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On the density of some special primes
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Abstract. We show, under the Generalized Riemann Hypothesis, that a certain set of primes which

is of importance for the theory of pseudorandom sequences is of positive relative density. We also

use an unconditional result of H. Mikawa, which in turn is based on the results of E. Bombieri,

J. B. Friedlander and H. Iwaniec on primes in arithmetic progressions, which go beyond the range

of the Generalized Riemann Hypothesis.
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1 Introduction

Let R be the set of primes r such that 2 is a primitive root modulo r. It has been

demonstrated in [4, 9] that prime powers q for which q − 1 has a large prime divisor

r ∈ R are of special interest in the theory of pseudorandom sequences.

For example, let us fix a primitive root g of the field Fq of q elements, and define the

sequence an, n = 0, . . . , q − 2 as

an =

{

1 if gn + 1 is a quadratic non-residue in Fq,

0 otherwise.

Then W. Meidl and A. Winterhof, [9, Proposition 3] have shown that if q − 1 has a

prime divisor r ∈ R with r ≥ q1/2 + 1, then the polynomial

A(X) =
q−2
∑

n=0

anXn ∈ F2[X]

is relatively prime to the rth cyclotomic polynomial 1 + X + . . . + Xr−1 over F2. This

result has been generalized by N. Brandstätter and A. Winterhof [4, Proposition 1],

where it is shown that if

r ≥ q1/2 + 2k + 1

for some integer k ≥ 0, then the co-primality property is preserved for any polynomial

which differs from A in at most k coefficients. Furthermore, the result of [4, Proposi-

tion 1], also covers the case of arbitrary g (that is, when g is not necessary a primitive

root of Fq). In turn, such co-primality results are important in studying the linear com-

plexity of the sequences introduced by V. M. Sidel’nikov [11] (and also in [8]) as well
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as their generalizations, see, for example, [4, Corollary 1]. Further references to other

works on Sidel’nikov sequences can be found in [4, 9].

We note that although numerical calculations have confirmed that such prime pow-

ers p are quite common, no rigorous results about their existence and distribution have

been known prior to this paper. Furthermore, since squares and higher powers of primes

form a very sparse sequence, we mainly concentrate on the distribution of primes p for

which p − 1 has a large prime divisor r ∈ R.

Clearly there are two main difficulties in studying such prime powers:

• One stems from the fact that r needs to have a prescribed primitive root, namely 2.

This however can be handled with the help of the result of C. Hooley [6] who,

under the Generalized Riemann Hypothesis (GRH) has established an asymptotic

formula for the number of such primes r ≤ x.

• The other obstacle is the fact that any “interesting” q ≡ 1 (mod r) needs to be

bounded by (r − 1)2 (or even by a smaller quantity for the results of [4, Corol-

lary 1]). This range is too short even for the GRH to be useful. However, here

we use the result of H. Mikawa [10], which in turn is based on the results of

E. Bombieri, J. B. Friedlander and H. Iwaniec [1, 2, 3] to break through the bar-

rier imposed by the limits of the GRH.

The results which we obtain seem to be new and not previously discussed in the

literature. Apart from this, we hope that this work will also exhibit some very powerful

tools that have never been used for cryptographic applications.

2 Main result

For real x ≥ y ≥ 1 we denote by P(x, y) the set of primes p ∈ [x, 2x] such that

p − 1 has a prime divisor r ∈ R with r ≥ y. In view of the aforementioned potential

applications, we are primarily interested in the case y > (2x)1/2.

We recall that the notations U = O(V ), U ≪ V and V ≫ U are all equivalent to the

statement that |U | ≤ cV holds with some constant c > 0.

Let

A =
∏

p prime

(

1 − 1

p(p − 1)

)

= 0.373955 . . . (2.1)

be the Artin constant.

Theorem 2.1. Assume the GRH, then for any fixed α with

α <
17

32

and x1/2 ≤ y = xα, we have

#P(x, y) ≥
(

A
log(17/32α)

100
+ o(1)

) x

log x
.

Note that, when we refer to the GRH we specifically mean the Riemann Hypothesis

for the Dedekind zeta-functions of the Kummer extensions Q( k
√

2,
k
√

1).
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3 Auxiliary tools

We denote by Π(z) the set of r ∈ R with r ≤ z. We recall the result of C. Hooley [6]:

Lemma 3.1. Assuming the GRH, for any real z > 1, we have

Π(z) = A
z

log z
+ O

(

z(log z)−2
)

,

where A is given by (2.1).

Using standard arguments, we now obtain

Lemma 3.2. Assuming the GRH, for any real z > 3, we have

∑

r≤z
r∈R

1

r
= A log log z + B + O (1/ log z) ,

where A is given by (2.1) and B is some absolute constant.

Proof. We consider the function

Θ(z) =
∑

r≤z
r∈R

log r

r
.

By partial summation and Lemma 3.1,

∑

r≤z
r∈R

log r

r
=

Π(z) log z

z
+

∫ z

2

log t − 1

t2
Π(t) dt = A

∫ z

2

log t − 1

t log t
dt + O (1) .

The same arguments also imply that

∑

r≤z

log r

r
=

∫ z

2

log t − 1

t log t
dt + O (1) .

The Mertens theorem, see [5, Sections 22.7 and 22.8] or [12, Sections I.1.4 and I.1.5],

now yields

Θ(z) =
∑

r≤z
r∈R

log p

p
= A log z + ∆(z),

where ∆(z) = O(1). Applying partial summation again, we derive

∑

r≤z
r∈R

1

r
=

Θ(z)

log z
+

∫ z

2

Θ(t)

t log2 t
dt

=
A log z + ∆(z)

log z
+

∫ z

2

A log t + ∆(t)

t log2 t
dt
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= A log log z − A log log 2 + A +

∫ x

2

r(t)

t log2 t
dt + O (1/ log z)

= A log log z − A log log 2 + A +

∫ ∞

2

∆(t)

t log2 t
dt + O (1/ log z)

(here the existence of the improper integral follows from ∆(t) = O(1)). Thus putting

B = −A log log 2 + A +

∫ ∞

2

∆(t)

t log2 t
dt,

we conclude the proof. 2

As usual, for a real z ≥ 1 and integers k > a > 0, we use π(z; k, a) to denote the

number of primes p ≤ z with p ≡ a (mod k). We also put

̟(x; k, a) = π(2x; k, a) − π(x; k, a).

Our next result follows immediately from much more general estimates due to

H. Mikawa [10, Bounds (4) and (5)].

Lemma 3.3. For any fixed β < 17/32 and u ≤ xβ

∑

u≤r<2u
r∈R

̟(x; r, 1) ≥
( 1

100
+ o(1)

) x

log x

∑

u≤r<2u
r∈R

1

r
.

4 Proof of Theorem 2.1

Since for a prime p ∈ [x, 2x] the congruence p ≡ 1 (mod r) is possible for at most one

odd prime divisor r ≥ y ≥ x1/2, we obtain

#P(x, y) =
∑

r≥y
r∈R

̟(x; r, 1). (4.1)

We now fix an arbitrary β with α < β < 17/32 and put

J =
⌊

(β − α)
log x

log 2

⌋

.

Then we derive from (4.1)

#P(x, y) ≥
∑

2Jy>r≥y
r∈R

̟(x; r, 1) ≥
J−1
∑

j=0

∑

2j+1y>r≥2jy
r∈R

̟(x; r, 1).
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Using Lemma 3.3, we obtain

#P(x, y) ≥
∑

2Jy>r≥y
r∈R

̟(x; r, 1) ≥
( 1

100
+ o(1)

) x

log x

J−1
∑

j=0

∑

2j+1y>r≥2jy
r∈R

1

r

=
( 1

100
+ o(1)

) x

log x

∑

2Jy>r≥y
r∈R

1

r
.

(4.2)

Now by Lemma 3.2, we deduce

∑

2Jy>r≥y
r∈R

1

r
≥ A

(

log log 2Jy − log log y + O
( 1

log x

))

= A
(

log log xβ+o(1) − log log xα+o(1) + O
( 1

log x

))

= A
log(β/α)

100
+ o(1).

Substituting this bound in (4.2), we obtain

#P(x, y) ≥
(

A
log(β/α)

100
+ o(1)

) x

log x
.

Since α < β < 17/32 are arbitrary, the result follows.

5 Comments

For α = 1/2, which is the first case interesting for applications, Theorem 2.1 implies

that the set of suitable primes is of density at least

A
log(17/16)

100
= 0.0002267 . . . .

This is certainly below what is heuristically expected. For example, under the Elliott–

Halberstam Conjecture, see [7, Section 17.1], which asserts that for any fixed ε > 0

and C > 1
∑

k≤z1−ε

max
gcd(a,k)=1

∣

∣

∣

∣

π(z; k, a) − π(z)

ϕ(k)

∣

∣

∣

∣

≪ z(log z)−C

where as usual π(z) is the number of primes p ≤ z and ϕ(k) is the Euler function, one

can derive from (4.1) that

#P(x, y) = (A log(1/α) + o(1))
x

log x
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for x1/2 ≤ y ≤ xα+o(1) with any fixed α < 1. In particular, for α = 1/2 we believe that

the expected density of suitable primes is about

A log 2 = 0.2592 . . . .

We note that the threshold 17/32 in Lemma 3.3 might be very hard to improve, but

improving the denominator 100 seems to be a more feasible task and this will immedi-

ately lead to better rigorous estimates.
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