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Abstract. The potential of solving norm equations is crucial for a variety of applications of algebraic
number theory, especially in cryptography. In this article we develop general effective methods for
that task in global function fields for the first time.
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1 Introduction

LetE/F be a (finite) extension of fields of degreed. Letω1, . . . , ωd be a fixedF -basis
of E. Then each elementx ∈ E has a presentation

x(ω1, . . . , ωd) = (ω1, . . . , ωd)Mx

with a matrixMx ∈ F d×d. The determinant det(Mx) is called thenormN(x) of the
elementx ∈ E with respect toF . SinceN(x) is – up to sign – the constant term in the
characteristic polynomial ofx it is independent of the choice of the basis.

The calculation of elements of prescribed norm is an important task in algebraic
number theory.

From now on, we consider the situation in which the base fieldF is either the field of
rationalsQ or a rational function fieldk(t) over a finite fieldk = Fq of characteristicp,
say withq = p`. Let oF be the ring of integers ofF , i.e.Z or k[t], respectively.

The extensionE of F is assumed to be separably generated by an elementy with
minimal polynomialmy(T ) ∈ oF [T ]. Then there ared different embeddings ofE into
the algebraic closurēF , sayσ1, . . . , σd. It can be easily shown that

N(x) =
d∏

j=1

σj(x) ∀x ∈ E .

In the context of global fields, norm equations are in general discussed as follows.
We choose 2≤ m ≤ d F -linearly independent elementsγ1, . . . , γm of E, usually in
oE , the integral closure ofoF in E.

ThenM = ⊕m
i=1oF γi is a freeoF -module inE. We are going to look for solutions

of
N(x) = c (x ∈M)
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for given c of oF . Writing x = x1γ1 + · · · + xmγm with xi ∈ oF , the normN(x)
becomes a form in thexi with coefficients inF .

For two special values ofm the computation of solutions is quite well understood.
The first one ism = d and the moduleM is an order ofE. This means that the unit
groupUM of M operates onM . If there is a solution ofN(x) = c then alsoxε is one
for anyε ∈ UM of norm 1.

Multiplying x with a suitableε, we can impose conditions on theconjugatesσj(x).
All elements ofM satisfying those conditions can then be calculated by reduction
theory. These ideas are well known for algebraic number fields, see [3], [11], for
example. For global function fields the reduction procedure is more subtle because
there does not exist an analogue of the LLL-algorithm. We discuss that reduction
procedure in Section 3.

We note that both methods require the computation of a set of generators ofUE , the
unit group ofoE . The latter is possible with KANT or Magma, for example. (In the
number field case also by Pari, of course.)

The second well understood case ism = 2 andd > 2. In this situationN(x)
becomes a binary form andN(x) = c a so-calledThue-equation. It can be reduced
to a unit equation in two unknowns as follows. For simplicity’s sake we assumeγ1 =
1, γ2 = α, hencex = x1 + x2α. Then we have Siegel’s identity:

(σi(α)− σj(α))σk(x) + (σj(α)− σk(α))σi(x) + (σk(α)− σi(α))σj(x) = 0

for any three pairwise different indices 1≤ i, j, k ≤ d. Dividing by the last summand,
we obtain

(σi(α)− σj(α))σk(x)
(σi(α)− σk(α))σj(x)

+
(σj(α)− σk(α))σi(x)
(σi(α)− σk(α))σj(x)

= 1 .

The last equation becomes anS-unit equationu1 + u2 = 1 by writing x = µε with
ε ∈ UE andµ ∈ oE from a finite set of non-associate solutions ofN(µ) = c. (Note
thatS-units are defined at the beginning of the next section.)

In the number field case one uses Baker type results on linear forms in logarithms, re-
duction theory and refined enumeration strategies for computing solutions. The fastest
algorithm known is that of Bilu and Hanrot [1]. The function field case is discussed in
detail in [5]. We just sketch the method below.

According to our present knowledge the resolution of unit equations in more than
two variables is needed for solving norm equations in 2< m < d variables. It is
not known how to do this in number fields. Therefore it is somewhat surprising that
a resolution is still possible in function fields. In [6] we considered the casem = 3
which we now generalize to arbitrarym. Also, the casem = d will shortly be treated
since we came up with some improvements over the known methods. We conclude
with a small illustrative example.

In recent years, the construction of elliptic curves suitable for pairings has attracted
increasing interest. The construction of Weil numbers in CM-fields, suitable for pair-
ings, leads to systems of diophantine equations. In a current project we will apply the
methods of this paper to obtain solutions in integers as well as polynomials.
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2 Global fields: unit equations

Unit equations of type
u1 + · · ·+ un = 1 ,

where theui are elements in a unit group of a function field, play an essential role in the
theory and in applications of diophantine equations. We introduce several important
notations.

Let k = Fq be a finite field withq = p` elements. LetE be a finite extension of the
rational function fieldF = k(t) of degreed and genusg. The integral closure ofk[t] in
E is denoted byoE . We assume thatE is separably generated overk(t) by an element
y ∈ oE and thatk is the full constant field ofE.

Any elementf ∈ E has a unique presentation

f =
d∑

i=1

hiy
i−1 (hi ∈ k(t)) .

Conjugates of elements (fields) are denoted by upper case indices, i.e. we writex(j) for
σj(x) andE(j) for σj(E). Let

A :=
(
(y(j))i−1)

1≤i,j≤d
∈ E d×d

have determinantD. SinceE is separably generated we haveD 6= 0.
From the system of linear equations

(f (1), . . . , f (d)) = (h1, . . . , hd)A

we conclude that thehi are rational functions in thef (j), (y(j))i−1.

The set of all (exponential)valuationsof E is denoted byV , the subset of infinite
valuations byV∞. We write degv for the degree of the divisor belonging to the valu-
ationv ∈ V . For a non-zero elementf ∈ E the value off at v is denoted byv(f) .
For integral elements this is the highest power of the divisor belonging tov that divides
the divisor(f), and this concept is extended to rational elements in the usual way. The
normalized valuationsvN (f) = v(f) degv satisfy theproduct formula:∑

v∈V

vN (f) = 0 ∀f ∈ E \ {0} .

Theheightof a non-zero elementf of E is defined via

H(f) :=
∑
v∈V

max{0, vN (f)} .

Because of the product formula this is tantamount to

H(f) = −
∑
v∈V

min{0, vN (f)} (f ∈ E) .
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Let V0 be a finite subset ofV . We then consider theV0-unitsγ ∈ E with v(γ) = 0
for all v 6∈ V0.

As we saw in the introduction, the resolution of various Diophantine equations, for
example, Thue equations, can often be reduced to that of equations of the form

γ1 + γ2 + γ3 = 0 ,

where theγi areV0-units for a suitable setV0. We excerpt the following crucial lemma
from [4].

Lemma 2.1.LetV0 be a finite subset ofV and letγi (1 ≤ i ≤ 3) beV0-units the sum
of which equals0. Then eitherγ1

γ3
is inEp or its height is bounded:

H
(γ1

γ3

)
≤ 2g − 2 +

∑
v∈V0

degv .

SettingΦ = −γ1/γ3, Ψ = −γ2/γ3, we obtain aunit equation in two variables

Φ + Ψ = 1 ,

with V0-unitsΦ,Ψ. Because of the characteristicp the number of solutions of such a
unit equation is in general infinite.

For example, ifV0 is just the set of infinite valuations andη,1− η are both units of
oE \ k, then alsoηκ, (1− η)κ is a solution for every exponentκ = pτ . Hence, there
exist solutions of arbitrary large heights in this situation.

The subsequent corollary shows that for any finite subsetV0 of V the group ofV0-
units ofE contains only a finite number, sayσ, of V0-unitsη which are notpτ th powers
and for which also 1− η is aV0-unit. We denote the set of these units by{η1, . . . , ησ}.

Corollary 2.2. Let V0 be a finite subset ofV . We assume that aV0-unit Φ in E is
a solution of a unit equation in two variables. IfΦ is not apτ th power of an element
ηi (1≤ i ≤ σ, τ ∈ Z>0), thenΦ belongs to a finite subset ofE which can be effectively
calculated.

For the proof we refer to [7, Page 98, Lemma 11]. The proof starts by assuming that
Φ is not apth power inK and therefore also provides the means to calculate theηi. For
an example of a Thue equation with infinitely many solutions see [5].

Next we consider unit equations in more than two variables. Again,V0 denotes
a finite subset ofV containing the infinite valuations. Letγi (1 ≤ i ≤ n) beV0-units.
The equation

γ1 + . . .+ γn = 0 (2.1)

is equivalent to the unit equation(
− γ1

γn

)
+ · · ·+

(
−γn−1

γn

)
= 1 (2.2)

in n − 1 variables. We note that we only need to postulate that all fractions in the last
equation must beV0-units.
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Those unit equations are of importance since several well-known Diophantine equa-
tions (e.g. norm form equations) can be reduced to unit equations in more than two
variables. From the results in [6] we easily deduce the following theorem.

Theorem 2.3.Let V0 be a finite subset ofV and letγi (1 ≤ i ≤ n) beV0-units satis-
fying (2.1). Assume that no proper subsum of the sum in(2.1) vanishes. Then we can
explicitly construct a finite subsetN of V , such that

γi

γn
= xin ·Φi , (2.3)

wherexin is a solution of a unit equation

x1n + x3n + · · ·+ xn−1,n = 1

with V0 ∪N -unitsxin (i = 1,3, . . . , n− 1), and aV0 ∪N -unit Φi satisfying

H(Φi) ≤ 2g − 2 +
∑
v∈V0

degv . (2.4)

Hence, the solution of a unit equation inn − 1 V0-units is reduced to determining
the solutions of unit equations inn − 2 V0 ∪ N -units. In [6] only the casen = 4 was
considered. The generalization to arbitraryn is done here for the first time.

If we replace theγi/γn in the original unit equation (2.2) via (2.3), then we get

n−1∑
i=1
i6=2

xinΦi = −1 . (2.5)

We need to consider several cases. The main ingredient is to deduce solutions of
unit equations from those of unit equations in fewer variables. We remark that this
discussion does not include the case in which allxin, Φi are ink (compare also the
premises in Theorem 2.3).

I. If any of the elementsxin (i = 1,3, . . . , n− 1), sayx1n, is not apth power, then
they are obtained from a finite set of solutions of anS-unit equation inn− 2 variables
(compare Theorem 2.3). Also, theΦ1, . . . ,Φn−1 can attain only finitely many values
by that theorem. This reduction needs to be carried out until we get unit equations in
at most 3 variables, a case which is already treated in [6].

II. If all xin (i = 1,3, . . . , n − 1) arepth powers, then using local derivation at an
arbitrary valuation we get from (2.5) equations

n−1∑
i=1
i6=2

xinΦ[j]
i = 0 (j ∈ N) , (2.6)

whereΦ[j]
i denotes thejth derivative ofΦi. We note that the derivatives of thexin

vanish in this case. We need to discuss subcases (A), (B).
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(A) If all Φi (i = 1,3, . . . , n − 1) arepth powers (especially, if they all are ink),
then equation (2.6) is meaningless but both sides of (2.5) arepth powers and we can
takepth roots to make the valuations of thexin, Φi smaller. This can be applied re-
peatedly until we end up in case I.

(B) Without loss of generality, we assumeΦ1 6∈ k with Φ[1]
1 6= 0. Because of our

assumption, in this case we have at least one indexµ > 1 with Φ[1]
µ 6= 0. We compute

equations (2.6) forj = 1,2, . . . and obtain a linear system of equations for thexin. If
there aren − 2 independent equations for thexin then that system has only the trivial
solution and there does not exist a solution of (2.5) for this case. Otherwise, those
equations can be used for eliminating variables. We end up in case II but with fewer
variables.

3 Application to norm form equations

As before, letE be a finite extension field ofF = k(t) of degreed ≥ 3 and denote
by oE the integral closure ofk[t] in E. ThenoE has anoF -basis (integral basis), say
α1, . . . , αd.

3.1 Norms from oE

This subsection improves the results of [10]. In that thesis the reduction theory of
W. Schmidt in characteristic 0 was generalized to arbitrary characteristics. However,
the case when the infinite prime is wildly ramified remained open. In [8] we also
showed how to treat that case. Here, we shortly discuss the whole reduction procedure.

Let α ∈ oE be a solution ofNE/F (α) = c for c ∈ oF . Then alsoαε is a solution for
any unitε of the unit groupUF with NE/F (ε) = 1. We are therefore only interested
in non-associatesolutions of the original norm equation, i.e. solutions which do not
differ by a unit. Scaling such a solution with a power product of the generators ofUE

(fundamental units) we obtain a solution in an appropriate finite dimensionalF -vector
space. For this we need a system of fundamental unitsε1, . . . , εs−1 and areduced basis
for oE , wheres denotes the number of infinite primes. A system of fundamental units
can be computed with Kash or Magma. The full reduction procedure was originally
developed in [8]. We sketch the ideas.

We make use of the fact that the non-zero elementsv of E admit series expansions
(Puiseux series, respectively, Hamburger–Noether series) of the form

Σ(v) :=
∞∑

i=m

φit
−νi (3.1)

with rational exponentsνm < νm+1 < . . . and coefficientsφi ∈ F×q . (We note that
this is a simplification, in general theφi may belong to a small finite extension ofFq

of degreee, wheree is the least common multiple of the ramification indices of the
infinite primes inE.) We need to assume thatE overF is separately generated (which
can always be achieved by the choice ofF ). We then haveE = F (y) for a suitable
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elementy whose minimal polynomial inoF [t] hasd different zeros. Each zero admits
a series expansion so that we obtain a total ofd series expansions corresponding to the
conjugates ofE overF . The isomorphic embeddings ofE into the algebraic closure
F̄ are denoted byσ1(y), . . . , σd(y), as usual. In each case we obtain an exponential
valuation onE via

ord : F→ Q : v 7→
{
νm for v 6= 0,
∞ for v = 0.

(3.2)

We denote the exponential valuations belonging toσ1, . . . , σd by ord1, . . . ,ordd, re-
spectively.

Now letB = {v1, . . . , vd} be a basis of a non-zero idealA of oE . We denote byvj =
(vij)1≤i≤d the vector whose componentsvij are thed series expansionsσi(vj) (1 ≤
i ≤ d). We set

ord(vj) := min
{

ordi(vij ) : 1≤ i ≤ d
}

=: νj .

For each basis elementvj we therefore obtain a vectorΦj = (φij)1≤i≤d of coefficients
of the leading term of the series expansions, i.e.φij is the coefficient oft−νj in the
expansionσi(vj).

We then set
ord(A) := ord

(
det

(
(vij )1≤i,j≤d

))
(in the sense of (3.2)) and

ψ(B) := ord(A)−
d∑

j=1

ord(vj) .

The basisB is calledreducedif the non-negative valueψ(B) vanishes. We have

Lemma 3.1.An ideal basisB = {v1, . . . , vd} of an idealA is reduced if and only if
for all (f1, . . . , fd) ∈ Fq[t]n,

ord
( d∑

i=1

f ivi

)
= min

1≤i≤d
ord(f ivi) .

If a basis{v1, . . . , vd} of an idealA is reduced and ordered subject to−ord(v1) ≤
−ord(v2) ≤ . . . ≤ −ord(vd), then the values−ord(vi) are the successive minima of the
idealA.

In [8] we developed an algorithm for computing a reduced basis which runs in poly-
nomial time in the input data.

From now on, we stipulate that we know a reduced basisω1, . . . , ωd of oE . It is of im-
portance for calculating fundamental units ofE [10] and of elements of boundedmax-
imum norm(see below) which we need for calculating a maximal set of non-associate
solutions ofNE/F (α) = c for c ∈ oF .

In the following, the places ofF are denoted by lower case boldface letters, those
of E by upper case boldface letters. The infinite place ofF which corresponds to
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the degree valuation is written asp∞. For P|p the integerseP|p, fP|p andnP|p =
eP|pfP|p denote the ramification index, the residue class degree and the local degree,
respectively.N(P) is the number of elements in the residue class field ofP. The
exponential valuation belonging toP is denoted byνP. For every elementf ∈ E we
then set

|f |P := N(P)−νP(f)/nP|p .

This normalization has the effect that| · |P is a prolongation of| · |p and that the product
formula is still valid.

Definition 3.2.The maximum norm of an elementf ∈ E is defined by

‖f‖∞ := max
P|p∞

|f |P .

We note that according to [10] a reduced basisω1, . . . , ωd of oE satisfies

‖f‖∞ = max
{
|λi|∞‖ωi‖∞ : 1≤ i ≤ n

}
for anyf =

∑d
i=1 λiωi ∈ oE . (This is the analogue of the previous lemma.)

We want to compute a full set of non-associate solutions ofNE/F (α) = c for c ∈ oF .
We improve the known methods for number fields and adapt them to the function field
case. For number fields the conjugatesα(j) of a solutionα of NE/F (α) = |c| satisfy

log
∣∣∣α(j)

c1/n

∣∣∣ =
r∑

i=1

xi log |ε(j)
i | (xi ∈ R, 1≤ j ≤ d)

for a full set of fundamental unitsε1, . . . , εr of oE . (We note thatr = s− 1 and that a
full set of independent units suffices.) In the function field case we letP be one of the
infinite primes ofE and obtain for a solutionα of NE/F (α) = cµ for arbitraryµ ∈ k
analogously

νP(α) =
r∑

i=1

xiνP(εi) +
1
d
νp(c) .

We note that the coefficientsxi are independent from the choice ofP|p. Substitutingα
by an associate element just changes the coefficientsxi by rational integers. Such a
substitution is supposed to yield small boundsB for log

∣∣ α(j)

c1/n

∣∣, respectively for

|α|P = N(P)
− νP(α)

nP|p

and hence for‖α‖∞. This amounts to calculate the maximum distance of an element
in the fundamental parallelotope of the lattice spanned by the vectors(

log |ε(j)
i |

)
1≤j≤d

(i = 1, . . . , r) ,

respectively (
νP(εi)

)
P|p (i = 1, . . . , r) ,
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to any lattice point. That task does not cause problems in the dimensionsr for which
independent (fundamental) units can be presently calculated. KnowingB the calcula-
tion of the corresponding solutionsα of the norm equation is straightforward by the
methods in [9], respectively, in the function field caseB yields bounds for the height
of α.

We note that the methods of this subsection also hold for arbitrary orders ofE, not
just the maximal orderoE .

3.2 Norms from free modules of degree less thand

We let 2≤ m < d andαi (i = 1, . . . ,m) beF -linearly independent elements ofoE

with E = F (α1, . . . , αm). For 0 6= µ ∈ oF we consider the norm form equation inm
variables

NE/F

( m∑
i=1

xiαi

)
= µ (xi ∈ oF , 1≤ i ≤ m) . (3.3)

We recall thatα(j)
i (j = 1, . . . , d) denote the conjugates ofαi overF . For any distinct

indices 1≤ i1 < i2 < . . . < im ≤ d, the linear forms

δij (X1, . . . , Xm) =
m∑

i=1

Xiα
(j)
i

are linearly independent overE. It is easy to calculateγij
∈ oE (1≤ j ≤ m) such that

any solutionx1, . . . , xn of equation (3.3) satisfies

m∑
j=1

γij
δij

(x1, . . . , xm) = 0 .

Dividing by the last summand on the left-hand side, we obtain anS-unit equation in
m− 1 variables:

−
m−1∑
j=1

γij
δij

(x1, . . . , xm)
γim

δim
(x1, . . . , xm)

= 1 . (3.4)

LetV0 be the set of valuations ofE containing the infinite valuations and the valuations
occurring inµ. Then allδij

(x1, . . . , xm) areV0-units. LetV1 be an extension of the set
V0 containing also the valuations occurring in any of theγij

∈ E (j = 1, . . . ,m). Then
all fractions in equation (3.4) areV1-units and we can apply the results of the previous
section. Usuallypth powers can be excluded if there exist valuations (not contained
in V0) which only occur inγij

/γim
with values not divisible byp, but cannot occur in

δij (x1, . . . , xm)/δim
(x1, . . . , xn) or by considering Galois automorphisms (see [6]).

In this way we can calculate elementsνij
such that

δij (x1, . . . , xm) = νijδim(x1, . . . , xm)
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for j = 1, . . . ,m. Substituting them into equation (3.3), we get( m∏
j=1

νij

)
δim

(x1, . . . , xm)m = µ ,

from which we calculateδim(x1, . . . , xm) and subsequently allδij (x1, . . . , xm). By
solving systems of linear equations, we can then determine all possible solutions
(x1, . . . , xm) of equation (3.3).

Remark. We note that increasing the number of variables in the unit equation makes
our procedure less efficient since the number of valuations usually increases drastically.
The amount of calculations to be performed grows roughly exponential with the growth
of the number of variables in the unit equation (see the construction in Theorem 2.3).

4 Example

Let k = F5 and letα = α1 be a root of

p(z) = z5 − z − t = 0 .

Let E = k(t)(α) and denote byoE the integral closure ofk[t] in E. The fieldE has
genusg = 0. This field is a Galois (Artin–Schreier) extension, the cyclic Galois group
is generated byσ:

αi+1 = σ(αi) = αi + 1 (i = 1,2,3,4) .

Let r be a non-zero constant (ink) and consider the solutions of the equation

NE/k(t)(x1 + αx2 + α2x3 + α3x4 + α4x5) = r in x1, x2, x3, x4, x5 ∈ k[t] . (4.1)

Set`i(x) = x1 + αix2 + α2
ix3 + α3

ix4 + α4
ix5, then we have the identity

`1(x) + `2(x) + `3(x) + `4(x) + `5(x) = 0 .

The function fieldE has one infinite valuationv∞ of degree 1. LetV0 = {v∞}. Then
for any solutionx = (x1, x2, x3, x4, x5) ∈ (k[t])5 of equation (4.1), the terms in

−`1(x)
`5(x)

− `2(x)
`5(x)

− `3(x)
`5(x)

− `4(x)
`5(x)

= 1

areV0-units. (We note that in case of zero subsums we still get the same solutions.)
By [6] we have

`i(x)
`5(x)

= xi ·Φi ,

wherexi,Φi areV0 ∪N1-units,

x1 + x2 + x3 = 1 , (4.2)



On solving norm equations in global function fields 247

and
H(Φi) ≤ 2g − 2 +

∑
v∈V0∪N1

degv .

Constructing the set of valuationsN1, we find that
∑

v∈N1
degv can be estimated from

above (see [6]) by

2g − 2 +
∑
v∈V0

degv = −1 ,

henceN1 is empty. Thereforexi,Φi are V0-units, and byH(Φi) = 0 the Φi are
constants.

We describe now the solutions of (4.2). By [6] we have

xi = yi ·Ψi ,

whereyi,Ψi areV0∪N1∪N2-units,y1, y2 are solutions of the unit equationy1+y2 = 1
and

H(Ψi) ≤ 2g − 2 +
∑

v∈V0∪N1∪N2

degv .

The setN2 of valuations is again empty, since
∑

v∈N2
degv can be estimated from

above by

2g − 2 +
∑

v∈V0∪N1

degv = −1 .

Therefore,yi,Ψi areV0-units, and byH(Ψi) = 0 it follows that theΨi are constants.
Finally, we consider theV0-unit equation in two variablesy1+y2 = 1. The solutions

either satisfy

H(yi) ≤ 2g − 2 +
∑

v∈V0∪N1∪N2

degv = −1

or they are powers of such elements. Hence theyi are also constants.
If all fractions

`i(x)
`5(x)

(i = 1,2,3,4)

attain constant values, then by equation (4.1) also`5(x)5 is a constant, as well as`5(x).
Finally, if all the linear forms

`i(x) (i = 1,2,3,4,5)

attain constant values, then we get only the solutions(i,0,0,0,0) with i = 1,2,3,4 of
equation (4.1).

The calculations were carried out with KANT [2].
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