

[I] = {X|X ∼ (g, t) ∼ (g,E(1))}.

Lemma 5.3. For any [A] ( G, there exists a unique [B] ( G such that [A] ? [B] = [I].
Additionally, [A] ? [I] = [A].

From the above, it is clear that the relation ∼ transforms the congruence classes of
G into an abelian group with respect to the binary operation ?. The order of this group
(φ(n)) is effectively hidden from anyone who does not know the factors of n.

For any [A] ( G, let the symbol [A]i denote [A] ? [A] ? . . . ? [A] (i times). The
inverse of [A] is denoted by [A]−1.

We will slightly abuse notation and denote the congruence class [A] by A. We will
use = instead of ∼ to indicate that we are working with congruence classes. For any j
given elements A1, A2, . . . , Aj ∈ G, we denote A1 ? A2 ? . . . ? Aj by

j∏
i=1

Ai.
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5.3 Properties of the underlying group

We now enumerate some important properties of the group (G, ?).

(1) Samplability: G is efficiently samplable. To sample from G, first generate ran-
dom σ

R← Z∗n. Then set x ← gσ ∈ G1 and y ← E(σ) ∈ Z∗
n2 . We see that

(x, y) ∈ G. In this case we call σ, the sampling information of (x, y). When we
say that A ∈ G has been sampled by us, we imply that the sampling information
of A is known. The sampling information acts like a trapdoor in our construction.

(2) Trapdoor Computability: Let A,B ∈ G be given. Anyone who has sampled at
least one of {A,B} can compute A ? B efficiently as follows:

Let A = (xA, yA) and B = (xB , yB) be given. Additionally, we are given σA ∈
Z∗n, the sampling information of A. That is, xA = gσA ∈ G1 and yA = E(σA) ∈
Z∗
n2 . To compute A?B, first generate random r

R← Z∗n. Then set x← xB
σA ∈ G1

and y ← yB
σA · rn ∈ Z∗

n2 .

Therefore, x = xB
D(yA) and due to the homomorphic properties of the Paillier

cryptosystem, we find that y = E(σAD(yB) mod n) = E(D(yA)D(yB) mod n).
Thus, (x, y) = A ? B.

(3) Trapdoor Strong Invertibility and Exponentiation: Let A,B ∈ G be given.
Anyone who has sampled A ∈ G can also compute A−1 ? B because if σA ∈ Z∗n
is the sampling information for A then σ−1

A ∈ Z∗n is the sampling information for
A−1. Also, for any i ∈ Z, the sampling information for Ai ∈ G is (σA)i ∈ Z∗n.

(4) Non-computability: Let A,B ∈ G be given. Anyone who has not sampled at
least one of {A,B,A−1, B−1} cannot compute A ? B without knowledge of λ.

(5) Strong Non-invertibility: Let A,B ∈ G be given. Anyone who has not sampled
at least one of {A,A−1} cannot compute A−1 ? B without knowledge of λ.

(6) Black-Box Computability: Let A,B ∈ G be given. Anyone knowing λ has the
ability to compute A ? B using equations 5.3 and 5.2.

(7) Black-Box Distinguishability: Let (x, y) ∈ G1×Z∗
n2 be given. Anyone knowing

λ, also has the ability to decide if (x, y)
?
∈ G by virtue of Eq. 5.1.

5.4 A concrete O-GII construction

We now describe a concrete construction of an O-GII under Def. 3.3. In addition to
the four main algorithms Setup, Sample, Compute, PV-Compute and the three algo-
rithms Verify, Blind and Unblind used as subroutines in PV-Compute, our construction
has four auxiliary algorithms Verify-In-Group, Verify-Not-In-Group, TD-Exponentiate and
V-Compute. Thus, our construction has a total of eleven algorithms. Setup is described
in §5.1 while Sample is described in §5.3, Item 1.
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A-1.

Setup

Input: τ ∈ N
Step-1. Generate {ê, G1, G2, g, t, n, h, β, λ} as described in §5.1.

Step-2. Set params← (ê, G1, G2, g, t, n, h, β) and master-key← λ.

Output: (params, master-key)

A-2.

Sample

Input: params

Step-1. Generate σA, r
R← Z∗n

Step-2. Set xA ← gσA ∈ G1; yA ← tσArn mod n2 = E(σA) ∈ Z∗
n2

Step-3. Set A← (xA, yA) ∈ G
Output: (A, σA) ∈ G× Z∗n [σA is the sampling information of A]

Remark 5.4. From the value params, the pair (h, β) ∈ G such that its sampling infor-
mation α ∈ Z∗n is unknown (see §5.1).

A high level description of Compute is given below.

A-3.

Compute

Input: (master-key, params, A,B), where A,B ∈ G1 × Z∗
n2

Step-1. Use master-key = λ to decide if (A,B)
?
∈ G2 [see §5.3, Item 7]

Step-2. If (A,B) 6∈ G2, set C ← I ∈ G; otherwise, compute A?B using λ and
set C ← A ? B

[See §5.3, Item 6]

Output: C ∈ G

Functionality of Oracle O: Access to Compute is provided in a black-box manner via
the oracle O that knows master-key and params. The oracle works as follows.

Oracle O
Input: A,B ∈ G1 × Z∗

n2

Step-1. Set C ← Compute(master-key, params, A,B)

Output: C ∈ G [We say C = O(A,B)]
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Remark 5.5. A query to oracleO on inputs (A,B) /∈ G2 requires at most two exponen-
tiations in G1 and Z∗

n2 . On the other hand, if (A,B) ∈ G2, the query always involves
three exponentiations in G1 and Z∗

n2 . Also, O(A,B) = A ? B whenever (A,B) ∈ G2.

Remark 5.6. Assuming that access to oracle O is authentic, we can use O to decide if

any given pair (A,B)
?
∈ G2. Additionally we can use O to compute Ai for any A ∈ G

and i ∈ N using the “repeated squaring and multiply” method [35, p. 71].

Since access to oracle O is over an insecure public channel, we cannot assume that
oracle replies are authentic. Denote by O∗ the unauthenticated oracle (which could be
an active adversary) supposedly claiming to be oracle O.

The following algorithm, Verify-In-Group uses oracleO∗ to decide that any given pair
(x, y) ∈ G1×Z∗

n2 is indeed an element of G. If (x, y) /∈ G the algorithm outputs 0 with
a high probability.

A-4.

Verify-In-Group

Input: (params, x, y) such that (x, y) ∈ G1 × Z∗
n2

Step-1. Generate u1, u2, v1, v2,
R← Zn and w1, w2

R← Z∗n
Step-2. Set x1 ← xu1gv1 ∈ G1; x2 ← xu2gv2 ∈ G1

Step-3. Set y1 ← yu1tv1w1
n mod n2; y2 ← yu2tv2w2

n mod n2; result← 0

Step-4. Set (x′, y′)← O∗((x1, y1), (x2, y2))

Step-5. If ê(x′, g) = ê(x1, x2), set result← 1

Output: result ∈ {0, 1}

We prove in Appendix A that the above algorithm is sound (under a non-standard
assumption). That is, if (x, y) 6∈ G, then the algorithm outputs 0 with a high probabil-
ity. However, the converse is not true. Hence, the above algorithm cannot be used to
conclude that (x, y) /∈ G if the output is 0.

In some cases, we may need to decide with certainty that a given pair (x, y) is indeed
not an element of G. The next algorithm, Verify-Not-In-Group enables us to do this using
oracle O∗. If (x, y) ∈ G the algorithm outputs 0 with a high probability.4

4The reader should note that Verify-Not-In-Group is never used in any of the protocols discussed in this
paper. It is provided only for completeness of our O-GII construction.
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A-5.

Verify-Not-In-Group

Input: (params, x, y) such that (x, y) ∈ G1 × Z∗
n2

Step-1. Set a security parameter j and generate a j-bit string a R← {0, 1}j . Set
result← 0.
Initialize another j-bit string b ∈ {0, 1}j .

Step-2. Repeat for i from 1 to j (denote by ai and bi, the ith bits of a and b
respectively).

i. If ai = 1, set (x′, y′) R← Sample(params); otherwise, set (x′, y′)←
(x, y)

ii. Set bi ← Verify-In-Group(params, x′, y′)

Step-3. If (a = b), set result← 1

Output: result ∈ {0, 1}

Lemma 5.7 shows that Verify-Not-In-Group is sound if Verify-In-Group is sound.

Lemma 5.7. If Verify-In-Group is sound, then Verify-Not-In-Group is also sound.

Proof. We must show that if Verify-Not-In-Group outputs 1, then (x, y) 6∈ G.
If (x, y) ∈ G, then (x′, y′) in Step 2 of Verify-Not-In-Group is always an element of

G. Now assume that Verify-In-Group is sound. Thus, the probability that ai = bi is 1
2

for any i. Also, each bit ai is independent of other bits. Thus, for a total of j bits,
Pr[(ai = bi)∀1 ≤ i ≤ j] = 1

2j . In other words, if (x, y) ∈ G the probability that
Verify-Not-In-Group outputs 1 is 1

2j , which can be made arbitrarily small. 2

The next algorithm, Verify takes as input a 3-tuple (A,B,C), where A,B ∈ G and
C ∈ G1 × Z∗

n2 . It outputs 1 only if C = A ? B

A-6.

Verify

Input: (params, A,B,C) such that A,B ∈ G and C ∈ G1 × Z∗
n2 .

Assume that the input is correct.

Step-1. Set (xA, yA)← A; (xB , yB)← B; (xC , yC)← C; result← 0

Step-2. If ê(xC , g) = ê(xA, xB), set result← Verify-In-Group(params, xC , yC)

Output: result ∈ {0, 1}

Clearly, Verify is sound if Verify-In-Group is sound. We observe that we can remove
the function call Verify-In-Group(params, xC , yC) in Step 2 of the above algorithm (and
simply set result ← 1 instead) without introducing any weakness in the construction.
However, the inclusion of this call enables us to reduce the soundness of other related
algorithms to the soundness of Verify-In-Group.

Algorithm V-Compute takes as input two elements A,B ∈ G. It uses Verify-In-Group
as a subroutine and computes A ? B verifiably by querying O∗.
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A-7.

V-Compute

Input: (params, A,B) such that A,B ∈ G. Assume that the input is correct.

Step-1. Set C ← O∗(A,B) ∈ G1 × Z∗
n2

Step-2. If Verify(A,B,C) = 0, set C ← I ∈ G
Output: C ∈ G

Clearly, the soundness of the above algorithm reduces to that of the Verify algorithm.
As a consequence, if Verify is sound then having indirect access to the oracle O via
some active adversary O∗ is the same as having authentic and public access to O. For
completeness, we state this in Lemma 5.8.

Lemma 5.8. If Verify is sound then O is a V-Oracle.

The next algorithm, TD-Exponentiate (“trapdoor-exponentiate”) takes as input (i) the
sampling information σA ∈ Z∗n of an element A ∈ G, (ii) an arbitrary index i ∈ Z, and
(iii) an element B ∈ G. It outputs Ai ? B ∈ G. TD-Exponentiate will be used primarily
as a subroutine in the Blind and Unblind algorithms.

A-8.

TD-Exponentiate

Input: (params, σA, i, B), where σA ∈ Z∗n; i ∈ Z; B ∈ G.
Here, σA is the sampling information of A ∈ G. Assume that the input
is correct.

Step-1. Generate r R← Z∗n
Step-2. Set σ ← σA

i ∈ Z∗n; (xB , yB)← B ∈ G1 × Z∗
n2

Step-3. Set x← xB
σ ∈ G1; y ← (yB)σrn = E(σD(yB) mod n) ∈ Z∗

n2

Output: (x, y) ∈ G

The next two algorithms Blind and Unblind work as follows.
Blind takes as input a value A ∈ G. It generates B R← G and outputs (A ? B) ∈ G,

along with σB ∈ Z∗n, the sampling information of B. Unblind is the inverse of Blind. It
takes as input a pair (A, σB) ∈ G × Z∗n and outputs A ? B−1 ∈ G such that σB is the
sampling information of B ∈ G.

A-9.

Blind

Input: (params, A) such that A ∈ G. Assume that the input is correct.

Step-1. Set (B, σB) R← Sample(params) ∈ G× Z∗n [B will be ignored]

Step-2. Set (x, y)← TD-Exponentiate(params, σB , 1, A) ∈ G
Output: (x, y, σB) ∈ G× Z∗n
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A-10.

Unblind

Input: (params, A, σB), where A ∈ G and σB ∈ Z∗n.
Here, σB is the sampling information of B ∈ G. Assume that the input
is correct.

Step-1. Set (x, y)← TD-Exponentiate(params, σB ,−1, A) ∈ G
Output: (x, y) ∈ G

Lemma 5.9. The Blind/Unblind algorithms provide perfect privacy.

Proof. The Blind and Unblind algorithms are inverses of each other. Now, if the output
of Sample is uniformly distributed over G, then the output of Blind is also uniformly
distributed over G, independent of the input. This is sufficient to prove the lemma. 2

Algorithm PV-Compute takes as inputs A,B ∈ G. It uses the Blind, Unblind and and
V-Compute algorithms as subroutines to compute A ? B privately and verifiably.

A-11.

PV-Compute

Input: (params, A,B) such that A,B ∈ G. Assume that the input is correct.

Step-1. Set (A′, σA′)
R← Blind(params, A) ∈ G× Z∗n

Step-2. Set (B′, σB′)
R← Blind(params, B) ∈ G× Z∗n

Step-3. Set C ′ ← V-Compute(A′, B′) ∈ G1 × Z∗
n2

Step-4. Set C ← Unblind(params,Unblind(params, C ′, σA′), σB′) ∈ G
Output: C ∈ G

Since the Blind/Unblind algorithms provide perfect privacy (Lemma 5.9), the sound-
ness of the above algorithm also reduces to that of the Verify algorithm. We summarize
this in Lemma 5.10, which says that if Verify is sound, then having indirect access to
the oracle O via some active adversary O∗ is the same as having private and authentic
access to O.

Lemma 5.10. If Verify is sound then O is a PV-Oracle.

This completes the construction. Figure 2 gives the dependencies between the eleven
algorithms. When considering the security, we will assume that O takes one time unit
to respond to each query and that the sum of the number of queries toO and the running
time of the adversary is bounded by a polynomial in τ .

5.5 Notation

For convenience, we will adopt the following shorthand notation.
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Figure 2. Dependencies between the algorithms.

1 We will denote TD-Exponentiate(params, σA, i, B) by T (σA, i, B).

2 Since invoking V-Compute is equivalent to making a public query to oracle O
(Lemma 5.8), we will denote V-Compute(params, A,B) simply by O(A,B).

3 Invoking PV-Compute is equivalent to making a private query to oracle O
(Lemma 5.10). We will denote PV-Compute(params, A,B) by Ô(A,B).

4 For any k elements {A1, A2, . . . , Ak} ⊂ G, we denote by
〈
O
〉k
i=1

(Ai) the value

O(O(. . .O(A1, A2), . . .), Ak) =
k∏
i=1

Ai.

Similarly, we denote by
〈
Ô
〉k
i=1

(Ai) the value

Ô(Ô(. . . Ô(A1, A2), . . .), Ak) =
k∏
i=1

Ai.

5 We will denote by E(A, i) an algorithm to compute Ai for any A ∈ G with the
repeated squaring method using V-Compute as a subroutine. This algorithm does
not provide privacy of inputs. However, the outputs are verifiable.
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6 We will denote by Ê(A, i) an algorithm to compute Ai for any A ∈ G with the
repeated squaring method using PV-Compute as a subroutine. This algorithm pro-
vides perfect privacy to inputs and verifiability of outputs.

Remark 5.11. ComputingAi using algorithms E and Ê will amount to≈ c·log i queries
to oracle O (for constant c) with the repeated squaring method [35, p. 71].

5.6 Security of the construction

Recall that out of params, the pair (h, β) ∈ G. Denote this value by P . The security
of our O-GII relies on the difficulty of inverting ? with respect to P . One way to do
this would be to extract λ from the oracle. However, this is equivalent to factoring n so
we should look at indirect methods for inverting ? (with respect to P ) using the oracle.
The security of all our constructions reduces to the difficulty of the following problem:

Group Inversion Problem [GIPG] Input: P ∈ G. Output: P−1 ∈ G, possibly by
using the oracle O.

We hypothesize that any method of reducing IDH(g,G1) to CDH(g,G1) will yield a
method of reducing GIPG to the oracle O. We define the advantage of an algorithm for
solving the group inversion problem as follows.

Definition 5.12. For any algorithmA, the advantage ofA in solving the group inversion
problem AdvGIP

A (τ) for some security parameter τ is defined as: AdvGIP
A (τ) =

Pr


AO(ê, G1, G2, n, g, t, g

α,E(α)) = (g 1
α ,E( 1

α))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(ê, G1, G2, p, q)
R← BDH(τ)

s.t. |G1| = |G2| = pq,

g
R← G1 s.t. 〈g〉 = G1,

n← pq, α
R← Z∗n,

t
R← Z∗

n2 s.t. | 〈t〉 | = nλ,

h← gα, β ← E(α)


,

where BDH is the BDH parameter generator (§4.1.2); E is Paillier encryption with
public key (t, n) (§4.2), and O is an oracle implementing Compute (§5.4).

For any algorithm A, let δA denote the upper-bound on the running time of A, and
let k(O,A) denote the upper-bound on the number of queries to oracle O by A. Our
security is based on the following conjecture.

Conjecture 5.13. For any algorithm A such that k(O,A), δA ∈ Poly(τ), AdvGIP
A (τ) is

a negligible function in τ . In other words, for all kO, δ, 1/ε ∈ Poly(τ), the O-GII is
(kO, δ, ε)-secure under an adaptive attack using Def. 3.4.

Remark 5.14. In the generic group model [52], it is known that if AdvGIP
A (τ) ≈ 1, then

kO ≈
√
|G|.
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6 Applications of O-GIIs

In this section, we describe three applications of O-GIIs: (a) Multiparty-Key Agree-
ment, (b) Signatures, and (c) Broadcast encryption (another application, Identity Based
Encryption (IBE) is described in Appendix C).

6.1 Key generation

To participate in the protocols below, each user i needs a certified public key and the
corresponding private key. Recall that out of params, the pair (h, β) = P ∈ G. This
will serve as a common starting value.

1 User i generates (Xi, σXi)
R← Sample(params) ∈ G×Z∗n. The private key is σXi .

2 User i computes the public key Yi ← T (σXi , 1, P ) = Xi ? P . The public key is
made available in an authentic way (for instance via a certificate).
See Appendix B for a zero-knowledge proof of knowledge that can be used by a
Certification Authority (CA) to ascertain that user i indeed knows the private key
σXi corresponding to the public key Yi before issuing a certificate.

6.2 Multiparty key agreement

In this section, we describe the multiparty key agreement protocol of Rabi and Sher-
man [39] using O-GIIs. At a high level, the objective of a multiparty key agreement
protocol is to enable a set of users to compute a shared secret key (the group private
key) such that no one outside the set can compute this key. In our model, each group
private key also has a corresponding group public key, which can be used for join/merge
operations and for verifying (group) signatures created using the group private key. We
also define a partial public key that is used in the intermediate steps for group private
key computation.

6.2.1 Key agreement protocol

[k users] A set a = {1, 2, 3, . . . , k} of k users compute a shared group key.

1 Partial public key: Each user j ∈ a first computes the partial public key

Ya\{j} ←
〈
O
〉k
i=1;i6=j

(Yi) =
k∏

i=1;i 6=j

Yi = P k−1 ?

k∏
i=1;i 6=j

Xi.

2 Group Private Key: Each user j ∈ a then computes the group private key

Ka ← T (σXj , 1, Ya\{j}) = Xj ? Ya\{j} = P k−1 ?

k∏
i=1

Xi.
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3 Group Public Key: The group public key for a is computed by anyone as

Ya ←
〈
O
〉k
i=1

(Yi) =
k∏
i=1

Yi = P k ?

k∏
i=1

Xi.

Thus, the partial public key of user j in set a is the group public key of the set a\{j}.

6.2.2 Overview of the key agreement protocol

1 Complexity: For a group of k users, k−2 oracle queries are required for each user
to compute the shared key. Thus, total k(k − 2) queries are required for all the
k users. However, no specific ordering is required between the users (users can
compute the shared key after receiving a ciphertext). Additionally, oracle queries
can be batched.

2 Universal Escrow: Given a public key Yi = Xi ?P , the oracle O can compute the
corresponding private key σXi . Therefore, O has universal escrow capability.

3 Restricted Private Keys: Observe that any computation with the private key σXi
(except inversion w.r.t. Xi) is efficiently possible just fromXi using PV-Compute.5
Thus, Xi can be considered as a ‘restricted’ private key corresponding to the ‘un-
restricted’ private key σXi , the restriction being the inability to invert ? w.r.t. Xi.

4 Non-interactivity: Assuming that all the public keys Yi are known in advance, any
user can compute the shared key without interacting with the other users.

5 Multiple copies of the Oracle: An arbitrary number of “copies” of the oracle can
be run without any compromise to security.

6.2.3 Join and merge operations

Members can join any group and many groups can merge arbitrarily. For simplicity,
we demonstrate only the merge operation between two disjoint sets a and b of users.

Example 6.1 (Merge). A set a of users merges with another set b of users such that
a ∩ b = ∅. Further assume that a has the private key Ka and the public key Ya.
Similarly, b has the private key Kb and the public key Yb.

1 Group private key: Each member i ∈ a computes Ka∪b ← Ô(Ka, Yb), while each
member j ∈ b computes Ka∪b ← Ô(Kb, Ya).

2 Group public key: The group public key corresponding to the group private key
Ka∪b can be computed as Ya∪b ← O(Ya, Yb) = Ya ? Yb.

In the above merge procedure, we assumed that a and b are disjoint (i.e. they have
no common members). In case the sets are not disjoint, we could still use the above
merge procedure without any serious drawback as long as this instantiation of O-GII

5With only a polynomial amount of increase in the number of oracle queries.



A cryptographic primitive based on hidden-order groups 113

is only used for key agreement (and not for signatures, which are discussed below in
§6.3). In case the same instantiation of O-GII is also used for signatures, we would
require the merge procedure to eliminate duplicate users in the merged set (this can
be efficiently done if the intermediate values in the partial public key computation are
cached).

Forward Secrecy: Due to the abovementioned merge procedure, the compromise of
the group private key of a set a of users compromises the group private key of any other
set c of users whenever c ) a. To overcome this weakness, if the private key of group a
is compromised, at least one member of a must compute a new public-private key pair.
Compromise of a group private key of a set a of users, however, does not compromise
the group private key of any set c of users whenever c ( a. (See also, Footnote 6.)

6.2.4 Security of the key agreement protocol

From the key agreement procedure, it is clear that if the adversary knows the private
key of user i ∈ a then the adversary knows the group private key of the set a of
users. Additionally, if the adversary knows the group private key of the set a then
the adversary also knows the group private key of any set that properly includes a.
Thus, we restrict the adversary to output the private key of any set a of users such that
the adversary knows neither the group private key of any proper subset of a nor the
private keys of any users in the set a. We show that any algorithm that breaks the key
agreement protocol with this restriction can be used to compute P−1. First observe
that the secret key Ka for the set a = {1, 2, . . . , k} of users is related to the public keys
{Y1, Y2, . . . , Yk} as:

Ka = P k−1
k∏
i=1

Xi = P−1 ?

k∏
i=1

Yi. (6.1)

Security Model: Boneh and Silverberg defined the security of one-round multiparty
key agreement in [9], where they require the adversary to compute the group key of a
given set of users. Their definition captures security under a known subset key attack,
because the attacker is not allowed to choose the set of public keys to attack.6 Here, we
use a stronger model – we allow the adversary to choose the subset of keys to attack.
We call this security under chosen subset key attack. This is defined by Game 1 below.

Game 1

Initialize. To initialize the game, the challenger C gives a security parameter τ to
the adversary. The adversary A responds with a value µ1 ∈ N.

6Although several stronger notions of security of key agreement protocols have been proposed [53, 31] for
interactive schemes, we use the model of Boneh and Silverberg [9], which is standard for non-interactive (i.e.,
one-round) schemes. The main difference between the stronger model is that several standard features of inter-
active schemes must be sacrificed in order to enjoy the benefits of non-interactivity ([47, §2.2.1]). Specifically,
we cannot obtain key freshness and perfect forward secrecy. However, we can use standard techniques to fix this
at the expense of one interaction [47, p. 58].
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Challenge. The challenger performs the key generation phase and gives a set
{Y1, Y2, . . . , Yµ1} of µ1 public keys to A.

Output. Eventually A outputs a pair 〈a,Ka〉.

Result: A wins if a ⊆ {1, 2, . . . , µ1} and Ka is the group private key of a.

Definition 6.2. We say that adversary A (µ1, δ1, ε1)-breaks the key agreement protocol
in the chosen subset key attack if for a total of µ1 public keys output in the setup
phase A runs at most time δ1 and the probability of A winning game 1 is at least
ε1. Alternatively, we say that the key agreement protocol is (µ1, δ1, ε1)-secure under a
chosen-subset key attack if no such adversary exists.

Theorem 6.3 shows that the key agreement protocol is secure under a chosen-subset
key attack if the group inversion problem is hard.

Theorem 6.3. Let the O-GII be (·, δ, ε)-secure under an adaptive attack. Then the
multiparty key agreement protocol is (µ1, δ1, ε1)-secure in a chosen-subset key attack,
where δ ≤ δ1 + Θ(c1µ1) and ε = ε1. Here, c1 is the time for a multiplication in Z∗n.

Proof. Let the O-GII be (·, δ, ε)-secure under an adaptive attack and let A be an algo-
rithm that (µ1, δ1, ε1)-breaks the key agreement protocol in a chosen-subset key attack.
We construct an algorithm B that uses A to solve GIPG in time at most δ and probabil-
ity at least ε, thus arriving at a contradiction. The input to B is P ∈ G and its goal is to
output P−1. B simulates the challenger of game 1 and runs algorithm A as follows.

Initialize. B gives the security parameter τ to A who replies with µ1.

Challenge. B generates (Y1, σY1), (Y2, σY2), . . . , (Yµ1 , σYµ1
) R←Sample(params)∈

G× Z∗n and gives the (µ1 + 1)-tuple (Y1, Y2, . . . , Yµ1 , P ) to A.
Output. Eventually A outputs a pair 〈a,Ka〉.
Result: If 〈a,Ka〉 is a winning configuration, then a ⊆ {1, 2, . . . , µ1} and Ka =
P−1 ?

∏
i∈a Yi by virtue of Eq. 6.1. Clearly, the simulation provided by B is

perfect. Algorithm B then proceeds as follows:

i. If 〈a,Ka〉 is not a winning configuration, B reports failure and terminates.
ii. We know that 〈a,Ka〉 is a winning configuration. Algorithm B sets σY ←∏

i∈a σYi mod n. Thus, σY is the sampling information of
∏
i∈a Yi (see §5.3,

Item 3).
iii. B sets result← T (σY ,−1,Ka) and outputs result.

Algorithm B is correct because

T (σY ,−1,Ka) = (
∏
i∈a

Yi)
−1
? Ka = (

∏
i∈a

Yi)
−1
? P−1 ?

∏
i∈a

Yi = P−1.

The running time of B is the running time ofA plus the time required for generating
the µ1 public keys; the time required for computing T ; and the time required for at most
µ1 multiplications in Z∗n. The probability of B’s success is the same as the probability
of A’s success. This gives the bounds. 2
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6.3 Signatures

As noted in [38], SAOWFs (and so GIIs) give rise to signature schemes. Here, we
describe two signature schemes using O-GIIs: ordinary signatures and multi-user sig-
natures. A signature scheme consists of three algorithms KeyGen, Sign and VerifySig,
where the algorithms have their usual constraints [7]. Our message space is N.

6.3.1 Single-user signatures

This is a variation of the scheme for single-user signatures described in [39].

KeyGen. This algorithm is described in §6.1. The private key of user i is σXi ∈
Z∗n. The public key is Yi = Xi ? P ∈ G.

Sign. Let m ∈ N be the message. To sign m, user i computes the signature S(i,m)
as:

S(i,m) ← T (σXi ,m, P ) = Xi
m ? P.

VerifySig. To verify a signature S(i,m) of user i on message m, we check if the
following holds:

E(Yi,m) ?= O(S(i,m), E(P,m− 1)).

In other words, we check if Yim
?= S(i.m) ? P

m−1.

6.3.2 Multi-user and ring signatures

The above construction of single-user signatures can be trivially extended to multi-user
signatures. To sign messages, members of a group must share a secret group key.

KeyGen. This algorithm is described in §6.2. Without loss of generality, assume
that any of the set a = {1, 2, . . . , k} of users want to independently sign
messages using the group private key Ka = P k−1 ?

∏k
i=1 Xi such that the

signatures can be verified using the group public key Ya =
∏k
i=1 Yi.

Sign. Let m ∈ N be the message. To sign m, any member i ∈ a computes the
signature S(a,m) as:

S(a,m) ← Ô(Ê(Ka,m), P ) = Ka
m ? P.

VerifySig. To verify a signature S(a,m) of user i ∈ a on message m, we check if
the following holds:

E(Ya,m) ?= O(S(a,m), E(P,m− 1)).

In other words, we check if Yam
?= S(a,m) ? P

m−1.

Given a signature of some set a, it is not possible for any group controller to revoke
the anonymity of the signer (since there is no group controller). Thus, the above scheme
is an example of ring signatures [44].
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6.3.3 Security of the signature schemes

The strongest model for security of signatures is security against existential forgery
under an adaptive chosen message attack [7], where the attacker is required to output
a successful forgery under the challenge public key after having access to the signing
oracle. However, we prove the security of our schemes only in a weaker model that we
call security against existential forgery under a non-adaptive chosen message attack.
In a non-adaptive attack, the attacker is not allowed to make any signature queries. We
define this using the following game between the challenger C and an adversaryA. For
technical convenience, we bound the value of the message in the forgery to be ≤ n,
although this bound could be any polynomial function of n.

Game 2

Initialize. To initialize the game, the challenger gives a security parameter τ to
the adversary. The adversary A outputs µ2 ∈ N.

Challenge. The challenger C performs the key generation phase and gives a set
{Y1, Y2, . . . , Yµ2} of µ2 public keys to A.

Output. Eventually A outputs a tuple
〈
a, S(a,m),m

〉
.

Result: A wins the game if a ⊆ {1, 2, . . . , µ2} and S(a,m) is a valid signature by a
on the message m and m ≤ n.

Definition 6.4. We say that adversary A (µ2, δ2, ε2)-breaks the signature scheme in
a non-adaptive chosen message attack if for a total of µ2 public keys output in the
setup phase A runs at most time δ2 and the probability of A winning game 2 is at
least ε2. Alternatively, we say that the signature scheme is (µ2, δ2, ε2)-secure under a
non-adaptive chosen message attack if no such adversary exists.

Theorem 6.5 shows that any algorithm that is successful in existential forgery of
signatures under a non-adaptive chosen message attack can be used to solve GIPG.
First observe that S(a,m) can be rewritten as

S(a,m) = Ka
m ? P = P 1−m ? (

k∏
i=1

Yi)
m
. (6.2)

Also note that game 2 considers both single and multi-user signatures.

Theorem 6.5. If there exists an algorithm A that (µ2, δ2, ε2)-breaks the signature
scheme under a non-adaptive chosen message attack, then there exists an algorithm
B that (kO, δ, ε)-breaks the O-GII under an adaptive attack, where kO < Θ(3 logn);
δ ≤ δ2 + Θ(c2µ2); and ε = ε2. Here, c2 is a constant that depends on G.

Proof. Let the O-GII be (kO, δ, ε)-secure under an adaptive attack and let A be an al-
gorithm that (µ2, δ2, ε2)-breaks the signature scheme in a non-adaptive chosen message
attack. We construct an algorithm B that uses A to solve GIPG in at most δ time with
probability at least ε, thus arriving at a contradiction. The input to B is P ∈ G and its
goal is to output P−1. B simulates the challenger of game 2 and runs algorithm A.
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Initialize. B gives the parameter τ to A, who outputs µ2 ∈ N.

Challenge. B generates (Y1, σY1), (Y2, σY2), . . . , (Yj , σYµ2
) R← Sample(params) ∈

G× Z∗n and gives the (µ2 + 1)-tuple (Y1, Y2, . . . , Yµ2 , P ) as the input to A.

Output. Finally A outputs a tuple
〈
a, S(a,m),m

〉
.

Result: If the tuple
〈
a, S(a,m),m

〉
represents a winning configuration, then a ⊆

{1, 2, . . . , µ2}, S(a,m) = P 1−m ? (
∏
i∈a Yi)

m (by virtue of Eq. 6.2), and m ≤ n.
Algorithm B then proceeds as follows:

i. If
〈
a, S(a,m),m

〉
not a winning configuration, algorithm B reports failure and

terminates.

ii. We know that a ⊆ {1, 2, . . . , µ2} and S(a,m) = P 1−m ? (
∏
i∈a Yi)

m. Algo-
rithm B sets C ← E(P,m− 2) = Pm−2 and σY ←

∏
i∈a σYi mod n. Thus,

σY is the sampling information of
∏
i∈a Yi (see §5.3, Item 3).

iii. Finally, B sets result← T (σY ,−m,O(S(a,m), C)) and outputs result.

Algorithm B is correct because

T (σY ,−m,O(S(a,m), C)) = (
∏
i∈a

Yi)
−m

? S(a,m) ? C

= (
∏
i∈a

Yi)
−m

? (P 1−m ?
∏
i∈a

Yi) ? (Pm−2) = P−1.

The running time of B is the running time ofA plus the time required for generating
the µ2 public keys; the time required for computing T once; and, the time required for
at most µ2 multiplications in Z∗n. Therefore δ ≤ δ2 + Θ(c2µ2), where c2 is the time for
generating one public key plus the time for one multiplication in Z∗n.

Clearly, the simulation provided to A is perfect. Hence, the probability of B’s suc-
cess is the same as the probability of A’s success. Finally, B queries the oracle for
computing O(S(a,m), C) and E(P,m−2). This amounts to a maximum of Θ(c1 logm)
queries for some constant c1 < 3. Considering that m ≤ n, we have the required
bounds. 2

6.4 Broadcast encryption

In a broadcast encryption scheme [17], anyone can encrypt a message addressed to a
closed set of users using their public keys such that only those users have the ability
to decrypt the message (we do not consider schemes that allow traitor tracing [13]).
Using our method, the size of ciphertexts and public/private keys is O(1) and for a
set of k users, a total of O(k) calls to the oracle O are required for encryption and
decryption. A broadcast encryption scheme consists of four algorithms BC-Setup, BC-
KeyGen, BC-Encrypt and BC-Decrypt, where the algorithms have their usual meanings
and constraints [17]. (We use the prefix ‘BC’ to indicate ‘broadcast’).
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BC-Setup. This algorithm is used to set up the initial system parameters and is
described in §6.1, where the initial public key infrastructure is created for
individual users. We additionally require a cryptographic hash function H :
G 7→ {0, 1}l, that will be treated as a random oracle in the proofs.7 The
message space is {0, 1}l, where l ≤ log2 n.

BC-KeyGen. Without loss of generality, assume that messages will be encrypted
to any arbitrary set a = {1, 2, . . . , k} of k users with public keys {Y1, Y2, . . . ,
Yk}.
Encryption Key: The sender of the message generates the group public key
Ya =

∏k
i=1 Yi by making k − 1 oracle queries (as described in §6.2).

Decryption Key: Any receiver j ∈ a must independently compute the group
private key Ka = P k−1 ?

∏k
i=1 Xi = P−1 ?

∏k
i=1 Yi by making k− 2 oracle

queries (as described in §6.2).

BC-Encrypt. To encrypt m ∈ {0, 1}l to the set a = {1, 2, . . . , k} of k users with
group public key Ya, generate (R, σR) R← Sample(params) ∈ G × Z∗n and
compute

c1 ← m⊕H(T (σR, 1, Ya)) = m⊕H(R ? Ya)

C2 ← T (σR, 1, P ) = R ? P.

Here ⊕ is the XOR operator. The ciphertext is C = (c1, C2) ∈ {0, 1}l ×G.

BC-Decrypt. To decrypt ciphertext (c1, C2) using group private key Ka, compute

m← c1 ⊕H(Ô(Ka, C2)) = c1 ⊕H(Ka ? C2).

The decryption is correct, because for a legitimate ciphertext we have

(Ka ? C2) = (P k−1 ?

k∏
i=1

Xi) ? (R ? P ) = R ? P k ?

k∏
i=1

Xi = R ? Ya.

6.4.1 Security of broadcast encryption

We use a restricted notion of security, namely security under an adaptive chosen plain-
text attack (IND-CPA). In this model, we fix some arbitrary set a = {1, 2, . . . , k} of k
users and require the adversary to attack the semantic security of the scheme without
access to a decryption oracle. However, we allow the adversary to choose the subset of
keys it is attacking. Since full security in the sense of adaptive chosen ciphertext attacks
(IND-CCA) in the random oracle model can be achieved using the Fujisaki-Okamoto
transformation [19], we prove security only in the IND-CPA model. The IND-CPA secu-
rity of a broadcast encryption scheme is defined using the following game between a
challenger C and an adversary A.

7To construct this hash function, let A = (x, y) ∈ G ∈ G1 × Z∗n be some input and letH1 : G1 7→ {0, 1}l
be a hash function. ThenH(A) = H1(x).
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Game 3

Initialize. The challenger C gives a security parameter τ to the adversary A, who
outputs a tuple µ3. The challenger performs the key generation phase and
gives a set {Y1, Y2, . . . , Yµ3} of µ3 public keys to A.

Challenge. A outputs two messages m0,m1 along with a set a ⊆ {1, 2, . . . , µ3}
of users. The challenger chooses a bit b R← {0, 1} and outputs the encryption
of mb under the group public key Ya of a.

Guess. Eventually A outputs a bit b′ ∈ {0, 1}.

Result: A wins the game if b = b′.
We refer to such an adversary A as an IND-CPA adversary. We define A’s advan-
tage in attacking the broadcast encryption scheme Adv-cpaA(τ) as:

Adv-cpaA(τ) =
∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ ,
where the probability is taken over the random coin tosses of C and A.

Definition 6.6. Let H be a random oracle. We say that an IND-CPA adversary A
(µ3, δ3, k3, ε3)-breaks the broadcast encryption scheme in an adaptive chosen plain-
text attack if for a total of µ3 public keys output in the setup phase A runs at most time
δ3; A makes at most k3 queries to the oracle for H; and Adv-cpaA(τ) at least ε3. Al-
ternatively, we say that the broadcast encryption scheme is (µ3, δ3, k3, ε3)-secure under
an adaptive chosen plaintext attack if no such adversary A exists.

Theorem 6.7 shows that any IND-CPA adversary A with non-negligible advantage
Adv-cpaA(τ) in the random oracle model can be used to solve the group inversion
problem with non-negligible advantage. The proof is similar to the proof of [5, Lemma
4.3].

Theorem 6.7. LetH be a random oracle and let the O-GII be (kO, δ, ε)-secure under an
adaptive attack. Then the broadcast encryption scheme is (µ3, δ3, k3, ε3)-secure under
an adaptive chosen plaintext attack, where kO ≤ k3; δ ≤ δ3 + Θ(c1µ3)+ Θ(c2k3); and
ε ≥ 2ε3. Here, c1 is the time for one multiplication in Z∗n, and c2 is a constant that
depends on the oracle O.

Proof. Let the O-GII be (kO, δ, ε)-secure under an adaptive attack and let A be an
algorithm that (µ3, δ3, k3, ε3)-breaks the key agreement protocol in an adaptive chosen
plaintext attack. We construct an algorithm B that uses A to solve GIPG in at most δ
time with probability at least ε and making at most kO oracle queries, thus arriving at
a contradiction. The input to B is P ∈ G and its goal is to output P−1. B simulates the
challenger of game 3 and runs A.

Initialize. B gives the security parameter τ toAwho replies with µ3. B generates

(Y1, σY1), (Y2, σY2), . . . , (Yµ3 , σYµ3
) R← Sample(params) ∈ G× Z∗n,

and gives the (µ3 + 1)-tuple (Y1, Y2, . . . , Yµ3 , P ) to A.
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H-queries. At any time, A may query the random oracle H. To respond to these
queries, B maintains a list of tuples called the Hlist. Each entry in this list is
a tuple of the form 〈Zj ,Hj〉. Initially this list is empty. To respond to a H
query on Zi, algorithm B does the following:

i. If the query Zi already appears on the Hlist in a tuple 〈Zi,Hi〉, then B
responds with H(Zi) = Hi.

ii. Otherwise, B just picks a random stringHi ∈ {0, 1}l and adds the tuple
〈Zi,Hi〉 to the Hlist. It responds with H(Zi) = Hi.

Challenge. A outputs two messages m0,m1 along with a set a ⊆ {1, 2, . . . ,
µ3} and sends the tuple (m0,m1, a) to B. Algorithm B picks random c1 ∈
{0, 1}l; generates (C2, σC2)

R← Sample; defines the ciphertext C = (c1, C2);
and gives C as the challenge ciphertext to A. Observe that by definition the
decryption of C is c1 ⊕H(P−1 ? C2 ?

∏
i∈a Yi).

Algorithm B also computes (and keeps secret) σW ← σC2 ·
∏
i∈a σYi mod n.

Clearly, σW is the sampling information of W = C2 ?
∏
i∈a Yi (see §5.3,

Item 3).
Guess. Eventually A outputs a bit b′ ∈ {0, 1}. At this point, B searches the Hlist

to find a tuple 〈Zj ,Hj〉 such that

O(Zj , P ) = W. (6.3)

If such a tuple does not exist in the Hlist, algorithm B reports failure and
terminates. Otherwise, B sets result ← T (σW ,−1, Zj) = W−1 ? Zj and
outputs result as the solution to the GIPG instance.

Clearly, the simulation provided by algorithm B is perfect. Therefore, from Claims
1 and 2 in the proof of [5, Lemma 4.3], we can conclude that

Pr
[
a tuple 〈Zj ,Hj〉 appears in the Hlist such that Eq. 6.3 is satisfied

]
≥ 2ε3.

Thus ε ≥ 2ε3. Also, algorithm B makes at most k3 queries to O. The running time
of B is the running time of A plus the time required for generating the µ3 public keys;
the time required for computing T ; the time required for searching up to k3 entries
in the Hlist; and the time required for at most µ3 multiplications in Z∗n. Therefore
δ ≤ δ3 + Θ(c1µ3) + Θ(c2k3), where c1 is the time for one multiplication in Z∗n, and c2
is the time for checking one entry of the Hlist. Checking each entry in this list involves
a query to O. Combining the above results, we have the required bounds 2

7 Implementation and efficiency

In this section, we will briefly touch upon issues relating to implementation and effi-
ciency of our primitive. Although our construction of O-GII has other applications as
demonstrated, we feel that its primary use will be for highly dynamic group key agree-
ment in applications like “secure chat”. Our system offers the advantage that the group
key need not be precomputed for communication between group members. Thus, there
is no specific ordering between the users.
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Algorithm Exp G1 Exp Z∗
n2 Multi Z∗

n2 Multi Z∗
n Pairing

Compute 3 4 1 2 -
V-Compute 3 4 1 2 2
PV-
Compute

5 5 1 2 2

Table 1. Computation involved in a query.

|n| (bits) 512 768 1024 1536 2048 2656 3072 4096
Time (ms) 40 110 300 990 2150 3080 3830 7200

Table 2. Typical query times.

7.1 Key size

Factoring n enables an attacker to solve GIPG. Based on the current state-of-the-art
factoring algorithms, we suggest using the modulus n of about 313 decimal digits
(≈ 1024 bits) for moderate security applications.8 This also makes computing discrete
logarithms in G1 intractable using Pollard’s rho method [35, p.128]. Using these pa-
rameters elements of G can be represented with at most ≈ 384 bytes. The public keys
Yi of §6.1, which are elements of G will be 384 bytes each. The private keys σXi on
the other hand, which are elements of Z∗n will be 128 bytes.

7.2 Query overhead

In all the above protocols, we have been working with the congruence classes of G
rather than the individual elements themselves. For any A = (x, y) ∈ G, the congru-
ence class [A] is completely characterized by the first element x. The second element y
is used only as an ‘auxiliary’ input for the oracle, and is useless to anyone who does not
know the factorization of n. Thus, verification of the second element cannot provide
additional security. With this consideration in mind, we slightly modify the Verify algo-
rithm of §5.4 and remove the call to the Verify-In-Group subroutine, since computing the
bilinear pairing allows verification of the first element x. The computation overhead is
given in Table 1 and the query time is given in Table 2. We used a finite field instead
of bilinear maps (see § 7.3). The times are measured on a Pentium 4 CPU (2.53 Ghz)
server with 1 GB RAM running Red Hat Linux kernel 2.4.21-47.

7.3 Verifiability of the oracle

In this section, we discuss two simplifications of the construction. The above construc-
tion used bilinear maps to implicitly verify the output of the black-box computation.

8See “TWIRL and RSA key size” (http://www.rsasecurity.com/rsalabs/node.asp?id=
2004). It is thought that 1024 bit keys will be secure till the year 2010, while 2048 bit keys will be secure
till the year 2030.

http://www.rsasecurity.com/rsalabs/node.asp?id=2004
http://www.rsasecurity.com/rsalabs/node.asp?id=2004
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However, since we already trust the black-box to keep the trapdoor information (λ)
secret, we can also trust the black-box to correctly evaluate the group operation.9

1 Our first simplification is to verify the output of the oracle via an existentially
unforgeable signature scheme. In this construction, instead of the bilinear group
G1, we use a finite field having a multiplicative subgroup of order n. The set S
defined in §5.2 is then the φ(n) elements of this field of order n. Note that in
addition to the trapdoor information λ, the oracle will also contain a private key
for creating signatures. For all inputs (X,Y ) ∈ G2, the oracle responds with
Z = X ? Y ∈ G and a signature SigX,Y,Z on the tuple (X,Y, Z).

2 Our second simplification is to do away with the finite field and the signature
scheme altogether by using a deterministic variant of Paillier encryption defined
in §4.2 and setting r = 1. In this case, the set S = {y|y = E(x) ∧ x ∈ Z∗n}.10

7.4 Batch queries

For increased efficiency in partial public key computation, we will assume that calls to
the oracle can be batched as follows, for any i inputs A1, A2, . . . , Ai ∈ G, the oracle
outputs A1 ?A2 ? . . . ? Ai. In this case, for key computation in a group of m users each
user must make a batch call requiring a message of size O(m) bits to be sent to the
oracle. Batch queries make sense in the first simplification discussed above.

7.5 Decentralizing the oracle

Decentralization of the oracle is desirable, since each query involves 3 exponentiations
in G1 (irrespective of the decryption algorithm). It is possible to share the Paillier
decryption key (known only to the oracle) between different trusted authorities with
the weakness that compromising even one would compromise the entire system.

Finally, we can also consider a system where the oracle is implemented in a tamper-
proof device and is made available to all users (for instance as a smart-card, or inside
the CPU itself).

We close this section with a comparison of our scheme with previously proposed
group key agreement methods in Table 3.

8 Conclusion

In this paper, we presented a practical implementation of a new cryptographic primitive
known as an Oracle-based Group with Infeasible Inversion (O-GII). As some practical
applications of this primitive, we presented a one-round key agreement scheme for dy-
namic ad-hoc groups based on the protocol due to Rabi and Sherman [39]. The scheme

9However, the fact that a separation between the two trust models exists may have complexity theoretic
significance. To see the separation, consider a game where the oracle always keeps λ secret but may cheat in its
computation, its goal being to convince us to accept an invalid group element as valid.

10We note that the deterministic variant of the Paillier cryptosystem is not semantically secure and may lead
to other subtleties. For instance, in this variant we cannot select t = n + 1.
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Membership size is
m

O-GII GDH basic
[54]

AGKE [29] GKE [10]

Number of rounds 1 m− 1
sequential

2
sequential

2
sequential

Synchronization /
ordering needed?

No Yes Yes Yes

Controller needed? No No Yes (initial key
distribution)

Yes (group key
distribution)

Interaction needed? No Yes Yes Yes (for
synchronization)

Key Agreement
method

Oracle Self
(interactive)

Self
(broadcast)

Controller

Message size per
user (sent)∗

(m− 1)k1 (m− 1)k2 k3 (broadcast
only, other-
wise mk3

2k4 (to
controller)

Message size per
user (rcvd)∗

k1 (no verifica-
tion), otherwise
(m− 2)k1

(m− 1)k2 mk3 k4

Merge with m1 users 1 round
(total 2(m+m1)
messages)

O(m+m1)
rounds
(fresh key)

2 rounds
(total m+m1

broadcasts)

2 rounds
(total 2m1+m
messages)

Part with m1 users no oracle calls
needed if partial
keys are cached

O(m−m1)
rounds
(fresh key)

2 rounds (m−
m1

to m+m1

broadcasts)

1 round
(total m−m1

messages)

Partial Public
keys reusable?

Yes No No No

Optimization
Possible?

Yes∗∗ Not likely Not likely Not likely

Protection under
active attack

Yes#

(Verifiable Ora-
cle)

Susceptible to
man-in-the-
middle attack

Authentication
after 2nd
round

Insecure under
an active at-
tack [36]

Protection under
passive attack

Group Inversion
Problem

Diffie–
Hellman
Problem

Diffie–
Hellman
Problem

Diffie–
Hellman
Problem

* We assume that k1, k2, . . . , kn are constants.

** Assuming that intermediate controllers are used and partial public keys are cached.
# If public keys are known in advance, the verifiability of the oracle ensures implicit group key

authentication.

Table 3. Comparison of our group key agreement scheme.
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can be extended to group signatures as demonstrated in §6.3. In reality, we also demon-
strate a “pay-per-use” cryptographic primitive using the oracle. The advantage of our
scheme in comparison with other centralized schemes is that the central controller does
not maintain any state information of the groups it is managing. It just acts as a “com-
puting device” for users registered with it. We envisage several interesting applications
of this primitive in the near future. We conclude this section with some open questions.

1 Prove/disprove Conjecture 5.13.

2 Prove/disprove that (IDH(g,G1) ⇒ CDH(g,G1)) implies that (GIPG ⇒ Oracle O).

3 Distribute the oracle using techniques of threshold cryptography.

4 Remove the oracle from our construction. In other words, exhibit a practical GII
construction.

Appendix

A Soundness of Verify-in-group algorithm

The reader is referred to §5.4, Algorithm A-4 for the notation used here. First we define
the following problem.

Decision Exponent Class Problem [DECP(t,n,g,G1)]: Given {t, n, g,G1} ⊂ params
and a pair (x, y) ∈ G1 × Z∗

n2 , where x = ga and y = tbrn mod n2 for unknowns
(a, b, r) ∈ Zn×Zn×Z∗n, output 1 if [a ≡ b (mod p)Y a ≡ b (mod q)], otherwise
output 0.

Theorem A.1 states that Verify-In-Group is sound if the DECP(t,n,g,G1) and CDH(g,G1)
problems are intractable.

Theorem A.1. If the decision exponent class problem and the computational Diffie–
Hellman problem are hard then Verify-In-Group is sound.

Proof. The input to Verify-In-Group is (x, y) ∈ G1 × Z∗
n2 . We must show that if the

algorithm outputs 1 then (x, y) ∈ G. Let x = ga and y = tbrn mod n2 for unknowns
(a, b, r) ∈ Zn × Zn × Z∗n. The transformation of (x, y) to (x1, y1) and (x2, y2) in Step
2 of the algorithm can be denoted by the mapping

f1 : Zn × Zn × Z∗n 7→ G1 × Z∗
n2

(u, v, w) 7→ (gau+v, tbu+vrunwn mod n2).

Consider the cases when the algorithm outputs 1.

Case 1. [a ≡ b (mod p) ∧ a ≡ b (mod q)]: In this case a = b and so (x, y) ∈ G.
Therefore, f1(u, v, w) ∈ G ∀ (u, v, w) ∈ domain(f1). In this case, the output of
Verify-In-Group is consistent with its requirements.
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Case 2. [a 6≡ b (mod p) ∧ a 6≡ b (mod q)]: It is not hard to prove that the mapping
f1 is a bijection in this case. Since both sides of f1 have the same number of
elements n2φ(n), it is enough to prove that f1 is invertible with respect to every
element in G1 × Z∗

n2 . Let (ga1 , tb1r1
n mod n2) ∈ G1 × Z∗

n2 be an element of the
right side of f1. If a preimage (u1, v1, w1) of f1 exists for this element, then we
must have

a1 ≡ au1 + v1 (mod n)
b1 ≡ bu1 + v1 (mod n)
r1 ≡ ru1w1 (mod n)

 (A.1)

Clearly, Eq. A.1 has a unique solution in (u1, v1, w1) for all (a1, b1, r1) if and only
if (a − b) ∈ Z∗n. In other words, if and only if gcd(a − b, n) = 1. Note that
gcd(a−b, n) = 1 is another way of saying that [a 6≡ b (mod p)∧a 6≡ b (mod q)].
Since f1 is a bijection, the distributions {(x1, y1)} and {(x2, y2)} are identical to a
random distribution in G1 × Z∗

n2 . If the oracle O∗ can make the algorithm output
1, then we can use O∗ to solve CDH(g,G1) (see §4.1) as follows:

1 Input is g, gσ1 , gσ2 and our goal is to output gσ1σ2 .

2 Generate y1, y2
R← Z∗

n2 .

3 Set x1 ← gσ1 and x2 ← gσ2 .

4 Give (x1, y1), (x2, y2) as input to oracleO∗ in Step 3 of the algorithm instead
of the real values.

Since the forged and real distributions of {(x1, y1)} and {(x2, y2)} are identical,
the oracleO∗ cannot distinguish between the forged and real inputs. Accordingly,
it will reply with (x′, y′) such that the algorithm outputs 1 in Step 4. In this case
x′ is the required solution to the CDH(g,G1) instance.

Case 3. [a ≡ b (mod p) ∧ a 6≡ b (mod q)]: (or gcd(a− b, n) > 1 and a 6= b)
The probability of a randomly picked pair (x, y) ∈ G1 × Z∗

n2 such that gcd(a −
b, n) > 1 and a 6= b is p+q−2

pq which can be neglected for large p, q. On the other
hand, if the adversary (O∗) knows in advance that gcd(a− b, n) > 1 but does not
know both of {a, b}, then the adversary knows that the distribution of the image

f1(u1, v1, w1) = (ga1 , tb1r1
n mod n2)

always satisfies a1 ≡ b1 (mod p). In this case, our security relies on the adver-
sary’s inability to distinguish elements of this distribution from randomly chosen
elements of G1 × Z∗

n2 assuming the hardness of DECP(t,n,g,G1). Under this as-
sumption, we can use the adversary O∗ to solve CDH(g,G1) as in the previous
case. The case of [a 6≡ b (mod p) ∧ a ≡ b (mod q)] is handled similarly.

Thus, we have proved that the algorithm is sound under the assumption that the prob-
lems DECP(t,n,g,G1) and CDH(g,G1) are intractable. 2



126 A. Saxena and B. Soh

B Proof of knowledge of private keys of §6.1

Recall from §6.1, that the private key of user i is σXi , the sampling information for
some Xi ∈ G, while the public key is Yi = Xi ? P . In this section, we give two
constructions of zero-knowledge proofs for this setting. The first construction enables
user i to claim knowledge of the value Xi ∈ G such that Yi = Xi ? P (without saying
anything about σXi). The second construction enables user i to claim knowledge of
not only Xi but also σXi such that Yi = Xi ? P and σXi is the sampling information
of Xi. The first construction is useful when the sampling information of some group
element is not known, yet a proof of knowledge of that group element must be given
(see Item 3 in §6.2.2).

For convenience, we will drop the subscript i in what follows and consider the public
key as Y = X ?P with σX being the sampling information of X . The zero-knowledge
proofs given below are similar to the proofs of graph isomorphism [21] and quadratic
residuosity [18, 16].

B.1 Zero-knowledge proof of knowledge of group element

The following is a proof of knowledge used by a prover P to prove to a verifier V , the
knowledge of a value X such that Y = X ? P for some given pair (P, Y ).

PROTOCOL (P,V)
Common input: (Y, P ) ∈ G2.
P’s auxiliary input: X ∈ G such that Y =X ? P .
V’s auxiliary input: none
Claim: P claims to know X such that Y =X ? P .

1 P samples U0
R← G and computes U1 = X ? U0

−1 ∈ G. Thus U0 ? U1 = X
(essentially P will prove knowledge of (U0, U1) such that the X = U0 ? U1).
P then computes Wj = Uj ? P for j ∈ {0, 1} and sends the pair (W0,W1) of
commitments to V .

2 V checks if the following equality holds:

W0 ? W1
?= Y ? P. (B.1)

V terminates the protocol if the above check fails. Otherwise, V picks up a random
bit b R← {0, 1} and sends b as its challenge to P .

3 On receiving b ∈ {0, 1}, P replies with Ub.
4 On receiving Ub, V accepts iff the following equality holds:

Wb = Ub ? P. (B.2)

The above is an atomic zero-knowledge proof of knowledge of X with an error
factor of 1/2. The protocol is (sequentially) repeated k times to reduce this error to
1/2k. Theorem B.1 shows that the above protocol is indeed a zero-knowledge proof of
knowledge of X .
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Theorem B.1. Protocol (P,V) is a zero-knowledge proof of knowledge of X .

Proof. First note that the protocol is complete (i.e., if both parties are honest, the veri-
fier always accepts). We must show that the protocol is a proof of knowledge (i.e. has
an extractor [3]) and is zero-knowledge (i.e. has a simulator [21]).

Proof of Knowledge: We must exhibit an extractor for X . Similar to [16], our
extractor is constructed by rewinding the prover P and giving it different challenge
bits b on the same commitment (W0,W1) and obtaining both U0 and U1. We already
know that W0 ? W1 = Y ? P = X ? P 2 (Eq. B.1) and Ub = Wb ? P

−1 (Eq. B.2).
Therefore, once we obtain (U0, U1) we can compute X = U0 ? U1.

Zero-Knowledge: The simulator for zero-knowledge is similar to that of [16]. As-
sume that the simulator interacts with the verifier and knows in advance what the chal-
lenge bit b is going to be. It proceeds as follows: It samples Ub

R← G. Then it computes
Wb = Ub ? P and W1−b = Ub

−1 ? Y . The commitment of Step 1 is (W0,W1). It is
easily checked that W0 ?W1 = Wb ?W1−b = Ub ? P ? Ub

−1 ? Y = Y ? P as needed in
Eq. B.1. Finally after the challenge bit b is received, the simulator simply reveals Ub.
We have Wb = Ub ? P as required in Eq. B.2. Clearly, the transcript of the simulation
is distributed identically to that of a real interaction. 2

B.2 Zero-knowledge proof of knowledge of sampling information

The following is a zero-knowledge proof of knowledge used by a prover P to prove to
a verifier V , the knowledge of a value σX such that Y = X ? P for some given pair
(P, Y ) and σX is the sampling information of X .

PROTOCOL (P,V)

Common input: (Y, P ) ∈ G2.
P’s auxiliary input: σX ∈ Z∗n such that σX is the sampling information of X ∈ G
and Y = X ? P .
V’s auxiliary input: none
Claim: P claims to know σX , the sampling information of X ∈ G such that
Y = X ? P .

1 P generates (U, σU ) R← Sample(params) ∈ G×Z∗n and computesW = U?Y ∈ G.
The commitment W is sent to V .

2 V checks that W ∈ G using the Verify-In-Group algorithm of §5.4 and terminates
the protocol if W /∈ G. Otherwise, V picks up a random bit b R← {0, 1} and sends
b as its challenge to P .

3 On receiving b ∈ {0, 1}, P replies with σZ = σU · σXb mod n ∈ Z∗n.

4 On receiving σZ , V computes Z ∈ G such that σZ is the sampling information of
Z and accepts iff the following equality holds:

W = Z ? Y 1−b ? P b. (B.3)



128 A. Saxena and B. Soh

Like the previous protocol, the above is an atomic zero-knowledge proof of knowl-
edge of σX with an error factor of 1/2. The protocol is (sequentially) repeated k times
to reduce this error to 1/2k. Theorem B.2 shows that the above protocol is indeed a
zero-knowledge proof of knowledge of σX .

Theorem B.2. Protocol (P,V) is a zero-knowledge proof of knowledge of σX .

Proof. First note that the protocol is complete.
Proof of Knowledge: Construction of an extractor is trivial by rewinding the prover

P and giving it different challenge bits b on the same commitment W to obtain both
σZ = σU for b = 0 and σZ′ = σU · σX for b = 1. Clearly, σX = σZ′/σZ .

Zero-Knowledge: Assume that a simulator interacting with the verifier knows in
advance what the challenge bit b is going to be. The simulator runs as follows: It
generates (Z, σZ) R← Sample(params) ∈ G×Z∗n and computesW = Z?Y 1−b?P b ∈ G
as the commitment. On receiving the challenge bit b, it replies with σZ . It is clear that
Eq. B.3 will be satisfied irrespective of the choice of bit b. 2

C Identity based encryption using O-GIIs

In this section, we give (without a security proof) an Identity Based Encryption (IBE)
scheme as another application of our O-GII. We refer the reader to [5] for the definitions
of an IBE scheme and to §5.4 for the notation used here. In summary, our IBE scheme
has four PPT algorithms Setup-IBE, KeyGen, ID-Encrypt and ID-Decrypt. The definition
of “PPT” has the usual caveat; oracles are considered as algorithms.

1 Setup-IBE takes as input some security parameter. It outputs the IBE system pa-
rameters par and the IBE master key m-key.

2 KeyGen takes as input the value par, m-key and a random string i. It outputs the
private key prv-keyi corresponding to the string i.

3 ID-Encrypt takes as input par, a random message m and a random string i. It
outputs a ciphertext c.

4 ID-Decrypt takes as input par, a private key prv-keyi (corresponding to some string
i) and ciphertext c. It outputs a message m.

The ID-Encrypt and ID-Decrypt algorithms satisfy the standard consistency constraint:

∀m ∀i ID-Decrypt(par, ID-Encrypt(par,m, i),KeyGen(par,m-key, i)) = m.

In an IBE scheme, the master key m-key is known only to a trusted authority known
as the Key Generating Center (KGC) that is responsible for distributing private keys.
Although the oracle O is required for computation, it need not be the Key Generating
Center (KGC). The four algorithms are described below.

1 Setup-IBE: Set (X,σX), (Y, σY ) R← Sample(params) and set Z ← T (σX , 1, Y ) =
X ? Y . Finally set par ← (Y,Z) ∈ G2; m-key ← (σX , σY ) ∈ Z∗n

2 and output
(par,m-key).
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2 KeyGen: Let i ∈ N be the input string. Set prv-keyi ← T (σX ,−i, Y ) = X−i ? Y
and output prv-key.

3 ID-Encrypt: Our message space is {0, 1}l where l < log2(n) and we require a
cryptographic hash function H : G 7→ {0, 1}l. To encrypt a message m ∈ {0, 1}l

using input string i ∈ N, first generate random (R, σR) R← Sample(params). Then
compute

c1 = m⊕H(T (σR, 1, E(Y, i+ 1))) = m⊕H(Y i+1 ? R)

C2 = T (σR, 1, E(Z, i)) = Zi ? R = Xi ? Y i ? R.

The ciphertext is (c1, C2).
Both c1 and C2 can be directly computed if Y i+1 and Zi are precomputed.

4 ID-Decrypt: To decrypt arbitrary ciphertext (c1, C2) compute

m = c1 ⊕H(Ô(C2, prv-keyi)) = c1 ⊕H(C2 ? X
−i ? Y ).

Decryption is correct, because for a legitimate ciphertext:

C2 ? X
−i ? Y = (Xi ? Y i ? R) ? (X−i ? Y ) = Y i+1 ? R.

We leave the security of the above construction as an open question.
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