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Multigrid methods forHdiv-conforming
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equations
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March 17, 2014

Abstract

A multigrid method for the Stokes system discretized with anHdiv-conforming
discontinuous Galerkin method is presented. It acts on the combined velocity and
pressure spaces and thus does not need a Schur complement approximation. The
smoothers used are of overlapping Schwarz type and employ a local Helmholtz
decomposition. Additionally, we use the fact that the discretization provides nested
divergence free subspaces. We present the convergence analysis and numerical
evidence that convergence rates are not only independent ofmesh size, but also
reasonably small.

1 Introduction
The efficient solution of the Stokes equations is an important step in the develop-
ment of fast flow solvers. In this paper we present analysis and numerical results
for a multigrid method with subspace correction smoother, which performs very
efficiently on divergence-conforming discretizations with interior penalty. We ob-
tain convergence rates for the Stokes problem which are comparable to those for
the Laplacian.

Multigrid methods are known to be the most efficient preconditioners and
solvers for diffusion problems. Nevertheless, for Stokes equations, the divergence
constraint makes the solution process more complicated. A typical solution em-
ploys the use of block preconditioners, e. g. [13,22,27,28], but their disadvantage
is, that their performance is limited by the inf-sup constant of the problem. This
could be avoided, if the multigrid method operated on the divergence free sub-
space directly, and thus would not have to deal with the saddle point problem at
all. Such methods have been developed in different context and have proven very
successful as reported for instance by Hiptmair [18] for Maxwell equations and by
Schöberl [33] for incompressible elasticity with reducedintegration.
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The main ingredients into such a method are a smoother which operates on
the divergence free subspace and a grid transfer operator from coarse to fine mesh
which maps the coarse divergence free subspace into the fine one. The second
objective can be achieved by using a mixed finite element discretization for which
the weakly divergence free functions are point-wise divergence free. For such a
discretization, the natural finite element embedding operator from coarse to fine
mesh does not increase the divergence of a function. Discretizations of this type
are available, such as for instance in Scott and Vogelius [36,39], Neilan and coau-
thors [14,16] and Zhang [41,42]. Here, we focus on the divergence conforming dis-
continuous Galerkin (DivDG) method of Cockburn, Kanschat,and Schötzau [11]
due to its simplicity.

Following the approach by Schöberl [33], in order to study smoothers for the
Stokes equations, we first consider a problem on the velocityspace only with
penalty for the divergence. This leads to a singularly perturbed problem with an
operator with a large kernel. When it comes to smoothers for such operators, there
are two basic options. One approach is to smooth the kernel space explicitly, as
proposed for instance by Hiptmair [18] and Xu in [19]. The other option was pre-
sented by Arnold, Falk, and Winther in [2,3] and smoothens the kernel implicitly,
while never employing an explicit description of it.

We follow the implicit approach and use the same domain decomposition prin-
ciple (i.e additive and multiplicative Schwarz methods andvertex patches), but
instead of the Maxwell or divergence dominated mass matrix as in [2,3] apply it to
the DivDG Stokes discretization. Then, we prove the convergence of the multigrid
method with variable V-cycle algorithm for the singularly perturbed problem. The
second pillar we rest on is the equivalence between singularly perturbed, diver-
gence dominated elliptic forms and mixed formulations established by Schöberl
in [32, 33]. This equivalence allows us to apply the smootherto a mixed formula-
tion of nearly incompressible elasticity and then to proceed to the Stokes limit.
As far as we know, the combination of these techniques has notbeen applied
the DivDG method in [11]. Since our analysis is based on domain decompo-
sition, fundamental results are also drawn from the seminalpaper by Feng and
Karakashian [15] on domain decomposition for discontinuous Galerkin methods
for elliptic problems.

There is a close relation between our technique and the smoother suggested
by Vanka in [38] for the MAC scheme: the MAC scheme can be considered the
lowest order case of the DivDG methods (see [23]). In this case, the subspace
decomposition structure of Vanka smoother corresponds to Neumann problems
on cells, while our smoother is based on Dirichlet problems for vertex patches.
Generalizations of the Vanka smoother have been applied successfully to different
other discretizations albeit their velocity-pressure spaces are not matched in the
sense of (2) (see for instance [37,40] and literature cited there).

Recently, an alternative preconditioning method for Stokes discretizations of
the same type as here has been introduced in [5] by Ayuso et al.Their method
is based on auxiliary spaces introduced by Hiptmair and Xu in[19]. The exact
sequence property of the divergence-conforming velocity element plays a crucial
role as in our scheme, but their preconditioner uses a multigrid method for the
biharmonic problem to solve the Stokes problem. As a consequence, it is not
possible to use the preconditioning method for no-slip boundary conditions. On
the other hand, it has been demonstrated in [26] that the multigrid method here can
be lifted to the biharmonic problem, providing an efficient method for clamped
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boundary conditions.
The paper is organized as follows. In Section 2 we present themodel prob-

lem and the DG discretization. The multigrid method and domain decomposition
smoother are derived in Section 3. Section 4 is devoted to theconvergence analysis
of our preconditioning technique with the man result in Theorem 1 on page 9. The
paper concludes with numerical experiments in Section 5.

2 The Stokes problem and its discretization
We consider discretizations of the Stokes equations

−△u + ∇p = f in Ω,
∇·u = 0 in Ω,

u = uB on ∂Ω,
(1)

with no-slip boundary conditions on a bounded and convex domain Ω ⊂ R
d

with dimensiond = 2, 3. The natural solution spaces for this problem areV =
H1

0 (Ω;R
d) for the velocityu and the space of mean value free square integrable

functionsQ = L2
0(Ω) for the pressurep, although we point out that other well-

posed boundary conditions do not pose a problem.
In order to obtain a finite element discretization, we partition the domainΩ

into a hierarchy of meshes{Tℓ}ℓ=0,...,L of parallelogram and parallelepiped cells
in two and three dimensions, respectively. In view of multilevel methods, the index
ℓ refers to the mesh level defined as follows: let a coarse meshT0 be given. The
mesh hierarchy is defined recursively, such that the cells ofTℓ+1 are obtained by
splitting each cell ofTℓ into 2d congruent children (refinement). These meshes are
nested in the sense that every cell ofTℓ is equal to the union of its four children.
We define the mesh sizehℓ as the maximum of the diameters of the cells ofTℓ.
Due to the refinement process, we havehℓ = 2−ℓh0.

By construction, these meshes are conforming in the sense that every face of
a cell is either at the boundary or a whole face of another cell; nevertheless, local
refinement and hanging nodes do not pose a particular problem, since they can be
treated following [20, 21]. ByFℓ we denote the set of all faces of the meshTℓ,
which is composed of the set of interior facesF

i
ℓ and the set of all boundary faces

F
∂
ℓ .

We introduce a short hand notation for integral forms onTℓ and onFℓ by

(φ, ψ)
Tℓ

=
∑

T∈Tℓ

∫

T

φ⊙ ψ dx,
〈
φ, ψ

〉
Fℓ

=
∑

F∈Fℓ

∫

F

φ⊙ ψ ds,

∥∥φ
∥∥
Tℓ

=

( ∑

T∈Tℓ

∫

T

|φ|2 dx
) 1

2

,
∥∥φ

∥∥
Fℓ

=

(∑

F∈Fℓ

∫

F

|φ|2 ds
) 1

2

,

The point-wise multiplication operatorφ ⊙ ψ refers to the productφψ, the scalar
productφ · ψ and the double contractionφ : ψ for scalar, vector and tensor argu-
ments, respectively. The modulus|φ| = √

φ⊙ φ is defined accordingly.
In order to discretize (1) on the meshTℓ, we choose discrete subspacesXℓ =

Vℓ ×Qℓ, whereQℓ ⊂ Q. Following [11], we employ discrete subspacesVℓ of the

3



spaceHdiv
0 (Ω), where

Hdiv(Ω) =
{
v ∈ L2(Ω;Rd)

∣∣∇·v ∈ L2(Ω)
}
,

Hdiv
0 (Ω) =

{
v ∈ Hdiv(Ω)

∣∣v ·n = 0 on∂Ω
}
.

Here, we choose the well-known Raviart–Thomas space [30], but we point out
that any pair of velocity spacesVℓ and pressure spacesQℓ is admissible, if the key
relation

∇·Vℓ = Qℓ (2)

holds. The details of constructing the Raviart–Thomas space follow.
Each cellT ∈ Tℓ can be obtained as the image of a linear mappingΨT of

the reference cell̂T = [0, 1]d. On the reference cell, we define two polynomial
spaces: first,̂Qk, the space of polynomials ind variables, such that the degree with
respect to each variable does not exceedk. Second, we consider the vector valued
space of Raviart–Thomas polynomialsV̂k = Q̂d

k + xQ̂k. Polynomial spacesVT

andQT on the mesh cellT are obtained by the pull-back under the mappingΨT

(see for instance [4]). The polynomial degreek is arbitrary, but chosen uniformly
on the whole mesh. Thus, we will omit the indexk from now on. Concluding this
construction, we obtain the finite element spaces

Vℓ =
{
v ∈ Hdiv

0 (Ω)
∣∣∀T ∈ Tℓ : v|T ∈ VT

}
,

Qℓ =
{
q ∈ L2

0(Ω)
∣∣∀T ∈ Tℓ : q|T ∈ QT

}
.

2.1 Discontinuous Galerkin discretization
While the fact thatVℓ is a subspace ofHdiv

0 (Ω) implies continuity of the normal
component of its functions across interfaces between cells, this is not true for tan-
gential components. Thus,Vℓ 6⊂ H1(Ω;Rd), and it cannot be used immediately to
discretize (1). We follow the example in for instance [11, 24, 25] and apply a DG
formulation to the discretization of the elliptic operator. Here, we focus on the in-
terior penalty method [1,29]. LetT1 andT2 be two mesh cells with a joint faceF ,
and letu1 andu2 be the traces of a functionu onF from T1 andT2, respectively.
On this faceF , we introduce the averaging operator

{{u}} =
u1 + u2

2
. (3)

In this notation, the interior penalty bilinear form reads

aℓ(u, v) = (∇u,∇v)
Tℓ

+ 4
〈
σL{{u ⊗ n}}, {{v ⊗ n}}

〉
Fi
ℓ

− 2
〈
{{∇u}}, {{n⊗ v}}

〉
Fi
ℓ

− 2
〈
{{∇v}}, {{n⊗ u}}

〉
Fi
ℓ

+ 2
〈
σLu, v

〉
F
∂
ℓ

−
〈
∂nu, v

〉
F
∂
ℓ

−
〈
∂nv, u

〉
F
∂
ℓ

.

(4)

The operator “⊗” denotes the Kronecker product of two vectors. We note that the
term4{{u ⊗ n}} : {{v ⊗ n}} actually denotes the product of the jumps ofu andv.

The discrete weak formulation of (1) reads now: find(uℓ, pℓ) ∈ Vℓ×Qℓ, such
that for all test functionsvℓ ∈ Vℓ andqℓ ∈ Qℓ there holds

Aℓ

((
uℓ

pℓ

)
,

(
vℓ
qℓ

))
≡ aℓ(uℓ, vℓ) + (pℓ,∇·vℓ)− (qℓ,∇·uℓ) = F(vℓ, qℓ) ≡ (f, vℓ) .

(5)
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Discussion on the existence and uniqueness of such solutions can be found for
instance in [11, 12, 17, 24]. Here, we summarize, that is symmetric. If σL is suf-
ficiently large, the formaℓ(., .) is positive definite independently of the multigrid
level ℓ ∈ [0, L], and that thus we can define a norm onVℓ by

∥∥vℓ
∥∥
Vℓ

=
√
aℓ(vℓ, vℓ). (6)

In order to obtain optimal convergence results and to satisfy Proposition 2.2 below,
σL is chosen asσ/hL, wherehL is mesh size on the finest levelL andσ is a
positive constant depending on the polynomial degree. By this choice, the bilinear
forms on lower levels are inherited from finer levels in the sense, that

aℓ(uℓ, vℓ) = aL(uℓ, vℓ), ∀ uℓ, vℓ ∈ Vℓ. (7)

A particular feature of this method is (see [10, 11]), that the solutionuℓ is in
the divergence free subspace

V 0
ℓ =

{
vℓ ∈ Vℓ

∣∣∇·vℓ = 0
}
, (8)

where the divergence condition is to be understood in the strong sense.

Proposition 0.1 (Inf-sup condition). For any pressure functionq ∈ Qℓ, there
exists a velocity functionv ∈ Vℓ, satisfying

inf
q∈Qℓ

sup
v∈Vℓ

(q,∇·v)∥∥v
∥∥
Vℓ

∥∥q
∥∥
Qℓ

≥ γℓ > 0 (9)

whereγℓ = c
√

hL

hℓ
= c

√
2ℓ−L and c is a constant independent of the multigrid

levelℓ.

Proof. The proof of this proposition can be found in [35, Section 6.4]. Indeed, a
different result is proven there, withγℓ ≈ 1/k, wherek is the polynomial de-
gree in thehp-method. Thorough study of the proof though reveals, that this
k-dependence is due to the penalty parameter of the formσℓ ≈ k2/hℓ. In our
case, the penalty parameter depends on the fine mesh, not onhℓ, such thatσℓ ≈
(hℓ/hL)/hℓ, and that the role of thek2 in the penalty is taken by the factor
hℓ/hL.

For anyu ∈ Vℓ, we consider the following discrete Helmholtz decomposition:

u = u0 + u⊥ (10)

whereu0 ∈ V 0
ℓ is the divergence free part andu⊥ belongs to itsaℓ(., .)-orthogonal

complement. For functions from this complement holds the estimate:

Lemma 0.1. Letu⊥ ∈ Vℓ beaℓ(., .)-orthogonal toV 0
ℓ , that is,

aℓ(u
⊥, v) = 0 ∀ v ∈ V 0

ℓ .

Then, there is a constantα > 0 such that

α

d2
∥∥∇·u⊥

∥∥2 ≤ aℓ(u
⊥, u⊥) ≤ 1

γ ℓ

∥∥∇·u⊥
∥∥2
, (11)

γℓ is the inf-sup constant from inequality(9).
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Proof. On the left side, we already argued above thatσL is chosen large enough
such thataℓ(., .) is uniformly positive definite. Thus, we have with a positive
constantα

α‖∇u⊥‖2Tℓ
≤ aℓ(u

⊥, u⊥).

But then,
(
∇·u⊥,∇·u⊥

)

Ω
≤ d2

(
∇u⊥,∇u⊥

)

Tℓ

≤ d2

α
aℓ(u

⊥, u⊥),

On the right side, letq = ∇·u⊥. Thenq ∈ Qℓ due to (2). From (9), we conclude
that there isu ∈ Vℓ such that∇·u = q and

∥∥u
∥∥
Vℓ

≤ 1/γℓ‖q‖. On the other

hand,u⊥ is the error of the orthogonal projection intoV 0
ℓ . Thus,u⊥ must be the

element with minimal norm, and in particular
∥∥u⊥

∥∥
Vℓ

≤
∥∥u

∥∥
Vℓ

.

2.2 The nearly incompressible problem
We are going to prove convergence uniform with respect to therefinement level
ℓ of the proposed multigrid method for the Stokes problem by deviating twice.
First, we provide estimates robust with respect to the parameterε of the nearly
incompressible problem: find(uℓ, pℓ) ∈ Vℓ × Qℓ such that for all(vℓ, qℓ) ∈
Vℓ ×Qℓ there holds

Aℓ

((
uℓ

pℓ

)
,

(
vℓ
qℓ

))
+ ε (pℓ, qℓ) = F(vℓ, qℓ). (12)

This problem is connected with the simpler penalty bilinearform (see for in-
stance also [17])

Aℓ,ε(uℓ, vℓ) ≡ aℓ(uℓ, vℓ) + ε−1 (∇·uℓ,∇·vℓ) (13)

and the singularly perturbed, elliptic problem: finduℓ ∈ Vℓ such that for allvℓ ∈
Vℓ there holds

Aℓ,ε(uℓ, vℓ) = (f, vℓ) . (14)

Lemma 0.2. Let (um, pm) be the solution to(12) andue be the solution to(14).
Then, if (2) holds, the following equations hold true:

um = ue, and εpm = ∇·um = ∇·ue.

Proof. Testing (12) withvℓ = 0 andqℓ ∈ Qℓ yields

− (∇·um, qℓ) + ε(pm, qℓ) = 0 ∀ qℓ ∈ Qℓ.

Due to (2), this translates to the point-wise equalityεpm = ∇·um. Substituting
pm in (12) and testing with the pair(vℓ,∇·vℓ), which is possible again due to (2),
we obtain thatum solves (14).

If on the other handue solves (14), we introducepe = 1
ε
∇·ue, which translates

to

− (∇·ue, qℓ) + ε(pe, qℓ) = 0 ∀ qℓ ∈ Qℓ,

corresponding to (12) tested with(0, qℓ). On the other hand, (12) tested with
(vℓ, 0) is obtained directly from (14) substitutingpe. Thus, the equivalence is
proven.
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In order to help keeping the notation separate, we adopt the following conven-
tion: the subscriptε is dropped wherever possible. Furthermore, curly letters refer
to the mixed form, while straight capitals refer to operators on the velocity space
only. Thus:

aℓ(u, v) the vector valued interior penalty form

Aℓ(u, v) the form of the singularly perturbed, elliptic problem (14)

Aℓ

((
u
p

)
,

(
v
q

))
the mixed bilinear form (12)

Similarly, capital letters like inRℓ for the smoother (26) refer to the singularly
perturbed, elliptic problem, whileRℓ is the corresponding symbol for the Stokes
smoother (24). Additionally, we associate operators with bilinear forms using the
same symbol:

Aℓ,ε : Vℓ → Vℓ (Aℓ,εu, v) = Aℓ,ε (u, v) = Aℓ(u, v) = AL(u, v) ∀u, v ∈ Vℓ

Aℓ,ε : Xℓ → Xℓ (Aℓ,εx, y) = Aℓ,ε (x, y) = Aℓ(x, y) = AL(x, y) ∀x, y ∈ Xℓ

3 Multigrid method
In Section 2, we introduced hierarchies of meshes{Tℓ}. Due to the nestedness of
mesh cells, the finite element spaces associated with these meshes are nested as
well:

V0 ⊂ V1 ⊂ . . . ⊂ VL,
Q0 ⊂ Q1 ⊂ . . . ⊂ QL.

X0 = V0 ×Q0 ⊂ X1 ⊂ . . . ⊂ VL ×QL = XL.

This relation also extends to the divergence free subspaces, see for instance [26]:

V 0
0 ⊂ V 0

1 ⊂ . . . ⊂ V 0
L . (15)

The nestedness of the spaces implies that there is a sequenceof natural injec-
tionsIℓ : Xℓ → Xℓ+1 of the formIℓ(vℓ, qℓ) = (Iℓ,uvℓ, Iℓ,pqℓ), such that

Iℓ,u : Vℓ → Vℓ+1, Iℓ,p : Qℓ → Qℓ+1, (16)

Iℓ,u : V 0
ℓ → V 0

ℓ+1. (17)

TheL2-projection fromXℓ+1 → Xℓ is defined byIt
ℓ(vℓ, qℓ) = (Itℓ,uvℓ, I

t
ℓ,pqℓ)

with
(
vℓ+1 − Itℓ,uvℓ+1, wℓ

)
= 0 ∀wℓ ∈ Vℓ

(
qℓ+1 − Itℓ,pqℓ+1, rℓ

)
= 0 ∀rℓ ∈ Qℓ.

(18)

TheA-orthogonal projectionPℓ from (VL ×QL) → (Vℓ ×Qℓ) is defined by

AL

(
Pℓ

(
u
p

)
,

(
vℓ
qℓ

))
= AL

((
u
p

)
,

(
vℓ
qℓ

))
(19)

for all (u, p) ∈ (VL × QL), (vℓ, qℓ) ∈ Vℓ × Qℓ. Similarly, TheA-orthogonal
projectionPℓ from VL → Vℓ is defined by

AL(Pℓu, vℓ) = AL(u, vℓ) (20)

for all u ∈ VL, vℓ ∈ Vℓ.
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3.1 The V-cycle algorithm
In this subsection we define V-cycle multigrid preconditionersBℓ,ε andBℓ,ε for
the operatorsAℓ,ε andAℓ,ε, respectively. For simplicity of the presentation, we
drop the indexε.

First, we define the action of the multigrid preconditionerBℓ : Xℓ → Xℓ

recursively as the multigrid V-cycle withm(ℓ) ≥ 1 pre- and post-smoothing steps.
Let Rℓ be a suitable smoother. LetB0 = A−1

0 . Forℓ ≥ 1, define the action ofBℓ

on a vectorLℓ = (fℓ, gℓ) by

1. Pre-smoothing: begin with(u0, p0) = (0, 0) and let
(
ui

pi

)
=

(
ui−1

pi−1

)
+Rℓ

(
Lℓ −Aℓ

(
ui−1

pi−1

))
i = 1, . . . ,m(ℓ), (21a)

2. Coarse grid correction:
(
um(ℓ)+1

pm(ℓ)+1

)
=

(
um(ℓ)

pm(ℓ)

)
+ Bℓ−1It

ℓ−1

(
Lℓ −Aℓ

(
um(ℓ)

pm(ℓ)

))
, (21b)

3. Post-smoothing:
(
ui

pi

)
=

(
ui−1

pi−1

)
+Rℓ

(
Lℓ −Aℓ

(
ui−1

pi−1

))
, i = m(ℓ) + 2, . . . , 2m(ℓ) + 1

(21c)

4. Assign:

BℓLℓ =

(
u2m(ℓ)+1

p2m(ℓ)+1

)
(21d)

We distinguish between the standard and variable V-cycle algorithms by the
choice

m(ℓ) =

{
m(L) standard V-cycle,

m(L)2L−ℓ variable V-cycle,

where the numberm(L) of smoothing steps on the finest level is a free parameter.
We refer toBL as the V-cycle preconditioner ofAL. The iteration

(
uk+1

pk+1

)
=

(
uk

pk

)
+ BL

(
LL −AL

(
uk

pk

))
(22)

is the V-cycle iteration.
The definition of the preconditionerBℓ : Vℓ → Vℓ for the elliptic operatorAℓ

follows the same concept, but dropping the pressure variables.

3.2 Overlapping Schwarz smoothers
In this subsection, we define a class of smoothing operatorsRℓ based on a sub-
space decomposition of the spaceXℓ. Let Nℓ be the set of vertices in the tri-
angulationTℓ, and letTℓ,υ be the set of cells inTℓ sharing the vertexυ. They
form a triangulation withN(N > 0) subdomains or patches which we denote by
{Ωℓ,υ}Nυ=1.

8



The subspaceXℓ,υ = Vℓ,υ ×Qℓ,υ consists of the functions inXℓ with support
in Ωℓ,υ . Note that this implies homogeneous slip boundary conditions on∂Ωℓ,υ for
the velocity subspaceVℓ,υ and zero mean value onΩℓ,υ for the pressure subspace
Qℓ,υ. The Ritz projectionPℓ,υ : Xℓ → Xℓ,υ is defined by the equation

Aℓ

(
Pℓ,υ

(
uℓ

pℓ

)
,

(
vℓ,υ
qℓ,υ

))
= Aℓ

((
uℓ

pℓ

)
,

(
vℓ,υ
qℓ,υ

))
∀
(
vℓ,υ
qℓ,υ

)
∈ Xℓ,υ .

(23)

Note that each cell belongs to not more than four (eight in 3D)patchesTℓ,υ, one
for each of its vertices.

Then we define the additive Schwarz smoother

Rℓ = η
∑

υ∈Nℓ

Pℓ,υA−1
ℓ (24)

whereη ∈ (0, 1] is a scaling factor,Rℓ isL2 symmetric and positive definite.
Similarly, we define smoothers of the singularly perturbed elliptic operatorAℓ,

namely,Pℓ,υ : Vℓ → Vℓ,υ is defined as

Aℓ (Pℓ,υuℓ, vℓ,υ) = Aℓ (uℓ, vℓ,υ) ∀vℓ,υ ∈ Vℓ,υ, (25)

and the additive Schwarz smoother is

Rℓ = η
∑

υ∈Nℓ

Pℓ,υA
−1
ℓ . (26)

4 Convergence analysis
In this section, we provide a proof of the convergence for thevariable V-cycle
iteration with additive Schwarz preconditioning method. Our proof is based on
the assumption that the domainΩ is bounded and convex, which will be omitted
for simplicity in the statement of following theorems and propositions. Our main
result is:

Theorem 1. The multilevel iterationI − BLAL for the Stokes problem(5) with
the variable V-cycle operatorBL defined in Section 3.1 employing the smoother
Rℓ defined in equation(24) with suitably small scaling factorη is a contraction
with contraction number independent of the mesh levelL.

Proof. First, we consider the nearly incompressible problem (12).For this weak
formulation, we have by Theorem 3, that the multigrid methodI − BL,εAL,ε is
equivalent to the methodI − BL,εAL,ε applied to the singularly perturbed prob-
lem (14) in the velocity space.

Convergence of the multilevel iterationI − BL,εAL,ε is shown in Theorem 2
for all ε > 0 with a contraction numberδ < 1 independent ofL andε. Thus, by
Theorem 3, the same holds forI − BL,εAL,ε with positiveε.

Finally, in (12) we can letε converge to zero. The limit yields the well-posed
Stokes problem (5), and since the contraction numberδ is independent ofε, we
obtain uniform convergence with respect to the mesh levelL in the limit ε →
0.

The theorems and lemmas of the following subsections serve to establish the
building blocks of the proof of Theorem 1.
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4.1 The singularly perturbed problem
Theorem 2. LetRℓ be the smoother defined in(26)with suitably small scaling fac-
tor η. Then, the multilevel iterationI −BLAL with the variable V-cycle operator
BL defined in Section 3.1 is a contraction with contraction number independent of
the mesh levelL and the parameterε.

The proof of this theorem is postponed to page 12 and relies on

Proposition 2.1. If Rℓ satisfies the conditions:

AL

(
(I −RℓAℓ)w,w

)
≥ 0, ∀w ∈ Vℓ (27)

and

(R−1
ℓ [I − Pℓ−1]w, [I − Pℓ−1]w) ≤ βℓAL([I − Pℓ−1]w, [I − Pℓ−1]w), ∀w ∈ Vℓ

(28)

whereβℓ = O( 1
γℓ
) is defined in equation(55) below. Then

0 ≤ AL

(
(I −BℓAℓ)w,w

)
≤ δAL(w,w), ∀w ∈ Vℓ (29)

whereδ = Ĉ

1+Ĉ
andĈ are defined in Lemma 2.3.

Proof. In the case of self-adjoint operatorsAℓ which are inherited from a common
bilinear forma(., .), this proposition would be part of the standard multigrid theory
if βℓ were constant. Its proof can be adapted from similar theorems in [2,8,9]. We
will prove the version needed here in the appendix.

In the remainder of this section we use several propositionsand lemmas to
establish our smootherRℓ satisfies the assumptions of Proposition 2.1. Foru ∈
(I−Pℓ−1)w with arbitraryw ∈ Vℓ, it follows from the discrete Helmholtz decom-
position in Section 2 and the projection operatorPℓ,υ in Section 3.2 thatu admits
a local discrete Helmholtz decomposition

uυ = u0
υ + u⊥

υ (30)

Lemma 2.1. GivenL2-symmetric positive definiteRℓ defined in 3.2 and sym-
metric positive definiteAL(·, ·) defined in(13) , there exists a constantη ∈ (0, 1]
independent ofℓ such that

η(R−1
ℓ u, u) = inf

uυ∈Vℓ,υ

Συuυ=u

∑

υ∈Nℓ

AL(uυ , uυ) (31)

Proof. The following proof can be found in [2] for theL2-inner product instead of
aℓ(., .). We copy it here to ascertain that it does not depend on the actual structure
of the operatorAL since it is purely algebraic. Thus, it applies to the operator AL

in this paper as it applies to the different operator appliedthere. Recall that

Rℓ = η
∑

υ∈Nℓ

Pℓ,υA
−1
ℓ = η

∑

υ∈Nℓ

Pℓ,υA
−1
L . (32)

From

u =
∑

υ∈Nℓ

uυ (33)
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we get

η(R−1
ℓ u, u) = η

∑

υ∈Nℓ

(R−1
ℓ u, uυ) (34)

= η
∑

υ∈Nℓ

(ALPℓ,υA
−1
L R−1

ℓ u, uυ) (35)

≤ η
1

2





∑

υ∈Nℓ

(ALηPℓ,υA
−1
L R−1

ℓ u, A−1
L R−1

ℓ u)






1

2





∑

υ∈Nℓ

(ALuυ , uυ)






1

2

(36)

= η
1

2

{
(ALu,A

−1
L R−1

ℓ u)
} 1

2





∑

υ∈Nℓ

(ALuυ , uυ)






1

2

(37)

= η
1

2

{
(u,R−1

ℓ u)
} 1

2





∑

υ∈Nℓ

(ALuυ , uυ)






1

2

(38)

The above inequality works for arbitrary splitting, hence we have

η(R−1
ℓ u, u) ≤

∑

υ∈Nℓ

AL(uυ, uυ) (39)

For the choiceuυ = Pℓ,υPℓA
−1
L R−1u we get

η(R−1
ℓ u, u) = inf

uυ∈Vℓ,υ

Συuυ=u

∑

υ∈Nℓ

AL(uυ , uυ) (40)

Lemma 2.2. Given the local Helmholtz decomposition in(30). For anyu⊥
υ ∈ Vℓ,υ

, there exists constantC1 independent of multigrid level satisfying:
∑

υ∈Nℓ

∥∥∇·u⊥
υ

∥∥2 ≤ C1

∑

υ∈Nℓ

aℓ(u
⊥
υ , u

⊥
υ ) (41)

Proof. It follows from Lemma 0.1 that the estimate
∥∥∇·u⊥

∥∥2 ≤ Caℓ(u
⊥, u⊥)

hold for all u⊥ ∈ Vℓ. It is easy to see thatVℓ,υ is a subspace ofVℓ for any υ,
so the estimate are also valid on any patch. In 2-D case, one cell could at most
be sharing by four patches(eight patches in 3D). Hence thereexists a constantC1

independent of multigrid level such that the estimates holds for the summation of
local estimates.

Proposition 2.2. Given the overlapping subspace decomposition ofVℓ in 3.2 and
the interior penalty bilinear formaℓ(u, v) in (4). Assumeσℓ is chosen sufficiently
large, the following estimate holds on each levelℓ. Then, there is a constantC2

which is independent of multigrid level such that for anyu ∈ Vℓ holds
∑

υ∈Nℓ

aℓ(uυ , uυ) ≤ C2aℓ(u, u) (42)
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Proof. For a fixedL, the penalty constantσℓ is σ/hL which is greater thanσ/hℓ.
For the latter, this is a standard result: the proof and details on the choice ofσ can
be found in [15, p. 1361].

Proof of Theorem 2.Recall the definition ofAL-orthogonal projectionsPℓ and
Pℓ,ν which restrict the projection onΩℓ,ν (zero elsewhere). Following [2], we show
that if 0 < η ≤ 1/4 , the smootherRℓ satisfies the first condition in Theorem 2.

Forw ∈ Vℓ

AL([I −RℓAℓ]w,w) = AL(w,w)− η
∑

υ∈Nℓ

AL(Pℓ,υw,w) (43)

but

AL(Pℓ,υw,w) = AL(Pℓ,υw,Pℓ,υw) ≤ AL(w,w)
1

2AL(Pℓ,υw,Pℓ,υw)
1

2 (44)

so
∑

υ∈Nℓ

AL(Pℓ,υw,w) ≤
∑

υ∈Nℓ

AL(w,w) ≤ 4AL(w,w) (45)

Hence the first hypothesis holds.
Thus, it remains to check the second condition which could bereduced to the

following problem: foru = (I−Pℓ−1)w (wherew ∈ Vℓ) with the decomposition
u =

∑
υ uυ , there is a constantC such that

∑

υ∈Nℓ

AL(uυ, uυ) ≤ CAL(u, u) (46)

Following Lemmas 0.1, 2.1, 2.2 and Proposition 2.2, we get:
∑

υ∈Nℓ

AL(uυ , uυ) =
∑

υ∈Nℓ

{
aℓ(uυ , uυ) + ε−1(∇ · uυ,∇ · vυ)

}
(47)

=
∑

υ∈Nℓ

{
aℓ(uυ, uυ) + ε−1(∇ · u⊥

υ ,∇ · u⊥
υ )

}
(48)

≤ C2aℓ(u, u) +
∑

υ∈Nℓ

C1
1

α
ε−1aℓ(u

⊥
υ , u

⊥
υ ) (49)

≤ C2aℓ(u, u) + ε−1C1
1

α
aℓ(u

⊥, u⊥) (50)

≤ C2aℓ(u, u) + ε−1C1
1

α

1

γ ℓ

(∇·u⊥,∇·u⊥) (51)

= C2aℓ(u, u) + ε−1C1
1

α

1

γ ℓ

(∇·u,∇·u) (52)

≤ max

{
C2, C1

1

α

1

γ ℓ

}
AL(u, u) (53)

= CℓAL(u, u) (54)

whereCℓ = max
{
C2, C1

1
α

1
γ ℓ

}
.
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Now set

βℓ =
1

η
Cℓ (55)

We have verified the two conditions in Proposition 2.1.

Lemma 2.3. Givenβℓ above andm(ℓ) defined in 3.1, there is a constantĈ such
that

βℓ
2m(ℓ)

≤ Ĉ (56)

Proof. We will discuss this inequality in two cases: first, ifβℓ = 1
η
C2, then

βℓ
2m(ℓ)

=

1
η
C2

2m02L−ℓ
≤

1
η
C2

2m0
=: Ĉ (57)

On the other hand, ifβ = 1
η
C1

1
α

1
γ

βℓ
2m(ℓ)

=
C1

1
α

1
c

√
2L−ℓ

2m02L−ℓ
=

C1
1
α

1
c

2m0

√
2L−ℓ

≤ C1
1
α

1
c

2m0
=: Ĉ (58)

4.2 The mixed problem
Secondly, we will discuss the Stokes equation in mixed variables. SetXℓ,ε :=
{(uℓ, pℓ) ∈ Xℓ : ∇·uℓ = εpℓ}. Now, it remains to show the equivalence between
the multigrid algorithms.

Proposition 2.3. The multigrid components fulfill the following properties:

1. The smootherRℓ for the mixed problem defined in(24) preservesXℓ,ε. On
the subspace it is equivalent to the smootherRℓ in primal variables. This
means for(uℓ, pℓ) ∈ Xℓ,ε and

(
ûℓ

p̂ℓ

)
= Rℓ

(
uℓ

pℓ

)
(59)

there holds(ûℓ, p̂ℓ) ∈ Xℓ,ε and

ûℓ = Rℓuℓ (60)

2. The prolongationIℓ−1 mapsXℓ−1,ε intoXℓ,ε. On the subspace it is equiva-
lent to the prolongationIℓ in primal variables. This means for(uℓ−1, pℓ−1) ∈
Xℓ−1,ε and

(
ûℓ

p̂ℓ

)
= Iℓ

(
uℓ−1

pℓ−1

)
(61)

there holds(ûℓ, p̂ℓ) ∈ Xℓ,ε and

ûℓ = Iℓ(uℓ−1) (62)
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3. The coarse grid solution operator mapsXℓ−1,ε intoXℓ,ε. On the subspace
it is equivalent to the coarse grid solution operator in primal variables. This
means for(uℓ, pℓ) ∈ Xℓ,ε and

(
ûℓ−1

p̂ℓ−1

)
= A−1

ℓ−1[Iℓ−1]
tAℓ

(
uℓ

pℓ

)
(63)

there holds(ûℓ−1, p̂ℓ−1) ∈ Xℓ−1,ε and

ûℓ−1 = A−1
ℓ−1[Iℓ−1]

tAℓuℓ (64)

Proof. The proof of this proposition can be found for the operators there in [33, p.
93]. We do not provide it here since the arguments are purely linear algebra, and
thus apply independent of the actual bilinear form.

Theorem 3. The multigrid algorithm in mixed variables preserves the spaceXℓ,ε.
On this subspace it is equivalent to the multigrid algorithmin primal variables.
This means for(uℓ, pℓ) ∈ Xℓ,ε and(ûℓ, p̂ℓ) = Bℓ(uℓ, pℓ) there holds(ûℓ, p̂ℓ) ∈
Xℓ,ε and

ûℓ = Bℓuℓ (65)

whereBℓ andBℓ are the corresponding multigrid operators for each algorithm.

Proof. The multigrid operatorBℓ fulfills the recursion

B0 = A−1
0 , (66)

Bℓ = (Rℓ)
mℓ (I − Iℓ(I − (Bℓ−1))A

−1
ℓ−1[Iℓ−1]

tAℓ)(Rℓ)
mℓ , (67)

and the mixed operatorBℓ fulfills a corresponding one. Then we apply the above
proposition, and the theorem is proved by induction.

5 Numerical results
We test the additive Schwarz method which we have analyzed inthe preceding
section in order to ascertain that the contraction numbers are not only bounded
away from one, but are actually small enough to make this method interesting.
Furthermore, we conduct experiments, which go beyond our analysis, in particular
regarding the choice of the penalty parameter and the numberof smoothing steps
on lower levels.

The experimental setup for most of the tables is as follows: the domain is
Ω = [−1, 1]2, the coarsest meshT0 consists of a single cellT = Ω. The mesh
Tℓ on levelℓ is obtained by dividing all cells inTℓ−1 into four quadrilaterals by
connecting the edge midpoints. Thus, a mesh on levelℓ has4ℓ cells, and the length
of their edges is21−ℓ. The right hand side isf = (1, 1). For the relaxation
parameter in the additive Schwarz method, we found that0.5 is the value which
provides the best results for all experimental setups, hence we keep it there in all
the following experimental setups.
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level RT1 RT2

3 4 4
4 4 4
5 4 4
6 4 4
7 4 4
8 4 5

Table 1: Number of iterationsn6 to reduce the residual by10−6 with the variable
V-cycle algorithm with penalty parameter dependent of the finest level mesh size.

m(ℓ) = 1 m(ℓ) = 2
level RT1 RT2 RT1 RT2

3 7 7 4 4
4 7 7 4 4
5 7 7 4 4
6 7 7 4 4
7 8 8 4 4
8 8 8 4 4

Table 2: Number of iterationsn6 to reduce the residual by10−6 with the standard
V-cycle iteration with one and two pre- and post-smoothing steps. Penalty parameter
dependent of the finest level mesh size.

In Table 1, we first test the additive Schwarz smoother using variable V-cycle
algorithm on a square domain with no-slip boundary condition. For the penalty
constant in the DG form (4), we choose the penalty parameter as σ̄/hL, whereσ̄ =
(k+1)(k+2), on the finest levelL and all lower levelsℓ. Results for different pairs
ofRTk/Qk are reported in the table which show the fast and uniform convergence.

In Table 2, we keep the same experimental setup and present iteration counts
for the standard V-cycle algorithm with one and two pre- and post-smoothing steps,
respectively. Although our analysis does not apply, we still observe uniform con-
vergence results. We also see that the variable V-cycle witha single smoothing
step on the finest level is as fast as the standard V-cycle withtwo smoothing steps,
and thus the variable V-cycle is more efficient.

In Table 3, we test the variable and standard V-cycles with penalty parameters
depending on the mesh levelℓ, namelyσ̄/hℓ (whereσ̄ is a positive constant de-
pending on the polynomial degree) in the DG form (4). While our convergence
analysis does not cover this case either, we observe convergence rates equal to the
case with inherited forms.

In Table 4, we provide results with GMRES solver andBL as preconditioner
for different experimental setups as in Tables 1, 2 and 3 respectively. The second
and third columns are results for variable V-cycle with penalty parameter depen-
dent of the finest level mesh size. The fourth and fifth columnsare the results for
standard V-cycle with penalty parameter dependent of the finest level mesh size.
The last two columns are the results for standard V-cycle with penalty parameter
depend on the mesh size of each level. From this table, we see that the GMRES
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variable standard
level RT1 RT2 RT1 RT2

3 4 4 7 7
4 4 4 7 7
5 4 4 7 7
6 4 4 7 7
7 4 4 7 8
8 4 5 8 8

Table 3: Penalty parameter dependent on the mesh size of eachlevel. Number of iter-
ationsn6 to reduce the residual by10−6 with variable and standard V-cycle iterations
with m(L) = 1.

variable standard noninherited
level RT1 RT2 RT1 RT2 RT1 RT2

3 2 2 2 2 2 2
4 3 3 3 3 3 3
5 3 3 4 3 4 4
6 3 3 5 4 5 5
7 3 3 5 5 5 5
8 5 4 6 6 8 6

Table 4: Number of iterationsn6 to reduce the residual by10−6 with GMRES solver
and preconditionerBL; variable and standard V-cycle with inherited forms, variable
V-cycle with noninherited forms. One pre- and post-smoothing step on the finest level.

method, as expected, is faster in every case.

6 Conclusions
In this paper, we have investigated smoothers based on the ones introduced by
Arnold, Falk, and Winther for problems inHdiv in a variable V-cycle precondi-
tioner for the Stokes system. We presented the convergence analysis and showed
uniform contraction independent on the mesh level. In numerical experiments we
showed that the contraction is not only uniform, but also very fast, thus making
our method a feasible solver or preconditioner.

In theory, the performance of the smoother relies on an exactsequence property
of finite element spaces, in particular anHdiv-conforming discontinuous Galerkin
discretization of the Stokes problem. Our experiments withthe Taylor–Hood ele-
ments, where the method fails, demonstrate that this is not an artifact of the analy-
sis, but that the technique does not work due to the lack of an exact Hodge decom-
position and nested divergence free subspaces.
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A Proof for Proposition 2.1
Following the proof in [2], we want to show by induction oni that

0 ≤ AL((I −BiAi)u, u) ≤ δAL(u, u), ∀u ∈ Vℓ (68)

For i = 1 is obvious sinceB1 = A−1
1 . Now check if the above inequality hold

for i = ℓ − 1. Recall the relaxation operatorKℓ = I − RℓAℓ and the recurrence
relation :

I −BℓAℓ = K
m(ℓ)
ℓ

[
(I − Pℓ−1) + (I −Bℓ−1Aℓ−1)Pℓ−1

]
K

m(ℓ)
ℓ (69)

The lower bound easily follows from the inductive hypothesis and the above iden-
tity. For the upper bound, we use the induction hypothesis toobtain

AL((I −BℓAℓ)u, u) ≤ AL([I − Pℓ−1]K
m(ℓ)
ℓ u,K

m(ℓ)
ℓ u) + δAL(Pj−1K

m(ℓ)
ℓ u,K

m(ℓ)
ℓ u)

(70)

= (1− δ)AL([I − Pℓ−1]K
m(ℓ)
ℓ u,K

m(ℓ)
ℓ u) + δAL(K

m(ℓ)
ℓ u,K

m(ℓ)
ℓ u).

(71)

Now by the orthogonality from (20)

AL([I − Pℓ−1]K
m(ℓ)
ℓ u, [I − Pℓ−1]K

m(ℓ)
ℓ u) (72)

= AL([I − Pℓ−1]K
m(ℓ)
ℓ u,K

m(ℓ)
ℓ u) (73)

= ([I − Pℓ−1]K
m(ℓ)
ℓ u,AℓK

m(ℓ)
ℓ u) (74)

= (R−1
ℓ [I − Pℓ−1]K

m(ℓ)
ℓ u,RℓAℓK

m(ℓ)
ℓ u) (75)

≤ (R−1
ℓ [I − Pℓ−1]K

m(ℓ)
ℓ u, [I − Pℓ−1]K

m(ℓ)
ℓ u)

1

2 (RℓAℓK
m(ℓ)
ℓ u,AℓK

m(ℓ)
ℓ u)

1

2

(76)

≤
√
βℓ([I − Pℓ−1]K

m(ℓ)
ℓ u, [I − Pℓ−1]K

m(ℓ)
ℓ u)

1

2 (RℓAℓK
m(ℓ)
ℓ u,AℓK

m(ℓ)
ℓ u)

1

2

(77)

Hence, we get

AL([I − Pℓ−1]K
m(ℓ)
ℓ u,K

m(ℓ)
ℓ u) ≤ βℓ(RℓAℓK

m(ℓ)
ℓ u,AℓK

m(ℓ)
ℓ u) (78)

= βℓAL([I −Kℓ−1]K
2m(ℓ)
ℓ u, u) (79)

It follows from the positive semi-definiteness and (27) thatthe spectrum ofKℓ

is contained in the interval[0, 1]. Therefore, we have

AL([I −Kℓ−1]K
2m(ℓ)
ℓ u, u) ≤ AL([I −Kℓ−1]K

i
ℓu, u), for i ≤ 2m(ℓ)

(80)

whence

AL([I −Kℓ−1]K
2m(ℓ)
ℓ u, u) ≤ 1

2m(ℓ)

2m(ℓ)−1∑

i=0

AL([I −Kℓ]K
i
ℓu, u) (81)

=
1

2m(ℓ)
AL([I −Kℓ]K

2m(ℓ)
ℓ u, u) (82)
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Combining (70) and (80) and following Lemma 2.3, we get

AL((I −BℓAℓ)u, u) ≤ (1− δ)
βℓ

2m(ℓ)
AL([I −K2m(ℓ)]u, u) + δAL(K

m(ℓ)
ℓ u,K

m(ℓ)
ℓ u)

(83)

≤ (1− δ)ĈAL([I −K2m(ℓ)]u, u) + δAL(K
m(ℓ)
ℓ u,K

m(ℓ)
ℓ u) (84)

= (1− δ)ĈAL(u, u) + [δ − (1− δ)Ĉ]AL(K
m(ℓ)
ℓ u,K

m(ℓ)
ℓ u) (85)

The results now follows by choosing :

δ = (1− δ)Ĉ, i. e., δ =
Ĉ

1 + Ĉ
(86)
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