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Subset sum pseudorandom numbers:
fast generation and distribution
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Abstract. We show how to accelerate the subset sum pseudorandom number generator with arbitrary
weights. Some special choices of weights speed up the naive usage of this generator without losing
the property of uniform distribution which has recently been established in the general case. Our
results confirm that this generator can be useful for both cryptographic and Quasi Monte Carlo
applications.
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1 Introduction

We consider the following type of pseudorandom generator. We have a sequence
u0, u1, . . . of integers, a sequence w = (w0, . . . , wn−1) of n elements of an (additively
written Abelian) group R, and the sequence vw = vw(0), vw(1), . . . of elements of R
generated according to the formula

vw(i) =
∑

0≤j<n

ui+jwj (1.1)

for i ≥ 0. For a multiplicatively written group, we would interpret (1.1) as vw(i) =
wui0 · w

ui+1
1 · · ·wui+n−1

n−1 .
A particularly useful way of obtaining an integer sequence u0, u1, . . . is to take a

linear recurrence sequence (see [9, Chapter 8]) ũ0, ũ1, . . . over some ring Q, together
with some way of mapping an element ũ ∈ Q to an integer u ∈ Z. In this paper only
such sequences of integers are considered.

If we take Q = Zq, the residue ring modulo q ≥ 2, then we can lift in a natural
way a ring element ũ to the unique integer u ∈ {0, . . . , q − 1} with ũ = (u mod q).
This produces the required sequence u0, u1, . . . in Z. The case where q is prime, that is
Q = Fq is a finite field of q elements, is of special interest.

In fact throughout the paper, slightly violating notations, we do not distinguish be-
tween the sequences u0, u1, . . . and ũ0, ũ1, . . . . In particular, we say that the sequence
of integers u0, u1, . . . is a linear recurrence sequence over Q if the sequence ũ0, ũ1, . . .
is.

When we further specialize q to 2, then u0, u1, . . . is a sequence of bits which is a
linear recurrence sequence modulo 2, and we call the sequence generated by (1.1) a
subset sum generator over R. Given vw(i) and w, the determination of ui, . . . , ui+n−1
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is an instance of the subset sum problem (over R), whose general case (over Z) is
NP-complete.

ForR = Zr this generator, which is also known as knapsack generator, has been in-
troduced in [16] and studied in [14], see also [11, Section 6.3.2] and [15, Section 3.7.9].
In [4] results on the uniformity of distribution for these generators have been obtained.

For cryptographic applications, it is usually recommended to use R = Z2n and
a binary linear recurrence sequence of order n and of maximal period τ = 2n − 1,
however here we consider more general settings. Although the results of [7] suggest
that this generator should be used with care, no major attack against it is known.

We remark that even if u0, u1, . . . is generated via a linear recurrence sequence and
although we use a simple “linear” rule (1.1), they belong to different rings and as a
result produce a highly nonlinear sequence. For example, it is asserted in [16] that the
linear complexity of such a sequence (with Q = Z2 and R = Zr) is sufficiently large.
However, one can probably increase the nonlinearity and thus the security properties
of this construction by choosing groups R of more complicated structure, for example
groups of points of elliptic curve over finite fields, see [10] for some uniformity of
distribution results for the elliptic curve analogue of the subset sum generator.

It has been shown in [4] that the multidimensional distribution of the subset sum
generator is close to uniform. In the special case R = Z2n and of weights wj =
2n−j−1, j = 0, . . . , n − 1, this generator is well known in the theory of Quasi Monte
Carlo methods. An exhaustive survey of known results about the distribution of this
and more general generators can be found in [12, Chapter 9]. The known results on the
uniformity of distribution for this deterministic choice of weights are weaker than the
results of [4] which, however, apply only to a randomized choice of weights. It is also
clear that the former choice of weights corresponds to easy instances of the knapsack
problem and thus is probably not suitable for cryptographic applications.

ForQ = F2 a straight-forward evaluation of (1.1) takes at most n additions in F2 and
n additions in R (this is why this case is theoretically and practically quite attractive).
Here we show that in fact there are more efficient algorithms which apply to arbitrary
rings Q and R. We also obtain new results about the uniformity of distribution of the
corresponding sequences.

To be more precise, the results of this paper are of two types.

• Efficient algorithms when R is a ring, namely

– withO(lognloglogn) operations for one element as in (1.1), in an amortized
sense,

– with a constant number of operations for a special choice of w.

• Results on the distribution, namely upper bounds on the discrepancy

– in the general case of a ring R, and where q = #Q is small,

– in the special case mentioned above, with Q = Z2,

Throughout the paper, the implied constants in symbols “O” may occasionally,
where obvious, depend on the integer parameter ν ≥ 1, and are absolute otherwise.
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2 Fast algorithms

2.1 General seeds over rings

Here we assume thatR is a ring and consider the task of generating n arbitrary consec-
utive values vw(i), . . . , vw(i+n−1) of our generator. Thus, we are given 2n−1 terms
ui, . . . , ui+2n−2 and n weights w0, . . . , wn−1 ∈ R and have to compute the product of
the n× n Hankel matrix

ui ui+1 · · · ui+n−1
...

...
...

ui+n−1 ui+n · · · ui+2n−2


with the vector w = (w0, . . . , wn−1)t ∈ Rn.

It is well known that this can be done efficiently, by reducing it to polynomial mul-
tiplication. Let M denote a multiplication time, so that two polynomials in R[x] of
degree at most n can be multiplied with at most M(n) operations in R. Since we can
choose M(n) = O(n logn loglogn), see [6, Section 8.3] and the product of an n × n
Hankel matrix with a vector can be computed with O(M(n)) ring operations see [13,
Chapter 2], we obtain:

Theorem 2.1. There is an algorithm which generates n consecutive values vw(i + j)
for j = 0, . . . , n− 1 with O(logn loglogn) operations in R per element.

It is natural to ask whether in the case of q = 2 one can get a further speed-up.

Question 2.2. In Theorem 2.1 we do not use the fact that all ui are 0 or 1. Can one
compute the product of a 0-1-polynomial with a general polynomial significantly faster
than in the general case?

2.2 Special seeds over rings

We now introduce a special choice of weights which helps to speed up generation.
Namely we consider a ringR and weights of the form wj = yzn−j for j = 0, . . . , n−1
and some y, z ∈ R. We denote by vy,z the corresponding sequence given by (1.1).

Theorem 2.3. After a preprocessing stage requiring O(n) operations in R, one can
generate elements of the sequence vy,z(i) consecutively with at most one general mul-
tiplication, two multiplications by integers in the range {0, . . . , q−1} and two additions
in R per element.

Proof. One verifies the identity

vy,z(i+ 1) = zvy,z(i)− yzn+1 · ui + yz · ui+n

for i = 0, 1, . . . . Thus after precomputing yzj for 0 ≤ j ≤ n + 1 and −yzn+1 and
calculating vy,z(0), with a total of O(n) operations in R, each further element can be
generated with one multiplication by z, two multiplications by control values uj , and
two additions in R. 2
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In the case q = 2, if one ignores the multiplications by 0 or 1, then only one multi-
plication and two additions are used per element.

In Section 3 we show that if R = Fp where p is prime, then for any y ∈ F∗p and
almost all z ∈ Fp the sequence vy,z(i) has attractive uniform distribution properties.

We remark that in residue rings R = Zr one can obtain an additional speed-up
by choosing a reasonable small value of z, so that multiplication by z is faster than
generic modular multiplication modulo r. In Section 3 we show that if y is chosen at
random from Fp, but z is chosen from a small interval [0, H], then with overwhelming
probability the sequence vy,z(i) remains uniformly distributed.

A further advantage of these “dependent” weights is that they only require two ran-
dom elements of R for the seed rather than the n random elements as in the case of
independent weights. It is not clear whether this specialization affects the security of
the generator.

3 Uniformity of distribution

3.1 Preparations

Our method is based on some simple bounds on exponential sums and the famous
Koksma–Szüsz inequality (see Lemma 3.2 below) which relates the deviation from
uniformity of distribution, that is, the discrepancy, and the corresponding exponential
sums.

Here we present several necessary technical tools.
We say that a linear recurrence sequence ui of elements of Fq is of order n with

characteristic polynomial

f(T ) = Tn + cn−1T
n−1 + . . .+ c1T + c0 ∈ Fq[T ]

if
ui+n + cn−1ui+n−1 + . . .+ c1ui+1 + c0ui = 0, i = 0, 1, . . . ,

and it does not satisfy any shorter linear relation, see [9, Chapter 8].
It is easy to see that the set of all sequences with the same characteristic polynomial

f form a linear space L(f) over Fq.
We also need the following property of sequences from L(f) with irreducible f

which is essentially [9, Theorem 8.28].

Lemma 3.1. If f ∈ Fq[T ] is irreducible over Fq then all nonzero sequences from L(f)
are purely periodic with the same period.

For a real z and an integer M we use the notation

e(z) = exp(2πiz) and eM (z) = exp(2πiz/M).

We need the identity (see Exercise 11.a in Chapter 3 of [18])

M−1∑
η=0

eM (ηλ) =

{
0, if λ 6≡ 0 (mod M),
M, if λ ≡ 0 (mod M).

(3.1)
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We also make use of the inequality

M−1∑
η=0

∣∣∣∣∣
N∑
λ=1

eM (ηλ)

∣∣∣∣∣ = O (M logM) , (3.2)

which holds for any integers M ≥ N ≥ 1, see [18, Chapter III, Exercise 11c].
For a sequence of N points

Γ = (γ0,x, . . . , γν−1,x)
N
x=1 (3.3)

in the ν-dimensional unit cube, we denote its discrepancy by DΓ. That is,

DΓ = sup
B⊆[0,1)ν

∣∣∣∣TΓ(B)
N

− |B|
∣∣∣∣ ,

where TΓ(B) is the number of points of the sequence Γ in the box

B = [α0, β0)× . . .× [αν−1, βν−1) ⊆ [0, 1)ν

and the supremum is taken over all such boxes.
As we have mentioned, one of our basic tools to study the uniformity of distribution

is the Koksma–Szüsz inequality, which we present in a slightly weaker form than that
given by Theorem 1.21 of [5].

For an integer vector a = (a1, . . . , aν) ∈ Zν we define

|a| = max
j=1,... ,ν

|aj |, ρ(a) =
ν∏
j=1

max{|aj |, 1}. (3.4)

Lemma 3.2. For any integer L > 1 and any sequence Γ of N points (3.3) the bound

DΓ = O

 1
L

+
1
N

∑
0<|a|<L

1
ρ(a)

∣∣∣∣∣∣
N∑
x=1

e

ν−1∑
j=0

ajγj,x

∣∣∣∣∣∣


on the discrepancy DΓ holds, where |a|, ρ(a) are defined by (3.4) and the sum is taken
over all integer vectors

a = (a0, . . . , aν−1) ∈ Zν

with 0 < |a| < L.

Finally, we recall the Weil bound in its classical form given in Example 12 of Ap-
pendix 5 of [19]; see also Theorem 5.41 and comments to Chapter 5 of [9].

Lemma 3.3. For any prime p and polynomial f(X) ∈ Z[X] of degree d which is not
constant modulo p we have ∣∣∣∣∣

p∑
x=1

ep (f(x))

∣∣∣∣∣ ≤ dp1/2.
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3.2 General seeds over R = Zr

We denote by Dν
w(N) the discrepancy of the points(

vw(i)
r

, . . . ,
vw(i+ ν − 1)

r

)
, i = 1, . . . , N.

In the case q = 2, it has been shown in [4] that for almost all weights w ∈ Zmr ,
the discrepancy Dν

w(N) is O
(
N−1/2(log r)ν(log τ)2

)
for any ν ≤ n (we recall that the

implied constants may depend on ν).
Here we extend the result of [4] and obtain a similar upper bound on Dν

w(N) in the
case Q = Fq where q is prime and R = Zr where r ≥ 2 is an integer.

Theorem 3.4. Assume that Q = Fq where q is prime and R = Zr where r ≥ 2 is
integer. Let the linear recurrence sequence ui be purely periodic with period τ and
order n and let its characteristic polynomial be irreducible over Fq. Then for any
δ > 0, and any ν ≤ n for all w ∈ Znr except at most O(δrn) of them, for all 1 ≤ N ≤ τ
the bound

Dν
w(N) = O

(q
r

+ δ−1N−1/2(log r)ν(log τ)2
)

holds.

Proof. From Lemma 3.2, used with L = br/qνc (thus 1/L = O(q/r)), we derive

Dν
w(N) = O

q
r

+
1
N

∑
0<|a|<r/qν

1
ρ(a)

∣∣∣∣∣∣
N∑
m=1

er

ν−1∑
j=0

ajvw(m+ j)

∣∣∣∣∣∣
 .

Let Nµ = 2µ, µ = 0, 1, . . . . Define k by the inequality Nk−1 < N ≤ Nk, that is,
k = dlog2 Ne. Then from (3.1) we derive

N∑
m=1

er

ν−1∑
j=0

ajvw(m+ j)


=

1
Nk

Nk∑
m=1

N∑
λ=1

Nk∑
η=0

er

ν−1∑
j=0

ajvw(m+ j)

 eNk (η(m− λ)) .

Hence,

Dν
w(N) = O

(
q

r
+

1
NNk

∆
ν
w(k)

)
, (3.5)

where

∆
ν
w(k) =

∑
0<|a|<r/qν

1
ρ(a)

Nk∑
η=0

∣∣∣∣∣
N∑
λ=1

eNk (−ηλ)

∣∣∣∣∣∣∣∣∣∣∣
Nk∑
m=1

er

ν−1∑
j=0

ajvw(m+ j)

 eNk (ηm)

∣∣∣∣∣∣ .
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Applying the Cauchy inequality we derive ∑
w∈Znr

∣∣∣∣∣∣
Nk∑
m=1

er

ν−1∑
j=0

ajvw(m+ j)

 eNk (ηm)

∣∣∣∣∣∣
2

≤ rn
∑

w∈Znr

∣∣∣∣∣∣
Nk∑
m=1

er

ν−1∑
j=0

ajvw(m+ j)

 eNk (ηm)

∣∣∣∣∣∣
2

= rn
Nk∑

m,l=1

eNk (η(m− l))
∑

w∈Znr

er

ν−1∑
j=0

aj (vw(m+ j)− vw(l+ j))

 .

By the definition of vw(i) we have

∑
w∈Znr

er

ν−1∑
j=0

aj (vw(m+ j)− vw(l+ j))


=

n∏
h=1

∑
zh∈Zr

er

wh ν−1∑
j=0

aj (um+j+h−2 − ul+j+h−2)

 .

The product is equal to rn if for every h = 1, . . . , n

ν−1∑
j=0

aj (um+j+h−2 − ul+j+h−2) ≡ 0 (mod r) (3.6)

otherwise it vanishes.
Therefore

∑
w∈Znr

∣∣∣∣∣∣
Nk∑
m=1

er

ν−1∑
j=0

ajvw(m+ j)

 eNk (ηm)

∣∣∣∣∣∣ ≤ rnT 1/2
k (3.7)

where Tk is the number of pairs (m, l) with 1 ≤ m, l ≤ Nk for which (3.6) holds for
every h = 1, . . . , n.

Because ux ∈ {0, . . . , q − 1} for all integers x ≥ 1 and 0 ≤ |aj | < r/qν, the
congruence (3.6) becomes an equation

ν−1∑
j=0

aj (um+j+h−2 − ul+j+h−2) = 0, h = 1, . . . , n.

Let us write aj = qαbj where qα is the largest power of q which divides every aj for
0 ≤ j < ν. In particular, at least one of the bj is relatively prime to q. Then the previous
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equation becomes
ν−1∑
j=0

bj (um+j+h−2 − ul+j+h−2) = 0, h = 1, . . . , n. (3.8)

Considering the equation (3.8) in Q = Fq, we derive

wm+h ≡ wl+h (mod q), h = 1, . . . , n,

where

wx =
ν−1∑
j=0

bjux+j−2

is a nonzero sequence over Fq because at least one bj with 0 ≤ j < ν is relatively
prime to q and ν ≤ r. Taking into account that wx is a linear recurrence sequence of
order r (with the same characteristic polynomial as ux) we obtain

wm+x ≡ wl+x (mod q), x = 1, 2, . . . . (3.9)

Because the characteristic polynomial of u is irreducible, by Lemma 3.1 the linear
recurrence sequence wx has the same period τ . Therefore (3.9) implies that n ≡ l
(mod τ) which yields the inequality Tk ≤ Nk(bNk/τc + 1) ≤ 2Nk, because Nk =
2Nk−1 < 2N ≤ 2τ .

Thus by (3.7) we have

∑
w∈Znr

∣∣∣∣∣∣
Nk∑
m=1

er

ν−1∑
j=0

ajvw(m+ j)

 eNk (ηm)

∣∣∣∣∣∣ ≤ 21/2rnN
1/2
k .

Hence recalling (3.2) we obtain∑
w∈Znr

∆
ν
w(k) =

∑
0<|a|<r/qν

1
ρ(a)

Nk∑
η=0

∣∣∣∣∣
N∑
λ=1

eNk (−ηλ)

∣∣∣∣∣
∑

w∈Znr

∣∣∣∣∣∣
Nk∑
m=1

er

ν−1∑
j=0

ajvw(m+ j)

 eNk (ηm)

∣∣∣∣∣∣
= 21/2rnN

1/2
k

∑
0<|a|<r/qν

1
ρ(a)

Nk∑
η=0

∣∣∣∣∣
N∑
λ=1

eNk (−ηλ)

∣∣∣∣∣
= O

rnN3/2
k k

∑
0<|a|<r/qν

1
ρ(a)


= O

(
rnN

3/2
k k(log r)ν

)
= O

(
rnN

3/2
k (log r)ν log τ

)
,

because k = O(log τ).
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This implies that for any k the number of vectors w ∈ Znr with

∆
ν
w(k) ≥ δ−1N

3/2
k (log r)ν(log τ)2

is at most O(δmr(log τ)−1). Therefore, we have that the number of vectors w ∈ Znr
with

∆
ν
w(k) ≥ δ−1N

3/2
k (log r)ν(log τ)2

for at least one k = 1, . . . , dlog τe is at most O(δrn). For other w ∈ Znr , from (3.5), we
obtain

Dν
w(N) = O

(
q

r
+

1
NNk

∆
ν
w(k)

)
= O

(q
r

+ δ−1N−1N
1/2
k (log r)ν(log τ)2

)
.

Taking into account the inequality N−1N
1/2
k ≤ 2N−1/2, we obtain the desired result.

2

In particular, if q ≤ r1/2 then the first term in the bound of Theorem 3.4 never
dominates and the bound takes that same form as that of [4], obtained for q = 2.

3.3 Special seeds over R = Fp

Here we obtain an upper bound on the discrepancy of the sequence vy,z(n) in the case
Q = Fq, R = Fp where q and p are prime.

We denote by Dν
y,z(N) the discrepancy of the points(
vy,z(i)
p

, . . . ,
vy,z(i+ ν − 1)

p

)
, i = 1, . . . , N.

Theorem 3.5. Assume that Q = Fq and that R = Fp where q and p are prime. Let the
linear recurrence sequence ui be purely periodic with period τ and order n and let its
characteristic polynomial be irreducible over Fq. Then for any δ > 0, positive integer
ν ≤ n and y ∈ F∗p, for all z ∈ Fp except at most O(δp) of them, and for all 1 ≤ N ≤ τ
we have

Dν
y,z(N) ≤ δ−1

(
1

N1/2 +
n1/2

p1/4

)
(log p)ν(log τ)2.

Proof. From Lemma 3.2, used with L = bp/νc, we derive

Dν
y,z(N) = O

1
p

+
1
N

∑
0<|a|<p/ν

1
ρ(a)

∣∣∣∣∣∣
N∑
m=1

ep

ν−1∑
j=0

ajvy,z(m+ j)

∣∣∣∣∣∣
 .
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Let Nµ = 2µ for µ ≥ 0. Define k by the inequality Nk−1 < N ≤ Nk, that is,
k = dlog2 Ne. Then from (3.1) we derive

N∑
m=1

ep

ν−1∑
j=0

ajvy,z(m+ j)


=

1
Nk

Nk∑
m=1

N∑
λ=1

Nk∑
η=0

ep

ν−1∑
j=0

ajvy,z(m+ j)

 eNk (η(m− λ)) .

Hence,

Dν
y,z(N) = O

(
1
p

+
1

NNk
∆
ν
y,z(k)

)
, (3.10)

where

∆
ν
y,z(k) =

∑
0<|a|<p/ν

1
ρ(a)

Nk∑
η=0

∣∣∣∣∣
N∑
λ=1

eNk (−ηλ)

∣∣∣∣∣∣∣∣∣∣∣
Nk∑
m=1

ep

ν−1∑
j=0

ajvy,z(m+ j)

 eNk (ηm)

∣∣∣∣∣∣ .
For 0 ≤ η ≤ Nk, we define

σ(η) =
∑
z∈Fp

∣∣∣∣∣∣
Nk∑
m=1

ep

ν−1∑
j=0

ajvy,z(m+ j)

 eNk (ηm)

∣∣∣∣∣∣ .
Applying the Cauchy inequality, we derive

σ(η)2 ≤ p
∑
z∈Fp

∣∣∣∣∣∣
Nk∑
m=1

ep

ν−1∑
j=0

ajvy,z(m+ j)

 eNk (ηm)

∣∣∣∣∣∣
2

= p

Nk∑
m,l=1

eNk (η(m− l))
∑
z∈Fp

ep

ν−1∑
j=0

aj (vy,z(m+ j)− vy,z(l+ j))

 .

By the definition of vy,z(i) we have

∑
z∈Fp

ep

ν−1∑
j=0

aj (vy,z(m+ j)− vy,z(l+ j))


=
∑
z∈Fp

ep

y n∑
h=1

zh
ν−1∑
j=0

aj (um+j+h−2 − ul+j+h−2)

 .
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The sum is equal to p if for every h = 1, . . . , n

ν−1∑
j=0

aj (um+j+h−2 − ul+j+h−2) ≡ 0 (mod p), (3.11)

otherwise, by Lemma 3.3 its absolute value is at most np1/2.
Therefore

σ(η)2 ≤ p2Tk + np3/2(N2
k − Tk) ≤ p2Tk + np3/2N2

k ,

and we derive
σ(η) = O

(
pT

1/2
k + n1/2Nkp

3/4
)
, (3.12)

where Tk is the number of pairs (m, l), 1 ≤ m, l ≤ Nk, for which (3.11) holds for every
h = 1, . . . , n. It has been shown in [4] that Tk ≤ 2Nk.

Thus by (3.12) we have

σ(η) = O
(
pN

1/2
k + n1/2Nkp

3/4
)
.

Hence recalling (3.2) we obtain

∑
z∈Fp

∆
ν
y,z(k) =

∑
0<|a|<p/ν

1
ρ(a)

Nk∑
η=0

σ(η)

∣∣∣∣∣
N∑
λ=1

eNk (−ηλ)

∣∣∣∣∣
= O

(pN1/2
k + n1/2Nkp

3/4
) ∑

0<|a|<p/ν

1
ρ(a)

Nk∑
η=0

∣∣∣∣∣
N∑
λ=1

eNk (−ηλ)

∣∣∣∣∣


= O

k (pN3/2
k + n1/2N2

kp
3/4
) ∑

0<|a|<p/ν

1
ρ(a)


= O

(
k
(
pN

3/2
k + n1/2N2

kp
3/4
)

(log p)ν
)

= O
((
pN

3/2
k + n1/2N2

kp
3/4
)

(log p)ν log τ
)
,

because k = O(log τ).
This implies that for any k the number of z ∈ Fp with

∆
ν
y,z(k) ≥ δ−1

(
N

3/2
k + n1/2N2

kp
−1/4

)
(log p)ν log τ

is at most O(δp(log τ)−1). Therefore, we have that the number of z ∈ Fp with

∆
ν
y,z(k) ≥ δ−1

(
N

3/2
k + n1/2N2

kp
−1/4

)
(log p)ν log τ
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for at least one k = 1, . . . , dlog τe is at most O(δp). For other z ∈ Fp, from (3.10), we
obtain

Dν
y,z(N) = O

(
1
p

+
1

NNk
∆
ν
y,z(k)

)
= O

(
δ−1

(
N−1N

1/2
k + n1/2N−1Nkp

−1/4
)

(log p)ν(log τ)2
)
.

Taking into account the inequalitiesN−1N
1/2
k ≤

√
2N−1/2 andN−1Nk ≤ 2, we obtain

the desired result. 2

We now show that if y is also randomized, we can obtain a stronger discrepancy
bound. Moreover, the result remains nontrivial even if z is chosen from a relatively
small interval.

Theorem 3.6. Assume that Q = Fq and that R = Fp where q and p are prime. Let
the linear recurrence sequence ui be purely periodic with period τ and order n and let
its characteristic polynomial be irreducible over Fq. Then for any δ > 0 and positive
integers H ≤ p, ν ≤ n, for all y ∈ F∗p and z ∈ [0, H − 1] except at most O(δpH) of
them, for all 1 ≤ N ≤ τ we have

Dν
y,z(N) ≤ δ−1

(
1

N1/2 +
n1/2

H1/2

)
(log p)ν(log τ)2.

Proof. As in the proof of Theorem 3.5 we see that our results depend on the following
sum:

Σ(η) =
∑
y∈F∗p

H−1∑
z=0

∣∣∣∣∣∣
Nk∑
m=1

ep

ν−1∑
j=0

ajvy,z(m+ j)

 eNk (ηm)

∣∣∣∣∣∣ .
Adding the term corresponding to y = 0 and using the Cauchy inequality, we find

Σ(η)2 ≤ pH
∑
y∈Fp

H−1∑
z=0

∣∣∣∣∣∣
Nk∑
m=1

ep

ν−1∑
j=0

ajvy,z(m+ j)

 eNk (ηm)

∣∣∣∣∣∣
2

= pH

Nk∑
m,l=1

eNk (η(m− l))

×
H−1∑
z=0

∑
y∈Fp

ep

ν−1∑
j=0

aj (vy,z(m+ j)− vy,z(l+ j))

 .
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By the definition of vy,z(n) we have

H−1∑
z=0

∑
y∈Fp

ep

ν−1∑
j=0

aj (vy,z(m+ j)− vy,z(l+ j))


=

H−1∑
z=0

∑
y∈Fp

ep

y n∑
h=1

zh
ν−1∑
j=0

aj (um+j+h−2 − ul+j+h−2)

 .

The inner sum is equal to p if

n∑
h=1

zh
ν−1∑
j=0

aj (um+j+h−2 − ul+j+h−2) = 0 (3.13)

and vanishes otherwise. If for every h = 1, . . . , n we have (3.11) then (3.13) holds for
H values of z ∈ [0, H − 1], otherwise it holds for at most n values.

Therefore
Σ(η) = O

(
pHN

1/2
k + n1/2H1/2Nkp

)
.

Hence, as in the proof of Theorem 3.5, we obtain

∑
y∈F∗p

H−1∑
z=0

∆
ν
y,z(k) = O

((
pHN

3/2
k + n1/2H1/2N2

kp
)

(log p)ν log τ
)
,

and the result follows. 2

Corollary 3.7. Assume that Q = Fq and thatR = Fp where q and p are prime. Let the
linear recurrence sequence ui be purely periodic with period τ and order n and let its
characteristic polynomial be irreducible over Fq. Then for any δ > 0 and a positive
integer ν ≤ n, for all y, z ∈ F∗p except at most O(δp2) of them, for all 1 ≤ N ≤ τ we
have

Dν
y,z(N) ≤ δ−1

(
1

N1/2 +
n1/2

p1/2

)
(log p)ν(log τ)2.

4 Remarks

We remark that the result of Theorems 3.5 and 3.6 can be extended to more general
classes of characteristic polynomials. However, as we have mentioned, the case of the
most practical interest is τ = qn − 1 which implies that the characteristic polynomial
is primitive, and thus irreducible, over Fq, see [9, Section 3.1].

We can also extend Theorems 3.5 and 3.6 to more general finite fields and residue
rings modulo squarefree numbers. Arbitrary residue rings can be studied by our method
as well but in this case one obtains much weaker results because the Weil bound needs
to be replaced by the Hua Loo Keng bound, see [1, 2, 3, 17], in the proof of Theo-
rem 3.5. Also, one needs to use [8] to estimate the number of solutions of polynomial
congruences (which we estimated simply as n in the proof of Theorem 3.6).
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Finally we remark that one can also consider similar generators defined by a lin-
ear recurrence sequence over F3, which we assume to be represented by the elements
{−1, 0, 1} to avoid ring multiplication in the computation of the corresponding se-
quence.

Acknowledgments. The authors are grateful to Richard Brent for attracting their
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