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Convergence analysis of an adaptive interior
penalty discontinuous Galerkin method for
the biharmonic problem
Abstract: For the biharmonic problem, we study the convergence of adaptive C0-Interior Penalty Discontin-
uous Galerkin (C0-IPDG) methods of any polynomial order. We note that C0-IPDG methods for fourth order
elliptic boundary value problems have been suggested in [9, 17], whereas residual-type a posteriori error es-
timators for C0-IPDG methods applied to the biharmonic equation have been developed and analyzed in
[8, 18]. Following the convergence analysis of adaptive IPDG methods for second order elliptic problems [6],
we prove a contraction property for a weighted sum of the C0-IPDG energy norm of the global discretization
error and the estimator. The proof of the contraction property is based on the reliability of the estimator, a
quasi-orthogonality result, and an estimator reduction property. Numerical results are given that illustrate
the performance of the adaptive C0-IPDG approach.
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For second order elliptic boundary value problems, adaptive �nite element methods (AFEM) are well estab-
lished numerical tools that have been intensively studied in the literature (cf., e.g., [1, 3, 4, 16, 25, 28] and the
references therein). The convergence analysis of AFEM for conforming discretizations has been initiated in
[14] (cf. also [24]) with the most far reaching result so far given in [13]. Nonconforming discretizations based
on the lowest order Crouzeix–Raviart elements have been addressed in [11], whereas for Interior Penalty Dis-
continuous Galerkin (IPDG) methods we refer to [6]. However, considerably less work has been devoted to
AFEM for nonconforming discretizations of fourth order elliptic boundary value problems. As far as IPDG
approaches are concerned, C0-IPDGmethods have been suggested in [15] (cf. also [30]) and subsequently an-
alyzed in [9] focusing on anapriori error analysis. Anaposteriori error analysis of quadratic C0-IPDGmethods
based on residual-type a posteriori error estimators has been performed in [8], however, without addressing
the issue of convergence.

The purpose of this contribution is to provide a convergence analysis of C0-IPDG methods of any poly-
nomial order for the biharmonic problem. The residual a posteriori error estimator consists of element and
edge residuals and is a generalization to arbitrary polynomial degree k ⩾ 2 of the one considered in [8] for
the case k = 2. The reliability of the estimator can be shown by similar techniques as in [8]. Together with
the standard estimator reduction for Dör�er marking (Lemma 4.1) and a quasi-orthogonality result (Theo-
rem 5.3) this results in a contraction property for a weighted sum of the C0-IPDG energy norm of the global
discretization error and the estimator (Theorem 6.1). We note that in case of IPDG approximations of second
order elliptic boundary value problems a contraction property for the IPDG energy norm of the error has been
established in [19, 22] based on the reliability of the estimator, its local e�ciency up to data oscillations, as
well as a quasi-orthogonality property. The proof of the local e�ciency relies on the interior node property.
In contrast to these results, the contraction property which will be established here does neither require the
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interior node property nor does it involve marking by data oscillations. Although the basic ingredients for
the proof (reliability, estimator reduction, and quasi-orthogonality) are the same as in [6], their realizations
are not straightforward and require to take into account the particular structure of the estimator. To our best
knowledge this is the �rst contribution containing numerical results for high order IPDG approximations of
the biharmonic problem that con�rm the theoretically achievable quasi-optimal convergence rates.

1 C0-interior penalty Discontinuous Galerkin method
Let Ω ⊂ ℝ2 be a bounded polygonal domain with boundary Γ = ∂Ω. For a given function f ∈ L2(Ω) we
consider the biharmonic problem

∆2u = f in Ω (1.1a)

u =
∂u
∂n

= 0 on Γ. (1.1b)

We use standard notation from Lebesgue and Sobolev space theory [27]. In particular, (⋅, ⋅)0,Ω and ‖ ⋅ ‖0,Ω
stand for the inner product on L2(Ω) and the associated norm. Moreover, Hk(Ω), k ∈ ℕ, refers to the Sobolev
space with norm ‖ ⋅ ‖k,Ω and seminorm | ⋅ |k,Ω, whereas Hk0(Ω) denotes the closure of C

∞
0 (Ω)with respect to the

topology induced by ‖ ⋅ ‖k,Ω. The Sobolev spaces with broken index s ∈ ℝ+ can be de�ned by interpolation
and are referred to as Hs(Ω).

A weak formulation of (1.1) requires the computation of u ∈ V := H2
0(Ω) such that

a(u, v) = ( f, v)0,Ω , v ∈ V (1.2)

where the bilinear form a(⋅, ⋅) is given by

a(v, w) = (D2v, D2w)0,Ω := ∑|β|=2(Dβv, Dβw)0,Ω , v, w ∈ V. (1.3)

Let Th(Ω) be a geometrically conforming simplicial triangulation of Ω. For D ⊆ Ω, we denote by Eh(D) the set
of edges of Th(Ω) in D. For T ∈ Th(Ω) and E ∈ Eh(Ω)we denote by hT and hE the diameter of T and the length
of E, and we set h := max {h − T | T ∈ Th(Ω)}. For two quantities A and B we write A ≲ B, if there exists a
constant C > 0 independent of h such that A ⩽ CB.

Denoting by Pk(T), k ∈ ℕ, the linear space of polynomials of degree ⩽ k on T, for k ⩾ 2 we refer to

Vh := {vh ∈ H1
0(Ω) | vh|T ∈ Pk(T), T ∈ Th(Ω)} (1.4)

as the �nite element space of Lagrangian �nite elements of type k (cf., e.g., [7]). For D ⊆ Ω, we denote by
Nh(D) as the set of nodal points in D such that any vh ∈ Vh is uniquely determined by its degrees of freedom
vh(a), a ∈ Nh(Ω).

We note that Vh ̸⊂ V and hence, Vh is a nonconforming �nite element space for the approximation of
the biharmonic problem (1.2). In particular, for vh ∈ Vh the normal derivative ∂vh/∂n exhibits jumps across
interior edges E ∈ EΩh . After numbering of the elements T ∈ Th(Ω), for E ∈ Eh(Ω), E = Ti ∩ Tj , i > j, we set
T+
E := Ti , T−

E := Tj , and for E ∈ EΓh , E = Tℓ ∩ Γ, we set TE := Tℓ. Then, for 1 ⩽ ν ⩽ 2 we de�ne averages and
jumps according to

{
∂νvh
∂nν }

E
:=

{{
{{
{

1
2(

∂νvh
∂nν

!!!!!!E∩T+
E
+
∂νvh
∂nν

!!!!!!E∩T−
E
), E ∈ Eh(Ω)

∂νvh
∂nν

!!!!!!E∩TE , E ∈ Eh(Γ)
(1.5a)

[
∂νvh
∂nν ]

E
:=

{{
{{
{

∂νvh
∂nν

!!!!!!E∩T+
E
−
∂νvh
∂nν

!!!!!!E∩T−
E
, E ∈ Eh(Ω)

∂νvh
∂nν

!!!!!!E∩TE , E ∈ Eh(Γ)
(1.5b)
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where n is the unit normal vector on E pointing in the direction from T−
E to T+

E for E ∈ Eh(Ω) and the exterior
normal vector for E ∈ Eh(Γ).

We further refer to Mh(Th(Ω);ℝ2×2) as the set of matrix-valued functions on Th(Ω) such that for Wh ∈
Mh(Th(Ω);ℝ2×2) the restrictionWh|T , T ∈ Th(Ω), is a 2×2matrixwith entries that are polynomials of order k.

Given a penalty parameter α > 1, the C0-IPDGmethod for the approximation of (1.2) requires the compu-
tation of uh ∈ Vh such that

aIPh (uh , vh) = ( f, vh)0,Ω , vh ∈ Vh . (1.6)

Here, the mesh-dependent bilinear form aIPh (⋅, ⋅) : Vh × Vh → ℝ is given according to

aIPh (vh , wh) := ∑
T∈Th(Ω)(D2vh , D2wh)0,T + ∑

E∈Eh(Ω)({∂2vh∂n2
}
E
, [∂wh∂n ]

E
)
0,E

+ ∑
E∈Eh(Ω)([∂vh∂n ]

E
,{∂

2wh
∂n2

}
E
)
0,E

+ α ∑
E∈Eh(Ω) h−1E ([

∂vh
∂n ]

E
, [∂wh∂n ]

E
)
0,E

. (1.7)

We note that aIPh (⋅, ⋅) is not well de�ned for v, w ∈ V which can be cured in terms of a lifting operator L :
L2(Eh(Ω),ℝ2) → Mh(Th(Ω);ℝ2×2) given by

(L(q),Wh)0,Ω := ∑
E∈Eh(Ω)([n ⋅ q]E , {n ⋅Whn}E)0,E (1.8)

for Wh ∈ Mh(Th(Ω);ℝ2×2). We refer to [20, 21] for lifting operators in case of DG approximations of second
order problems and to [18] for a lifting operator associatedwith IPDG approximations of the biharmonic prob-
lem. The bilinear form aIPh (⋅, ⋅) can be extended to V + Vh by means of

aIPh (v, w) := ∑
T∈Th(Ω)(D2v, D2w)0,T + ∑

T∈Th(Ω)(L(∇w), D2v)0,T (1.9)

+ ∑
T∈Th(Ω)(L(∇v), D2w)0,T + α ∑

E∈Eh(Ω) h−1E ([
∂v
∂n]E

, [∂w∂n ]E
)
0,E

where with a slight abuse of notation we have also used aIPh (⋅, ⋅) for that extension.
The lifting operator satis�es the following stability estimate.

Theorem 1.1. Let L : L2(Eh(Ω),ℝ2) → Mh(Th(Ω);ℝ2×2) be the lifting operator as given by (1.8). Then, there
exists a positive constant CL, depending only on the local geometry of the triangulation and on the polynomial
order k, such that there holds

‖L(q)‖20,Ω ⩽ CL ∑
E∈Eh(Ω) h−1E ‖[n ⋅ q]E‖20,E , q ∈ L2(Eh(Ω),ℝ2). (1.10)

Proof. For q ∈ L2(Eh(Ω),ℝ2) andWh ∈ Mh(Th(Ω);ℝ2×2) we have

‖L(q)‖0,Ω = sup‖Wh‖0,Ω⩽1 |(L(q),Wh)0,Ω|.

In view of (1.8) we �nd

|(L(q),Wh)0,Ω| ⩽ ( ∑
E∈Eh(Ω) ‖[n ⋅ q]E‖20,E)

1/2
( ∑
T∈Th(Ω) ‖n∂T ⋅Whn∂T‖20,∂T)

1/2
where n∂T is the exterior unit normal on ∂T. Then, the trace inequality (cf., e.g., [29]):

‖n∂T ⋅Whn∂T‖0,∂T ≲ k h−1/2T ‖Wh‖0,T , T ∈ Th(Ω)

gives the assertion.
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On V + Vh we introduce the mesh-dependent C0-IPDG norm

‖v‖22,h,Ω := ∑
T∈Th(Ω) |v|22,T + ∑

E∈Eh(Ω) αhE
""""""""
[
∂v
∂n]E

""""""""

2

0,E
, v ∈ V + Vh (1.11)

where | ⋅ |22,T stands for

| ⋅ |22,T := ∑|β|=2 ‖Dβ ⋅ ‖20,T , T ∈ Th . (1.12)

It has been shown in [9] that for su�ciently large penalty parameter α there exists a positive constant ã < 1
such that

aIPh (v, v) ⩾ ã ‖v‖22,h,Ω , v ∈ V + Vh (1.13)

whereas there exists a constant C1 > 1 such that for any α ⩾ 1

aIPh (v, w) ⩽ C1 ‖v‖2,h,Ω ‖w‖2,h,Ω , v, w ∈ V + Vh . (1.14)

In particular, it follows from (1.13) and (1.14) that (1.6) admits a unique solution uh ∈ Vh.

2 Residual-type a posteriori error estimator and its reliability
For adaptive mesh re�nement we consider the residual-type a posteriori error estimator

η2h := ∑
T∈Th η2T + ∑

E∈Eh(Ω) η2E + ∑
E∈Eh(Ω) η2E,c (2.1)

where the element residuals ηT , T ∈ Th(Ω), and the edge residuals ηE , E ∈ Eh(Ω), as well as ηE,c , E ∈ Eh(Ω),
are given by

η2T := h
4
T ‖ f − ∆2uh‖20,T , T ∈ Th(Ω) (2.2a)

η2E := hE
"""""""""
[
∂2uh
∂n2

]
E

"""""""""

2

0,E
+ h3E

""""""""
[
∂
∂n
∆uh]

E

""""""""

2

0,E
, E ∈ Eh(Ω) (2.2b)

η2E,c := α η̂
2
E,c , η̂2E,c := h−1E """"""""

[
∂uh
∂n ]

E

""""""""

2

0,E
, E ∈ Eh(Ω). (2.2c)

For notational convenience we set

η2h,c := α η̂
2
h,c , η̂2h,c := ∑

E∈Eh(Ω) η2E,c . (2.3)

The term η̂h,c represents an upper bound for the consistency error

inf
vh∈Vch aIPh (uh − vh , uh − vh)

where Vch ⊂ H2
0(Ω) stands for the C1 conforming �nite element space generated by the Argyris elements of

the so-called TUBA family [2]. We use the enrichment operator (or recovery operator) Eh : Vh → Vch from [9]
which is de�ned by averaging according to

N(Ehvh) = |ωph |
−1 ∑

T∈ωph(Nvh|T), vh ∈ Vh
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where p is any nodal point for Vch, N is any nodal variable at p, and ωph := ⋃{T ∈ Th(Ω) | {p} ∩ Nh(T) ̸= ⌀}. It
follows from the mapping properties of Eh established in [9] that there exists a constant Cnc > 0, depending
only on the local geometry of Th(Ω), such that

inf
vh∈Vch aIPh (uh − vh , uh − vh) ⩽ aIPh (uh − Eh(uh), uh − Eh(uh)) ⩽ Cnc η̂2h,c . (2.4)

The following result shows that η2h provides an upper bound for the IPDG energy norm of the discretization
error u − uh. It can be shown by using similar techniques as in [8].

Theorem 2.1. Let u ∈ V and uh ∈ Vh be the unique solution of (1.2) and (1.6), and let ηh be given by (2.1) and
(2.2). Then, there exists a constant CR > 0, depending only on the local geometry of Th and on k, such that

aIPh (u − uh , u − uh) ⩽ CR η2h . (2.5)

3 Re�nement strategy and estimator reduction
As a marking strategy for adaptive re�nement we use Dör�er marking [14]. To this end, we reformulate the
estimator ηh (cf. (2.1)) according to

ηh = ( ∑
T∈Th(Ω) η̂2T)

1/2
η̂2T := h

4
T ‖ f − ∆2uh‖20,T +

1
2 ∑

E∈Eh(∂T∩Ω)(αh−1E """"""""
[
∂uh
∂n ]

E

""""""""

2

0,E

+ hE
"""""""""
[
∂2uh
∂n2

]
E

"""""""""

2

0,E
+ h3E

""""""""
[
∂
∂n
∆uh]

E

""""""""

2

0,E
) + ∑

E∈Eh(∂T∩Γ) α h−1E """"""""
[
∂uh
∂n ]

E

""""""""

2

0,E
.

Then, given a constant 0 < Θ < 1, we compute a setM of elements T ∈ Th(Ω) such that

Θ η2h ⩽ ∑
T∈M η̂2T . (3.1)

After having determined the setM, a re�ned triangulation is generated by a recursive application of newest
vertex bisection. Assuming a conforming initial triangulation that satis�es a certain labeling condition, this
leads to quasi-optimal cardinality (cf. Section 4 in [13] and Subsection 3.4 in [6]). In particular, there exist
constants 0 < β1 < β2, depending only on the initial triangulation, such that for each triangle T of re�nement
level ℓ it holds β12−ℓ/2 ⩽ hT ⩽ β22−ℓ/2. Hence, if Th(Ω) is obtained from TH(Ω) by newest vertex bisection,
for T ∈ TH(Ω) and T ⊃ T� ∈ Th(Ω) we have

û1hT� ⩽ HT ⩽ û2hT� (3.2)

where û1 := 21/2β1/β2 and û2 := 21/2β2/β1.
As in [13] (cf. also [6]), we can prove the following estimator reduction property.

Lemma 3.1. Let Th(Ω) be a simplicial triangulation obtained by re�nement from TH(Ω), let uh ∈ Vh , uH ∈ VH ,
and ηh , ηH be the associated C0-IPDG solutions and error estimators, respectively, and let Θ > 0be the universal
constant from (3.1). Then, for any τ > 0 there exists a constant Cτ > 1, depending only on the local geometry of
the triangulations and on k, such that for û(Θ) := (1 + τ)(1 − 2−1/2)Θ there holds

η2h ⩽ û(Θ) η2H + Cτ ‖uh − uH‖22,h,Ω . (3.3)
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Proof. By de�nition of ηh and taking into account the inverse estimates

‖∆2(uh − uH)‖0,T ⩽ C(1)inv k4 h−2T ‖D2(uh − uH)‖0,T , T ∈ Th(Ω)
""""""""""

∂2(uh − uH)
∂n2E∩∂T

""""""""""0,E
⩽ C(2)inv k2 h−1E """"""""

∂(uh − uH)
∂nE∩∂T """"""""0,E

, E ∈ Eh(T)

""""""""

∂
∂nE∩∂T ∆(uh − uH)""""""""0,E ⩽ C(3)inv k4 h−2E """"""""

∂(uh − uH)
∂nE∩∂T """"""""0,E

, E ∈ Eh(T)

where C(i)inv , i = 1, 2, 3, are positive constants, depending only on the local geometry of the triangulations, we
have

h2T‖ f − ∆
2uh‖0,T ⩽ h2T (‖ f − ∆2uH‖0,T + C(1)inv k4h−2T ‖D2(uh − uH)‖0,T) (3.4a)

h1/2E """"""""""

∂2uh
∂n2E∩∂T

""""""""""0,E
⩽ h1/2E """"""""""

∂2uH
∂n2E∩∂T

""""""""""0,E
+ C(2)inv k2h

−1/2
E

""""""""

∂(uh − uH)
∂nE∩∂T """"""""0,E

(3.4b)

h3/2E """"""""

∂
∂nE∩∂T ∆uh""""""""0,E ⩽ h3/2E """"""""

∂
∂nE∩∂T ∆uH""""""""0,E + C(3)inv k4h

−1/2
E

""""""""

∂(uh − uH)
∂nE∩∂T """"""""0,E

. (3.4c)

By an application of Young’s inequality, in view of (1.11), (3.2) and observing α ⩾ 1, from (3.4) and themarking
and re�nement strategy we deduce the existence of CER > 1, depending only on the local geometry of the
triangulations and on k, such that for τ > 0 there holds

η2h ⩽ (1 + τ)(1 − 2−1/2)Θ( ∑
T∈TH (Ω)H4

T‖ f − ∆
2uH‖20,T + ∑

E∈EH (Ω)(HE
"""""""""
[
∂2uH
∂n ]

E

"""""""""

2

0,E
+ H3

E

""""""""
[
∂
∂nE

∆uH]
E

""""""""

2

0,E
))

+ ∑
E∈EH (Ω) α H−1

E

""""""""
[
∂uH
∂n ]

E

""""""""

2

0,E
+ (1 + τ−1) CER ‖uh − uH‖22,h,Ω (3.5)

which gives the assertion with Cτ := (1 + τ−1) CER.

Remark 3.1. If we choose τ = 2−1/2 and observe 0 < Θ ⩽ 1, we have

û(Θ) = 1
2
Θ ⩽

1
2
. (3.6)

4 Quasi-orthogonality
As a further signi�cant ingredient of the convergence analysis, in this section we prove quasi-orthogonality
of the C0-IPDG approach. We �rst provide a mesh perturbation result in Subsection 4.1 and then establish
quasi-orthogonality in Subsection 4.2.

4.1 Mesh perturbation result

In the convergence analysis of IPDG methods for second order elliptic boundary value problems, mesh per-
turbation results estimating the coarse mesh error in the �ne mesh energy norm from above by its coarse
mesh energy norm have played a central role in the convergence analysis as a prerequisite for establishing a
quasi-orthogonality result (cf., e.g., [6, 19, 22]). Here, we provide the following mesh perturbation result.

Lemma 4.1. Let Th(Ω) be a simplicial triangulation obtained by re�nement from TH . Then, there exists a con-
stant CP > 0, depending only on the local geometry of the triangulations and on k, such that for any ε > 0 and
v ∈ V + VH there holds

aIPh (v, v) ⩽ (1 + ε) aIPH (v, v) + CP
ε ( ∑

E∈Eh(Ω̄) h−1E
""""""""
[
∂v
∂n]E

""""""""

2

0,E
+ ∑
E∈EH (Ω̄)H−1

E

""""""""
[
∂v
∂n]E

""""""""

2

0,E
) . (4.1)
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Proof. For v ∈ V + VH we have

aIPh (v, v) = ∑
T∈Th(Ω) ‖D2v‖20,T + ∑

E∈Eh(Ω) αhE
""""""""
[
∂v
∂n]E

""""""""

2

0,E
+ 2 ∑

T∈Th(Ω)(L(∇v), D2v)0,T . (4.2)

Obviously, there holds

∑
T∈Th(Ω) ‖D2v‖20,T = ∑

T∈TH (Ω) ‖D2v‖20,T . (4.3)

Moreover, in view of (3.2) we have

∑
E∈Eh(Ω) 1

hE

""""""""
[
∂v
∂n]E

""""""""

2

0,E,h
⩽ û−1

2 ∑
E∈EH (Ω) 1

HE

""""""""
[
∂v
∂n]E

""""""""

2

0,E,H
. (4.4)

Using (4.3) and (4.4) in (4.2) and observing û−1
2 < 1, we �nd

aIPh (v, v) ⩽ aIPH (v, v) + (û−1
2 − 1) ∑

E∈EH (Ω) αHE
""""""""
[
∂v
∂n]E

""""""""

2

0,E
+ 2 ∑

T∈Th(Ω)(L(∇v), D2v)0,T − 2 ∑
T∈TH (Ω)(L(∇v), D2v)0,T

⩽ aIPH (v, v) + 2 ∑
T∈Th(Ω)(L(∇v), D2v)0,T − 2 ∑

T∈TH (Ω)(L(∇v), D2v)0,T . (4.5)

Using Young’s inequality, (1.10), and (1.13), we �nd

2
!!!!!!!!!!!

∑
T∈Th(Ω)(L(∇v), D2v)0,T

!!!!!!!!!!!
⩽ 2 ∑

T∈Th(Ω) ‖L(∇v)‖0,T‖D2v‖0,T ⩽
ã
ε
‖L(∇v)‖20,Ω +

ε
2ã ∑

T∈Th(Ω) ‖D2v‖20,T

⩽ 2
CLã
ε ∑

E∈Eh(Ω) 1
hE

""""""""
[
∂v
∂n]E

""""""""

2

0,E,h
+
ε
2
aIPh (v, v). (4.6)

Further, taking Young’s inequality and (1.10) as well as (4.3) into account, it follows that

2
!!!!!!!!!!!

∑
T∈TH (Ω)(L(∇v), D2v)0,T

!!!!!!!!!!!
⩽ 2

CLã
ε ∑

E∈EH (Ω) 1
HE

""""""""
[
∂v
∂n]E

""""""""

2

0,E,h
+
ε
2
aIPh (v, v). (4.7)

Finally, using (4.6) and (4.7) in (4.5), we deduce (4.1) with CP := 2CLã.

4.2 Quasi-orthogonality

The quasi-orthogonality result can be derived using the conforming approximations ucH ∈ VcH , u
c
h ∈ Vch of

(1.2) which are given as the unique solutions of

a(ucH , v
c
H) = ( f, vcH), vcH ∈ VcH (4.8)

a(uch , v
c
h) = ( f, vch), vch ∈ Vch .

In particular, we assume that the data of the problem, i.e., the domain Ω and the right-hand side f , are such
that the solution u of (1.2) satis�es u ∈ H2+û(Ω) ∩ V for some û > 1/2. Then there exists a constant Cap > 0,
independent of H and h, such that the following a priori error estimates hold true

‖u − ucH‖2,Ω ⩽ Cap Hû ‖u‖2+û,Ω , ‖u − uch‖2,Ω ⩽ Cap hû ‖u‖2+û,Ω . (4.9)

Lemma 4.2. LetTh be a simplicial triangulation obtained by re�nement fromTH , and let uh ∈ Vh , uH ∈ VH and
ηh , ηH be the C0-IPDG solutions of (1.6) and error estimators, respectively. Moreover, let uch ∈ Vch and ucH ∈ VcH
be the conforming approximations of (1.2) according to (4.8). Then, for unch := uh − uch and uncH := uH − ucH it
holds

‖unch − uncH ‖22,h,Ω ⩽
2Cnc
ãα (η2h + η

2
H) (4.10)

where Cnc is the constant from (2.4).
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Proof. Due to (1.13) we have

‖unch − uncH ‖22,h,Ω ⩽ 2 (‖unch ‖22,h,Ω + ‖uncH ‖22,h,Ω) ⩽
2
ã
(aIPh (unch , unch ) + aIPh (uncH , uncH )). (4.11)

On the other hand, in view of (2.4) it holds

2
ã
aIPh (unch , unch ) ⩽

2Cnc
ã

η̂2h,c ⩽
2Cnc
ãα

η2h,c ⩽
2Cnc
ãα

η2h . (4.12)

Likewise, taking

∑
E∈Eh(Ω̄ 1

hE

"""""""""
[
∂uncH
∂n ]

E

"""""""""

2

0,E
⩽ û−1

2 ∑
E∈EH (Ω̄) 1

HE

"""""""""
[
∂uncH
∂n ]

E

"""""""""

2

0,E

into account, we �nd

2
ã
aIPh (uncH , uncH ) ⩽

2û−1
2 Cnc
ãα

η2H . (4.13)

Noting that û−1
2 < 1, we conclude by using (4.12) and (4.13) in (4.11).

The quasi-orthogonality result reads as follows.

Theorem 4.1. Let Th be a simplicial triangulation obtained by re�nement from TH , and let uh ∈ Vh , uH ∈ VH
and ηh , ηH be the associated C0-IPDG solutions of (1.6) and error estimators, respectively, and let eh := u − uh
and eH := u−uH be the �ne and coarsemesh errors. Further, assume that (4.9)holds true. Then, for any0 < ε < 1
and su�ciently small mesh width H there exists a constant CQ > 0, independent of H and h, such that it holds

aIPh (eh , eh) ⩽ (1 + ε) aIPH (eH , eH) −
ã
4
‖uh − uH‖22,h,Ω +

CQ
αε (η2h,c + η

2
H,c). (4.14)

The proof of Theorem 4.1 will be provided by a series of lemmas.

Lemma 4.3. Under the assumptions of Theorem 4.1, for any 0 < ε < 1 it holds

aIPh (eh + uch − u
c
H , eh + u

c
h − u

c
H) ⩽ (1 + ε) aIPH (eH , eH) + (1 +

4
ε )

CP + 2C1Cnc
αã

(η2h,c + η
2
H,c). (4.15)

Proof. Using uh+uch−u
c
H = uH−uncH +unch , (1.14), andYoung’s inequality twice, it follows that for any0 < ε2 < 1

it holds

aIPh (eh + uch − u
c
H , eh + u

c
h − u

c
H) = a

IP
h (eH − (unch − uncH ), eH − (unch − uncH ))

= aIPh (eH , eH) − 2aIPh (eH , unch − uncH ) + aIPh (unch − uncH , unch − uncH )

⩽ aIPh (eH , eH) + 2aIPh (eH , eh)1/2aIPh (unch − uncH , unch − uncH )1/2 + aIPh (unch − uncH , unch − uncH )

⩽ aIPh (eH , eH) + 2C1/21 aIPh (eH , eH)1/2‖unch − uncH )‖2,h,Ω + C1‖unch − uncH )‖22,h,Ω

⩽ (1 + ε2)aIPh (eH , eH) + C1 (1 +
1
ε2

) ‖unch − uncH )‖22,h,Ω . (4.16)

An application of Lemma 4.1 (with 0 < ε1 < 1) and of Lemma 4.2 to the right-hand side of 4.16 yields

aIPh (eh + uch − u
c
H , eh + u

c
h − u

c
H) ⩽ (1 + ε1)(1 + ε2)aIPH (eH , eH) (4.17)

+
1
αã (

1 + ε2
ε1

CP + 2C1Cnc (1 +
1
ε2

)) (η2h,c + η
2
H,c).

Finally, choosing ε1 = ε2 = ε/4, 0 < ε < 1, in (4.17) gives the assertion.

Lemma 4.4. Under the assumptions of Theorem 4.1 it holds

aIPh (eh , uch − u
c
H) ⩽ CapH

1/2+û(C1‖uh − uH‖22,h,Ω + (2 + C1)‖u‖25/2+û,Ω + ‖ f ‖20,Ω). (4.18)
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Proof. We have

aIPh (eh , uch − u
c
H) = a

IP
h (u − EH(uH), uch − u

c
H) − a

IP
h (uH − EH(uH), uch − u

c
H) + a

IP
h (uH − uh , uch − u

c
H). (4.19)

Since EH(uH) ∈ VcH ⊂ Vch is an admissible test function in (4.8), it holds

aIPh (uch − u
c
H , EH(uH)) = 0. (4.20)

On the other hand, uch − u
c
H ∈ H2

0(Ω) is an admissible test function in (1.2) and hence, it holds

aIPh (u, uch − u
c
H) = ( f, uch − u

c
H). (4.21)

We set ech := u − uch , e
c
H := u − ucH . Using (4.20), (4.21), (4.9), h ⩽ H, as well as Young’s inequality, for the �rst

term on the right-hand side in (4.19) we obtain

aIPh (u − EH(uH), uch − u
c
H) = ( f, uch − u

c
H)0,Ω = ( f, ecH − ech) ⩽ ‖ f ‖0,Ω(‖ech‖0,Ω + ‖ecH‖0,Ω)

⩽ 2CapH1/2+û‖ f ‖0,Ω‖u‖5/2+û,Ω ⩽ CapH1/2+û(‖ f ‖20,Ω + ‖u‖25/2+û,Ω). (4.22)

Further, in view of (1.14), (4.9), (2.4), and Young’s inequality, for the second term on the right-hand side in
(4.19) it follows that

aIPh (uH − EH(uH), uch − u
c
H) = a

IP
h (uH − EH(uH), ecH − ech)

⩽ aIPh (uH − EH(uH), uH − EH(uH))1/2aIPh (ech − e
c
H , e

c
h − e

c
H)

⩽ C1/21 C1/2nc ηH,c(‖ech‖2,h,Ω + ‖ecH‖2,h,Ω) ⩽ 2C1/21 C1/2nc CapH1/2+ûηH,c‖u‖5/2+û,Ω
⩽ CapH1/2+û(C1Cncη2H,c + ‖u‖25/2+û,Ω). (4.23)

Finally, applying (1.14), (4.9), and Young’s inequality again, the third term on the right-hand side in (4.19) can
be estimated from above according to

aIPh (uh − uH , uch − u
c
H) = a

IP
h (uh − uH , ecH − ech) ⩽ C1‖uh − uH‖2,h,Ω(‖e

c
h‖2,h,Ω + ‖ecH‖2,h,Ω)

⩽ 2C1CapH1/2+û‖uh − uH‖2,h,Ω‖u‖5/2+û,Ω
⩽ C1CapH1/2+û(‖uh − uH‖22,h,Ω + ‖u‖25/2+û,Ω). (4.24)

The assertion follows from (4.22), (4.23), and (4.24).

Lemma 4.5. Under the assumptions of Theorem 4.1 it holds

aIPh (uch − u
c
H , u

c
h − u

c
H) ⩾

ã
2
‖uch − u

c
H‖

2
2,h,Ω − 2Cnc(η2h,c + η

2
H,c). (4.25)

Proof. Using (1.13), uch − u
c
H = uh − uH − (unch − unch ), the left-hand side of the triangle inequality, and Young’s

inequality, we get

aIPh (uch − u
c
H , u

c
h − u

c
H) ⩾ ã ‖uch − u

c
H‖

2
2,h,Ω ⩾ ã (‖uh − uH‖2,h,Ω − ‖unch − uncH ‖2,h,Ω)2

= ã (‖uh − uH‖22,h,Ω − 2‖uh − uH‖2,h,Ω‖unch − uncH ‖2,h,Ω + ‖unch − uncH ‖22,h,Ω)

⩾
ã
2
‖uh − uH‖22,h,Ω − ã ‖unch − uncH ‖22,h,Ω . (4.26)

The assertion follows from (4.26) and Lemma 4.2.

Proof of Theorem 4.1.We have

aIPh (eh , eh) = aIPh (eh + uch − u
c
H , eh + u

c
h − u

c
H) − 2aIPh (eh , uch − u

c
H) − a

IP
h (uch − u

c
H , u

c
h − u

c
H).

Using Lemmas 4.3, 4.4, 4.5 and observing ε < 1, it follows that

aIPh (eh , eh) ⩽ (1 + ε) aIPH (eH , eH) − (
ã
2
− 2C1Cap Hû) ‖uh − uH‖22,h,Ω

+
1
αε

5(Cp + 2Cnc(1 + C1))
ã

(η2h,c + η
2
H,c) + Cap((2 + C1) ‖u‖22+û,Ω + ‖ f ‖20,Ω) H

û. (4.27)
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Wemay choose H0 > 0 such that for H ⩽ H0

2C1Cap Hû ⩽
ã
4

(4.28a)

and with a constant Cas > 0, independent of H

Hû ⩽ Cas η̂2H,c =
Cas
α
η2H,c ⩽

Cas
αε

η2H,c . (4.28b)

The assertion now follows from (4.27) and (4.28a), (4.28b). ◻

5 Contraction property
We now use the error reduction property (3.3), the quasi-orthogonality (4.14), and the reliability (2.5) to prove
the following contraction property.

Theorem 5.1. Let u ∈ H2
0(Ω) be the unique solution of (1.2). Further, let Th(Ω) be a simplicial triangulation

obtained by re�nement from TH(Ω), and let uh ∈ Vh , uH ∈ VH and ηh , ηH be the C0-IPDG solutions of (1.6)
and error estimators, respectively. Then, there exist constants 0 < δ < 1 and ρ > 0, depending only on the local
geometry of the triangulations, the parameter Θ from the Dör�er marking, and on k, such that for su�ciently
large penalty parameter α the �ne mesh and coarse mesh discretization errors eh := u − uh and eH = u − uH
satisfy

aIPh (eh , eh) + ρ η2h ⩽ δ (aIPH (eH , eH) + ρ η2H). (5.1)

Proof. Multiplying the estimator reductionproperty (3.3) byã/(4Cτ) and substituting the result into the quasi-
orthogonality (4.14), we obtain

aIPh (eh , eh) + ρ η2h ⩽ (1 + ε) aIPH (eH , eH) + (
CQ
αε

−
ã

4Cτ
+ ρ) η2h + (

CQ
αε

+
ãû(Θ)
4Cτ

) η2H . (5.2)

If we choose α > (4CQCτ)/(ãε), we have ρ := ã/(4Cτ) − CQ/(αε) > 0, and it follows from (5.2) that

aIPh (eh , eh) + ρ η2h ⩽ (1 + ε) aIPH (eH , eH) + (
CQ
αε

+
ãû(Θ)
4Cτ

) η2H . (5.3)

Now, taking advantage of the reliability result

aIPH (eH , eH) ⩽ CR η2H

(cf. (2.5)), for 0 < δ < 1 we obtain

aIPh (eh , eh) + ρ η2h ⩽ δ aIPH (eH , eH) + (CR(1 + ε − δ) + (
CQ
αε

+
ãû(Θ)
4Cτ

)) η2H . (5.4)

We choose δ such that

ρ =
ã

4Cτ
−
CQ
αε

= δ−1 (CR(1 + ε − δ) + (
CQ
αε

+
ãû(Θ)
4Cτ

)) . (5.5)

Solving for δ, we obtain

δ =
CR(1 + ε) + CQαε

+
ãû(Θ)
4Cτ

CR +
ã

4Cτ
−
CQ
αε

. (5.6)
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For instance, if we choose τ = τ∗ := 2−1/2 and ε := ã/(16CRCτ∗ ), we have ε < 1 (due to ã < 1, CR > 1,
Cτ∗ > 1), and, observing (3.6), it follows that

δ =
CR +

ã
16Cτ∗

+
16CQCRCτ∗

αã
+

ãΘ
8Cτ∗

CR +
ã

4Cτ∗ −
16CQCRCτ∗

αã

. (5.7)

Looking for α such that

ã
16Cτ∗

+
16CQCRCτ∗

αã
+

ãΘ
8Cτ∗

<
ã

4Cτ∗ −
16CQCRCτ∗

αã

we �nd that 0 < δ < 1 for

α >
512CQCRC2τ∗
(3 − 2Θ)ã2

. (5.8)

This concludes the proof of the contraction property.

The contraction property (5.1) is an essential ingredient to prove quasi-optimality of the adaptive approach
with respect to a certain approximation class of functions depending on the regularity of the solution (cf. [6]
for IPDG approximations of second order elliptic boundary value problems).

6 Numerical results
We provide a detailed documentation of the performance of the adaptive C0-IPDG method for an illustrative
example taken from [8].

Example 6.1. We choose Ω as the L-shaped domain Ω := (−1, +1)2 \ ([0, 1) × (−1, 0]) and choose f in (1.1a)
such that

u(r, φ) = (r2 cos2φ − 1)2(r2 sin2φ − 1)2 r1+z g(φ) (6.1)

is the exact solution of (1.1a), (1.1b), where

g(φ) := (
1

z − 1
sin(3(z − 1)π

2 ) −
1

z + 1
sin(3(z + 1)π

2 ))(cos((z − 1)φ) − cos((z + 1)φ))

− (
1

z − 1
sin((z − 1)φ) − 1

z + 1
sin((z + 1)φ))(cos(3(z − 1)π

2 ) − cos(3(z − 1)π
2 ))

and z ≈ 0.54448 is a non-characteristic root of sin2(3zπ/2) = z2 sin2(3π/2).
For the documentation of the performance of the adaptive C0-IPDG scheme, we have run simulations for

polynomial degrees 2 ⩽ k ⩽ 6. Since each of the constants CQ , CR , and Cτ∗ in (5.8) depends on k4, (5.8) leads
to the requirement k16 ≲ α. The numerical simulations revealed that this requirement is far too restrictive. In
fact, the choice α = 2.5(k+1)2 turned out to be su�cient to achieve stability and to yield optimal convergence
rates. The numerical evaluation of the element residuals has been taken care of by the collapsed Gauss–
Jacobian-type quadrature formulas from [23] which worked �ne even for triangles containing the origin as a
vertex.

For k = 2, 4, 6, Figures 1–6 show the adaptively re�ned meshes after 10 adaptive cycles (top left), the conver-
gence histories in terms of the broken C0-IPDG energy norm of the error aIPh (u− uh , u− uh)1/2 as a function of
the total number of degrees of freedom (DOF) on a logarithmic scale (top right), the decrease of the estimator
as a function of the DOF (bottom left), as well as the computed e�ectivity indices ηh/aIPh (u − uh , u − uh)1/2
(bottom right) for uniform re�nement and adaptive re�nement with Θ = 0.7 and Θ = 0.3 in the Dör�er
marking.
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Figure 1. k = 2: Re�ned mesh after 10 adaptive cycles (left) and convergence history (right).

Figure 2. k = 2: Estimator reduction (left) and e�ectivity indices (right).

Figure 3. k = 4: Re�ned mesh after 10 adaptive cycles (left) and convergence history (right).

Figure 4. k = 4: Estimator reduction (left) and e�ectivity indices (right).
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Figure 5. k = 6: Re�ned mesh after 10 adaptive cycles (left) and convergence history (right).

Figure 6. k = 6: Estimator reduction (left) and e�ectivity indices (right).

As has been shown in [9], we have

aIPh (u − uh , u − uh)1/2 ≲ ( ∑
T∈Th(Ω)(diam(T))2min(α(T),k−1)|u|22+α(T),T)1/2

where α(T), T ∈ Th(Ω), is the local index of elliptic regularity. We note that min(α(T), k − 1) = z ≈ 0.544 for
elements T having a vertex at the origin and min(α(T), k − 1) = k − 1 elsewhere. Consequently, the expected
optimal convergence rates are slightly less than 0.5 for k = 2, 1.5 for k = 4, and 2.5 for k = 6. Figures 1 (right),
3 (right), and 5 (right) show that these optimal convergence rates are asymptotically achieved by the adaptive
algorithm. Moreover, as in case of IPDG methods for second order elliptic boundary value problems [19] and
H-IPDG methods for Maxwell’s equations [12] we observe a di�erent convergence behavior depending on
the choice of Θ in the Dör�er marking. The e�ectivity indices show a clear dependence on the polynomial
degree k.
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