
c© de Gruyter 2009
J. Math. Crypt. 3 (2009), 165–174 DOI 10.1515 / JMC.2009.008

Another look at some fast modular arithmetic methods

M. Jason Hinek and Charles C. Y. Lam

Communicated by Ronald C. Mullin

Abstract. In this work we re-examine a modular multiplication and a modular exponentiation
method. The multiplication method, proposed by Hayashi in 1998, uses knowledge of the factoriza-
tion of both N + 1 and N + 2 to compute a multiplication modulo N . If both N + 1 and N + 2 can
be factored into k equally sized relatively prime factors then the computations are done modulo each
of the factors and then combined using the Chinese Remainder Theorem. It was suggested that the
(asymptotic) computational costs of the method is 1/k of simply multiplying and reducing modulo
N . We show, however, that the computational costs of the method is (asymptotically) at least as
costly as simply multiplying and reducing modulo N for both squarings and general multiplications
when efficient arithmetic is used. The exponentiation method, proposed by Hwang, Su, Yeh and
Chen in 2005, is based on Hayashi’s method and uses knowledge of the factorization of P + 1 and
P − 1 to compute an exponentiation modulo an odd prime P . We begin by showing that the method
cannot be used as a general purpose exponentiation method and then modify the method so that it
can work as a general purpose modular multiplication method. Like Hayashi’s method, however, this
method is at best (asymptotically) only as efficient as simply multiplying and reducing modulo P .

Keywords. Fast modular arithmetic, modular exponentiation.

AMS classification. 68W40, 94A60.

1 Introduction

Modular arithmetic is a frequently used but costly computation in many cryptosystems.
For example, both encryption and decryption computations in the most widely used and
well known public key cryptosystem today, RSA [6], use modular exponentiation with
large moduli. Since this computation is so common and so costly, it is desirable to
reduce the computational costs.

One example of reducing the computational costs of decryption for RSA was ob-
served by Quisquater and Couvreur [5]. Since the factorization of the RSA modulus
N = pq is known to the party receiving the encrypted message, decryption (modular
exponentiation) can be carried out modulo p and modulo q and then combined via the
Chinese Remainder Theorem to obtain the desired result modulo N . If we assume
that p and q have the same bitlength then the computational costs of this method is
(asymptotically) 1/4 the cost of simply computing the exponentiation modulo N . Of
course, this requires that the factorization of N is known. Another way of reducing the
computational costs of modular exponentiations is to reduce the cost of the modular
multiplications that are needed for the exponentiation.

In [2], Hayashi extended the idea of using the Chinese Remainder Theorem for
modular multiplication when the modulus has unknown factorization (or is prime).
Here, instead of knowing the factorization of N , Hayashi assumes that the (partial)

166 M. Jason Hinek and Charles C. Y. Lam

factorizations of N + 1 and N + 2 are known. The method consists of three steps:
computing the multiplication modulo N + 1 using the factorization of N + 1 and the
Chinese Remainder Theorem; computing the multiplication modulo N + 2 using the
factorization of N +2 and the Chinese Remainder Theorem; and finally combining the
results to obtain the multiplication modulo N .

In [3], Hwang et al. proposed a modification of Hayashi’s method to be used for
modular exponentiation. In this modification, the modulus is a prime P and it is as-
sumed that the (partial) factorization of P − 1 and P + 1 are known. In addition, they
propose a modular exponentiation algorithm based on this method.

The rest of the paper is as follows. In the remainder of this section we give some
notation and assumptions that we will use when estimating the computational com-
plexity of the algorithms. In Section 2, we review Hayashi’s modular multiplication
method and re-examine its computational complexity. In Section 3, we review Hwang
et al.’s extension of Hayashi’s method and modify it so that it is a general purpose mod-
ular multiplication method. We also show that their modular exponentiation method is
incorrect.

1.1 Complexity assumptions

When considering the computational complexity of an algorithm we will focus on the
number of word operations as a function of the bitlength of the input size. Following
the style in von zur Gathen and Gerhard [7], we will reduce the cost of all operations
to the cost of integer multiplications. For integers n ≥ m, we let M(n) denote the
number of word operations needed to multiply two n-bit integers and R(n,m) denote
the number of word operations needed to reduce an n-bit integer modulo an m-bit
integer (or, compute the remainder of an n-bit integer divided by an m-bit integer).

For integer multiplication, we have M(n) ∈ O(n1+ε) where ε = 1 for classical
quadratic arithmetic, ε = log2(3) − 1 for Karatsuba multiplication and ε → 0 for
(hypothetical) linear multiplication (see [7] for more discussion). In particular, we will
let M(n) = cn1+ε + o(n1+ε) for some constants c > 0 and ε > 0. For division with
remainder (modular reduction), the best known result, from Burnikel and Ziegler [1],
is given by

R(2n, n) = 2K(n) +O(n logn), (1.1)

where K(n) = Θ(nlog2(3)) is the complexity of Karatsuba multiplication. Thus, when
Karatsuba multiplication is used, we have R(2n, n) = 2cnlog2(3) + o(nlog2(3)), for some
constant c. In general, we will make the assumption that

2M(n) ≤ R(2n, n) ≤ 5M(n) +O(n), (1.2)

where the upper bound comes from a fast remainder algorithm (see [7, Theorem 9.6]).
To gauge the computational costs of the modular multiplication methods consid-

ered here, we compare with simply multiplying and then reducing modulo N (which
we refer to as the standard method). For a (kn)-bit modulus N , let T0(kn) denote

Another look at some fast modular arithmetic methods 167

the number of word operations needed for the standard method. Clearly T0(kn) =
M(kn, kn) +R(2kn, kn).

In both of the modular multiplication methods that we consider here, the multipli-
cands need to be reduced modulo several different integers. We will assume that we
wish to reduce a (kn)-bit integer modulo k = 2` different (relatively prime) n-bit inte-
gers and let R(kn, n, k) denote the number of word operations needed to compute this.
The best known method for fast simultaneous modular reduction, [7, Theorem 10.15],
uses a binary tree approach. For example, suppose we wish to reduce xmodulo each of
m1,m2,m3 andm4. We first compute x mod m1m2 and x mod m3m4, and then reduce
these by the appropriate mi. We would then have

R(4n, n, 4) = 2R(4n, 2n) + 4R(2n, n).

In general, we have

R(kn, n, k) = 2R(kn, kn/2) + 4R(kn/2, kn/4) + · · ·+ kR(2n, n). (1.3)

2 Hayashi’s method

First we review Hayashi’s modular multiplication method. For some positive integer
N with unknown factorization we assume that we know the (partial) factorization of
N+1 andN+2. Let x1, x2 ∈ ZN andX = x1x2 so that 0 ≤ X ≤ (N−1)2. Hayashi’s
method for computing X mod N consists of the following steps:

(1) Compute y1 = X mod (N + 1),
(2) Compute y2 = X mod (N + 2),
(3) Combine y1 and y2 to obtain y = X mod N .

The first two steps are computed via the Chinese Remainder Theorem, using the
known factorizations of N + 1 and N + 2. For the last step, Hayashi again uses the
Chinese Remainder Theorem. We restate the main result underlying this last step (see
§3 of [2]) in the following theorem:

Theorem 2.1 (Hayashi [2]). For any positive integer N , let X satisfy 0 ≤ X ≤
(N − 1)2. Given y1 = X mod (N + 1) and y2 = X mod (N + 2), then X satisfies

X ≡ 2y1 − y2 + 2z (mod N), (2.1)

where z = 0 if y1 ≥ y2 and z = 1 otherwise.

The result follows from the Chinese Remainder Theorem. In particular, applying
Gauss’ algorithm to solve the system of congruences (equations for y1 and y2) yields

X = (N + 2)y1 − (N + 1)y2 + z(N + 1)(N + 2),

for some integer z. Applying the constraints 0 ≤ y1 < N + 1, 0 ≤ y2 < N + 2 and
0 ≤ X ≤ (N − 1)2 lead to the desired restrictions on z. For more details see [2], or the
proof of Theorem 3.3 below.

168 M. Jason Hinek and Charles C. Y. Lam

2.1 Efficiency

Let Hi(nk) denote the complexity of step i in Hayashi’s method with modulus size kn
where each of N + 1 and N + 2 have k equally sized factors.

From Theorem 2.1, it is clear that the last step in Hayashi’s method can be computed
efficiently. Given y1 and y2, simply compute y′ = 2y1 − y2 + 2z and reduce modulo
N . Computing y′ is very efficient as it requires only one bit-shift (multiplication by 2),
one subtraction and possibly one addition. Further, since

−N + 3 ≤ y′ ≤ 2N − 2,

reducing y′ modulo N can be done by simply adding N to y′ if y′ < 0 or subtracting
N from y′ if y′ > N . Thus, given y1 and y2, the number of word operations needed to
compute y is equivalent to a small (constant) number of additions of integers. There-
fore, the last step of Hayashi’s method is very efficient. We will assume that H3(kn) is
negligible compared to H1(kn) and H2(kn).

We now consider the first step in the method (the second step is the same). Let the
modulus N be a (kn)-bit number and let N + 1 = p1 · · · pk be the partial factorization
of N + 1. We assume that gcd(pi, pj) = 1 for all i 6= j and also that the bitlength of
each pi is n. Let x1 and x2 be the multiplicands (x1 = x2 for a squaring). This step
consists of first reducing x1 and x2 modulo each of the pi, computing x1x2 modulo
each of the pi and then recombining via the Chinese Remainder Theorem to obtain
x1x2 modulo N + 1. Thus, we have

H1(n, k) = R(kn, n, k) + kM(n) + CR(n, k), (2.2)

where CR(n, k) is the complexity of the Chinese Remainder Theorem (with k inputs
each n bits long). In this scenario, it is claimed in [2], that the complexity of the
multiplication method approaches 1/k for large k and n. The analysis, however, failed
to consider the cost of reducing the multiplicands modulo each of the factors. In fact,
if we only consider the modular reductions notice that (using equations (1.2), (1.3) and
(2.2))

H1(nk)
T0(nk)

=
R(kn, n, k) + kM(n) + CR(n, k)

M(kn) +R(2kn, kn)

≥ R(kn, n, k)
M(kn) +R(2kn, kn)

=
2s (2R(kn, kn/2) + 4R(kn/2, kn/4) + · · ·+ kR(2n, n))

M(kn) +R(2kn, kn)

≥ 2s (4M(kn/2) + 8M(kn/4) + · · ·+ 2kM(n) +O(kn))
M(kn) + 5M(kn) +O(kn)

,

where s = 0 for a squaring and s = 1 for a multiplication. If we consider the limit of
large n, the O(kn) terms can be ignored, and we have

H1(nk)
T0(nk)

≥ 21+s

6
2M(kn/2) + 4M(kn/4) + · · · kM(n)

M(kn)
.

Another look at some fast modular arithmetic methods 169

In the limit of large n, we can let M(n) = cn1+ε for some constant c and ε, and so we
have

H1(nk)
T0(nk)

≥ 21+s

6
2(kn/2)1+ε + 4(kn/4)1+ε + · · · k(kn/k)1+ε

(kn)1+ε

=
21+s

6

(
1
2ε

+
1
4ε

+ · · ·+ 1
kε

)

=
21+s

6

∑̀
i=1

2i(1−ε)

=
21+s

6
1− 2−ε`

2ε − 1
.

Considering both H1(nk) and H2(nk), we have for squarings

H1(kn) +H2(kn)
T0(kn)

≥ 4
6

(
1− 2−ε`

2ε − 1

)

=

2
3(1− 2−`) for ε = 1 (quadratic multiplication),
4
3(1−

(2
3

)`
) for ε = log2(3)− 1 (Karatsuba multiplication),

2
3` for ε→ 0 (linear multiplication).

The cost for multiplication (s = 1) will be double these costs. Also, for the Karatsuba
multiplication, the bound is actually twice what is shown. This follows since we can
use the fast division with remainder result that uses Karatsuba multiplication instead
of the more general upper bound used. Thus, the denominator can be replaced with
3K(kn) instead of using 6M(kn). Taking this into consideration, we thus have the
following lower bounds for (H1(nk) +H2(nk))/T0(nk):

Squaring
` 1 2 ∞

Quadratic 1/3 1/2 2/3
Karatsuba 8/9 40/27 8/3

Linear 2/3 4/3 ∞

Multiplication
` 1 2 ∞

Quadratic 2/3 1 4/3
Karatsuba 16/9 80/27 16/3

Linear 4/3 8/3 ∞

Thus, when efficient multiplication is used (Karatsuba or better), we see that the
costs of reducing the multiplicands is already more costly than the standard method
except for squarings when N + 1 and N + 2 have only k = 2 (` = 1) factors. Of
course, in the above computations, we ignored the costs of using the Chinese Remain-
der Theorem to construct the multiplications modulo N + 1 and N + 2. Let’s now
consider this additional cost for the case of squarings (` = 1).

Using Garner’s algorithm (see [4]) to implement the Chinese Remainder Theorem
with two inputs, we only need two additions, two multiplications and one modular

170 M. Jason Hinek and Charles C. Y. Lam

reduction, assuming we precompute the needed inverse. Thus, we have

CR(n, k) = 2M(n) +R(2n, n) +O(n),

and so in the limit of large n we have

CR(n, 2)
T0(2n)

=
2M(n) +R(2n, n)
M(2n) +R(4n, 2n)

>
4M(n)

2t3M(2n)
=

4
2t3

1
21+ε ,

where t = 0 for Karatsuba multiplication and t = 1 otherwise. Thus, we have that the
costs for each step is given by

CR(n, 2)
T0(2n)

>

{
2
9 ε = log2(3)− 1 (Karatsuba),
1
3 ε→ 0 (linear).

Adding these costs to each of H1 and H2 results in (H1(2n)+H2(2n))/T0(2n) ≥ 1 for
all methods with multiplication at least as efficient as Karatsuba. Adding the costs for
CR(n, 2) does not make Hayashi’s method less efficient for squaring when classical
multiplication is used though.

3 Hwang et al.’s modification

Based on Hayashi’s modular multiplication method, Hwang et al. [3], proposed a mod-
ular exponentiation method when the modulus is a prime P and the partial factoriza-
tions of P − 1 and P + 1 are known. In order to compute xc mod P for some positive
integer c, Hwang et al.’s method consists of the following steps:

(1) Compute y1 = xc mod P − 1,
(2) Compute y2 = xc mod P + 1,
(3) Combine y1 and y2 to obtain y = xc mod P .

As with Hayashi’s multiplication method, the first two steps are computed using the
Chinese Remainder Theorem, using the known factorizations of P − 1 and P + 1. It
is also suggested in [3] that the exponent in each exponentiation (modulo the factors
of P − 1 and P + 1) can be reduced (via Euler’s theorem) to further speed up the
computations. The last step is based on Hayashi’s efficient combining result (Theorem
2.1). We restate the main result suggested for their last step (see §3 of [3]) in the
following theorem:

Theorem 3.1 (Hwang, Su, Yeh and Chen [3]). For any odd prime P , let 0 ≤ X <
(P 2 − 1)/2. Given y1 = X mod (P − 1) and y2 = X mod (P + 1), then X satisfies

X ≡ 2−1 (y1 + y2 − z) mod P,

where z = 1 when y1 ≥ y2 and z = 0 otherwise. Further, the inverse of 2 modulo P is
simply 1

2(P + 1).

Another look at some fast modular arithmetic methods 171

Compared to Hayashi’s modular multiplication method this result has a serious
shortcoming. In particular, the method is not a general purpose modular exponenti-
ation method since it only applies to computations of xc mod P where x and c satisfy
xc < 1

2(P 2 − 1). Even when the exponentiation is a squaring, using the smallest
possible exponent c = 2, the method excludes any computation in which x ≥ 1√

2
P .

Simplifying Hwang et al.’s method to only perform modular multiplication instead of
exponentiation, we show below that this shortcoming can be overcome.

Let x1, x2 ∈ ZP and X = x1x2. As with Hayashi’s method, if we want to be able
to multiply any x1, x2 ∈ ZP , we need to handle any product 0 ≤ X < (P − 1)2. The
result in Theorem 3.1 already handles the lower part of this range. We will show that
the upper range can also be easily handled. To show this, we use the following result.

Lemma 3.2. For any odd prime P , let (P 2 − 1)/2 ≤ X < (P − 1)2. Given y1 =
X mod (P − 1) and y2 = X mod (P + 1), then

X = 1
2 (P + 1) y1 − 1

2 (P − 1) y2 + 1
2(P − 1)(P + 1)z, (3.1)

where z = 1 or 2.

Proof. Since y1 = X mod (P − 1) and y2 = X mod (P + 1), we know that there exist
integers z1 and z2 such that

X = z1(P − 1) + y1 and (3.2)

X = z2(P + 1) + y2. (3.3)

Multiplying the first equation for X by (P + 1) and the second by (P − 1), we obtain

(P + 1)X = (P + 1)(P − 1)z1 + (P + 1)y1,

(P − 1)X = (P + 1)(P − 1)z2 + (P − 1)y2.

Subtracting these equations and solving for X yields

X = 1
2 (P + 1) y1 − 1

2 (P − 1) y2 + 1
2(P − 1)(P + 1)z, (3.4)

where z = z1 − z2. To show the bounds on z, we first assume that z ≤ 0. Using the
inequalities y1 < P − 1, y2 ≥ 0 and z ≤ 0 in equation (3.4), we obtain

X < 1
2 (P + 1) (P − 1) = 1

2(P 2 − 1),

which contradicts our assumption on X . Thus, z > 0. Next we assume that z ≥ 3.
Using the inequalities y1 ≥ 0, y2 < (P + 1) and z ≥ 3 in equation (3.4), we obtain

X ≥ − 1
2(P − 1)(P + 1) + 3

2(P − 1)(P + 1) = P 2 − 1 > (P − 1)2,

which, again, contradicts our assumption on X . Thus, z < 3. Since z is an integer, we
have the desired result that z = 1 or 2. 2

172 M. Jason Hinek and Charles C. Y. Lam

With Lemma 3.2 in hand, we can easily extend Theorem 3.1 to handle the upper part
of the range with the following result.

Theorem 3.3. For any odd prime P , let (P 2 − 1)/2 ≤ X < (P − 1)2. Given y1 =
X mod (P − 1) and y2 = X mod (P + 1), then X satisfies

X ≡ 2−1 (y1 + y2 − z) (mod P),

where z = 1 when y1 ≥ y2 and z = 2 otherwise. Further, the inverse of 2 modulo P is
simply (P + 1)/2.

Proof. As in the proof of Lemma 3.2, let z1 and z2 denote the non-negative integers
that satisfy

X = y1 + (P − 1)z1, (3.5)

X = y2 + (P + 1)z2, (3.6)

and again let z = z1 − z2. From Lemma 3.2, we know that

X = 1
2 (P + 1) y1 − 1

2 (P − 1) y2 + 1
2(P − 1)(P + 1)z,

where z = 1 or 2. Reducing this equation modulo P , and noting that 2−1 exists since
P is odd, we obtain the desired relation

X ≡ 2−1(y1 + y2 − z) (mod P),

where z = 1 or 2. To show the dependence of z on y1 and y2, we begin by taking the
difference between equations (3.5) and (3.6), to obtain

0 = y1 − y2 + (P − 1)z1 − (P + 1)z2.

After some rearrangement, and recalling z = z1 − z2, this gives

y2 − y1 = (P − 1)(z1 − z2)− 2z2

= (P − 1)z − 2z2. (3.7)

Next, we consider cases for the values of y1 and y2. First, let y1 ≥ y2 so that y2−y1 ≤ 0.
From equation (3.7), we have (P − 1)z − 2z2 ≤ 0, or simply

(P − 1)z ≤ 2z2. (3.8)

Now, rearranging equation (3.6), we know that (P+1)z2 = X−y2. SinceX < (P−1)2

and y2 ≥ 0, this leads to (P + 1)z2 < (P − 1)2, which implies that z2 < P − 1. Using
this condition on z2 with inequality (3.8), we then have

(P − 1)z < 2(P − 1),

and so z < 2. Since we know that z = 1 or 2, from Lemma 3.2, we conclude that
z = 1.

Another look at some fast modular arithmetic methods 173

Next we consider the case y1 < y2, so that y2 − y1 > 0. From equation (3.7), we
have (P − 1)z − 2z2 > 0, or simply

(P − 1)z > 2z2. (3.9)

Again, from equation (3.6), we have (P + 1)z2 = X − y2. Since X ≥ (P 2 − 1)/2 =
(P + 1)(P − 1)/2 and y2 < p + 1, this leads to (P + 1)z2 > (P 2 − 1)/2 − (P + 1),
which implies that z2 > (P − 1)/2 − 1 or simply z2 ≥ (P − 1)/2. Using this lower
bound for z2 with inequality (3.9), we then have

(P − 1)z > 2(1
2(P − 1)) = (P − 1),

and so z > 1. Again, since we know that z = 1 or 2, from Lemma 3.2, we conclude
that z = 2. 2

Combining the results of Theorems 3.1 and 3.3, we now have a general purpose
modular multiplication method for ZP .

3.1 Efficiency

Compared to Hayashi’s method, the last (recombining) step of this method is slightly
less efficient. Notice that in addition to at most three addition/subtractions, there is
also the multiplication involving 2−1 mod P = (P + 1)/2. If (y1 + y2 − z) is even,
we can compute this with a single bit shift. If (y1 + y2 − z) is odd, we can compute
this by adding P to make it even and then applying a single bit shift. In this case, we
need to carry out another addition. Also, this method might require two comparisons to
decide if which value to assign z as opposed to one comparison in Hayashi’s method.
However, this last step is still very efficient.

The first two steps, however, have the exact same problem of reducing the multipli-
cands modulo each of the factors of P − 1 and P + 1. The same analysis above for
Hayashi’s method (Section 2.1) applies here. Thus, the method is less efficient than the
standard method whenever efficient multiplication is used for all cases.

4 Modular exponentiation and RSA

As has been shown above, the costs of reducing all the multiplicands modulo each of
the factors of N + 1 and N + 2 (or P − 1 and P + 1) is just as expensive as computing
the modular multiplication using the standard method. We would like to point out that
this shortcoming does not apply to modular exponentiation methods that carry out the
exponentiations in smaller groups and then recombine the results, as used in RSA for
example. Here, the modular reductions are done only once. If Hayashi’s method (or
Hwang’s modified method) were to be used as a basic step in a modular exponentiation
method, we would have to compute modular reductions at each step. Otherwise, as seen
in Hwang’s proposed exponentiation method, the inputs will not satisfy the constraints
of the combining step.

174 M. Jason Hinek and Charles C. Y. Lam

5 Conclusion

We have shown that the modular multiplication method proposed by Hayashi, is at best
only as efficient as the standard method of multiplying and reducing (asymptotically)
when efficient arithmetic is used. The bottleneck of Hayashi’s method is reducing the
multiplicands modulo each of the factors of N+1 and N+2. We have also shown that
the modular exponentiation method that Hwang et al., based on Hayashi’s method, is
not a general purpose exponentiation method. We have modified their method so that it
is a general purpose modular multiplication method, but this method has (essentially)
the same complexity as Hayashi’s method.

Acknowledgments. The authors would like to thank the anonymous reviewers for
pointing out some errors in the initial submission.

References
[1] C. Burnikel and J. Ziegler, Fast Recursive Division, Max-Planck-Institut für Informatik, Saar-

brücken, Germany, Report no. MPI-I-98-1-022, 1998.

[2] A. Hayashi, A New Fast Modular Multiplication Method and Its Application to Modular
Exponentiation–Based Cryptography, Electron. Comm. Jpn. Pt. III 83 (2000), pp. 88–93. Trans-
lated from Denshi Joho Tsushin Gakkai Ronbunshi, J81-A(10): 1372–1376 (1998).

[3] R.-J. Hwang, F.-F. Su, Y.-S. Yeh, and C.-Y. Chen, An Efficient Decryption Method for RSA
Cryptosystem. 19th International Conference on Advanced Information Networking and Ap-
plications (AINA 2005), 28–30 March 2005, Taipei, Taiwan, 1, pp. 585–590. IEEE Computer
Society, 2005.

[4] A. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography. CRC
Press, 1996.

[5] J.-J. Quisquater and C. Couvreur, Fast Decipherment algorithm for RSA public-key cryptosys-
tems, Electronics Letters 18 (1982), pp. 905–907.

[6] R. L. Rivest, A. Shamir, and L. M. Adleman, A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems, Commun. ACM 21 (1978), pp. 120–126.

[7] J. von zur Gathen and J. Gerhard, Modern Computer Algebra. Cambridge University Press,
1999.

Received 30 September, 2007; revised 10 January, 2009

Author information

M. Jason Hinek, iCORE Information Security Lab, Department of Computer Science, University of
Calgary, Calgary, Alberta, T2N 1N4, Canada.∗

Email: mjhinek@alumni.uwaterloo.ca

Charles C. Y. Lam, Department of Mathematics, SCI 14, California State University, Bakersfield,
Bakersfield, California, 93311-1022, USA.
Email: clam@csub.edu

∗Note: work initiated at David R. Cheriton School of Computer Science, University of Waterloo, Waterloo,
Ontario, N2L 3G1, Canada.

