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Abstract

A multigrid method for the Stokes system discretized with&fY-conforming
discontinuous Galerkin method is presented. It acts ondh&bmed velocity and
pressure spaces and thus does not need a Schur complementrmpgion. The
smoothers used are of overlapping Schwarz type and emplogah Helmholtz
decomposition. Additionally, we use the fact that the ditigation provides nested
divergence free subspaces. We present the convergengsiaraid numerical
evidence that convergence rates are not only independenesii size, but also
reasonably small.

1 Introduction

The efficient solution of the Stokes equations is an impoérséap in the develop-
ment of fast flow solvers. In this paper we present analygisramerical results
for a multigrid method with subspace correction smoothdrictv performs very
efficiently on divergence-conforming discretizationsthwiitterior penalty. We ob-
tain convergence rates for the Stokes problem which are amabfe to those for
the Laplacian.

Multigrid methods are known to be the most efficient prectbaders and
solvers for diffusion problems. Nevertheless, for Stokgsa¢ions, the divergence
constraint makes the solution process more complicatedypisal solution em-
ploys the use of block preconditioners, e.[qg.l[13| 22, 217, B8] their disadvantage
is, that their performance is limited by the inf-sup consiirthe problem. This
could be avoided, if the multigrid method operated on thejence free sub-
space directly, and thus would not have to deal with the sagdint problem at
all. Such methods have been developed in different contekhave proven very
successful as reported for instance by Hiptmaii [18] for ieabk equations and by
Schoberl[[33] for incompressible elasticity with redudetégration.
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The main ingredients into such a method are a smoother wigehates on
the divergence free subspace and a grid transfer operatardoarse to fine mesh
which maps the coarse divergence free subspace into therfe Bhe second
objective can be achieved by using a mixed finite elementetigation for which
the weakly divergence free functions are point-wise digarg free. For such a
discretization, the natural finite element embedding dperfaom coarse to fine
mesh does not increase the divergence of a function. Dizatieins of this type
are available, such as for instance in Scott and Vogelius3&J6 Neilan and coau-
thors [14,16] and Zhan@ [£1,42]. Here, we focus on the diecg conforming dis-
continuous Galerkin (DivDG) method of Cockburn, Kansclaai] Schotzau [11]
due to its simplicity.

Following the approach by Schoberl [33], in order to stuthosthers for the
Stokes equations, we first consider a problem on the velagace only with
penalty for the divergence. This leads to a singularly pbed problem with an
operator with a large kernel. When it comes to smoothersuoh sperators, there
are two basic options. One approach is to smooth the keraekespxplicitly, as
proposed for instance by Hiptmalir [18] and Xuin[19]. Theeatbption was pre-
sented by Arnold, Falk, and Winther in [2, 3] and smootherskéirnel implicitly,
while never employing an explicit description of it.

We follow the implicit approach and use the same domain deogition prin-
ciple (i.e additive and multiplicative Schwarz methods aedtex patches), but
instead of the Maxwell or divergence dominated mass masrir /3] apply it to
the DivDG Stokes discretization. Then, we prove the coreseeg of the multigrid
method with variable V-cycle algorithm for the singularlgrpurbed problem. The
second pillar we rest on is the equivalence between sirgyserturbed, diver-
gence dominated elliptic forms and mixed formulations ldgthed by Schoberl
in [32,33]. This equivalence allows us to apply the smootbex mixed formula-
tion of nearly incompressible elasticity and then to praceethe Stokes limit.
As far as we know, the combination of these techniques hab@et applied
the DivDG method in[[1l1]. Since our analysis is based on daongicompo-
sition, fundamental results are also drawn from the senpapker by Feng and
Karakashian[[15] on domain decomposition for discontirsu@alerkin methods
for elliptic problems.

There is a close relation between our technique and the s@ostiggested
by Vanka in [38] for the MAC scheme: the MAC scheme can be amisd the
lowest order case of the DivDG methods (se€ [23]). In thiecHse subspace
decomposition structure of Vanka smoother correspondsetonidnn problems
on cells, while our smoother is based on Dirichlet problenrsvertex patches.
Generalizations of the Vanka smoother have been appliezbssfully to different
other discretizations albeit their velocity-pressurecggaare not matched in the
sense off(R) (see for instan¢e[37, 40] and literature chieds).

Recently, an alternative preconditioning method for Ssoltiscretizations of
the same type as here has been introduced]in [5] by Ayuso éthadir method
is based on auxiliary spaces introduced by Hiptmair and X[L8). The exact
sequence property of the divergence-conforming velodégnent plays a crucial
role as in our scheme, but their preconditioner uses a migltigethod for the
biharmonic problem to solve the Stokes problem. As a coresszp) it is not
possible to use the preconditioning method for no-slip lolauy conditions. On
the other hand, it has been demonstrated ih [26] that thegridimethod here can
be lifted to the biharmonic problem, providing an efficiengthod for clamped



boundary conditions.

The paper is organized as follows. In Secfidn 2 we preseninibdel prob-
lem and the DG discretization. The multigrid method and dandacomposition
smoother are derived in Sectioh 3. Secfibn 4 is devoted todheergence analysis
of our preconditioning technique with the man result in Tieedd on pagE]9. The
paper concludes with numerical experiments in Se¢fion 5.

2 The Stokes problem and its discretization

We consider discretizations of the Stokes equations

—Au + Vp=Ff in Q,
V-u =0 in Q, Q)
u = uP on 01,

with no-slip boundary conditions on a bounded and convexaio® C R?
with dimensiond = 2,3. The natural solution spaces for this problem &re=
H{ (; R?Y) for the velocityu and the space of mean value free square integrable
functions@Q = L(Q) for the pressure, although we point out that other well-
posed boundary conditions do not pose a problem.

In order to obtain a finite element discretization, we pantithe domain2
into a hierarchy of meshesl, }¢—o,...,. of parallelogram and parallelepiped cells
in two and three dimensions, respectively. In view of meit#l methods, the index
¢ refers to the mesh level defined as follows: let a coarse riigdie given. The
mesh hierarchy is defined recursively, such that the cellg,f are obtained by
splitting each cell off, into 2¢ congruent children (refinement). These meshes are
nested in the sense that every celllbfis equal to the union of its four children.
We define the mesh siZe; as the maximum of the diameters of the cellsTof
Due to the refinement process, we haye= 2 *hq.

By construction, these meshes are conforming in the seasevhry face of
a cell is either at the boundary or a whole face of another nellertheless, local
refinement and hanging nodes do not pose a particular probklaoe they can be
treated following[[20, 211]. ByF, we denote the set of all faces of the mégh
which is composed of the set of interior fadéisand the set of all boundary faces
F2.

We introduce a short hand notation for integral formslerand onF, by

G, = 3 [ 00vds (o), = 3 [ oo vas,
TeT, T rer, U F
_ 2, \? _ . \}
lolly, = (Z [etas)’ el (Fz [1oPas)’,

The point-wise multiplication operater ® v refers to the produapey, the scalar
product¢ - ¢» and the double contractiap : ¢ for scalar, vector and tensor argu-
ments, respectively. The modullig = /¢ © ¢ is defined accordingly.

In order to discretiz€ {1) on the medh, we choose discrete subspacés=
Vi X Q¢, WwhereQ, C Q. Following [11], we employ discrete subspadésof the



spaceH3"(Q), where
H™(Q) = {ve L*(RY)|V-v e L*(Q)},
HMQ) = {ve HY(Q)|vn =0 ondoQ}.

Here, we choose the well-known Raviart—-Thomas space [3@]we point out
that any pair of velocity spacdg and pressure spacék is admissible, if the key
relation

V-Ve=Qs 2

holds. The details of constructing the Raviart—-Thomasesfaltow.

Each cellT" € T, can be obtained as the image of a linear mapping of
the reference cell’ = [0, 1]¢. On the reference cell, we define two polynomial
spaces: firs@k, the space of polynomials ihvariables, such that the degree with
respect to each variable does not exgeeSegond, we consider the vector valued
space of Raviart—-Thomas polynomidfs = Q¢ + zQ. Polynomial space¥r
andQr on the mesh cell” are obtained by the pull-back under the mapping
(see for instance [4]). The polynomial degreés arbitrary, but chosen uniformly
on the whole mesh. Thus, we will omit the indexrom now on. Concluding this
construction, we obtain the finite element spaces

Ve={veHQNT € Te:vr € Vr},
Qe={q€ L{QIVT € Te: qir € Qr}.

2.1 Discontinuous Galerkin discretization

While the fact thafi; is a subspace OH(‘)"V(Q) implies continuity of the normal
component of its functions across interfaces between, ¢bltsis not true for tan-
gential components. Thus; ¢ H'(Q;R%), and it cannot be used immediately to
discretize[(]l). We follow the example in for instancel[11[2%] and apply a DG
formulation to the discretization of the elliptic operatblere, we focus on the in-
terior penalty method [L, 29]. L&f; andT: be two mesh cells with a joint fadg,
and letu; anduz be the traces of a functiomon F from T; andTx, respectively.
On this faceF’, we introduce the averaging operator

fup =12 @3)
In this notation, the interior penalty bilinear form reads
ae(u,v) = (Vu, Vo), + YHorf{uen}, fve n}}>m
—2({Vu},{n® v}})Fz —2({Vv}. {n® u}}>F§ 4

+ 2<0Lu,v>]F? — <8nu, v>]F? — <8nv, u>IF?.

The operator &” denotes the Kronecker product of two vectors. We note that t
term4{u @ n} : {v ® n} actually denotes the product of the jumpsucdindov.

The discrete weak formulation ¢fl(1) reads now: f{ad, p¢) € Vi x Q, such
that for all test functions, € V; andq, € Q. there holds

e (1) (%)) = aetuesvn) + (o0 F-00) = (g V) = Florsa) = ().
5)



Discussion on the existence and uniqueness of such sawt@nbe found for
instance in [[11,12, 17, 24]. Here, we summarize, that is sgtrim If o1, is suf-
ficiently large, the formu,(.,.) is positive definite independently of the multigrid
level ¢ € [0, L], and that thus we can define a normigrby

[[velly,, = Vae(ve, ve). ©)

In order to obtain optimal convergence results and to safisfposition 2.2 below,
or is chosen a&/hr, whereh;, is mesh size on the finest levél andv is a
positive constant depending on the polynomial degree. Byctioice, the bilinear
forms on lower levels are inherited from finer levels in thesss that

ae(U(g,v[) = aL(ug,Ue), \4 Ug, Uy € V. (7)

A particular feature of this method is (se¢e[10], 11]), tha slolutionu, is in
the divergence free subspace

V) = {ve € Vo|V-ve =0}, 8)

where the divergence condition is to be understood in tlemgtsense.
Proposition 0.1 (Inf-sup condition) For any pressure functiog € Q., there
exists a velocity function € V,, satisfying

inf sup V)

T >y > 0 ©)
qEQ, veEV) HUHVZHqHQe

wherevy, = c,/’}l—’; = ¢V2¢~L andc is a constant independent of the multigrid
levels.

Proof. The proof of this proposition can be found in [35, Sectior].6lddeed, a
different result is proven there, withy ~ 1/k, wherek is the polynomial de-
gree in thehp-method. Thorough study of the proof though reveals, thit th
k-dependence is due to the penalty parameter of the tarm: k*/he. In our
case, the penalty parameter depends on the fine mesh, ot each thav, ~
(he/hr)/he, and that the role of thé? in the penalty is taken by the factor
he/hr. |

For anyu € V;, we consider the following discrete Helmholtz decompositi
w=u’+ut (20)

whereu® € V; is the divergence free part and belongs to itsu(., .)-orthogonal
complement. For functions from this complement holds thienede:

LemmaO0.l. Letu* €V, bea,(.,.)-orthogonal toV?, that is,
ar(ut,v) =0 YoveV)
Then, there is a constant > 0 such that

NVt < arlutut) < vt (11)
d Ye

¢ is the inf-sup constant from inequalif).



Proof. On the left side, we already argued above thatis chosen large enough
such thata,(.,.) is uniformly positive definite. Thus, we have with a positive
constanty

allVut 2, < a(ut,ub).

But then,
2
(V'UJ—,V'UL) < d? (Vul,VuJ‘) < d—az(uL,uJ‘),
Q T, a
On the right side, lef = V-u!. Theng € Q. due to[2). From[{9), we conclude
that there isu € V; such thatV-u = ¢ andHun < 1/7¢|lqll- On the other

hand,u" is the error of the orthogonal projection inkf’. Thus,u must be the
element with minimal norm, and in particulﬁuLHV[ < ||u||w. O

2.2 Thenearly incompressible problem

We are going to prove convergence uniform with respect taefiaement level
£ of the proposed multigrid method for the Stokes problem hyiadimg twice.
First, we provide estimates robust with respect to the patama of the nearly
incompressible problem: finfue,pe) € Vi x Q. such that for all(ve, q¢) €

Ve x Q. there holds

ac (1) (%)) + & v = Fonsan (12)

This problem is connected with the simpler penalty bilinfeam (see for in-
stance alsd [17])

A e (ue,ve) = ae(ue,ve) + e (Voug, Veug) (13)

and the singularly perturbed, elliptic problem: find € V; such that for alb, €
V; there holds

Age(ue,ve) = (f,ve) - (14)

Lemma0.2. Let(um,pm) be the solution tqI2) and u. be the solution t{d14).
Then, if (2) holds, the following equations hold true:

Um = Ue, and epm = V- um = V- ue.
Proof. Testing [I2) withv, = 0 andq, € Q. yields
- (v'u'nu ql) + E(pm7 qZ) =0 Vg€ Ql.

Due to [2), this translates to the point-wise equadity,, = V -u.,. Substituting
pm in (I2) and testing with the paiw,, V-v,), which is possible again due {d (2),
we obtain that,,, solves[(1#).

If on the other hand.. solves[(1#), we introduge. = %Vue, which translates
to

— (Vete,qe) +€(pe,q0) =0 Vqu € Qe

corresponding to[(12) tested wiil, ;). On the other hand[(12) tested with
(ve, 0) is obtained directly from[{d4) substituting.. Thus, the equivalence is
proven. O



In order to help keeping the notation separate, we adopottefing conven-
tion: the subscript is dropped wherever possible. Furthermore, curly lettefiesr
to the mixed form, while straight capitals refer to operaton the velocity space
only. Thus:

a¢(u, v) the vector valued interior penalty form
A (u,v) the form of the singularly perturbed, elliptic problelmi(14)

u v . -
A <<p> , (q>) the mixed bilinear form{112)

Similarly, capital letters like inR, for the smoother[(26) refer to the singularly
perturbed, elliptic problem, whil&, is the corresponding symbol for the Stokes
smoother[(24). Additionally, we associate operators wilindar forms using the
same symbol:

Ave : Vo= Vi (Ageu,v) = Are (u,v) = Ag(u,v) = Ap(u,v) Yu,v € Ve

’

Ape : Xoe = Xo (Arez,y) = Are (z,y) = Ae(z,y) = Ar(z,y)  Vo,y € X

3 Multigrid method

In Sectior 2, we introduced hierarchies of mesfi&s}. Due to the nestedness of
mesh cells, the finite element spaces associated with theskes are nested as
well:

Vo c W c ... C Vi,
Qo cC Q1 C ... C Qr.
X():VE)XQO c X1 C ... C VLXQL:XL.
This relation also extends to the divergence free subspaeedor instancé [26]:
Ve ¢ vwW oc ... c V. (15)

The nestedness of the spaces implies that there is a sequfematiral injec-
tionsZ, : X, — X¢y1 of the formZe(ve, ge) = (Le,uve, Ir,pge), Such that

Iow: Ve —= Viga, Iop: Qe = Qey1, (16)
Ié,u : ‘/ZO — Vé(lrl- (17)

The L?-projection fromX,, — X, is defined byZj (ve, q¢) = (I{ ,ve, If ,qe)
with

(ves1 — Izuvuhwz) =0Vuwr € Ve (qe1— If’pquhw) =0Vre € Qq.
(18)

The A-orthogonal projectioP, from (Vz, x Q1) — (Ve x Q¢) is defined by

() @) =4(G) @) e

for all (u,p) € (Vo x Qr), (ve,q¢) € Ve x Q. Similarly, The A-orthogonal
projectionP, from V;, — V; is defined by

AL(P[U,, ’Ue) = AL(U,’Ue) (20)

forallu € Vi,,v, € V.



3.1 TheV-cyclealgorithm

In this subsection we define V-cycle multigrid precondigeB, . and B, . for
the operators4, . and A, ., respectively. For simplicity of the presentation, we
drop the index.

First, we define the action of the multigrid preconditiod®r : X, — X,
recursively as the multigrid V-cycle withu(¢) > 1 pre- and post-smoothing steps.
Let R, be a suitable smoother. LBy = Agl. For¢ > 1, define the action 0B,
on avectorl, = (f¢, ge) by

1. Pre-smoothing: begin witfuo, po) = (0, 0) and let

<Z> = @:) +Re <‘f — A (Zj)) i=1,....m(0), (212)

2. Coarse grid correction:

(“’"“)“) = <“m“)) + BeaZi <ﬁl — A (“"“’”)) . (21b)
Pm(e)+1 Pm(e) Pm(e)

3. Post-smoothing:

(“) = (“H) +Re (u — A, (“H)) . i=m)+2,...,2m) +1
Di Pi—1 Di—1

(21c)

4, Assign:

BiLy = <u2m(2)+1> (Zld)
Pam(e)+1

We distinguish between the standard and variable V-cygerghms by the
choice

0 m(L) standard V-cycle,
m =
m(L)2¥~¢ variable V-cycle,

where the number (L) of smoothing steps on the finest level is a free parameter.
We refer to3;, as the V-cycle preconditioner of .. The iteration

(Z’Zﬁ> - (ZZ) + B (ﬁL — A (Z’,j)) (22)

is the V-cycle iteration.
The definition of the preconditionds, : V, — V/ for the elliptic operatord,
follows the same concept, but dropping the pressure vasabl

3.2 Overlapping Schwarz smoothers

In this subsection, we define a class of smoothing operderbased on a sub-
space decomposition of the spa&e. Let N, be the set of vertices in the tri-
angulationT,, and letT,,, be the set of cells ifT, sharing the vertex.. They
form a triangulation withV (N > 0) subdomains or patches which we denote by
{Qé,v}{)\rzl-



The subspac&,,., = Vi, X Qe consists of the functions X, with support
in Q... Note that this implies homogeneous slip boundary conuitamos?, ., for
the velocity subspack¥; ,, and zero mean value dny,,, for the pressure subspace
Q¢,». The Ritz projectiorP,,, : X, — Xy, is defined by the equation

() 4G ) )
De qe,v Pbe qe,v qev
(23)

Note that each cell belongs to not more than four (eight in g&ghesT, ., one
for each of its vertices.
Then we define the additive Schwarz smoother

Re =n Z P@,l;AZl (24)
vEN,

wheren € (0, 1] is a scaling factorR, is L? symmetric and positive definite.
Similarly, we define smoothers of the singularly perturbiigtec operatorA,,
namely,P; ., : Vo — V; ., is defined as

A (Pevue, ve,0) = Ae (te, ve,0) Yvg,w € Vi,v, (25)

and the additive Schwarz smoother is

Re=n Y PuoA;' (26)
vEN,

4 Convergence analysis

In this section, we provide a proof of the convergence foruagable V-cycle
iteration with additive Schwarz preconditioning methodur@roof is based on
the assumption that the domdihis bounded and convex, which will be omitted
for simplicity in the statement of following theorems anajpositions. Our main
resultis:

Theorem 1. The multilevel iteratior? — B Ay for the Stokes problerfd) with

the variable V-cycle operataB;, defined in Sectioh 3.1 employing the smoother
R, defined in equatiorf24) with suitably small scaling facton is a contraction
with contraction number independent of the mesh Iével

Proof. First, we consider the nearly incompressible problenh (F2). this weak
formulation, we have by Theorelm 3, that the multigrid mettiod B . AL . is
equivalent to the methofl — B . Ay,.. applied to the singularly perturbed prob-
lem (13) in the velocity space.

Convergence of the multilevel iteratidn— By . AL, is shown in Theorerl 2
for all e > 0 with a contraction numbef < 1 independent of. ande. Thus, by
Theorem[B, the same holds fbr— By, . Ay . with positivee.

Finally, in (I2) we can let converge to zero. The limit yields the well-posed
Stokes problen({5), and since the contraction nundbisrindependent of, we
obtain uniform convergence with respect to the mesh Iévat the limite —

0. O

The theorems and lemmas of the following subsections serestablish the
building blocks of the proof of Theoreh 1.



4.1 Thesingularly perturbed problem

Theorem 2. Let R, be the smoother defined@g) with suitably small scaling fac-
tor n. Then, the multilevel iteratiod — By, A1, with the variable V-cycle operator
By, defined in Sectidn 3.1 is a contraction with contraction nanihdependent of
the mesh level, and the parameter.

The proof of this theorem is postponed to pagk 12 and relies on
Proposition 2.1. If R, satisfies the conditions:

AL ((I — ReAe)w,w) >0, YweV, (27)
and

(R, MI = Pooa]w, [I — Pe—1]w) < BeAL([I — Po—i]w, [I — Pr—i]w), Yw €V,
(28)

wheres, = O(Vie) is defined in equatiog5) below. Then
0< AL((I — BgAg)w7w) < JAp(w,w), YweV, (29)
whered = HLC and C are defined in Lemnia3.3.

Proof. Inthe case of self-adjoint operatafs which are inherited from a common
bilinear forma(_, .), this proposition would be part of the standard multigriektty

if B¢ were constant. Its proof can be adapted from similar thesiiarf2/8/9]. We
will prove the version needed here in the appendix. a

In the remainder of this section we use several propositars lemmas to
establish our smootheR, satisfies the assumptions of Proposifiod 2.1. #cF
(I — P;—1)w with arbitraryw € V,, it follows from the discrete Helmholtz decom-
position in Sectio]2 and the projection operakr, in Sectior 3.P that: admits
a local discrete Helmholtz decomposition

Uy = ug + uf; (30)

Lemma 2.1. Given L?-symmetric positive definit&, defined in[3R and sym-
metric positive definited ;. (-, -) defined in(13), there exists a constante (0, 1]
independent of such that

n(R; 'u,u) = inf Z Ar(uo, uy) (31)

Uy €V o

Proof. The following proof can be found ifi[2] for the-inner product instead of
ae(.,.). We copy it here to ascertain that it does not depend on thlastructure
of the operatord 1, since it is purely algebraic. Thus, it applies to the operaltp
in this paper as it applies to the different operator appiexie. Recall that

Re=n Y PoAj'=n Y P,AL" (32)
vEN, veEN,

From

u= Z Uy (33)



we get

n(Ry \u,u) =n Y (R u,u) (34)
vEN,
=1 > (AePLo AL R ) )
vEN,
1
2
<83 (AP AT R AT R ) Y (A, )
vEN, vEN,

(36)

1

%{(Aw AR )}1 { > (ALuv,uu)} (37

veEN,

veEN,

o {0} { > <va,uu>} (38)

The above inequality works for arbitrary splitting, hence mave

RZ u, U Z AL U’U7U’U (39)
vEN,

For the choices, = Py, Pr A7 R~ u we get

(Rz U, u) ., 1En‘§ Z Ar(ty, uy) (40)
EZ uve_z UEN@
O

Lemma2.2. Given the local Helmholtz decomposition(@). For anyu} € Vi,
, there exists constadf; independent of multigrid level satisfying:

SV P < S anud,ud) (41)

vEN, vEN,

Proof. It follows from Lemma0.1L that the estimafie’ - u* ||* < Cag(ut,ub)
hold for allu™ € V;. Itis easy to see that; ., is a subspace o¥; for any v,
so the estimate are also valid on any patch. In 2-D case, dheotdd at most
be sharing by four patches(eight patches in 3D). Hence thésts a constant’;
independent of multigrid level such that the estimates $i6dd the summation of
local estimates. |

Proposition 2.2. Given the overlapping subspace decompositioW,df [3.2 and
the interior penalty bilinear forma, (u, v) in @). Assumer, is chosen sufficiently
large, the following estimate holds on each le¢elThen, there is a constauts
which is independent of multigrid level such that for ang V; holds

Z ag(umuv) < C2al(u7 u) (42)
vEN,

11

=



Proof. For a fixedL, the penalty constamt, isa/h which is greater tha&/h,.
For the latter, this is a standard result: the proof and detai the choice of can
be found in[[15, p. 1361]. |

Proof of Theoreri]2 Recall the definition ofA . -orthogonal projections®, and

P, which restrict the projection of2,,,.(zero elsewhere). Following|[2], we show

that if 0 < n < 1/4, the smootheR, satisfies the first condition in Theordth 2.
Forw eV,

AL([I = ReAdw, w) = Ap(w,w) —n > Ap(Pryw, w) (43)
vEN,

but
Ap(Poyw,w) = A (Prow, Prow) < Ap(w, w)? AL (Pyyw, Prow)? (44)
SO

Z A (Prow,w) < Z Arp(w,w) < 4Ar(w,w) (45)
vEN, veEN,

Hence the first hypothesis holds.

Thus, it remains to check the second condition which coulcebdeced to the
following problem: foru = (I — P,—1)w (Wherew € V) with the decomposition
u =73 uy,thereisa constart such that

Z AL (uv, uy) < CAL(u,u) (46)
vEN,

Following Lemma$§ 0J1. 21 L. 2.2 and Proposifion 2.2, we get:

Z AL Uy, uy) = Z {ae(uv, uo) + e NV up,, V- vy) } 47)

vEN, vENy
= > {awo,u) +e7(Vw, Vow)} o @8)
vEN,
< Coap(u,u) + Y Clls’laz(uiui) (49)
a
vEN,
< Crae(u,u) + 67101éaz(ul,ul) (50)
< C’za;;(u,u)—!-EJC&ll (V'UL,V'UL) (51)
QY
= Crar(u,u) + 57101ll (V-u,V-u) (52)
a7y
11
< max{C’g,C1—— }AL(U,U) (53)
QY
= CKAL(U,U) (54)
WhereC’z:max{C’mCH%%Z}- U
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Now set
1
Be = ;C{ (55)

We have verified the two conditions in Proposition]2.1.

Lemma 2.3. Giveng, above andn(¢) defined in[31L, there is a constafitsuch
that

Be A
(o) = ¢ (56)

Proof. We will discuss this inequality in two cases: firstgif = %CQ, then

1 1
Be 502 502 N
= < =: 57
2m(f)  2mo2L—t = 2mg ¢ (57)
On the other hand, if = 7%01&%

Cy21y2L-t Cp Ll c,il

LY —_—eac < _ac_.¢ (58)
2m(¢) 2mo2L—* 2mov/2E—¢ 2mo

O

4.2 The mixed problem

Secondly, we will discuss the Stokes equation in mixed g SetX,. :=
{(ue,pe) € X¢: V-ug = epe}. Now, it remains to show the equivalence between
the multigrid algorithms.

Proposition 2.3. The multigrid components fulfill the following properties:

1. The smootheR, for the mixed problem defined {@4) preservesX, .. On
the subspace it is equivalent to the smootRerin primal variables. This
means fo(ue, p¢) € X¢,- and

<”‘f’“’) =Ry (“‘) (59)
be pe
there hold(«,, p¢) € Xy, and

’llz = Rzuz (60)

2. The prolongatior?,—; mapsX,_i . into X,.. Onthe subspace itis equiva-
lent to the prolongatiod, in primal variables. This means f¢t,—1,p¢—1) €

Xe—1,and
<“f> — 1 (“‘H) (61)
Pe Pe—1

there holdg(4d,, p¢) € X¢,- and

ﬂ( = I[(U(fl) (62)
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3. The coarse grid solution operator mafg_1 . into X .. On the subspace
it is equivalent to the coarse grid solution operator in paiwariables. This
means fo(ue, p¢) € X¢,- and

(ﬂ“l) = AL [T Al <Z§> (63)

De—1
there holds(ti¢—1, pe—1) € X¢—1,- and
o1 = Ay [To-1]" Agug (64)

Proof. The proof of this proposition can be found for the operatbesée in [33, p.
93]. We do not provide it here since the arguments are puirgdat algebra, and
thus apply independent of the actual bilinear form. |

Theorem 3. The multigrid algorithm in mixed variables preserves thacgXy ..
On this subspace it is equivalent to the multigrid algorithmprimal variables.
This means fofue, p¢) € Xe,. and (e, pe) = Be(ue, pe) there holds(de, pe) €
X¢,. and

u} = B(U( (65)
whereB, and B, are the corresponding multigrid operators for each algnit.
Proof. The multigrid operatoiB, fulfills the recursion

By = A", (66)

By = (Re)™ (I = Io(I — (Be-1)) Ay [Te-1]" Ag) (Re)™, (67)

and the mixed operatds, fulfills a corresponding one. Then we apply the above
proposition, and the theorem is proved by induction. |

5 Numerical results

We test the additive Schwarz method which we have analyzeleirpreceding
section in order to ascertain that the contraction numbershat only bounded
away from one, but are actually small enough to make this otkethteresting.
Furthermore, we conduct experiments, which go beyond aalysis, in particular
regarding the choice of the penalty parameter and the nuoftenoothing steps
on lower levels.

The experimental setup for most of the tables is as follow& domain is
Q = [-1,1]?, the coarsest mesh, consists of a single cell = Q. The mesh
T, on level/ is obtained by dividing all cells iff,_; into four quadrilaterals by
connecting the edge midpoints. Thus, a mesh on lekiab4’ cells, and the length
of their edges i2' . The right hand side i§ = (1,1). For the relaxation
parameter in the additive Schwarz method, we found @tiais the value which
provides the best results for all experimental setups, en@rekeep it there in all
the following experimental setups.
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level RTY\ RI
3 4 4
2 | 4 4
5 4 4
6 | 4 4
7 4 4
8 | 4 5

Table 1: Number of iterationsg to reduce the residual by0—% with the variable
V-cycle algorithm with penalty parameter dependent of thedi level mesh size.

m(f) =1 m(f) =2
level | RTy RI> | RT1 RT»
3 7 7 4 4
4 7 7 4 4
5 7 7 4 4
6 7 7 4 4
7 8 8 4 4
8 8 8 4 4

Table 2: Number of iterationsg to reduce the residual by0—¢ with the standard
V-cycle iteration with one and two pre- and post-smoothitggps. Penalty parameter
dependent of the finest level mesh size.

In Table 3, we first test the additive Schwarz smoother usinable V-cycle
algorithm on a square domain with no-slip boundary conditi&or the penalty
constant in the DG forn{4), we choose the penalty paramstef/a, , wheres =
(k4+1)(k+2), onthe finestlevel and all lower leveld. Results for different pairs
of RT%/Qs are reported in the table which show the fast and uniformemance.

In Table 2, we keep the same experimental setup and preseation counts
for the standard V-cycle algorithm with one and two pre- aostgsmoothing steps,
respectively. Although our analysis does not apply, wé aliserve uniform con-
vergence results. We also see that the variable V-cycle avimgle smoothing
step on the finest level is as fast as the standard V-cycletwilsmoothing steps,
and thus the variable V-cycle is more efficient.

In Table[3, we test the variable and standard V-cycles wittaftg parameters
depending on the mesh lev&lnamelys /h, (whereg is a positive constant de-
pending on the polynomial degree) in the DG forfd (4). While convergence
analysis does not cover this case either, we observe caneggates equal to the
case with inherited forms.

In Table [4, we provide results with GMRES solver dfg as preconditioner
for different experimental setups as in Tallésl1, 2 hhd 3eaisely. The second
and third columns are results for variable V-cycle with ggnparameter depen-
dent of the finest level mesh size. The fourth and fifth coluamesthe results for
standard V-cycle with penalty parameter dependent of tresfilevel mesh size.
The last two columns are the results for standard V-cycla pénalty parameter
depend on the mesh size of each level. From this table, wenae¢the GMRES

15



variable standard

level | RTy RI1> | RT1 RT»
3 4 4 7 7
4 4 4 7 7
5 4 4 7 7
6 4 4 7 7
7 4 4 7 8
8 4 5 8 8

Table 3: Penalty parameter dependent on the mesh size ofex@thNumber of iter-
ationsng to reduce the residual by —¢ with variable and standard V-cycle iterations
with m(L) = 1.

variable standard | noninherited
level RTY RI, | RIT RI> | RT RT5
3 2 2 2 2 2 2
4 3 3 3 3 3 3
5 3 3 4 3 4 4
6 3 3 5 4 5 5
7 3 3 5 5 5 5
8 5 4 6 6 8 6

Table 4: Number of iterationsg to reduce the residual by —% with GMRES solver
and preconditioneB;,; variable and standard V-cycle with inherited forms, Viaiga
V-cycle with noninherited forms. One pre- and post-smaujtstep on the finest level.

method, as expected, is faster in every case.

6 Conclusions

In this paper, we have investigated smoothers based on #® introduced by
Arnold, Falk, and Winther for problems %" in a variable V-cycle precondi-
tioner for the Stokes system. We presented the convergeratgses and showed
uniform contraction independent on the mesh level. In nicakexperiments we
showed that the contraction is not only uniform, but alsgyviast, thus making
our method a feasible solver or preconditioner.

In theory, the performance of the smoother relies on an esaaptence property
of finite element spaces, in particular &H"-conforming discontinuous Galerkin
discretization of the Stokes problem. Our experiments withTaylor—Hood ele-
ments, where the method fails, demonstrate that this ismattéact of the analy-
sis, but that the technique does not work due to the lack okactélodge decom-
position and nested divergence free subspaces.
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A Proof for Proposition 2]

Following the proof in [[2], we want to show by induction athat
0 <AL((I — BsAiu,u) < 6AL(u,u), YueV, (68)

Fori = 1 is obvious sinceB; = A;'. Now check if the above inequality hold
fori = ¢ — 1. Recall the relaxation operatéf, = I — R, A, and the recurrence
relation :

I—BeAr =K1 = Pioy) + (I = Bio1 A1) P | KO (69)

The lower bound easily follows from the inductive hypotlsemnd the above iden-
tity. For the upper bound, we use the induction hypothesibtain

AL((I = BeAd)u,u) < Ap([I — Po 1] KJ"Ou, K"Ow) + 6 AL (P KM Ou, KM Ow)

(70)
=1 =8)AL([I — Pa) K Ou, K"Ou) + 6 AL (KO u, K" Ou).
(71)
Now by the orthogonality fron[(20)

AL([I — Po ] KM Ou, [T — Py K™Y 72
(] 01K, | 1K, ) (72)
= Ap([I — P KO u, K" ) (73)
= (I = P K" Ou, AgK ) (74)
= (BRI — P )K" u, Ry AK) ) (75)
< (BRI = Py K Ou, [T — P K Ou)2 (R AK T Ou, A KOs
(76)

< VBl = P KM Ou [T — P ) K Ou)s (R A K™ Oy A KOs
77

Hence, we get
AL([I = P )K" u, KM Ou) < Bo(ReAK ) Ou, AcK)" Ou) — (78)
= BeAL([I = Kea]K;™ P, u) (79)

It follows from the positive semi-definiteness ad](27) thatspectrum of(,
is contained in the intervad, 1]. Therefore, we have

Ar([I - Kgfl]Kfm(e)mu) < AL([I — Ko Kju,u),  for i < 2m(f)

(80)
whence
1 2m(f)—1 )
ArL([I = Ko ] K7™ u,u) < D) > Al - KJKju,u) - (81)
i=0
_ 1 _ 2m(£)
- 2m(£) AL([I KZ]KZ u, u) (82)
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Combining [[70) and[{80) and following Lemnia_R.3, we get

AL((I = BeAd)u,u) < (1= 8) =2 AL ([ = K*™OJu, u) + 6 A (KO, KO

2m(0)
(83)
< (1 =8CAL(I — K™ O, u) + 6 Ap (K Ou, K" w) (84)
= (1—=8)CAL(u,u) +[6 — (1 — §)C|AL (K Ou, K" u) (85)
The results now follows by choosing :
A C
d=(1-0)C, ie, 6:1+é (86)
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