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Abstract. In this paper, we present an improved approach to solve multivariate systems over finite
fields. Our approach is a tradeoff between exhaustive search and Gröbner bases techniques. We give
theoretical evidences that our method brings a significant improvement in a very large context and
we clearly define its limitations. The efficiency depends on the choice of the tradeoff. Our analysis
gives an explicit way to choose the best tradeoff as well as an approximation. From our analysis, we
present a new general algorithm to solve multivariate polynomial systems. Our theoretical results
are experimentally supported by successful cryptanalysis of several multivariate schemes (TRMS,
UOV, . . . ). As a proof of concept, we were able to break the proposed parameters assumed to be
secure until now. Parameters that resists to our method are also explicitly given. Our work permits
to refine the parameters to be chosen for multivariate schemes.
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1 Overview

Multivariate Cryptographycomprises all the cryptographic schemes that use multivari-
ate polynomials. The use of polynomial systems in cryptography dates back to the mid
eighties [25]. The most interesting one way function used in this context is the evalua-
tion of multivariate polynomials. Namely, letf = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) ∈
K[x1, . . . , xn]m, the one-way function is as follows:

F : x = (x1, . . . , xn) ∈ Kn 7−→ (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) .

Here, the computational hard problem is:

Polynomial System Solving (PoSSo)
Input: polynomialsf1(x1, . . . , xn), . . . , fm(x1, . . . , xn) in K[x1, . . . , xn].
Question: find a common zeroz ∈ Kn of the polynomialsf1, . . . , fm.

It is well known that this problem isNP-HARD. Note that PoSSo remainsNP-HARD

even if we suppose that the input polynomials are quadratics. In this case, PoSSo is
also calledMQ.

Luk Bettale is partially supported by DGA (french secretary of defense).
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To introduce a trapdoor, we start from a carefully chosen algebraic systemg =
g1(x1, . . . , xn), . . . , gm(x1, . . . , xn) which is easy to solve. In order to hide the spe-
cific structure ofg, we choose two linear transformations – represented by invertible
matrices –(S, U) ∈ GLn(K)×GLm(K), and set

f(x) = (f1(x), . . . , fm(x)) = (g1(xS), . . . , gm(xS))U = g(xS)U,

with x = (x1, . . . , xn).
The public key of such systems will be the polynomials off and the secret-key is

the two matrices(S, U).
To encrypt, we evaluate a messagem ∈ Kn on f , i.e. c = (f1(m), . . . , fm(m)).

To recover the correct plaintext, the legitimate recipient uses the bijectivity of the lin-
ear transformations combined with the particular structure of the polynomials ofg.
Namely, he computesm′ ∈ Kn such thatg(m′) = cU−1. This can be done effi-
ciently due to the particular choice ofg. Finally, he recovers the message by comput-
ing m = m′S−1. Note that this family of cryptosystems can also be used in signature.
To verify a signatures ∈ Kn of a messagem ∈ Km, we check whether the equal-
ity f(s) = m holds. To generate the signature of a messagem ∈ Km, we apply the
decryption process tom.

There are plenty of proposals [26, 28, 27, 23, 35] based on this principle which dif-
fer only in the way of constructing the polynomials ofg. Such schemes are attractive
because they offer the possibility to have short asymmetric signatures and require little
RAM to be computed on a smart card. For instance, a European project (NESSIE1) has
advised in 2003 to use such a scheme (namely,SFLASH [28]) in the smart-card con-
text. Unfortunately, Dubois, Fouque, Shamir and Stern [15] discovered a sever flaw
in the design ofSFLASH, leading to an efficient cryptanalysis of this scheme. How-
ever, this area is still appealing since we have a great deals of schemes. For instance
QUARTZ [27] allows to get 128-bit long signatures and has a public key of 71 kB. It is
worth to mention that in [8] the authors claim that multivariate signature schemes can
outperform some ECC implementations in terms of efficiency for comparable sizes,
especially when the fieldK is big.

The arrival of these multivariate schemes in the cryptographic landscape motivates
further study of the complexity of solving algebraic systems. The goal is to take ad-
vantage of the context (“big” finite field, quadratic equations) to have an improved
semi-automatic method to solve this kind of systems. We present in this paper a hy-
brid approach which can improve the way of solving zero-dimensional multivariate
systems over “big” finite fields with at least 22 elements. This approach uses Gröbner
bases techniques and exhaustive search. For the parameters usually used in cryptogra-
phy, our analysis shows that the hybrid approach brings a significant improvement over
the classical methods. As proof of concept, we will present efficient attacks against
various multivariate schemes. In this case, the security can be reduced to the diffi-
culty of solving a “random” multivariate system with fairly low degree (� size of the
field). We present an algorithm to solve efficiently such systems. In [9], Braeken, Wolf

1https://www.cosic.esat.kuleuven.be/nessie/
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and Preneel did not succeed to attack UOV with Gröbner bases. Indeed, the parame-
ters were unreachable using a standard zero-dim solving approach. They applied the
zero-dim solving strategy directly without taking advantage of the specificities of the
context. With the hybrid approach, we were able to break these parameters. Using this
algorithm we can show that the parameters for general multivariate schemes proposed
in [8] are not secure. Our theoretic analysis allows to refine the security parameters.
We give, at the end of the paper, suitable parameters to make multivariate schemes
resistant to our approach (complexity of the attack above 280).

A similar idea has been proposed in [12] for the XL algorithm, the so-called FXL
algorithm. The authors have remarked that guessing at few variables decreases the
complexity of solving the system. In [36] the authors studied the asymptotic com-
plexity of FXL. In [2], the authors showed that XL is a special case of Gröbner bases
algorithms and that XL is less efficient than F5. Still their results are not accurate for
our approach. This is why we give an asymptotic analysis for our Hybrid approach.
Moreover, the authors do not give a method (algorithm) to use efficiently FXL. This is
done for the hybrid approach in this paper.

1.1 Organization of the paper

This paper is organized as follows. After this introduction, we recall (Section 2) the
general strategy for solving zero-dimensional polynomial systems and the algebraic
tools used (Gröbner bases). We give also some theoretical definitions and results nec-
essary to understand our approach, namely semi-regular sequences, degree of regular-
ity and the link between these two notions. The reader familiar with these notions may
skip Section 2. In Section 3 we present our hybrid approach that mixes Gröbner bases
computations with exhaustive search. We give an analysis of its complexity and the
way to choose the best tradeoff. We discuss also the limitations of our approach. Fi-
nally, we present in Section 4 some experimental results obtained by analyzing several
multivariate schemes. The first one is a signature scheme called TRMS. It is the first
scheme cryptanalysed with our hybrid approach [5]. The study of TRMS encouraged
us to try the approach to some other schemes. We present our results on UOV which is
considered today one of the most resistant multivariate schemes. We were able to break
some proposed parameters [20]. Finally, we applied our approach on multivariate hash
functions [6]. We conclude in Section 5 by giving the parameters that we consider
secure against our approach.

2 Polynomial system solving

In this section, we recall all the necessary material to understand our approach. We
present the mathematical object used to solve polynomial systems, namely Gröbner
basis [10, 1, 13], and briefly survey the algorithms to compute this object. We also
present the notion of semi-regular sequences which will be useful to measure the ef-
ficiency of our approach. All this material has already been introduced (for example
in [4]). This section may be skipped if the reader is familiar with theses notions.
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2.1 Zero-dim solving strategy

The general problem of polynomial system solving is to find (if any)(z1, . . . , zn) ∈ Kn

such that 
f1(z1, . . . , zn) = 0

...
fm(z1, . . . , zn) = 0

with fi ∈ K[x1, . . . , xn].
In our case we are only interested in the solutions whose components are lying in

the coefficient fieldK. To solve a polynomial system, the best known general method
is to compute the Gröbner basis of the ideal generated by this system. We refer the
reader to [10, 1, 13] for a more thorough introduction to ideals and Gröbner bases. We
give here only the definition of a Gröbner basis as well as the property that interests us
for solving a polynomial system.

Definition 2.1.A setG ⊂ K[x1, . . . , xn] is a Gröbner basis w.r.t. a monomial ordering
≺ of a polynomial idealI if

∀f ∈ I, ∃g ∈ G such that LM≺(g) divide LM≺(f),

where LM≺ stands for leading monomial w.r.t.≺.

As we can observe, the definition depends on the monomial ordering. This ordering
has also a direct impact on the structure of a Gröbner basis. For instance, a Gröbner
basis for a lexicographical order (Lex) of a zero-dimensional system (i.e. with a finite
number of solutions) has the following shape:

{g1(x1), . . . , g2(x1, x2), . . . , gk1(x1, x2), gk1+1(x1, x2, x3), . . . , gkn
(x1, . . . , xn)}.

With such structure, solutions can be easily computed by successively eliminating
variables, namely computing solutions of univariate polynomials and back-substituting
the results.

The historical method for computing Gröbner bases was introduced by Buchberger
in [10, 11]. Many improvements have been done leading to more efficient algorithms
such as F4 and F5 due to Faugère [16, 17]. The algorithm F4 for example is the default
algorithm for computing Gröbner bases in the computer algebra softwares MAGMA
and MAPLE. The F5 algorithm2 is even more efficient. We have mainly used this
algorithm in our experiments. For our purpose, it is not necessary to describe the
algorithm, but we give its complexity.

Proposition 2.2.The complexity of computing a Gröbner basis of a zero-dimensional
system ofm equations inn variables withF5 is

O
((

m · (n+dreg−1
dreg

)
)ω)

wheredreg is the degree of regularity of the system and2≤ ω ≤ 3 is the linear algebra
constant.

2available through FGb
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From a practical point of view, it is much faster to compute a Gröbner basis for
a degree ordering such as the Degree Reverse Lexicographic (DRL) order than for
a Lexicographic order (Lex). For zero-dimensional systems, it is usually less costly to
first compute a DRL-Gröbner basis, and then to compute the Lex-Gröbner basis using
a change ordering algorithm such as FGLM [18]. This strategy called zero-dim solving
is performed blindly in modern computer algebra softwares (for instance in MAGMA,
MAPLE). This is convenient for the user, but can be an issue for advanced users.

Proposition 2.3.Given a Gröbner basisG1 ⊂ K[x1, . . . , xn] w.r.t. a monomial order-
ing ≺1 of a zero-dimensional system, the complexity of computing a Gröbner basis
G2 ⊂ K[x1, . . . , xn] w.r.t. a monomial ordering≺2 with FGLM is

O
(
n ·D3) ,

whereD is the degree of the ideal generated byG1 (i.e. the number of solutions counted
with multiplicity in the algebraic closure ofK).

We see easily that the cost of change ordering is negligible when the system has very
few solutions.

For a finite fieldK with q elements, one can always add the field equationsxq
1 − x1,

. . . , xq
n − xn to explicitly look for solutions over the ground fieldK and not in some

extensions. By doing this, we will always obtain an over-defined system. This tech-
nique is widely used, and improves the computation of solutions ifq � n. Otherwise,
the addition of the field equations does not lead to a faster computation of a Gröbner
basis. Even worse, this can slow down the computation due to the high degrees of the
equations. In multivariate cryptography, some schemes use for example the fieldF28

whose elements can easily be represented with a byte. The hybrid method that we will
present is especially suitable in such situation.

2.2 Semi-regular sequences

In order to study random systems, we need to formalize the definition of “random
systems”. To do so, the notion of regular sequences and semi-regular sequences (for
over-defined systems) has been introduced in [3]. We give the definition here.

Definition 2.4.Let {p1, . . . , pm} ⊂ K[x1, . . . , xn] be homogeneous polynomials of de-
greesd1, . . . , dm respectively. This sequence is semi-regular if

• 〈p1, . . . , pm〉 6= K[x1, . . . , xn],
• for all 1≤ i ≤ m andg ∈ K[x1, . . . , xn]:

deg(g · pi) < dreg andg · pi ∈ 〈p1, . . . , pi−1〉 ⇒ g ∈ 〈p1, . . . , pi−1〉.

This notion can be extended to affine polynomials by considering their homoge-
neous components of highest degree. It has been proven in [3, 4] that for semi-regular
sequences, the degree of regularity can be computed explicitly.
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Property 2.5.The degree of regularity of a semi-regular sequencep1, . . . , pm of re-
spective degreesd1, . . . , dm is given by the index of the first non-positive coefficient
of ∑

k≥0

ck · zk =
∏m

i=1(1− zdi)
(1− z)n

.

This property allows us to have a very precise knowledge of the complexity of the
computation of a Gröbner basis for semi-regular systems. For semi-regular systems it
has been proven that the degree decreases asm goes larger. Thus, the more a system is
over-defined, the faster its Gröbner basis can be computed.

3 Hybrid approach

We present in this section our hybrid approach mixing exhaustive search and Gröbner
bases techniques. First we will discuss the complexity of this approach. Its efficiency
depends on the choice of a proper tradeoff. We take advantage of the behavior of
semi-regular systems to find the best tradeoff.

3.1 General case

When we want to solve a system which has coefficients over a finite field, we can
always find all the solutions in the ground field by exhaustive search. The complete
search should takeO(#Kn) operations ifn is the number of variables. The idea of the
hybrid approach is to mix exhaustive search with Gröbner bases computations. Instead
of computing one single Gröbner basis of the whole system, we compute the Gröbner
bases of #Kk subsystems obtained by fixingk variables.

The intuition is that the gain obtained by working on systems with less variables may
overcome the loss due to the exhaustive search on the fixed variables. The problem is
to choose the best tradeoff. That is to choose properly the value ofk making the
complexity of our hybrid approach minimal.

Proposition 3.1.LetK be a finite field and{f1, . . . , fm} ⊂ K[x1, . . . , xn] be a polyno-
mial system of equations of degreed. Letdreg(k) be the maximum degree of regularity
of all the systems:{

{f1(x1, . . . , xn−k, v1, . . . , vk), . . . , fm(x1, . . . , xn−k, v1, . . . , vk)} : (v1, . . . , vk) ∈ Kk}
.

If the system is zero-dimensional (which impliesm ≥ n), the complexity of the hybrid
approach is bounded from above by

O
(

min
0≤k≤n

(
(#K)k ·

((
m · (n−k+dreg(k)−1

dreg(k) )
)ω

+ (n− k)(d(n−k))ω
)))

,

where2≤ ω ≤ 3.

Proof. This bound can be easily derived from the complexity of F5 plus FGLM. In the
worst case, we can bound the number of solutions (counted with multiplicity) byd(n−k)
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in the algebraic closure ofK. We multiply it by the cost of the exhaustive search on
thek fixed variables. Then, we find the best tradeoff by taking the minimum value. We
can notice that the degree of regularity as well as the number of solutions will depend
on the actual system. This will change according to the value ofk, and possibly the
chosen fixed variables(v1, . . . , vk). 2

We can now write a simple algorithm describing the general hybrid approach.

Algorithm 3.2. GenHybridSolving
Require: K is finite,{f1, . . . , fm} ⊂ K[x1, . . . , xn] is zero-dimensional,k ∈ N.
Ensure: S = {(z1, . . . , zn) ∈ Kn : fi(z1, . . . , zn) = 0, 1≤ i ≤ m}.
S := ∅
for all (v1, . . . , vk) ∈ Kk do

Find the set of solutionsS ′ ⊂ K(n−k) of
f1(x1, . . . , xn−k, v1, . . . , vk) = 0, . . . , fm(x1, . . . , xn−k, v1, . . . , vk) = 0
using the zero-dim solving strategy.
S := S ∪ {(z′1, . . . , z′n−k, v1, . . . , vk) : (z′1, . . . , z

′
n−k) ∈ S ′}.

end for
return S.

The overall complexity strongly depends on the degree of regularity of the systems
generated by fixing the variables and the number of solutions. In the general case, we
can not even say if the hybrid approach is relevant. The problem is that we can not
predict the degree of regularity of a system, except if it is semi-regular.

3.2 Semi-regular systems

For semi-regular systems, the degree of regularity depends on the number of variables,
equations, and their degrees. We know for example that when there is only one variable
less than the number of equations, the degree of regularity will be divided by 2 [29]
instead of the generic boundn(d − 1) + 1 for a square system [24, 21]. Moreover the
number of solutions of an over-defined system will be generally 1 even in the algebraic
closure. The cost of the change ordering algorithm can be neglected.

Let dreg(n, m, d) be the degree of regularity of a semi-regular system withm equa-
tions of degreed in n variables. As seen in Section 2.2, it corresponds to the indexi of

the first non-positive coefficientci of the series
∑

i≥0 ci · zi = (1−zd)m

(1−z)n . As we have to
deal with sub-systems ofm equations withn−k variables, we will make the following
assumption.

Hypothesis 3.3.Let K be a finite field and{f1, . . . , fm} ⊂ K[x1, . . . , xn] a generic
semi-regular system of equations of degreed. We will suppose that the systems{

{f1(x1, . . . , xn−k, v1, . . . , vk), . . . , fm(x1, . . . , xn−k, v1, . . . , vk)} : (v1, . . . , vk) ∈ Kk}
are semi-regular for all 0≤ k ≤ n.
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This hypothesis is consistent with the intuition that when some variables of a random
system are fixed, the system is still random. This hypothesis has been verified with a
rather large amount of random systems as well as systems coming from the applications
of Section 4. In practice, the constructed systems may even be easier to solve than a
semi-regular system. We have observed that its degree of regularity is always lower
than a random system. Thus, our hypothesis can be used as it provides an upper bound
on the complexity of our approach.

We can now state the complexity of the hybrid approach for semi-regular systems.

Proposition 3.4.Let K be a finite field and{f1, . . . , fm} ⊂ K[x1, . . . , xn] be a semi-
regular system of equations of degreed. The complexity of solving the system with an
hybrid approach, is bounded from above by

O
(

min
0≤k≤n

(
(#K)k ·

(
m · (n−k−1+dreg(n−k,m,d)

dreg(n−k,m,d) )
)ω))

,

where2≤ ω ≤ 3.

Proposition 3.4 is always true but it does not give any clue on the value ofk. We
give in the next subsection a way to compute the best tradeoff.

3.3 Finding the best tradeoff

In the case of semi-regular systems, it is possible to know from a theoretical point of
view how many variables we will have to fix to solve a given system, i.e. to choose
the best tradeoff. For example, in the case of 20 quadratic equations in 20 variables
overF28, it appears that the best tradeoff – theoretically – is obtained by fixingk = 2
variables (withω = 3). We have to compute 216 Gröbner bases of systems with 20
equations and 18 variables to recover all the solutions of the initial system. We will
study the best tradeoff for quadratic equations, which is the most important case in
multivariate cryptography.

For a square quadratic system, an approximation of the degree of regularity has been
given in [3] for a system withαn equations (α > 1) in n variables:

dreg∼
(
α− 1

2
−
√

α(α− 1)
)
n +O(n1/3)

whenn →∞.
In our case, if we fixk of n variables of a square system, assumingk > 0, we will

have

dreg∼
n + k

2
−
√

nk +O((n− k)1/3)

whenn →∞.
Using the Stirling approximationn! ∼

√
2πn · (n/e)n, one can estimate the com-

plexity of the hybrid approachChyb.

Chyb = qk

(
n√
2π

)ω


(

3n−k
2 − 1−

√
nk
)(3n−k−1)/2−

√
nk

(n− k − 1)(n−k−1/2)
(

n+k
2 −

√
nk
)(n+k+1)/2−

√
nk


ω

.
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For small values ofk,

log(Chyb) ∼ k log(q) + ω(0.955n + 0.5 log(n) + 0.144k − 1.099
√

nk − 0.919).

The valuek of the best tradeoff corresponds to the value for which the logarithmic
derivative ofChyb is equal to 0. Thus, we have to solve:

log(q) + ω
(

log(n− k − 1) +
1

2(n− k − 1)

)
− ω

2
(1 +

√
n/k)

(
log
(3n− k

2
− 1−

√
nk
)

+
1

2
(

3n−k
2 − 1−

√
nk
))

− ω

2
(1−

√
n/k)

(
log
(n + k

2
−
√

nk
)

+
1

2
(

n+k
2 −

√
nk
)) = 0.

By specializing the parametersq, n andω, a good approximation of the valuek can be
found. For example, whenn = 20,q = 28, ω = 2, we findk = 0.859. The theoretical
value isk = 1. For these parameters, the complexity of a direct zero-dim solving is
283 and it goes down to 267 with the hybrid approach. This approximation is not very
precise whenn− k is small, but it gives a good indication on the appropriate tradeoff.

3.4 Borderline case

The hybrid approach is a compromise between exhaustive search and Gröbner bases
computation. If the size of the coefficient field is too big, the hybrid approach will not
bring any improvements. We have seen in Section 2.2 that when one variable is fixed
the degree of regularity goes fromn + 1 down ton+1

2 for a square system. If there is
no gain in fixing one variable, we can be sure that the hybrid approach will not bring
any gain for any amount of fixed variables. In this subsection, we are interested in the
case when the hybrid approach is not efficient. We will assume that we want to solve a
zero-dimensional semi-regular square system{f1, . . . , fn} ⊂ K[x1, . . . , xn], whereK
is a finite field.

The complexity of the hybrid approach withk = 1 will be

O
(
q
(
n · (3(n−1)/2

n−2 )
)ω)

.

We can compare this complexity with the complexity of F5 (k = 0). We recall this
complexity for quadratic equations:

O
((

n · ( 2n
n−1)

)ω)
.

The hybrid approach will bring a gain if

q ≤

(
( 2n
n−1)

(3(n−1)/2
n−2 )

)ω

.
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By using the Stirling approximation, asymptotically we find that

log2(q) ≤ 0.6226· ω · n +O(log2(n))

whenn →∞.
For example, ifω = 2, the complexity of computing a Gröbner basis of a semi-

regular quadratic system with 20 variables and 20 equations is above 280, but with the
hybrid approach, it will always be less if the field has a size below 224.

3.5 Summary

We have the necessary material to compute the theoretical tradeoff to be chosen. We
give an algorithm for finding the exact theoretical value ofk.

Algorithm 3.5. FindTradeoff
Require: q the size of the field,n the number of equations and variables of the system,

d the degree of the equations.
Ensure: k the best theoretical tradeoff for hybrid solving.
A := [ ].
for 0≤ k ≤ n do

Find the indexdk of the first non-positive coefficient of the series(1−zd)n

(1−z)n−k .

ComputeA[k] := qk
(
n(n−k−1+dk

dk
)
)ω

.
end for
return k such thatA[k] is minimum.

In practice, even with the best tradeoff, the computation can fail because of memory
issues. In some cases, it can be interesting to fix few more variables to save memory.

For the case of quadratic equations, we know from the previous subsection that if
the field is too big (log2(q) > 0.6226· ω · m), fixing variables will not lead to any
improvements. We can avoid searching for a tradeoff.

Algorithm 3.6. HybridSolving
Require: K is finite, {f1, . . . , fn} ⊂ K[x1, . . . , xn] is zero-dimensional, deg(fi) = 2,

for 1≤ i ≤ n.
Ensure: S = {(z1, . . . , zn) ∈ Kn : fi(z1, . . . , zn) = 0, 1≤ i ≤ m}.

if log2(q) > 0.6226· ω · n then
Use the zero-dim solving strategy to computeS.

else
k := FindTradeoff(q, n, 2).
S := GenHybridSolving({f1, . . . , fn}, k).

end if
return S.

One can replace the Algorithm 3.5 by our approximation to find the tradeoff. To
have a better accuracy, we recommend to compute the tradeoff explicitly.
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The overall complexity of the hybrid approach is still exponential. In terms of com-
plexity class, it does not overpass the direct Gröbner bases techniques. Still, we have
shown that the hybrid approach can decrease the complexity of solving a polynomial
system, and this slight difference can bring a problem from computationally impossible
to possible in practice. With our algorithm, we have a semi-automatic method to solve
the systems with the best tradeoff between zero-dim solving and exhaustive search. As
proof of concept we present in the next section some applications of our approach, in
particular on UOV.

4 Applications

We have presented in the previous section an approach that permits in theory to improve
the complexity of the resolution. We present in this section our experimental results
using this approach on various multivariate schemes which illustrate the relevancy of
our approach.

4.1 TRMS

TRMS (for Tractable Rational Map Signature) is a signature scheme proposed in [30].
The scheme is based on a Tractable Rational Map (TRM) which is a special construc-
tion of a mapping which can be efficiently inverted. The specific details are not im-
portant for our approach. We refer the reader to [30] for further information. We have
started to study the hybrid approach with this scheme. This is why we present our
results on TRMS.

Some multivariate cryptosystems like HFE have been broken by computing directly
the Gröbner basis of the public system [19]. In a sense, the hidden structure has been
uncovered by the Gröbner basis computation algorithm. In our case, we have an under-
defined system over a rather big field. Thus, even if we were able to compute a DRL-
Gröbner basis, we will not be able to compute the Lex-Gröbner basis because of the too
large number of possible solutions. For example, with the given parameters of TRMS,
there will be at least #K(n−m) = 264 valid solutions. To address this problem, we can
fix n − m variables of the system randomly. We will still be able to find one valid
solution. By fixing random variables, the system has been messed up, and has lost its
internal structure. Experimentally, we noticed that the new systems are semi-regular
systems. We fall right in the scope of our hybrid approach. We recall that the road-map
of the attack is as follows:

(1) Fix n−m variables of the system: we obtain a new system withm variables and
m equations which will always have at least one valid solution.

(2) Solve the new system with the hybrid approach.

The authors gave explicitly the following parameters:

K = F28, n = 28, m = 20.
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The public system has only up to degree 2 polynomials. For these parameters, we
give the theoretic complexity of the hybrid approach in Figure 1 and the memory in
Figure 2.

Figure 1. TRMS: Complexity of hybrid approach depending onk

According to Figure 1, fixing only one variable should take the least time in theory
(about 267 basic operations). The complexity is below the usual cryptographic security
bound (280) also plotted in Figure 1. As Gröbner bases algorithms use a high amount
of memory, it is also interesting to plot the minimum theoretic memory usage during
the computations (Figure 2).

We will now present our experimental results. We have mounted this attack on a bi-
pro Xeon 2.4 GHz with 64 GB of RAM. We give in Table 1 the experimental results for
different tradeoffs. TF5, MemF5 and NopF5

are the time, memory and number of basic
operations needed to compute one Gröbner basis with F5. Nop is the total number of
basic operations with the hybrid approach. It is obtained by computing #Kk ·NopF5

.

m m− k #Kk TF5 MemF5 NopF5
Nop

20 18 216 51 h 41.940 GB 241 257

20 17 224 2 h 45 min 4.402 GB 237 261

20 16 232 626 s 912 MB 234 266

20 15 240 46 s 368 MB 230 270

Table 1. Experimental results on TRMS

When fixing only one variable, the computation was not feasible because of the
too large amount of memory needed (more than 100 GB according to Figure 2). To
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Figure 2. TRMS: Memory of hybrid approach depending onk

make the computation feasible, the best tradeoff in practice was to fix 2 variables. The
total complexity is still acceptable (also from a theoretical point of view). It has to be
noted that a signature forgery here would only take 51 hours assuming an access to
216 = 65536 processors (which is very reasonable).

4.2 UOV

UOV is a multivariate signature scheme proposed in [22]. It shares the same basic as
TRMS, namely it uses a polynomial map easy to invert hidden with linear transforma-
tions. The set of variables{x1, . . . , xn} is partitioned in two setsV = {x1, . . . , xn−m}
(vinegar variables) andO = {xn−m+1, . . . , xn} (oil variables). The quadratic partf

(2)
k

of each secret polynomialsf1, . . . , fm has the special shape

f
(2)
k =

∑
(xi,xj)∈V×V

α
(k)
i,j xixj +

∑
(xi,xj)∈V×O

β
(k)
i,j xixj .

For more details, the reader may refer to the initial paper [22]. It is easy to see that once
the vinegar variables have been fixed, the system becomes a linear system withm equa-
tions inm variables, and will be easy to invert with a high probability. Again, the public
system becomes an under-defined system ofm quadratic equations inn variables. The
oil and the vinegar variables are completely mixed and without the knowledge of the
linear transformation, it should be impossible to solve the system.

The problem of forging a valid signature is equivalent to solving the under-defined
quadratic public system. We can tackle the problem by using the same technique as for
TRMS, namely first fixingn −m variables to have a square system, and then solve it
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with the hybrid approach [20]. The authors recommended the following parameters:

K = F24, m = 16, n = 32 (or 48).

It seems that the best theoretic tradeoff would be to fix 4 variables as it can be seen
in Figure 3. But in practice, we obtain the best experimental tradeoff by fixing only
2 variables. We show these results in Table 2. We were able to forge signatures on a
bi-pro Xeon 2.4 GHz with 64 GB of RAM. The labels used in Table 2 have the same
meaning as in Table 1.

Figure 3. Theoretical complexity for UOV depending onk

m m− k #Kk TF5 MemF5 NopF5
Nop

16 15 24 ≈ 1 h 3.532 GB 236.9 240.9

16 14 28 126 s 270 MB 232.3 240.5

16 13 212 9.41 s 38 MB 228.7 240.7

Table 2. Experimental results on UOV

It is worth to remark that the efficiency of our attack does not rely on the number
of the vinegar variables, but only on the number of equations. Even if there are many
more variables than equations, one can always fix variables and still be able to forge
one signature. Thus the results are valid forn = 32 as well as forn = 48.



Hybrid approach for solving multivariate systems over finite fields 191

4.3 Multivariate hash functions

The problem of solving a polynomial system can lead to the construction of hash func-
tions. For example, in [14, 7], the authors proposed to build a hash function with
an iterative Merkle–Damgård structure whose compression function is explicitly de-
scribed by a multivariate polynomial system. It is known that the security of such hash
functions strongly relies on the security of their compression function. We studied
the robustness of this function with the given parameters for the dense and the sparse
construction.

Let K be a finite field,n, m ∈ N and F:Kn+m −→ Km,

F: (y1, . . . , ym, x1, . . . , xn) 7−→ (f1(y1, . . . , ym, x1, . . . , xn), . . . , fm(y1, . . . , ym, x1, . . . , xn)).

The evaluation of the compression function F in a chaining value(y1, . . . , ym) and
a message block(x1, . . . , xn) give the next chaining value, and the last one will be
the hash. From now on, we will only focus on the compression function F and will
regardless call it the hash function.

Three kinds of generic attacks can be done on hash functions:

• Preimage attack: given a digesth, find a messagex such thatF (x) = h.

• Second preimage attack: given a messagem, find a messagem′ such thatF (x) =
F (x′).

• Collision attack: find any pair(x, x′) such thatF (x) = F (x′).

The generic complexity of the preimage attacks is 2n evaluations of the function where
n is the length (bit-size) of the digest. The collision attack needs onlyO(2n/2) opera-
tions with the birthday paradox. A hash function is considered secure when there are
no attacks with a better complexity.

With multivariate hash functions, given a digesth = (z1, . . . , zm), the preimage and
second preimage attacks are equivalent to solving the following system:

f1(y1, . . . , ym, x1, . . . , xn)− z1 = 0
...

fm(y1, . . . , ym, x1, . . . , xn)− zm = 0

A collision attack is equivalent to find for a fixed non-zero differenceδ = (δ1, . . . , δn)
two messages such thatH(m) = H(m+δ), in other words, solve the following system:

f1(y1, . . . , ym, x1, . . . , xn)− f1(y1, . . . , ym, x1 + δ1, . . . , xn + δn) = 0
...

fm(y1, . . . , ym, x1, . . . , xn)− fm(y1, . . . , ym, x1 + δ1, . . . , xn + δn) = 0

In fact, we compute a differential of the initial system at the pointδ, thus the total
degree of each polynomial will decrease by one.
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4.3.1 Dense construction

In [14], the authors have proposed a construction using dense random cubic polynomi-
als over an extension ofF2. We are again in the scope of our hybrid approach. Trying
to find preimages by solving directly the cubic system seems not to be possible for
the given parameters. We focused on a collision attack which is less ambitious as we
only have to deal with quadratic polynomials. Usually, for dedicated hash functions
like MD5 or SHA1, finding a suitable differenceδ is difficult. Many work has been
done in this area, mainly by Wang [31, 32, 33, 34]. In our case, as the polynomials are
randomly generated, any difference could lead to a collision with a good probability.
The hard part is finally to solve the system generated with this difference. As we have
seen previously, the system to solve will have its degree decreased by 1, in our case,
we will only have polynomials of degree 2. We summarize the attack:

(1) Randomly choose a non-zero difference(δ1, . . . , δn).

(2) Fix the values of(y1, . . . , ym) to the initial values(v1, . . . , vm) and build the sys-
temf ′ = (f ′1, . . . , f

′
m) with

f ′1 = f1(v1, . . . , vm, x1, . . . , xn)− f1(v1, . . . , vm, x1 + δ1, . . . , xn + δn),

...

f ′m = fm(v1, . . . , vm, x1, . . . , xn)− fm(v1, . . . , vm, x1 + δ1, . . . , xn + δn).

(3) Solve the systemf ′ = 0.

(4) If we find a solution, then we have a collision, else come back to step 1.

The authors proposed several sets of parameters wherem = n:

K = F24, m = 40, n = 40, K = F24, m = 64, n = 64,

K = F28, m = 20, n = 20, K = F28, m = 32, n = 32,

K = F216, m = 16, n = 16.

We have then to solve square systems, but we would emphasize that if the systems were
under-defined, then we could fix more variables as in the previous applications.

We were able to break two of the proposed set of parameters:

• K = F28, m = 20,

• K = F216, m = 16.

As the parameters are the same as in our previous applications, we obtained about
the same time and complexity. We also had to choose the same tradeoff. The only
difference is that we needed more memory to actually solve the systems due to the fact
that in the hash functions, the polynomials are more dense.
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4.3.2 Sparse construction

The authors have also proposed a construction using sparse random polynomials. From
a practical point of view, we have observed that the behavior of the systems is very dif-
ferent from semi-regular systems. It is not possible to predict their degree of regularity
anymore. Still, with the given parameters, we were able to effectively forge signatures
with our approach by adjusting it with a special strategy. The systems are now gen-
erated using a differenceδ with low Hamming weight. The systems are even more
sparse, and experimentally, very sparse systems are easier to solve. On the other hand,
we decrease the probability of finding a collision. We have to determine an optimal
Hamming weight for each set of parameters making the Gröbner bases computation
possible (from a practical point of view) and leading with a reasonable probability to
a collision. In our experiments, we have used the parameters given in Table 3. We
give in the columns min (resp. max) the minimum (resp. maximum) time needed to
compute a Gröbner basis of the systems obtained for different values ofδ. The valueε
is the ratio of non-zero monomials in each polynomial (density).

m #K ε weight ofδ min max prob

20 28 0.2% 4 0.5 s 1289.5 s 1/4

16 216 0.2% 5 0.1 s 78.5 s 1/3

32 28 0.1% 2 0.5 s 690.3 s 1/15

Table 3. Experimental results on sparse multivariate hash functions

With the sparse construction, we did not need to fix any variables in order to make
the computation possible, but as it can be seen in Table 3, the time for solving the
systems are not the same depending on the choice of the differenceδ. The time can
vary between less than one second to 20 minutes. We see that we were able in this case
to break one more set of parameters. Even if we can not state any theoretic conclusion
on sparse systems, it happens that with the given parameters, sparse systems seem to
be insecure.

4.4 Other constructions

The use of our approach is straightforward for any multivariate scheme. For under-
defined systems (m < n equations,n variables), we have to solve in fact a “generic”
square system (m equations,m variables). In [8], the authors have proposed a compari-
son between their implementation of several multivariate signature schemes and imple-
mentations of ECC. They show that good implementations of multivariate schemes are
much better than the best implementations of ECC in terms of time-area product. Un-
fortunately, most of the parameters proposed can be broken with our hybrid approach.
We present in Table 4 the schemes and the parameters they have implemented as well
as the theoretic complexity for forging a signature with our approach.
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m #K expected
security

direct
Gröbner

basis

fixed
variables

k

hybrid
approach

mem.

UOV (n = 30) 10 28 280 241.36 1 237.75 2 MB

UOV (n = 60)
enTTS(n = 28) 20 28 2160 282.51 1 266.73 139 GB

2 267.79 12 GB

Rainbow
(n = 48)
amTTS(n = 34)

24 28 2192 298.80 1 278.09 10 TB

2 279.06 816 GB

Table 4. Analysis of several multivariate schemes

For each set of parameters, the cost of computing the Gröbner basis of the system
(with F5) is less than the expected security, but still above the 280 (except for the short
version of UOV). With the hybrid approach, by guessing only one variable, the cost of
forging a signature goes below 280 for each of the given parameters. Another variable
can be fixed to decrease the memory needed, the complexities are still below 280. In
practice, we were able to break systems with up to 20 variables by choosingk = 2.
The schemes Rainbow and amTTS are still out of reach. In Table 4, our attack does
not take into account that the systems are under-defined, some improvements could be
done to further reduce the complexity of the hybrid attack.

5 Conclusion

We have presented in this paper a general method to solve polynomial systems over
finite fields. We have computed explicitly the complexity of this approach, and we
have given some applications where our approach allowed us to break some security
challenges for concrete parameters of several multivariate schemes claimed to be se-
cure. The method takes advantage of the predictable behavior of generic systems. All
in all, from our contribution, we can explicitly give the parameters for which a random
quadratic system can not be solved with our approach (i.e. complexity> 280) in Ta-
ble 5. The columnm is the minimum number of equations and variables that should
be chosen. The columnk is the best tradeoff for the hybrid approach and the column
T is the corresponding complexity. To have a sketch of what could be the size of the
public key and the signatures, we compute them for a system with 3/2 times more
variables than equations(n = 3m/2). It is roughly the case of amTTS and TRMS. We
emphasize that the complexities given in Table 5 are upper bounds which are reached
for random dense systems. Note that the complexities have been computed withω = 2.
This value matches our experiments. This can be explained because of the sparsity of
the matrices computed in F5. It has to be added that the values given in Table 5 are
the minimal parameters that aMQ-cryptosystem like UOV should have to resist our
attack. The given parameters do not prevent from other kind of attacks.
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#K m k T signature length public key size

232 20 0 282 960 bits 39 kB

216 23 1 281 560 bits 29 kB

28 26 1 283 312 bits 21 kB

24 30 7 283 180 bits 16 kB

22 41 23 282 124 bits 20 kB

Table 5. Minimal recommended parameters

Finally, the best tradeoff between security/size of the public key/size of the signature
is obtained by choosing a large amount of variables and a small field. We note that the
key is smaller when #K = 24. This could be the more suitable field to build multivariate
schemes. In view of these results, the question “MQ-Cryptosystems as Replacement
for Elliptic Curves?” [8] should be reevaluated.
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