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ERROR ANALYSIS FOR A MONOLITHIC DISCRETIZATION OF COUPLED
DARCY AND STOKES PROBLEMS

VIVETTE GIRAULT, GUIDO KANSCHAT, AND BÉATRICE RIVIÈRE

ABSTRACT. The coupled Stokes and Darcy equations are approximated by a strongly
conservative finite element method. The discrete spaces are the divergence-conforming
velocity space with matching pressure space such as the Raviart-Thomas spaces. This
work proves optimal error estimate of the velocity in the L2 norm in the domain and on
the interface under weak regularity assumptions.

1. INTRODUCTION

Recently, a monolithic strongly conservative finite element method that combines the
discontinuous Galerkin method for the Stokes equations with the mixed finite element
method for the Darcy equations was introduced by Kanschat and Rivière [28]. Mass con-
servation is achieved in the Hdiv sense, meaning that the divergence of the velocity is
pointwise equal to zero inside the mesh elements. Energy error estimates were derived
in [28] but these are not optimal in the Darcy region. In fact, standard duality arguments
cannot be applied. In this article, we complete the error analysis of our scheme by deriving
optimal L2 error estimates and thus providing mathematical proof of the convergence rates
observed in [28]. All estimates are done with weak regularity assumptions, such that they
apply to cases where the interface is not smooth. The argument is based on a sharp estimate
for the trace of the solution on the interface. As a result of our analysis, we find that the
orders of approximation of the velocity in the Darcy and Stokes subdomains are balanced.

Modeling of Darcy-Stokes coupling traces back to the seminal work of Beavers and
Joseph [5] and Saffman [36]. The Beavers-Joseph-Saffman model can be derived by ho-
mogenization (see Jäger & Mikelic [25] and references therein) and its well-posedness has
been established by Layton et al. [29]. In the latter, a finite element method based on
continuous and Hdiv elements in the Stokes and Darcy subdomains, respectively, is intro-
duced. The coupling is achieved by a mortar. Alternatively, a primal formulation has been
applied in the Darcy subregion (see Discacciati & Quarteroni [15] and references therein);
this formulation also allows for interface conditions involving the tangential Darcy veloc-
ity, but mass conservation is not as natural anymore. Riviere and Yotov [35] and Gatica et
al [18] proposed a primal formulation in the Stokes region coupled with a dual formulation
in the Darcy region, which means that different elements are used in both regions. In [17],
Gatica et al. analyzed a fully mixed formulation that solves the pseudo-stress and velocity
in the Stokes region and requires Lagrange multipliers. Finally, the work of Arbogast and
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Brunson [2] uses a finite element with continuity requirements changing between H1 and
Hdiv as needed. Our discretization is distinguished from these by

(a) employing a conservative formulation in the whole domain
(b) using the same Hdiv conforming element pair in the Stokes and the Darcy subdo-

main, and
(c) a discontinuous Galerkin method to address the resulting inconsistency in the

Stokes subdomain.
Thus, it addresses the issue of mass loss reported for instance by Hanspal et al. [24] and it
does not require a mortar between the subdomains. Due to the fact that the same element
is used over the whole domain, it lends itself to particularly simple implementations.

The outline of the paper is as follows. Section 2 defines the model problem including
the interface conditions. Across the interface, we assume continuity of normal component
of velocity, balance of forces and the Beavers-Joseph-Saffman law. The numerical scheme
is then defined. Instead of specifying a particular discontinuous Galerkin form for the
Stokes subdomain, we make generic assumptions and show they are satisfied by the inte-
rior penalty discontinuous Galerkin methods and the local discontinuous Galerkin method.
Section 3 contains the error analysis. It begins with our main result, Theorem 5, followed
by the auxiliary results needed for its proof.

2. MODEL PROBLEM AND DISCRETIZATION

Let Ω be a bounded Lipschitz domain in Rd, d = 2, 3, split into two Lipschitz subre-
gions ΩS and ΩD of free and porous media flow, respectively. By ΓS , ΓD, and ΓSD we
denote the boundaries of the subdomains according to the definition

ΓSD = ∂ΩS ∩ ∂ΩD ΓS = ∂Ω ∩ ∂ΩS , ΓD = ∂Ω ∩ ∂ΩD.(1)

When d = 3, we assume that the boundaries of ΓS , ΓD, and ΓSD are all Lipschitz. To
simplify the discussion, in the case when ΩS is not connected, we assume that each of its
connected components is adjacent to a portion of ΓS with positive measure. The results
of this work remain true in the general situation, but some proofs are more involved. The
geometry of the boundary components also determines the regularity of solutions, in par-
ticular for a nondifferentiable interface. Since we are not aware of a thorough study of the
expected regularity, we derive estimates under weak assumptions, leaving the regularity of
the solution as a parameter.

The coupled Darcy/Stokes problem in conservative form reads

−∇·(2νε(u)) +∇p = f , in ΩS ,(2a)

K−1u +∇p = f , in ΩD,(2b)
∇·u = g, in Ω.(2c)

The deformation tensor is ε(u) = 1
2 (∇u + (∇u)T ). The coefficient ν > 0 is the fluid

kinematic viscosity. The variableK is the ratio of the intrinsic permeability to the fluid vis-
cosity. It is a symmetric positive definite tensor with eigenvalues {λi}i=1,...,d, uniformly
bounded above and away from zero. The intrinsic permeability is allowed to vary contin-
uously over ΩD. The data f and g are chosen respectively in the space of vector-valued
functions L2(Ω) and the scalar-valued space L2(Ω), with the restriction (4) below. Here,
we consider the most general —not necessarily physically meaningful— case of inhomo-
geneous right-hand sides in both equations and both subdomains. Studying the problem in
this generality will allow us for instance to apply our results to dual problems as they occur
in a posteriori error estimation. Whenever we want to distinguish between the solution of
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the Stokes and the Darcy subproblem, we refer to uS = u|ΩS and uD = u|ΩD and ana-
logue for the pressures pS and pD. On the interface ΓSD, this notation refers to the traces
taken from the respective subdomains.

To complete this problem, we need interface and boundary conditions. For any bounded
domain O, let n denote the unit normal vector to ∂O, exterior to O; in the case of the
interface ΓSD, n is the unit normal vector to ΓSD directed from ΩS to ΩD, and τ j , 1 ≤
j ≤ d − 1, is an orthonormal set of tangent vectors on the tangent plane to ΓSD. On the
interface, we impose the Beavers-Joseph-Saffman conditions (see Beavers and Joseph [5]
and Saffman [36]), and on the boundary, we assume no-slip and Neumann for simplicity:

uS · n = uD · n, on ΓSD,(3a)

pS − 2νε(uS)n · n = pD, on ΓSD,(3b)

γ2K−
1
2uS · τ j + 2νε(uS)n · τ j = 0, on ΓSD, j ∈ [1, d− 1],(3c)

uS = 0, on ΓS ,(3d)
uD · n = 0, on ΓD.(3e)

Here, the tensor K−
1
2 is obtained from K by replacing the eigenvalues λi by λ−

1
2

i . The
function γ is a positive, smooth function on the interface bounded uniformly above and
away from zero.

We use the standard notation Hs(O) for the Sobolev space of order s on a bounded
domainO, see Adams & Fournier, Lions & Magenes, or Nečas [1,30,31], as well as Hs(O)
for spaces of vector-valued functions. When k is an integer, the norm and seminorm of
Hk(O) are defined as usual by

‖v‖Hk(O) =
( k∑
j=0

∑
|α|=j

‖∂αv‖2L2(O)

) 1
2

, |v|Hk(O) =
( ∑
|α|=k

‖∂αv‖2L2(O)

) 1
2

,

respectively. We refer to [1, 30, 31] for the extension of these definitions when s is not an
integer. In order to obtain weak solutions to the set of equations (2)–(3), we introduce the
spaces for the velocity part of the solution

Hdiv(Ω) =
{
v ∈ L2(Ω)

∣∣∇·v ∈ L2(Ω)
}
,

Hdiv
0 (Ω) =

{
v ∈ Hdiv(Ω)

∣∣v · n = 0 on ∂Ω
}
,

see for instance Girault & Raviart [19]. Since the domain of the Stokes operator in (2a) is
H1(ΩS) for the velocity, we have to require additional differentiability. To begin with, it is
easy to check on the one hand that equations (2)–(3) are unchanged if an arbitrary constant
is added to the pressure p. We choose this undetermined constant by prescribing that∫

Ω

p = 0.

On the other hand, the boundary conditions (3d) and (3e) imply that∫
Ω

∇·u = 0.

Therefore g must satisfy the compatibility condition

(4)
∫

Ω

g = 0.
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Thus, the function spaces for our weak formulation are

V =
{
v ∈ Hdiv

0 (Ω)
∣∣∣v|ΩS ∈ H1(Ωs) and v|ΓS = 0

}
,

Q =
{
q ∈ L2(Ω)

∣∣∣ ∫
Ω

q = 0
}

= L2
0(Ω).

The restriction of V to ΩS is denoted by VS . The space VD is defined in section 3.4. We

also introduce the subspace of divergence-free vectors
◦
V of V:

◦
V =

{
v ∈ V

∣∣∣∇·v = 0
}
.

The measure of a bounded set O is denoted by |O|. We use the scalar product notation
and norm on Ω, boundaries, faces, and subsets of those, namely(

φ, ψ
)

Ω
=

∫
Ω

φ� ψ dx,
〈
φ, ψ

〉
Γ

=

∫
Γ

φ� ψ ds,(5a)

∥∥φ∥∥
L2(Ω)

=

(∫
Ω

|φ|2 dx
) 1

2

,
∥∥φ∥∥

L2(Γ)
=

(∫
Γ

|φ|2 ds
) 1

2

.(5b)

The pointwise multiplication operator φ � ψ refers to the product φψ, the scalar product
φ ·ψ and the double contraction φ : ψ for scalar, vector and tensor arguments, respectively.
The modulus |φ| =

√
φ� φ is defined accordingly. The space Q is equipped with the L2

norm in Ω, the space V has the norm

∀v ∈ V , ‖v‖V =
(
‖K− 1

2v‖2L2(ΩD) + ‖∇·v‖2L2(Ω) + ‖∇v‖2L2(ΩS)

) 1
2 ,

and is a Hilbert space for this norm, owing to Poincaré’s inequality.

2.1. Weak formulation. For u,v ∈ V and q ∈ Q, we introduce the bilinear forms

aD(u,v) =
(
K−1u,v

)
ΩD
,

aS(u,v) = 2ν
(
ε(u), ε(v)

)
ΩS
,

aI(u,v) =

d−1∑
j=1

〈
γ2K−

1
2uS · τ j ,vS · τ j

〉
ΓSD

,

a(u,v) = aD(u,v) + aI(u,v) + aS(u,v),

b(v, q) = −
(
∇·v, q

)
Ω
.

(6)

The weak formulation of problem (2)–(3) reads: Find (u, p) ∈ V ×Q such that

a(u,v) + b(v, p) =
(
f ,v
)

Ω
, ∀v ∈ V,

b(u, q) =−
(
g, q
)

Ω
, ∀q ∈ Q.(7)

Note that since both ∇·u and g belong to L2
0(Ω), we can relax the zero mean value con-

straint on the test functions q and this last equation is valid for all q in L2(Ω). It can be
shown that the weak formulation (7) is equivalent to the boundary value problem (2)–(3);
see Girault & Rivière [20] for an interpretation of the boundary conditions on the inter-
face. The bilinear form b(·, ·) satisfies an inf-sup condition that easily follows from the
standard inf-sup condition between H1

0(Ω) and L2
0(Ω) (see for instance [19]): There exists

a constant κ > 0 such that

(8) ∀q ∈ L2
0(Ω) , sup

v∈H1
0(Ω)

b(v, q)

|v|H1(Ω)
≥ κ‖q‖L2(Ω).
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As H1
0(Ω) ⊂ V with continuous imbedding, (8) immediately implies that there exists a

constant β > 0 such that

(9) ∀q ∈ L2
0(Ω) , sup

v∈V

b(v, q)

‖v‖V
≥ β‖q‖L2(Ω).

The first inf-sup condition (8) allows in particular to lift the nonzero divergence constraint:

Proposition 1. Given g in L2
0(Ω), there is a function ug in H1

0(Ω) such that

∇·ug = g |ug|H1(Ω) ≤
1

κ

∥∥g∥∥
L2(Ω)

.(10)

This leads to the well-posedness of (7). Indeed the auxiliary function
◦
u = u − ug solves

the following problem that is obviously equivalent to (7):

a(
◦
u,v) + b(v, p) =

(
f ,v
)

Ω
− a(ug,v), ∀v ∈ V,

b(
◦
u, q) = 0, ∀q ∈ Q.

(11)

Moreover, considering that Korn’s inequality holds for functions in H1(ΩS) that vanish on
ΓS , the bilinear form a(·, ·) is elliptic and continuous on V ×V. Therefore a straightfor-
ward application of the Babuška-Brezzi theory (see for instance [19]) shows that problem
(11) is well-posed, i.e. it has a unique solution that depends continuously on the data.

In the analysis that follows, we make use of an adjoint problem defined as follows: for
ψ given in L2(ΩS), find (u∗, p∗) in V ×Q, solution of

a(v,u∗) + b(v, p∗) =
(
v,ψ

)
ΩS
, ∀v ∈ V,

b(u∗, q) = 0, ∀q ∈ Q.(12)

This problem has a unique weak solution, and since the form a(·, ·) is symmetric, this
solution (u∗, p∗) satisfies the interior equations (2) with f = ψ in ΩS , f = 0 in ΩD, and
g = 0, namely:

−∇·(2νε(u∗)) +∇p∗ = ψ, in ΩS ,

K−1u∗ +∇p∗ = 0, in ΩD,

∇·u∗ = 0, in Ω,

(13)

the interface conditions (3a)–(3c) and the boundary conditions (3d)–(3e). We make the
following assumption on its regularity.

Assumption 1. The boundaries ΓS , ΓD and ΓSD are such that, for some real number α,
1
2 < α ≤ 1, (u∗, p∗) can be estimated by∥∥u∗S∥∥H1+α(ΩS)

≤ C
∥∥ψ∥∥

L2(ΩS)
,

∥∥u∗D∥∥Hα(ΩD)
≤ C

∥∥ψ∥∥
L2(ΩS)

,(14) ∥∥p∗S∥∥Hα(ΩS)
≤ C

∥∥ψ∥∥
L2(ΩS)

,
∥∥p∗D∥∥H1+α(ΩD)

≤ C
∥∥ψ∥∥

L2(ΩS)
.(15)

Note that the assumption on p∗D follows immediately from the assumption on u∗D.

2.2. Discretization. From now on, we assume that ΩS and ΩD are polygons or Lipschitz
polyhedra, according to the dimension. Let Th be a regular family (in the sense of Ciar-
let [11]) of conforming subdivisions of Ω into simplices, parallelograms or parallepipeds,
such that the interface ΓSD is the union of element faces. The case of arbitrary quadrilater-
als or hexahedra is more complex because of the anisotropic behavior of the Piola transform
(see Arnold, Boffi, and Falk [3]); all caveats in this reference apply to our method as well.
For any element T ∈ Th, we denote by hT its diameter, by ρT , the maximum diameter of
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spheres inscribed in T , and by h the maximum diameter over all mesh elements. The reg-
ularity assumption on the family Th states that there exists a constant θ > 0, independent
of h such that

(16) ∀T ∈ Th,
hT
ρT
≤ θ.

Additionally, we introduce the notation TSh for all cells of Th which lie in ΩS . Denote by
ΓSi the set of faces that are interior to ΩS and by ΓSb the set of those that lie on the boundary
ΓS , furthermore let ΓSh = ΓSb ∪ ΓSi .

We use the same convention as above to denote the scalar products and norms of vectors
or tensors, but since we have in mind a DG method for the Stokes operator, we introduce
suitable norms on the cells and faces of Th and ΓSh ; thus we define analogously to (5)(

φ, ψ
)
Th

=
∑
T∈Th

∫
T

φ� ψ dx,
〈
φ, ψ

〉
ΓS∗

=
∑
F∈ΓS∗

∫
F

φ� ψ ds,

∥∥φ∥∥Th =

(∑
T∈Th

∫
T

|φ|2 dx
) 1

2

,
∥∥φ∥∥

ΓS∗
=

( ∑
F∈ΓS∗

∫
F

|φ|2 ds
) 1

2

,

where the index ? stands for b, i, or h.

2.2.1. Discretization spaces and projections. For each integer k ≥ 0, let Pk be the space
of polynomials in two or three variables of total degree less than or equal to k, and Qk
the space of polynomials of degree less than or equal to k in each variable. For the dis-
crete spaces, we use pairs of a divergence-conforming velocity space Vh ⊂ Hdiv

0 (Ω) and
the matching pressure space Qh ⊂ Q of degree k, relative to Pk or Qk on simplices or
parallelograms/parallepipeds, respectively. The simplest choice is the Raviart-Thomas el-
ement [32] of order k. We assume that these pairs of spaces satisfy the following key
property, like in the continuous case.

Assumption 2.

(17) ∇·Vh = Qh.

An immediate consequence of this assumption is that for each function v ∈ Vh, the
condition

(
∇·v, qh

)
Ω

= 0 for all qh ∈ Qh implies that ∇·v = 0. Thus, we define the
divergence-free subspace

◦
Vh =

{
vh ∈ Vh

∣∣∇·vh = 0
}
.(18)

The Stokes operator is discretized by a DG method. We shall not describe a particular
DG method (see for example [4, 14, 27, 33, 34]), but just introduce some general tools and
assumptions. A unit normal vector nF is defined on each face F of ΓSh ; its direction can
be chosen arbitrarily for each interior face, while it is outward for boundary faces. In the
following, it will simply be denoted by n. The jump of traces of a discontinuous function
v across a face F of ΓSi , in the direction of nF is denoted by [[v]]. The jump on a boundary
face is simply [[v]] = v. Note that by the choice of spaces, the normal components of both
jumps are zero, so that the jumps only act on the tangential components. The following
DG-norm is used:

∥∥v∥∥
1,h

=

∥∥∇v∥∥2

TSh
+
∥∥σh[[v]]

∥∥2

ΓSh
+

d−1∑
j=1

∥∥γK− 1
4v · τ j

∥∥2

ΓSD

 1
2

,(19)
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where on an interior face F between two mesh cells T1 and T2, we choose the weight

σFh =
√

1
2 (σF,1h + σF,2h ). The parameter σF,ih has the form

(20) σF,ih =
σ

hF,i
,

with σ > 0, independent of h, and hF,i the diameter of the cell Ti measured perpendicular

to F . On a face F in ΓSb , where there is only a single cell T1, we choose σFh =
√

2σF,1h

(see e.g. [27]). In the sequel, these weight functions are denoted σh. The norm of Vh is
obtained by combining the Hdiv norm on Ω and the DG-norm on ΩS :

‖v‖Vh
=
(
‖K− 1

2v‖2L2(ΩD) + ‖∇·v‖2L2(Ω) +
∥∥v∥∥2

1,h

) 1
2 .

Note that this is a norm owing to Poincaré’s inequality for DG methods derived by Brenner
in [6, 7].

Next, we introduce an approximation operator Rh ∈ L(V ∩ Hs(Ω);Vh), s > 0,
satisfying the following approximation properties.

Assumption 3. Let k ≥ 1 be the degree of Qh. Then, we assume the following properties
of the operator Rh: First, for any s > 0 and v ∈ V ∩Hs(Ω) there holds(

∇·Rh(v), qh
)

Ω
=
(
∇·v, qh

)
Ω

∀qh ∈ Qh,(21)

Then, for any cell T ∈ Th and function v ∈ Hs(T ) with 0 < s ≤ k + 1 there holds∥∥Rh(v)− v
∥∥
L2(T )

≤ ChsT |v|Hs(T ),(22)

and for 0 ≤ s ≤ k, 0 ≤ t ≤ s, and v ∈ Hs+1(T ), we have∥∥Rh(v)− v
∥∥
Ht(T )

≤ Chs+1−t
T |v|Hs+1(T ),(23)

‖∇·(Rh(v)− v)‖L2(T ) ≤ ChsT |∇·v|Hs(T ),(24)

‖Rh(v)− v‖L2(F ) ≤ Ch
s+ 1

2

T |v|Hs+1(T ),(25)

where F is any face of T . All constants C are independent of h, T , or F .

Note that by definition, Rh(v) is in Vh; therefore

(26) Rh(v) · n = 0 on ∂Ω.

For example, Assumption 3 is satisfied by the Raviart-Thomas interpolant Rh, see
e.g. [23, 27]. For Navier-Stokes equations, the BDM pair was suggested in [12], the
Raviart-Thomas pair in [13] (see also [38]).

An immediate consequence of this assumption is that for s ≤ k and for any v ∈
Hs+1(Ω) there holds

(27) ‖Rh(v)− v‖1,h ≤ Chs|v|Hs+1(Ω).

It yields stability in the Vh norm over the whole region and this is sufficient to establish
the following uniform inf-sup condition: There exists a constant β? > 0, independent of
h, such that

(28) ∀qh ∈ Qh , sup
vh∈Vh

b(vh, qh)

‖vh‖Vh

≥ β?‖qh‖L2(Ω).

This follows easily from (10), (21), (24) and (27) with s = 0.
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2.2.2. The discontinuous Galerkin bilinear form. We use a discrete bilinear form aS,h(·, ·)
based on a discontinuous Galerkin method in the Stokes subdomain and formally define
for all sufficiently smooth u,v

ah(u,v) = aD(u,v) + aI(u,v) + aS,h(u,v).

Then, for solution pairs (u, p) ∈ V ×Q of (7) and (u∗, p∗) ∈ V ×Q of (12), and for any
test function v ∈ V + Vh, we define the primal and dual residual operators

Res(u, p;v) = ah(u,v) + b(v, p)−
(
f ,v
)

Ω
,(29a)

Res∗(v;u∗, p∗) = ah(v,u∗) + b(v, p∗)−
(
ψ,v

)
ΩS
.(29b)

This definition is motivated by the next lemma.

Lemma 2. Let f ∈ L2(Ω) and let the solution (u, p) of (2), (3) satisfy pD ∈ H1(ΩD),
u ∈ V, uS ∈ Hs(Ω), and pS ∈ Hs−1(ΩS) for some real number s > 3

2 . Then we have
for all v ∈ V + Vh:

(30)
(
f ,v
)

Ω
= ah(u,v)−aS,h(u,v)+b(v, p)+2ν

((
ε(u), ε(v)

)
TSh
−
〈
ε(u)n, [[v]]

〉
ΓSh

)
.

Proof. We have(
f ,v
)

Ω
= (−∇·(2νε(u)) +∇p,v)ΩS + (K−1u +∇p,v)ΩD .

The regularity of the functions f , uD, and pD, Green’s formula, the value of v on ΓD and
the orientation of the normal on ΓSD easily give

(K−1u +∇p,v)ΩD = (K−1u,v)ΩD − (p,∇ · v)ΩD − 〈pD,v · n〉ΓSD .

In particular, as v ·n = 0 on ΓD, the work of Galvis and Sarkis in [16] implies that the last
duality makes sense. Next, the regularity assumptions on uS and pS imply that the traces
of both ε(uS) and pS on elements’ faces belong to Ht with t = s − 3

2 > 0, hence are in
L2. Then the regularity of f and v, Green’s formula, and the value of v on ΓS yield

(−∇·(2νε(u)) +∇p,v)ΩS = 2ν
((
ε(u), ε(v)

)
TSh
−
∑
T∈TSh

〈ε(u)nT ,v〉∂T
)

− (p,∇ · v)ΩS + 〈pS ,v · n〉ΓSD ,

where nT denotes the unit normal vector on ∂T , exterior to T . Again, the regularity
assumption on uS imply that∑

T∈TSh

〈ε(u)nT ,v〉∂T = 〈ε(u)n, [[v]]〉ΓSh + 〈ε(uS)n,v〉ΓSD .

Collecting these two equalities, we obtain(
f ,v
)

Ω
= (K−1u,v)ΩD − (p,∇ · v)Ω + 2ν

(
ε(u), ε(v)

)
TSh

− 2ν〈ε(u)n, [[v]]〉ΓSh + 〈−2νε(uS)n + (pS − pD)n,v〉ΓSD .

Then the boundary conditions (3b) and (3c) on the interface ΓSD give

〈−2νε(uS)n + (pS − pD)n,v〉ΓSD = aI(u,v),

and (30) follows immediately from the definition of ah(·, ·). �

From this lemma, we deduce immediately the following corollary.
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Corollary 3. Under the assumption of Lemma 2, the residuals can be expressed as:

(31) Res(u, p;v) = aS,h(u,v)− 2ν
(
ε(u), ε(v)

)
TSh

+ 2ν〈ε(u)n, [[v]]〉ΓSh ,

(32) Res∗(v;u∗, p∗) = aS,h(v,u∗)− 2ν
(
ε(u∗), ε(v)

)
TSh

+ 2ν〈ε(u∗)n, [[v]]〉ΓSh .

Thus none of the residuals depend on p or p∗ and from now on we denote them by
Res(u;v) and Res∗(v;u∗).

Now, instead of specifying aS,h(·, ·), we make some generic assumptions.

Assumption 4. The bilinear form aS,h(u,v) of the DG method chosen in the Stokes sub-
domain ΩS has the following four properties:

(a) Stability in the DG norm: There exists a constant α? independent of h, such that
for any functions uh,vh ∈ Vh there holds

aS,h(uh,uh) ≥ α?
∥∥uh∥∥2

1,h
.(33)

(b) Boundedness in the DG norm: There exists a constant M?, independent of h,
such that for any functions u,v ∈ V + Vh there holds

aS,h(u,v) ≤M?
∥∥u∥∥

1,h

∥∥v∥∥
1,h
.(34)

(c) Consistency: With the assumptions and notation of Lemma 2 regarding the solu-
tion (u, p) of (7), there exists a constant C, independent of h, such that for all
v ∈ V + Vh

|Res(u;v)| ≤ Chs−1|u|Hs(ΩS)‖σh[[v]]‖ΓSh .(35)

(d) Adjoint consistency: With the assumptions and notation of Lemma 2 regarding the
solution (u∗, p∗) of (12), there exists a constant C∗, independent of h, such that
for all v ∈ V + Vh

|Res∗(v;u∗)| ≤ C?hs−1|u∗|Hs(ΩS)‖σh[[v]]‖ΓSh .(36)

The assumptions imposed here follow those in [37], and the application to various DG
methods is explained there. As an example, we reproduce the form of the interior penalty
method for which (34) holds. To this end, we first introduce the lifting operatorL from V+
Vh into the space Σh =

{
τ ∈ L2(Ω;Rd×d)

∣∣∀T ∈ Th : τij |T ∈ P(T )
}

of discontinuous
d×d tensor functions with components in the space P(T ) on each cell T . The space P(T )
is a possibly mapped polynomial space on T such that ε(vT ) ∈ P(T ) for all vT in the
discrete velocity space on T .

(
Lv, τ

)
TSh

=
〈
[[v]], {{τn}}

〉
ΓSh

∀τ ∈ Σh,

where {{τn}} denotes the pointwise mean value of τn on the two adjacent cells, or the
value of τn itself on a boundary face and where n|F = nF . Then, the symmetric interior
penalty discretization of the Stokes problem is

aS,h(u,v) = 2ν
((
ε(u), ε(v)

)
TSh
−
(
Lu, ε(v)

)
TSh
−
(
ε(u),Lv

)
TSh

+
〈
σ2
h[[u]], [[v]]

〉
ΓSh

)
,

(37)
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which, restricted to the discrete space Vh, is equivalent to the usual form

aS,h(u,v) = 2ν
((
ε(u), ε(v)

)
TSh

+
〈
σ2
h[[u]], [[v]]

〉
ΓSh

−
〈
[[u]], {{ε(v)n}}

〉
ΓSh
−
〈
{{ε(u)n}}, [[v]]

〉
ΓSh

)
.

Following [37], the lifting version of the LDG discretization (see [14]) is obtained as

aS,h(u,v) = 2ν
((
ε(u)− Lu, ε(v)− Lv

)
TSh

+
〈
σ2
h[[u]], [[v]]

〉
ΓSh

)
.(38)

Since it is shown in [37] that the operator L is bounded on V + Vh with respect to the
norm

∥∥.∥∥
Vh

, we obtain (34). By applying Korn’s inequality [8] we derive also (33). In
the case of the symmetric interior penalty method, the penalty parameter is assumed to be
sufficiently large.

While the lifting form of the methods enables us to use boundedness and ellipticity
estimates in the natural norm

∥∥.∥∥
1,h

, it is not consistent. Nevertheless, the two condi-
tions (35) and (36) which are a refinement of [37, Proposition 8.1] hold, as the following
lemma shows. Note also that while we do not require symmetry of aS,h(·, ·), it implies the
equivalence of (35) and (36).

Lemma 4. The primal and dual residuals of the discrete bilinear forms in equations (37)
and (38) satisfy the estimates with constants C independent of h

|Res(u;v)| ≤ Chs−1|u|Hs(ΩS)‖σh[[v]]‖ΓSh
|Res∗(u;v)| ≤ Chs−1|u|Hs(ΩS)‖σh[[v]]‖ΓSh ,

under the regularity assumptions of Lemma 2.

Proof. First, we note that both forms (37) and (38) are symmetric, and thus it suffices
to show only one of the inequalities. Next, we observe that the jump [[u]] = 0 and thus
Lu = 0. This implies for both forms

aS,h(u,v) = 2ν
((
ε(u), ε(v)

)
TSh
−
(
ε(u),Lv

)
TSh

)
.

Hence (31) and the regularity of u give

Res(u;v) = 2ν
(
〈ε(u)n, [[v]]〉ΓSh−

(
ε(u),Lv

)
TSh

)
= 2ν

(〈
{{ε(u)·n}}, [[v]]

〉
ΓSh
−
(
ε(u),Lv

)
TSh

)
.

Since Lv is in Σh, we may insert the L2 projection ΠΣh into Σh in the term on the right.
Then, using the definition of the lifting operator, we obtain

Res(u;v) = 2ν
〈 1

σh
{{ε(u)−ΠΣhε(u)}}, σh[[v]]

〉
ΓSh
.

Applying a trace inequality on the reference element and standard approximation results,
we obtain

|Res(u;v)| ≤ Chs−1|u|Hs(Ω)‖σh[[v]]‖ΓSh .

�

The discrete formulation of the problem (2)–(3) then reads: find (uh, ph) ∈ Vh × Qh
such that

ah(uh,vh) + b(vh, ph) =
(
f ,vh

)
Ω
, ∀vh ∈ Vh,

b(uh, qh) =−
(
g, qh

)
Ω
, ∀qh ∈ Qh.

(39)

Under the above assumptions, it is easy to prove that (39) has exactly one solution [28].
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3. ERROR ANALYSIS

The error analysis is conducted in several steps. First, we recall the energy norm es-
timate from [28]. The problem with this estimate is that it is suboptimal in the Darcy
subdomain ΩD, and that it is not possible to improve it there by a simple duality argu-
ment. Nevertheless, such a duality argument is applied in the Stokes subdomain ΩS in
subsection 3.2. In conjunction with the divergence approximation of the Raviart-Thomas
element, this yields a sharp estimate on the interface ΓSD in subsection 3.3, which in turn
serves as an input to the optimal estimate for the Darcy velocity in subsection 3.4. The
outcome of these steps will be our main result:

Theorem 5. Let Assumptions 1–4 hold. Assume further, that the solution u of the weak
formulation (7) is in Hs(Ω) for some s ∈

]
3
2 , k + 1

]
with k ≥ 1 from Assumption 3 and

α ∈] 1
2 , 1] determined by Assumption 1. Suppose g from (2c) belongs toHs−1+α(Ω). Then,

the solution uh ∈ Vh of (39) satisfies the L2 error estimate∥∥u− uh
∥∥
L2(Ω)

≤ Chs+α−1
(
|u|Hs(Ω) + |g|Hs−1+α(Ω)

)
,

with a constant C independent of h and u. A direct corollary is the optimal rate hs in the
case where the dual problem has full regularity (α = 1).

Proof. The proof is an immediate consequence of Theorems 9 and 12 below. �

In [28, Table 3], convergence rates in L2(Ω) had already been presented. There, we
obtained for a very regular solution convergence rates hk+1 for uS and uD for k ≤ 3; for
higher order elements, the corner singularities were too strong. We refer to this publication
for details.

3.1. First error analysis. Using standard stability and approximation arguments, we eas-
ily establish the following variant of a result that was proved in [28]. Note that k ≥ 1 is
required, since the strong norm in the Stokes subdomain does not allow for convergence of
the lowest order Raviart-Thomas element.

Proposition 6. Let assumptions 2–4 hold. Assume further, that the solution u of the weak
formulation (7) is in Hs(Ω) for some s ∈

]
3
2 , k + 1

]
. Then, the solutions u and uh of the

coupled systems (7) and (39) have the energy error estimate

‖u− uh‖Vh
≤ Chs−1|u|Hs(Ω),(40)

with a constant C independent of h and u.

Proof. We briefly recall the proof for the readers’ convenience. From (7), (29a), and (39),
we have:

ah(u− uh,vh) + b(vh, p− ph) = Res(u;vh), ∀vh ∈ Vh,
b(u− uh, qh) = 0, ∀qh ∈ Qh.

(41)

Inserting Rh(u), this gives

ah(Rh(u)− uh,vh) + b(vh, p− ph) = Res(u;vh)− ah(u−Rh(u),vh), ∀vh ∈ Vh,
b(Rh(u)− uh, qh) = 0, ∀qh ∈ Qh.

(42)

Owing to (21), this last equation is due to the fact that b(u − Rh(u), qh) = 0 for all
qh ∈ Qh; according to (17), it implies that ∇· (uh − Rh(u)) = 0. Then (40) easily

follows by choosing vh = Rh(u) − uh ∈
◦
Vh in (42) and using (33), (34), (35), and the

approximation properties of Rh (22)–(25). �
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Note that (17) and (41) yield, if we denote by ΠQh the L2 projection onto Qh:

Proposition 7. The divergence of the discrete solution uh is the L2 projection of the di-
vergence of u onto the discrete pressure space Qh, or ∇·uh = ΠQh∇·u = ΠQhg.

This implies the following result (see for instance [10]).

Corollary 8. Let u and uh be the solutions to (7) and (39), respectively. Suppose g from
(2c) belongs to Hs(Ω) with s ∈ [0, k + 1]; then

(43)
∥∥∇·(u− uh)

∥∥
L2(Ω)

≤ Chs|g|Hs(Ω).

3.2. Sharper error estimate in the Stokes subdomain. The energy norm in the Stokes
subdomain ΩS involves the derivatives of uS . Thus, in this subdomain we can employ a
duality argument of Aubin and Nitsche to obtain the following theorem:

Theorem 9. Let Assumptions 1–4 hold with the constant α ∈] 1
2 , 1] determined by Assump-

tion 1. Let u ∈ Hs(Ω) for s ∈
]

3
2 , k + 1

]
be the solution of (7) and let uh be the solution

to (39). Then, the following error estimate holds∥∥u− uh
∥∥
L2(ΩS)

≤ Chs−1+α|u|Hs(Ω).(44)

Proof. Let (u∗, p∗) be a solution of (12) with ψ = χ(ΩS)(u − uh), where χ(ΩS) is the
indicator function of ΩS . It follows from (29b) with (u∗, p∗) and f = χ(ΩS)(u−uh) that
for all v ∈ V + Vh(

v,u− uh
)

ΩS
= ah(v,u∗) + b(v, p∗)− Res∗(v;u∗).

On one hand, the choice v = u− uh gives

(45) ‖u− uh‖2L2(ΩS) = ah(u− uh,u
∗) + b(u− uh, p

∗)− Res∗(u− uh;u∗).

On the other hand, the error equation (41) with vh = Rhu
∗ ∈ Vh implies

ah(u− uh, Rhu
∗) + b(Rhu

∗, p− ph) = Res(u;Rhu
∗).

But b(Rhu∗, p−ph) = 0 because∇·Rhu∗ = 0; this follows from the fact that∇·u∗ = 0,
Assumption 2, and property (21) of Rh. Therefore combining with (45), we obtain for all
qh ∈ Qh

‖u−uh‖2L2(ΩS) = ah(u−uh,u
∗−Rhu∗) + b(u−uh, p

∗− qh)−Res∗(u−uh;u∗)

+ Res(u;Rhu
∗).

This yields∥∥u− uh
∥∥2

L2(ΩS)
≤ |ah(u− uh,u

∗ −Rhu∗)|+ |b(u− uh, p
∗ − qh)|

+ |Res∗(u− uh;u∗)|+ |Res(u;Rhu
∗)|.

The first term on the right-hand side is bounded as follows:

ah(u− uh,u
∗ −Rh(u∗)) = aS,h(uS − uSh,u

∗
S −Rh(u∗S))

+ aD(uD − uDh,u
∗
D −Rh(u∗D)) + aI(uS − uSh,u

∗
S −Rh(u∗S))

≤ Chα|u∗S |H1+α(ΩS)

∥∥uS − uSh
∥∥

1,h
+ Chα|u∗D|Hα(ΩD)

∥∥K− 1
2 (uD − uDh)

∥∥
L2(ΩD)

+ Chα+ 1
2 |u∗S |H1+α(ΩS)(

d−1∑
j=1

∥∥γK− 1
4 (uS − uSh) · τ j

∥∥2

L2(ΓSD)
)

1
2 ,
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from the approximation properties (22), (25), and (27) ofRh. For the second term, we pick
qh = ΠQhp

∗:

b(u− uh, p
∗ −ΠQhp

∗) = −(∇·(uS − uSh), p∗S −ΠQhp
∗
S)ΩS

−(∇·(uD − uDh), p∗D −ΠQhp
∗
D)ΩD .

From the approximation properties of Qh, we readily derive:

|b(u− uh, p
∗ −ΠQhp

∗)| ≤ Chα
∥∥∇·(uS − uSh)

∥∥
L2(Ω)

(
|p∗|Hα(ΩS) + |p∗|Hα(ΩD)

)
.

The adjoint residual term |Res∗(u− uh;u∗)| can be estimated by the adjoint consistency
estimate (36):

|Res∗(u∗;u− uh)| ≤ Chα|u∗|H1+α(ΩS)‖σh[[u− uh]]‖ΓSh .

For the primal residual, in view of the regularity of u∗ and its boundary value on ΓSh , we
observe that

|Res(u;Rh(u∗))| ≤ Chs−1|u|Hs(ΩS)

∥∥σh[[u∗ −Rh(u∗)]]
∥∥

ΓSh

≤ Chs+α−1|u|Hs(ΩS)|u∗|H1+α(ΩS).

Finally, a combination of the bounds above gives:∥∥u− uh
∥∥
L2(ΩS)

≤ Chα
(∥∥uS − uSh

∥∥
1,h

+
∥∥uD − uDh

∥∥
L2(ΩD)

+h
1
2

( d−1∑
j=1

∥∥γK− 1
4 (uS − uSh) · τ j

∥∥2

L2(ΓSD)

) 1
2

+
∥∥∇·(u− uh)

∥∥
L2(Ω)

+ hs−1|u|Hs(ΩS)

)
.

We now conclude by using (40). �

3.3. Estimates on the interface. Since uS − uSh belongs to Hdiv(ΩS), its normal trace
satisfies (cf. [19])

‖(uS − uSh) · n‖
H−

1
2 (∂ΩS)

≤ C‖uS − uSh‖Hdiv(ΩS).

From the properties of V and Vh, we have

(uS − uSh) · n = 0, on ΓS .

Therefore, following the approach of Galvis and Sarkis in [16], we have

‖(uS − uSh) · n‖
H−

1
2 (ΓSD)

≤ C‖(uS − uSh) · n‖
H−

1
2 (∂ΩS)

,

and hence
‖(uS − uSh) · n‖

H−
1
2 (ΓSD)

≤ C‖uS − uSh‖Hdiv(ΩS).

On the other hand, recall the interpolation trace inequality (see for instance Brenner and
Scott [9]):

(46) ∀v ∈ H1(ΩS), ‖v‖L2(∂ΩS) ≤ C‖v‖
1
2

L2(ΩS)‖v‖
1
2

H1(ΩS).

For lack of regularity, it cannot be applied to uSh. Nevertheless, in the appendix, we
establish that

∀vh ∈ Vh,
∥∥vh∥∥L2(ΓSD)

≤ C
(
‖vh‖L2(ΩS) + h

1
2

(∥∥∇vh∥∥2

TSh
+
∥∥σh[[vh]]

∥∥2

ΓSh

) 1
2

+‖vh‖
1
2

L2(ΩS)

(∥∥∇vh∥∥2

TSh
+
∥∥σh[[vh]]

∥∥2

ΓSh

) 1
4

)
,

(47)
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with a constant C independent of h. Then we write

uS − uSh = uS −Rh(uS) +Rh(uS)− uSh.

We first apply (47) to Rh(uS)− uSh:

‖Rh(uS)− uSh‖L2(ΓSD) ≤ Chs−1+α
2 |u|Hs(Ω).

Given the improved accuracy in the Stokes subdomain, we can now estimate the normal
trace on the interface and obtain:

Lemma 10. Let the assumptions of Theorem 9 hold. Then, the normal trace of uS − uSh
on ΓSD satisfies ∥∥(uS − uSh) · n

∥∥
L2(ΓSD)

≤ Chs−1+α
2 |u|Hs(Ω).(48)

Moreover, if g in (2c) belongs to Hs−1+α(Ω), we have∥∥(uS − uSh) · n
∥∥
H−

1
2 (ΓSD)

≤ Chs−1+α
(
|u|Hs(Ω) + |g|Hs−1+α(Ω)

)
.(49)

We skip the proof that now follows easily from (40), (44), (43), and (47).

3.4. L2 error in the Darcy subdomain. Now, that we have estimated the error in ΩS and
on ΓSD, we are going to leave the view of a monolithic, coupled problem and consider the
Darcy subproblem alone. To this end, we introduce the auxiliary function spaces VD =
Hdiv

0 (ΩD) as well as the corresponding Raviart-Thomas space VD
h ⊂ VD. We remark that

both spaces can be extended by zero to elements in V and Vh, respectively. Additionally,
we define QD and QDh (resp. QS and QSh ) as the restrictions of Q and Qh to ΩD (resp.
ΩS). As explained in Section 2.1, we can relax the zero mean value constraint on the test
functions of Q and Qh, and hence also on the test functions of QS and QSh , or QD and
QDh .

As a first step towards estimating the Darcy error, we consider the following

Lemma 11. There is a function w ∈ Hdiv(ΩD) satisfying ∇·w = 0 in ΩD, w · n = 0 on
ΓD and w · n = (uS − uSh) · n on ΓSD, such that∥∥w∥∥

L2(ΩD)
≤ C

∥∥(uS − uSh) · n
∥∥
H−

1
2 (ΓSD)

,(50) ∥∥w∥∥
H

1
2 (ΩD)

≤ C
∥∥(uS − uSh) · n

∥∥
L2(ΓSD)

,(51)

with a constant C independent of h.

Proof. Let ϕ ∈ H1(ΩD)/R be the unique variational solution to the problem

−∆ϕ = 0, in ΩD,(52)
∂ϕ

∂n
= 0, on ΓD,(53)

∂ϕ

∂n
= (uS − uSh) · n, on ΓSD,(54)

where exceptionally the normal derivative of ϕ is defined with the normal vector pointing
inside ΩD, so as to coincide with n on ΓSD. This problem has a unique solution ϕ ∈
H1(ΩD)/R because, as

∀qh ∈ QSh , (∇·(uS − uSh), qh)ΩS = 0,

we have in particular,
(∇·(uS − uSh), 1)ΩS = 0.
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Then the boundary conditions on V and Vh imply that∫
ΓSD

(uS − uSh) · n = 0.

Thus

|ϕ|H1(ΩD) ≤ C
∥∥∇ϕ · n∥∥

H−
1
2 (∂ΩD)

≤ C
∥∥(uS − uSh) · n

∥∥
H−

1
2 (ΓSD)

.

Moreover, with boundary data in L2(∂ΩD), we have ϕ ∈ H
3
2 (ΩD) and we have the

following bound [26]

|ϕ|
H

3
2 (ΩD)

≤ C
∥∥(uS − uSh) · n

∥∥
L2(ΓSD)

.

To conclude, it suffices to take w = ∇ϕ. �

With this lemma and the estimate for the trace in the previous subsection, we are ready
to prove the main result for the Darcy subregion.

Theorem 12. Let Assumptions 1–4 hold with the constant α ∈
]

1
2 , 1
]

determined by As-
sumption 1. Let u ∈ Hs(Ω) for s ∈

]
3
2 , k + 1

]
be the solution of (7) and let uh be the

solution to (39). Moreover, let g ∈ Hs−1+α(Ω) in (2c). Then we have the estimate for the
error in the Darcy subdomain:∥∥uD − uDh

∥∥
L2(ΩD)

≤ Chs
(
|u|Hs−1+α(Ω) + |g|Hs−1+α(Ω)

)
.(55)

Proof. We observe that uD solves the problem

aD(uD,v) + b(v, pD) = (f ,v)ΩD , ∀v ∈ VD,(56)

b(uD, q) = −(g, q)ΩD , ∀q ∈ QD,(57)
uD · n = 0, on ΓD,(58)
uD · n = uS · n, on ΓSD.(59)

Similarly, uDh solves

aD(uDh,v) + b(v, pDh) = (f ,v)ΩD , ∀v ∈ VD
h ,(60)

b(uDh, q) = −(g, q)ΩD , ∀q ∈ QDh ,(61)
uDh · n = 0, on ΓD,(62)
uDh · n = uSh · n, on ΓSD.(63)

Substracting (56) to (60) and adding and substracting the interpolant Rh(uD −w), where
w is defined in Lemma 11, yields the error equation for all vh ∈ VD

h :

aD(uDh −Rh(uD) +Rh(w),vh) + aD(Rh(uD)− uD,vh)

− aD(Rh(w),vh) + b(vh, pDh − pD) = 0.

We choose vh = uDh −Rh(uD) +Rh(w) and we note that vh ∈ VD
h . Indeed, we have

(uDh − uD + w) · n = 0, on ∂ΩD,

and with (26), this implies

vh · n = Rh(uDh − uD + w) · n = 0.

From (21), we have

∇·vh = ∇·(uDh −Rh(uD)) +∇·Rh(w) = 0.
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This implies b(vh, pDh − pD) = 0. We then have, with a constant C that depends on the
permeability tensor of the porous media only:∥∥uDh −Rh(uD) +Rh(w)

∥∥
L2(ΩD)

≤ C(
∥∥Rh(uD)− uD

∥∥
L2(ΩD)

+
∥∥Rh(w)

∥∥
L2(ΩD)

).

Using the triangle inequality and property (22), we have∥∥Rh(w)
∥∥
L2(ΩD)

≤
∥∥Rh(w)−w

∥∥
L2(ΩD)

+
∥∥w∥∥

L2(ΩD)

≤ Ch 1
2

∥∥w∥∥
H

1
2 (ΩD)

+
∥∥w∥∥

L2(ΩD)
.

From (50) and (51), we obtain∥∥Rh(w)
∥∥
L2(ΩD)

≤ Ch 1
2

∥∥(uS − uSh) · n
∥∥
L2(ΓSD)

+ C
∥∥(uS − uSh) · n

∥∥
H−

1
2 (ΓSD)

.

We can then conclude with Lemma 10 and with property (22) of the Raviart-Thomas in-
terpolant. �

APPENDIX

This section is devoted to the proof of the discrete interpolation trace inequality (47)
with a constant C independent of h. More generally, the result is valid for any space of
piecewise polynomial functions with degree in a fixed range, say

Xh =
{
vh ∈ L2(ΩS)| ∀T ∈ TSh , vh|T ∈ Pk

}
,

where k may vary from one element to the next, but stays within a fixed range, such as
km ≤ k ≤ kM . To simplify, we introduce the broken seminorm on Xh:

|vh|1,h =
(∥∥∇ vh∥∥2

TSh
+
∥∥σh[[vh]]

∥∥2

ΓSh

) 1
2

,

and we shall prove that for all vh ∈ Xh∥∥vh∥∥L2(ΓSD)
≤ C

(
‖vh‖L2(ΩS) + h

1
2 |vh|1,h + ‖vh‖

1
2

L2(ΩS)|vh|
1
2

1,h

)
.

Our argument is based on an H1(ΩS) regularization of vh, following ideas of [6, 21, 22].
Let Ph denote the set of vertices of TSh ∩ΩS . We associate with each vertex a of Ph an

element Ta of TSh that has vertex a (repetitions are allowed), and set

(64) Eh(vh)(a) = vh|Ta(a),

(65) ∀x ∈ ΩS , Eh(vh)(x) =
∑
a∈Ph

Eh(vh)(a)ϕa(x),

where ϕa is the standard, globally continuous basis function, that is P1 in each T , and
takes the value 1 at a and zero at all other vertices of Ph. As Eh(vh) belongs to H1(ΩS),
it satisfies (46) with ΓSD instead of ∂ΩS :

‖Eh(vh)‖L2(ΓSD) ≤ C‖Eh(vh)‖
1
2

L2(ΩS)‖Eh(vh)‖
1
2

H1(ΩS),

with a constant C that only depends on ΩS and ΓSD. By inserting Eh(vh) and expanding
the H1 norm, this becomes

‖vh‖L2(ΓSD) ≤‖vh − Eh(vh)‖L2(ΓSD)

+ C
(
‖Eh(vh)‖L2(ΩS) + ‖Eh(vh)‖

1
2

L2(ΩS)‖∇Eh(vh)‖
1
2

L2(ΩS)

)
.

(66)
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We must evaluate the terms in the right-hand side of (66). To estimate ∇Eh(vh), we
use the following auxiliary lemma; to be specific, we treat the case d = 3. The two-
dimensional case is similar.

Lemma 13. For ` = 1 or ` = −1, let T̂` denote the two adjacent reference elements with
vertices â0 = (0, 0, 0), â2 = (0, 1, 0), â3 = (0, 0, 1), and â` = (`, 0, 0), let F̂ denote their
common face and let v̂ be such that it is a polynomial of degree k` in T̂`. There exists a
constant Ĉ, only depending on k` and the reference face F̂ such that

(67)
∣∣v̂|T̂1

(â0)− v̂|T̂−1
(â0)

∣∣ ≤ Ĉ‖[v̂]F̂ ‖L2(F̂ ).

Proof. Let ŵ =
(
v̂|T̂1
− v̂|T̂−1

)
|F̂ . Then

|ŵ(â0)| ≤ ‖ŵ‖L∞(F̂ ) = ‖[v̂]F̂ ‖L∞(F̂ ),

and (67) follows from the fact that [v̂]F̂ is a polynomial of degree max(k`) and all norms
are equivalent in finite dimensional spaces. �

Lemma 14. There exists a constant C, independent of h, such that

(68) ∀vh ∈ Xh, ‖∇Eh(vh)‖L2(ΩS) ≤ C|vh|1,h.

Proof. Let T be an element of TSh with vertices ai, 1 ≤ i ≤ d+ 1. We have

‖∇Eh(vh)‖2L2(T ) = ‖
d+1∑
i=1

Eh(vh)(ai)∇ϕai‖2L2(T ).

But

∀x ∈ T,
d+1∑
i=1

ϕai(x) = 1,

hence

∀x ∈ T,
d+1∑
i=1

∇ϕai(x) = 0,

and we can write

‖∇Eh(vh)‖2L2(T ) = ‖
d+1∑
i=1

(
Eh(vh)(ai)− vh(a1)

)
∇ϕai‖2L2(T )

≤
( d+1∑
i=1

∣∣vh|Tai
(ai)− vh|T (a1)

∣∣‖∇ϕai‖L2(T )

)2

.

(69)

Given a vertex ai, there exists a sequence of two-by-two adjacent elements T1, T2, . . . , Tj
that share this vertex, and such that T1 = Tai , Tj = T . Therefore

(70) vh|Tai
(ai)− vh|T (a1) =

j−1∑
n=1

(
vh|Tn − vh|Tn+1

)
(ai) + vh|T (ai)− vh|T (a1).

On one hand, Lemma 13 implies that∣∣(vh|Tn − vh|Tn+1

)
(ai)

∣∣ ≤ Ĉ( |F̂ |
|Fn|

) 1
2 ‖[vh]Fn‖L2(Fn),

where Fn is the face shared by Tn and Tn+1. On the other hand, if ai 6= a1, by passing to
the reference element T̂ , and using equivalence of norms, we have

|vh(ai)− vh(a1)| ≤ hT̂ ‖∇̂ v̂‖L∞(T̂ ) ≤ Ĉ‖∇̂ v̂‖L2(T̂ ).
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Thus ∣∣vh(ai)− vh(a1)
∣∣ ≤ ĈhT( |T̂ ||T |) 1

2 ‖∇ vh‖L2(T ).

By substituting these two inequalities into (70) and evaluating the basis functions in the
reference element, we obtain

‖∇Eh(vh)‖2L2(T ) ≤ Ĉ
[ d+1∑
i=1

( j−1∑
n=1

1

|Fn|
‖[vh]Fn‖2L2(Fn)+

h2
T

|T |
‖∇ vh‖2L2(T )

) |T |
ρ2
T

‖∇̂ ϕ̂i‖2L2(T̂ )

]
,

where Ĉ takes into account the maximum number of edges or faces that meet at the ver-
tices of Ph; this number is bounded by a constant independent of h since the family of
triangulations is regular. We recover (68) by multiplying and dividing the first term of this
sum with (σFh )2 and using again the regularity of the family TSh . �

To estimate Eh(vh), it is convenient to break it into Eh(vh)− vh and vh.

Lemma 15. There exists a constant C, independent of h, such that

(71) ∀vh ∈ Xh, ‖Eh(vh)− vh‖L2(ΩS) ≤ Ch|vh|1,h.

Proof. We briefly sketch the proof. Let T be an element of TSh with vertices ai, 1 ≤ i ≤
d+ 1. We have

‖Eh(vh)− vh‖2L2(T ) =

∫
T

( d+1∑
i=1

(
Eh(vh)(ai)− vh(x)

)
ϕai(x)

)2

dx,

an expression similar to (69) with x instead of a1 and the basis function instead of its
gradient. As x and a1 are both points in T , the argument of Lemma 14 yields

‖Eh(vh)−vh‖2L2(T ) ≤ Ĉ
[ d+1∑
i=1

( j−1∑
n=1

1

|Fn|
‖[vh]Fn‖2L2(Fn)+

h2
T

|T |
‖∇ vh‖2L2(T )

)
|T |‖ϕ̂i‖2L2(T̂ )

]
,

whence (71). �

It remains to evaluate vh − Eh(vh) on ΓSD.

Lemma 16. There exists a constant C, independent of h, such that

(72) ∀vh ∈ Xh, ‖Eh(vh)− vh‖L2(ΓSD) ≤ Ch
1
2 |vh|1,h.

Proof. Again, we briefly sketch the proof. Let F be a face of TSh ∩ ΓSD with vertices ai,
1 ≤ i ≤ d. Since

∀x ∈ F,
d∑
i=1

ϕai(x) = 1,

we can write

‖Eh(vh)− vh‖2L2(F ) =

∫
F

( d∑
i=1

(
Eh(vh)(ai)− vh(x)

)
ϕai(x)

)2

ds(x).

Therefore, the argument of Lemma 14 yields

‖Eh(vh)−vh‖2L2(F ) ≤ Ĉ
[ d∑
i=1

( j−1∑
n=1

1

|Fn|
‖[vh]Fn‖2L2(Fn)+

h2
T

|T |
‖∇ vh‖2L2(T )

)
|F |‖ϕ̂i‖2L2(F̂ )

]
,

and (72) follows easily from this. �



ERROR ANALYSIS FOR A MONOLITHIC DISCRETIZATION OF COUPLED DARCY AND STOKES PROBLEMS19

By substituting (68), (71), and (72) into (66), we immediately derive the discrete inter-
polation trace inequality.

Theorem 17. If the family of triangulations TSh is regular, there exists a constant C, inde-
pendent of h, such that

(73) ∀vh ∈ Xh,
∥∥vh∥∥L2(ΓSD)

≤ C
(
‖vh‖L2(ΩS) + h

1
2 |vh|1,h + ‖vh‖

1
2

L2(ΩS)|vh|
1
2

1,h

)
.
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