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A direct algorithm in some free boundary problems

Cornel Marius Murea and Dan Tiba

Abstract. In this paper we propose a new algorithm for the well known elliptic obstacle
problem and for parabolic variational inequalities like one and two phase Stefan prob-
lem and of obstacle type. Our approach enters the category of fixed domain methods
and solves just linear elliptic or parabolic equations and their discretization at each itera-
tion. We prove stability and convergence properties. The approximating coincidence set
is explicitly computed and it converges in the Hausdorff-Pompeiu sense to the searched
geometry. In the numerical examples, the algorithm has a very fast convergence and the
obtained solutions (including the free boundaries) are accurate.
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1 Introduction

Free boundary problems are described by nonlinear partial differential equations
modelling important applications from physics like change of phase phenomena,
contact problems in elasticity, flow propagation in porous media, etc, [3,9].

Detailed theoretical discussions of various variational inequalities may be found
in [6,20,32]. Applications, including optimal control problems are investigated in
the books [4, 9, 10, 33]. From the point of view of the numerical approximation,
we quote just the monographs [10,12,27].

Besides the solution of the given differential equation, one has to find as well
the so-called free boundary, which may be a surface or a whole region (mushy
region) and which is in fact the main unknown of the problem. The difficulty of
such problems is related to the geometric character of this unknown and to the
high nonlinearity of the corresponding equation. From this point of view, one may
compare free boundary problems with shape optimization problems [26, Ch. 5.1]
and, in this paper, we shall essentially use techniques from optimal design.

It is to be noticed that from the very beginning, many of the proposed solu-
tion methods for free boundary problems are of fixed domain type, in the sense
that the unknown geometry is “embedded” via a certain procedure into the partial
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differential equation: the Baiocchi transform in the dam problem [3], the enthalpy
method for Stefan problems [19], the regularization approach [4,16] etc. The price
to be paid is that the obtained partial differential equation is highly nonlinear and
the free boundary has to be recovered from certain properties of the solution (for
instance as a level surface). To overcome such difficulties, front tracking meth-
ods have been proposed [10,21], but their implementation may be quite complex.
We also quote the discussion on error estimates and a posteriori error estimates
[1,25,27], the adaptive methods [31,36], etc.

In this paper we propose new algorithms for the elliptic and parabolic varia-
tional inequalities which are of fixed domain type in the sense that the finite ele-
ment discretization is given in the whole domain, independent of the position of
the (unknown) free boundary. In each iteration a linear elliptic or parabolic equa-
tion has to be solved in the whole domain. This is a clear advantage from the point
of view of the implementation and the approximating coincidence set is explicitly
computed in each iteration and it converges in the Hausdorff-Pompeiu sense [26]
to the searched geometry. Moreover, we need just a scalar penalization parameter
in our method.

Our approach is inspired from shape optimization techniques, but no shape op-
timization problem is used here although this is a known method in free boundary
problems, [5,23]. One may compare the present approach to the recent works
[14,24,28]. An efficient Lagrangian method together with a primal-dual active set
strategy with regularization is studied in [17] by using two perturbation parameters
(except in the infeasible case) and nonlinear equations. Notice that our hypotheses
in Thm. 3.3 are comparable with the conditions in [17], Thm. 3.2. See Remark
3.4 as well.

In the next section, we formulate the problems and the algorithms. Section 3 is
devoted to the stability and convergence analysis. The last section reports on some
numerical experiments. In the examples, the algorithm has a very fast conver-
gence, even in the case of nonsmooth obstacles. The algorithm converges for any
initial guess. The computed solutions and free boundaries are comparable with
other examples of this type (via different methods) reported in the mathematical
literature.

In the last example we discuss in more detail problems originating in the com-
putation of the American options in finance (see [2,35] for different approximation
techniques).
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2 Formulation of the problem and the algorithms

2.1 Elliptic case

Let D be a smooth domain in R, d € N* = N\ {0} and A : H}(D) — H~'(D)
be some elliptic operator. In order to simplify the writing we shall take A = —A to
be the Laplacian operator, but everything remains valid for general linear second
order elliptic operators.

Let 1) : D — R denote the obstacle function. Here, we assume 1) € H?*(D)
and Ypp < 0 (to be consistent with the homogeneous Dirichlet conditions). Let
f € L*(D) be given. The classical formulation of the obstacle problem is:

—Ay = finD* ={xeD;y(z) >y}, (1)

—Ay > finD\ D" ={zeD; y(x) =)}, @

y = wzlnd@:é)—wonﬁD*'ﬁD7 3)
on  On

y = 0ondD. 4)

The boundary condition (4) may be replaced by other boundary conditions. The
double boundary condition (3) is due to the unknown character of the boundary
OD™ and it determines it. The set DT is called the noncoincidence set, while its
complementary is the coincidence set. The formulation (1)-(4) corresponds to the
case of strong solutions y € H*(D) N H} (D). In general, the weak formulation
of (1)-(4) is given in the form of a variational inequality associated to the convex
K c H}(D):

JpVy-(Vy—vVu)de < [, f(y—v)de, yeK,VvekK, (5)
K={ve H}(D); v>1pae. in D}. (6)

If the elliptic operator is symmetric (which is the case for the Laplace operator),
then (5)-(6) is equivalent with the variational problem

1r}l&i}r}{%/DVdew/vaclw}. (7)

In the case where f € L*(D), ¢ € H?(D) with the compatibility condition
Yiap < 0, itis known that the solution of (5)-(6) satisfies the regularity property
y € H*(D), [4, Thm. 2.5] and the formulation (1)-(4) may be used. Moreover, in
this case, the obstacle problem may be written as a multivalued equation

—Ay+B(y—1)> finD
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where 5 C R x R is the maximal monotone graph given by

] —0,0], z=0,
ﬁ(z) = 0, z >0, (8)
0, z < 0.

Then B(y — 1) € L*(D) by the maximal regularity of the solution y € H?(D).
We state now our algorithm.

Algorithm 1
1) Choose n = 0, ¢ > 0, Q9 C D open,y_1 € L2(D);
2) Compute y,, € H} (D) as solution of the linear elliptic equation

1 .
—Ayn + G_XD\Q,L (yn - w) = f inD 9

(here x p\q,, is the characteristic function of D \ Q,, where it takes the value 1 and
0 otherwise, corresponding to the approximation of the coincidence set in iteration
n;

3) yn = max{yn, ¥}, Qui1 = {x € D; yu(z) > ()}, enr1 = %

HIf ||yn — Yn1 HLQ(D) < tol then STOP else n=n+1 GO TO step 2.

Remark 2.1. Notice that by the regularity theory for elliptic equations, in Step 2
we have y,, € H*(D) N H}(D). Then, by the Sobolev theorem in dimension
d < 3, we gety, € C(D) and Q,, defined in Step 3 is open, for any n € N.

Remark 2.2. The algorithm uses just linear elliptic equations in the whole domain
D. The type of penalization term from Step 2 may be compared with the approach
developed in shape optimization problems in [24]. A classical nonlinear penaliza-
tion term for solving the obstacle problem is 1 (y,, — 1))~ where v~ (z) = —v(z)
ifv(z) < O0and v~ (z) = 0if v(x) > 0, see for example [12]. Another advantage
of the Algorithm 1 is that it approximates the coincidence set explicitly. We also
underline its simplicity.

Remark 2.3. By the classical result of [7], the elastic-plastic torsion problem is
equivalent with a variational inequality of obstacle type and our algorithm may be
applied as well. In [13], a related problem is studied by a comparable approach
involving semi-smooth Newton methods. Similar results may be obtained for the
bilateral obstacle.

Remark 2.4. In the numerical experiments, we also use the energy norm in the
stopping test or a fixed small parameter ¢,, in all the iterations.
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Let 5 : R — R denote the Yosida approximation of 3 given by (8) that is:

) r/e, 70,
ﬁe(r)—{ 0, r>0.

Extending its derivative by 1/e in = 0, we can rewrite the step 2 of the Algo-
rithm 1 as

~Ayn + (BL (Yn—1 =) (yn — V) = f. (10)

In (10), we take into account step 3 as well. Recall that the usual approximation
by regularization of the variational inequality (5)-(6) is

7Agn+ﬁen (gn*ﬂ)):finD; (11)

plus homogeneous boundary conditions on 9D. Notice that 5. (r) = S.(r)r, under
the above extension convention, which shows that (10) and (11) have very similar
structure. Clearly, (11) is a nonlinear elliptic equation, while the decoupling oper-
ated in (10) allows to use linear elliptic equations. The form (9) puts into evidence
the approximating coincidence set too.

Moreover, we have y,,(z) < §,(x) a.e. in D. To infer this, we use [.(r) =
BL(r)r, the concavity of () and the definition of the subdifferential of concave

mapping:
(52,1 (ynfl - w» (yn — ) = (ﬁén (ynfl - ¢)> (ynfl - w)
+ (5;] (yn—l - w)) (yn — Y= Yp1+ w) > Ben (yn—l - 77/))
+0Be, (yn - w) — Ben (yn—l - w) = B, (yn - 77/)) .
We get
—Ayn + Be, (yn - w) <f (12)

by the monotonicity of B¢(-). This ends the argument by subtracting (11) from
(12) and multiplying by (yn, — Gn)+-

2.2 Parabolic case

LetT" > 0 be given.
Letv € L? (0,7; H*(D))NH" (0,T; L*(D)) be given such that ¢(t, z) < 0 a.e.
on [0, 7] x 0D. We associate with it the closed convex sets
K@) = {veHyD); v(z)>¢(t,z)ae D}, (13)
K = {veL?(0,T;H)(D)); v(t,x) > p(t, ) ae. [0,7] x D} .(14)
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The following variational inequalities (that may be termed as parabolic obstacle
problems) will be considered for f € L? ([0, T] x D):

y
/Da(y—v)dx—l—/DVyV(y—v)dm < /Df(y—v)dm, (15)
Vv e L* (0,T; Hy (D)), v(t) € K(t) ae. [0,T7.

T 8y T
/ / —(y — w)dxdt + / / Vy - V(y — w)dxdt (16)
o Jp Ot o Jp
T
< / / fly —w)dzdt,Yw € K.
o Jp

To (15), respectively (16), the initial condition:
y(0,2) = yo(z) € K(0) C Hy(D) ae. in D, (17

should be added.

It is known that, under the above compatibility and regularity assumptions, the
parabolic variational inequalities (13), (15), (17) and (14), (16), (17) are equivalent
and have a unique solution
y € L?(0,T; H*(D)) N H' (0,T; L*(D)) satisfying y(t,z) > (¢, ) ae. in
[0,T] x D, [10].

Then, the above parabolic variational inequalities may be written in the form

dy
ot
together with (17), where the maximal monotone operator 5 C R x R is given
by (8). Relation (18) is the strong formulation of the parabolic obstacle problem
and makes sense due to the regularity of the solution y € L* (0,7 H*(D)) N
H! (O, T, LQ(D)). The nonlinear term S(y — 1) should be understood as the
“section” of the multivalued operator (8) occurring in (18).
We introduce two algorithms for the solution of (18), (17) that extend the me-
thod used for elliptic obstacle problems to the parabolic case (recall that 3, is the
regularization of (3):

— Ay + By —1) > fae. in[0,T] x D (18)

Algorithm 2
1) Choose n = 0, €9 > 0, y—1(t, ) = yo(x), §- ( ) yo().
2) Compute y,, € L? (0,75 H*(D)) N H' (0,7;L*(D)) as solution of the
linear parabolic equation
W py 1 [ - in [0, 7] x D
ot + [ﬁen (yn,] - 1/1)] (yn - w) = f,ae. in [ ) } X L,

yn(0,2) = yo(x)in D.
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3) Jn = max(yn, V), €n+1 = %en
DI ([Fn = Fn—1ll L2(jo,7)x ) < tol then STOP; else n=n+1 GO TO step 2.

Since for the numerical solution of (linear or nonlinear) parabolic equations a
time discretization has to be performed, a second algorithm may be formulated,
that is close to the elliptic case. Namely, we consider Euler backward time dis-
cretization of (18) in the form:

k+1 k
Y

At

Y — AP 4 B — ) = N in D, (19)

with y°(x) = yo() a.e. in D and f**! being an approximation of f in L*([0, T x
D), (for instance fE(x) = f(kAt,x) if f is pointwisely defined).
Here At = meN*andk—O,l,...,m—lin(l9).

Remark 2.5. The discretization (19) is in fact also used in step 2) of Algorithm
2, adapted to the linear parabolic equation defined there. By applying to (19) the
corresponding Algorithm 1 for elliptic variational inequalities, we obtain

Algorithm 3

0) Put () = yo().

Fork=0,1,...,m — 1, At = T/m do step 1) to step 4)

1) Choose n = 0, ¢g > 0, g 1! = y*

2) Compute y* ! € H} (D) as solution of the linear equation

k+1 k

Yn — Y

A AT 8L T - )] kT ) =

3) Gint! = max(yy ™! ). engr = 3
~ ~k+1 .
HIE gt = G, || o ) < tol then y*Ht = g+t STOP;
else n=n+1 GO TO step 2.

Remark 2.6. In Algorithm 3, it is assumed that the time discretization of [0, 7] in
m equals subintervals is given and the starting point for the loop step 1) - step 4)
is y* the value corresponding to ¢t = kAt already computed at the previous time
step.

We end this section with the two-phase Stefan problem and the corresponding
algorithm (of the same type as Algorithm 3). Namely, we refer directly to the
semidiscretized in time, two-phase Stefan problem, using the enthalpy formulation
([10D):

k1)
At

k
’Y(y ’Y(y ) _Aka—I _ fk?+l in D, (20)
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Relation (20) corresponds to the implicit Euler scheme, & = 0,...,m — 1, yo
and vy € (y°) = ~(yo) are given initial conditions for the temperature and the
enthalpy, such that yo € H} (D), vo € L*(D).

The maximal monotone enthalpy graph v C R x R

ar, r <0,
v(r) =4 [0.L], r=0, e2y)
br+L, r>0

with a, b, L positive constants related to the thermal conductivities in the lig-
uid/solid phases and to the latent heat. Notice that (-) has very different structure
compared to (8) and there are no constraints of the type (13), (14).

The subsequent regularization . in (22) is similar to the Yosida regularization
and it is Lipschitz continuous of constant %:

ar, r <0,
Ye(r) = 1r, 0<r<q =z Eb, (22)
br+L, r>&5.

Regularization and/or time discretization are standard techniques in the approxi-
mation of parabolic variational inequalities [4], [10], [12].

Algorithm 4
0) Choose y°(z) = yo(x), € > 0.
Fork=0,1,...,m — 1 dostep 1) to step 3)

1) Choose n = 0, y* 1! = y*.
2) Compute yn“ € H, 1 (D) as solution of the linear parabolic equation

’y (yz‘Fl) ’yﬁ(yk) Ayk+1 fk+1 in D
At ’
where
) aykt(x), yrti(e) <0,
Yelyn () = Lyktl(a), 0 <yiti(z) < L5,
)+ L A2
3)If ||ykt! — it ||L2 D) < tol then y**+! = 45+ STOP;

else n=n+1 GO TO step 2.

Remark 2.7. In Algorithm 4, € > 0 is fixed, small enough. It is in this way that
the computations are performed, based on the known convergence properties for
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e — 0 of the semidiscretized problem, [10]. In step 2), ye(yk) is computed after
the relation (22) and " is the obtained solution in the previous time step, after
convergence. However ye(yfﬁ]) is computed by a similar formula, taking into

k1. Namely

account as well the values of the previous iteration y, *

1
Felun™) = xram™ 2 o (by’”]( )+L)

where Y1, X2, x3 are the characterlstlc functions of {z € D; y’”] (z) <0},

{x € D; 0 < yftl(a) Az € D; yFfi(z) > 25}, respectively.
This gives the linear character of the scheme, of the equation to be solved in each
iteration. This is also valid in the previous algorithms.

3 Stability and convergence

3.1 Elliptic case

The fixed domain character of Algorithm 1 is very helpful for its analysis as well.
We prove both the convergence of the solutions and of the geometry on a subse-
quence under general assumptions. If certain conditions are added, we show that
the limit satisfies (1)-(4).

The following two lemmas show that the obstacle problem may be reduced to
the case 5p = 0, in general.

Lemma 3.1. Denote by § € H*(D) N H{ (D) the solution of
—Aj=finD, §=00n0D. (23)
Then y > 3 a. e. in D, where y is the solution of (1)-(4).

Proof. Itis known that y satisfies y € H*(D) N H}(D) and (1)-(4) can be equiv-
alently expressed in the language of multivalued equations as

—Ay+ By —1) = faeinD, y=0o0n0dD. (24)

where # C R x R is the maximal monotone graph (8).

By regularity, the section of the multivalued function that occurs in (24) satisfied
B(y—) € L*(D). Clearly, (8) shows that 3(y —1) < O a.e. in D. Then a simple
comparison argument for (23), (24) ends the proof. ]

Denote ¢ (z) = max{¢(z), §(z)} in D. Then ¢ € HY(D) and y(z) > ¥(z)
a.e.in D.
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Lemma 3.2. The solution y of (1)-(4) satisfies the same problem with ) replaced
by 1.
Proof. We denote K = {v € HY(D); v(z) > zZ(ac) a.e. in D}. By Lemma 3.1,

y € K and Ay + f < 0a.e. in D and it equals 0 if y > v by (24).
For any v € K, we compute

/ (Ay + (o — y)de = / Ay + (D - y)da
D D

+/D<Ay+ Hw—dyde < /D<Ay+f><$— y)dz =0

The last equality is a consequence of (1)-(2) and the fact that y(x) = ¢(z) means

9 < 4 (x) and, consequently, y(z) = ¥ (x).
Integrating by parts in the first term of the above inequality, we get

/Vy~(Vy—Vv)dm§/f(y—v)dm,VvGK'.
D D
This ends the proof. 0

Theorem 3.3. i) On a subsequence, y, — ¥ weakly in H} (D) and Q,, — Q in the
complementary Hausdorff-Pompeiu topology, [26, Appendix 3].

ii) Assuming ij € C'(D) and {Q,,} uniformly of class C, then 7 is the solution
of (1)-(4) with Dt = Q if the convergence is valid on the whole sequence.

Proof. i) By Lemma 3.1 and 3.2, we may assume ¢ = 0 on 0D. Then y,, — % is
in H}(D) and may be used as test function in relation (9). We obtain

1
/ V=) do+— [ (gn—)’de
D\Qn
/ f(Yn — ) dx — / Vi) - V(yn — 9)dz. (25)
Then {y,,} is bounded in H} (D) and
1 (yn — ¥)?dx < const, ¥n € N. (26)
D\Qn

We denote by § € H} (D) the weak limit of y,, in H} (D) on a subsequence and
by Q the limit of Q,, (again on a subsequence) in the complementary Hausdorft-
Pompeiu topology.
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ii) If we assume that {Q,,} is a family of open sets satisfying the uniform C
property (i.e. the boundaries 0Q,, can be locally represented as graphs of uni-
formly continuous mappings), then it is known that D \ Q, — D \ Q in the
Hausdorff-Pompeiu complementary metric too.

Let C C D\ Q be any compact subdomain. Then C' C D\ Q,, for n > nc, by
the I" property of the Hausdorff-Pompeiu complementary convergence, [26]. By
(26), we get
1 (Y — ¥)2dx < const, ¥n > nc.

€n C
Then g = ¢ a.e. in C. By letting C — D\ Q, we obtain Uip\@ = ¥ a.e. in D\Q
(here we also use that the boundary of an open set of class C has zero Lebesgue
measure, [26]).

Take now any p € C3°(Q). Again by the I" property, we have that supp p C Q,,
for n > n,. Consequently, p may be used as test function on (9), for n > n, and
we may let n — co. We obtain that

/Vy~Vde:/fpdm.
D D

As supp p C Q the integrals are in fact defined on Q and we obtain that
—AYj = finQ (27)

in the sense of distributions.

We also notice that § — 1) € H}(Q) since  — ¢ = 0 a.e. in D \ Q and domains
of class C have the Keldysh-Hedberg stability property, [26]. This is related to
the first part in (3). We underline that for domains of class C, the usual trace
theorems cannot be applied and the above relation on (9Q) N D has to be carefully
interpreted [26, Ch. 2].

Finally, let Q C Q be any compact subdomain. Again by the I"-property of the
Hausdorff-Pompeiu complementary convergence for the open sets, we get () C
Q,, for n > ng. Then, y,(z) > ¢(z) forx € Q, n > ng. By y, — ¥ strongly
in L?(D), we infer §j(x) > ¢(z) a.e. in Q. Consequently, 3(x) > v (z) a.e. in
Q. The points on IQ \ dD, are minimum points for ¢ — t». Under C' regularity
assumptions, we obtain V (§ — 1)) = 0 on 9Q \ 9D, that is (3) is satisfied for
Dt =Q.

Concerning relation (2), we consider again C' as above and we notice that y,, <
¥ a.e. in C for n > n¢, due to step 3 in Algorithm 1. Then, we obtain (2) in C,
due to the positivity of the penalized coefficient. One can pass to the limit (with n
and C) in the sense of distributions. ]
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Remark 3.4.1f f € L°°(D), then y € W?P(D) for any p > 1. By the Sobolev
theorem, we get y € C!(D) in arbitrary dimension. Regularity results for the
solution of the variational inequality and for the free boundary may be found in
[20] and [22]. This justifies the regularity assumption.

Remark 3.5. The above argument shows that the sequences constructed in Algo-
rithm 1 have accumulation points. Under supplementary assumptions, the limit
point gives the solution of (1)-(4). The algorithm has a constructive character both
for the functions and the geometry.

3.2 Parabolic case

We discuss first Algorithm 2. Denote by
y € W'2(0,T; L*(D)) n L*(0,T; H*(D)), the unique solution of the linear
parabolic equation

%7 Aj = f, ae.in(0,T)x D, (28)
gt,w) = 0,in[0,7] x 4D, 29
j(0,2) = yo(), inD. 0

Let ¢ = max(t, ) € H'(0,T; L*(D)) N L2(0, T; HL (D)), that is ¢ has null
traces on 0D; and let

~

K= {v € I2(0,T; HY(D)) : v(t,x) > $(t,x) ae. [0,T] x D} . 3D

Lemma 3.6. The unique solution y € W'2(0,T; L*(D)) N L*(0,T; Hi(D)) of
(16) satisfies as well the same variational inequality with IC replaced by K.

Proof. The variational inequality (16) may be rewritten as (18), due to the regu-
larity properties. By (8), we have that S(y —¢) < 0a.e. in [0,T] x D (the section
that occurs in (18) and belongs to L2([0, T] x D)).

A simple comparison argument for (18) and (28)-(30) shows that y > 7 a.e. in
[0, 7] x D. It yields that y > ¢ a.e. in [0, T] x D. We also have

%fAy—fZOa.e.in[O,T]xD (32)

due to (8), (18).



Algorithm in free boundary problems 13

We can estimate, for any w € K:

/ / (y— wdmdt—/ /Ayy w)dzdt
- / | fo=wysar > / / 2ty — Dy
/ / Ay(y — ) dwdt — / / Fly — d)dwdt = 0 33)

due to (32), (31).

The last equality in (33) comes from the remark thaty = ¢ = § < ¢ =
y = 1 as a pointwise relation valid a.e. on the coincidence set associated to (18).
Then, the last equality in (33) is a consequence of the formulation of (16) as a
complementarity relations problem. i

Remark 3.7. By I;emma 3.6, we may assume that the obstacle 1/ has null traces on
OD. Notice that ¥ doesn’t satisfy 1) € L?(0,7; H*(D)) but this is not important
in the sequel.

Proposition 3.8. We have {y,,} bounded in L>°(0,T; L*(D)) N L*(0,T; H} (D))
and y, — § on a subsequence weakly in L>(0,T; L*(D)) N L*(0,T; H}(D)).
Moreover, if y is the solution of (14), (16), (17), then y < y a.e. in [0,T] x D and

/ (yn — )dzdt < Cey
with C independent of n and Q,, = {(t,z) € [0,T] X D;yn—_1(t,z) < (t,x)}.

Proof. In Step 2, Algorithm 2, we multiply the equation by
—1 € HY(0,T; L*(D)) N L*(0,T; HY(D)). After partial integration, we get

1 1 OYn
IOl ~ 3 ook~ [ [ S +

T
+/ /|Vyn|2dacdt/ /Vyn~dexdt
0 D
/ / fyn — )dadt (34)
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since the last term on the left-hand side of the equation, multiplied by (y,, — ©), is
positive. The first integral in (34) may be written as

t
/O D%wdmt: /D yn(t, )0t 2)dz —

t
[ @ [ [ 5w (35)
D 0 D

Combining (34), (35) we get {y,, } bounded in
L>=(0,T; L*(D)) N L*(0,T; HY(D)).
In (34), (35), we have neglected the positive and bounded term

t
/ / 18, (g — )]y — )2dadt < C, V¢ € [0,T] (36)
0 D

where C' is independent of n.
We fix t = T in (36) and taking into account the definition of @,,, we get

/ (yn — ¥)?dzdt < Ce,, Vt € [0,T] (37)

n

due to the form of S, (-).
We have the inequality:

162, (Y — D) (yn — ) = [BL, (Yn—1 — D) (Yn-1 — ¥) +
+18L, Yna1 = V) (yn — ¥ — Yn—1 +¥) > Be, (Yn—1 — V) +
"‘56” (yn - w) - ﬁen (ynfl - 1/1) = 5en (yn - w) (38)

In (38), we use 3{ (r)r = f,(r), for all 7 € R (it is valid for » = 0 as well,
although in r = 0, f3, has just two finite lateral derivative) and the definition of
the concave subdifferential since ., is a concave continuous function.
By (38) and Step 2 of Algorithm 2, we infer

ayn .

ot AYn + Be, (yn — ) < f, ae.in [0,T] x D. (39)
Denote by z, € L? (0,73 H*(D)) N H}(D) N W2 (0,T;L*(D)) the unique
solution of

5t Azy + Be, (zn — ) = f, ae.in [0,T] x D (40)

zn(0,2) = yo(x), a.e. in D. 41)
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It is known that z, — y weakly in L*(0,T; H*>(D)) N W'2(0,7; L*(D)) and
strongly in C(0,T'; L?>(D)), with y the solution of the variational inequality (16),
(17).

A simple comparison argument between (39) and (40) shows that

Yn(t,x) < zp(t,z), a.e. in [0,T] x D. (42)

On a subsequence, we may assume that y,, — y weakly in
L>=(0,T; L*(D)) N L*(0,T; H} (D)) and (42) gives § < ya.e.in [0,7] x D. o

Remark 3.9. The inequality (37) says that y,, is above the obstacle v, asymptot-
ically. Under regularity conditions (for instance, if (), are open and uniformly
of class C, [26]) one can study their limit () in the Hausdorff-Pompeiu comple-
mentary metric, on a subsequence, and show that = 1 in (). In the numerical
examples, stronger convergence properties of {y;,} to the solution of (16)-(17) are
observed. For the Algorithm 3, the elliptic iterations are discussed in Theorem 3.3,
while the convergence of the parabolic semidiscretization is proved in [10].

For the Algorithm 4, we establish the following properties.

Proposition 3.10. i) The sequence {yX*'} is bounded in H}(D) with respect to
n. Ifyo € HY(D) N LP(D) and f is in C(0,T;LP(D)), p > 2, then {yk+'}
is bounded in W*P(D) N HJ(D) with respect to n (and weakly convergent on a
subsequence).
it) If yk+t — g%+ weakly in W2P(D), p > d, then y**! satisfies
Ve @kﬂ

B k
)At Ve(y ) 7A@/k+] _ kar]7 in D. (43)

Proof. 1) Notice that by the definition of 7. (that ensures the equation in Step 2
Algorithm 4 to be piecewise linear), it may happen that yfﬁl = 0 in certain points,
but 7 (%) # 0 in that points. However, 7, remains a sublinear mapping.
Multiplying the equation by yfﬁ] and integrating by parts, we infer {yfﬁl}
bounded in H} (D) with respect to n as claimed.

Under the supplementary LP(D) assumptions, the conclusion follows by the
LP(D) theory for elliptic variational inequalities, using induction with respect to k
(the boundedness constant may depend on k) and the sublinearity of 7.. One may
take subsequences with y**! — 71 weakly in W2P(D).

ii) If the convergence is valid on the whole sequence, weakly in W!P(D),
p > d, then y**1(x) — y*+!(2) uniformly in D, for n — oo, without taking
subsequences. One can pass to the limit in the definition of 5, and . (y**!(x)) —

Ye(7**1(x)). Then, by Step 2 of Algorithm 4, we get the conclusion. o
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Remark 3.11. We write 7**! = y**1. A similar property may be stated in con-
nection with Proposition 3.8 as well.

Remark 3.12. On a subsequence, we may assume that lim,, y’“’l = gl
However, it is not clear how to pass to the limit in ’ye(y’n‘”’l) since y]”l may be (in

principle) convergent on a different subsequence and to a different limit. However,
in the numerical experiments, the test in Step 3 of Algorithm 4 is fulfilled, that is
{yk*+1} and {y""1} have the same limit. Denote it by y**! € H] (D). By passing
to the limit, it would satisfy the equation (43). The analysis of (43) for k — oo
and ¢ — 0 is known [10], [33].

4 Numerical tests

We have used the software FreeFem++ v 3.12, [15].

4.1 Elliptic case

Test 1.
We use Algorithm 1 for solving (5)-(6).

We set D = {(z1,22); /2% + 23 < 1}. The obstacle ¢ is given by the formula

3, 1f0.5 <2 <0.7, =0.1 <2, <0.1
Y(zy,30) = —125((m]+04) +x3) + 0.5, if (z; + 0.4)* + 23 < 0.08

5, otherwise.

We notice that v is not continuous, but the method still works.
Let f € L?(D) given by

3.5, x}+ 23 <0.16
—0.001, otherwise.

f(I],Iz) :{

The mesh has 109898 triangles and 55350 vertices, and we use the fixed penal-
ization parameter ¢, = 10~*. The stopping test was ||y, — yn_1]| r2(p) < tol =
1077 or [[yn = Yn—tll g (py < tol = 10714, Starting from D \ Qg = Q) the his-
tory of error of computed solutlon between two consecutive iterations is presented
in Table 1.

After 11 iterations the relative error no longer changes. The coincidence set
and the computed solution are shown in Figure 2. The convergence order in this
example is superlinear (see [29]).
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Figure 1. The obstacle for the Test 1.

0504 o7 00

Figure 2. The coincidence set (blue) at the left and the computed solution with the
obstacle for the Test 1.

We have tested the stability of the algorithm when f, the right-hand side in (5),
is perturbed by § f : D — R defined by

k k
0f(xy,ma) = 100 + 1 sin(10k x1) cos(10k ;)

for k € {1,2,3,4,5}. We denote the computed solution of (5)-(6) with the right-
hand side f and f + §f by y,, and y;, + dyp, respectively. The notation doesn’t
take into account the (nonlinear) dependence on k, for simplicity of writing. We
observe that the second column of Table 2 is bounded, which shows that the con-
vergence property proved in Theorem 3.3 is satisfied in this example. Similar com-
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iteration 0 2 4 6 8 10
yn = ¥noill2(p) | 0320 | 0.026 | 0.009 | 0.001 | 9.3e-5 | 5.3¢-18
yn = ynoillgp) | 4213 | 0274 | 0.106 | 0.025 | 1.9¢-4 | 1.0e-15

Table 1. History of the error for Test 1.

ment for the third column in Table 2. Moreover, the coincidence set associated to
the perturbed solutions cannot be distinguished graphically from the unperturbed
one represented in Figure 2 at the left.

k H‘SthLZ(D)/H(SfHLZ(D) H(SthLZ(D)/HthLZ(D) H(SthL%D)
1 0.0167631 0.00351167 0.00150832
2 0.0166544 0.00699263 0.00300345
3 0.0164874 0.01031800 0.00443176
4 0.0166252 0.01380200 0.00592817
5 0.0167180 0.01719910 0.00738730
Table 2. Test 1. Stability when f is perturbed.
Tests 2

In [5], a level set method with artificial time variable is discussed which approxi-
mates the steady obstacle problem. We consider the second and the third examples
from [5]. Since the considered boundary data are very close to the given obstacle
(just slightly different in certain parts of the boundary) finding the coincidence set
becomes a rather difficult task.

Test 2.1. The domain for the second example from [5] is:

D = {(z1,22); (x1 — 0.5)% + (22 — 0.5)* < 0.5%, 25 > 0.5}
U ([0,1] % [0.2,0.5]) \ ([0.3,0.45] x [0.2,0.45] U [0.6,0.75] x [0.2,0.35]) .

We set f(x) = —1 and ¢)(z) = 0, for all z € D. We solve the problem (5), but
we impose nonhomogenous boundary conditions

K:{veHl(D); v>vae inD, v=gondD}
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where

0, xy < 0.5
g(z) = 5 .
¢ exp(—200(z; — 0.5)%), otherwise.

Also, at the Step 2, Algorithm 1, the solution of the linear elliptic equation has
nonhomogenous boundary conditions.

We use a mesh of 4874 triangles, 2555 vertices, the tolerance for the stopping
test tol = 1077 and the penalization parameter is ¢, = 0.003. The Algorithm 1
stops after 4 iterations if ¢ = 3. In [5], the parameters ¢ = 1, ¢ = 0.5 are used, but
in our algorithms the round-off errors influence the result if ¢ < 3.

Figure 3. Test 2.1. Coincidence set (blue) for c=3.

Test 2.2. The domain D for the third example from [5] is a segment of a circle
with radius 1, opening angle 7 /3 and center (0,0). As in the Test 2.1, we set
f(z) = —1and ¢(x) = 0. We solve the problem (5), but we impose nonhomoge-
nous boundary conditions

K:{’UGH](D); v>vae inD, v=gondD}
where

c exp(—400(z; — 0.825)2), if 2 + 23 =1,
0, otherwise.

g(l‘],l‘z) = {

We use a mesh of 4278 triangles, 2230 vertices, the tolerance for the stopping
test tol = 10720 and the penalization parameter is €, = 0.003. The coincidence
set and the computed solution are presented in Figure 4. The boundary function g
takes strictly positive values on the circular boundary, but close to the corners, g
takes very small values, for example for 2; = 0.98, g is of order 107>. For this
reason, the computed coincidence set contains the parts of the circular boundary
close to the corners. The value of the parameter ¢ = 0.5 and the numerical results
are comparable with [5].
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Figure 4. Test 2.2. The coincidence set (blue) at the left and the computed solution.

The number of (artificial) time advancing iterations for the level set method
from [5] is greater than 60, see Figure 3, (f) from [5], while the Algorithm 1 stops
after 6 iterations.

4.2 Parabolic case

Test 3. One phase Stefan problem

We have adapted the two-dimensional melting problem from [10], p. 148. The
problem can be written as (18), (8), where D = (—1,1)x(—1,1),T =0.5,% =0
and f = —2o0n [0,7] x D.

We have used the tolerance for the stopping test tol = 10~ in Algorithm 3 and
tol = N x 107% in Algorithm 2, where N is the number of the time steps. We
consider a fixed penalization parameter €,, = 1073, for all n € N.

For the time step At = 0.05 and the mesh size h = 1/160, the error in the norm
of L?(0,T; L*(D)) between the solutions obtained by the Algorithms 2 and 3 is
0.000056. The same error is 0.00104 in the norm of L?(0,T; H'(D)). They
confirm the results indicated in [10]. The convergence of our method is fast, the
Algorithm 2 ends after n = 10 iterations, and the Algorithm 3 performs n = 6 or
n =5 iterations by time step.

Test 4. Two phase Stefan problem

We consider the example b) p. 88 from [10] for testing the Algorithm 4.

The domain is D = {(xy, z2); 1‘% + m% < 1}, the final time is 7" = 0.5, the
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Figure 5. Test 3. The free boundary position at ¢ = 0.05, ¢t = 0.15, ¢ = 0.30,
t = 0.5 (from the exterior to the center)

Figure 6. Test 3. Computed solution at £ = 0.5

right-hand side is

8272 — 1), (/a2 +a3>el,
ft,o1,20) =
22e 2 -2), Ja?+ai<e,

the enthalpy graph (21) has the form

r, r <0,
v(r)=4 [0,2], r=0,
4r+2, r>0

and the initial condition is yo(z1,72) = 23 + 23 — 1.
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The exact solution is

23+ 23 —e72), (Jai4+ad>e
y(t, @1, 22) = 2.4 .2 2 /.2 .2 t
M R )ty <e "

P N
Yy, / g SN
/ // g \\\
[/ A
/ (/ W
i )
\\ \\ \ /// //
\\\ \\\\\\ / ) ///
AN ////
S~ o———

Figure 7. Test 4. The free boundary positionatt = 0.1, ¢ = 0.2, ¢ = 0.3 (from the
exterior to the center)

036254

Figure 8. Test 4. Computed solution at t = 0.1

We have applied the Algorithm 4 with a mesh of 85030 triangles and 42866
vertices, the mesh size is h = 0.017459, the tolerance for the stopping test tol =
1073 and a fixed penalization parameter €,, = 1072, forall n € N.

The error between the exact and the calculated solution for the time step At =
0.01 and the number of time steps N = 50 is 0.193753 in the norm of L?(0, T'; L>(D))
and 0.650485 in the norm of L?(0,T; H'(D)).
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The results indicate in this example that, at each time step, the Algorithm 4
converges linearly.

Test 5. Two-dimensional Black-Scholes equation

We consider an example from [30] with application to finance: the two-asset
American put option: the right (not the obligation) to sell assets at a fixed price
(exercise or strike price), before a given data (expire date).

The value of the option V' : D x [0,7] — R verifies the two-dimensional
Black-Scholes equation

%—V(Sl,SQ,t) + ﬁV(Sl,Sz,t) <0, inD x (O, T)

ov

5 —(51,92,1) + LV (S1,9,1) ) (¥(S51,82) — V(S1,5,t)) =0,
in D x (0,T)

V(Si,S2,t) > 9(S1,52), in D x (0,T)
V(Sy,52,T) =4(S1,52), in D

V(S51,0,t) = g1(S1,t), S1 € [0,L], t € (0,7)
V(S1,H,t) =0, S, €[0,L], t € (0,T)
V(0,52,t) = g2(52,t), S» € [0,H], t € (0,T)
V(L,S2,t) =0, S, €[0,H|, t € (0,T)

where

ov

ov
LV = (r—00)S1=—+ (@ —50n)S— 95,

0S5

1 o*V o*V o*v
= ( (o158 200102515 S res | =1V
+3 ((01 1)? ase + 200102515 55 + (0252) 8(52)2) rV,
T is the expire or maturity date, 5; is the value of the i-th asset, i = 1,2, p €
[—1,0) U (0, 1] is the correlation of two assets, r is the risk-free interest rate, o; is

the volatility of the i-th asset, d; represents the dividend of the i-th asset.
The payoff functionis ¢ : D = (0,L) x (0,H) - R

(81, 8) = min{(K — S))", (K — )"} = (K —max(S;,52)) ",

which corresponds to the American min-put contract, where K > 0 is the strike
price. Other payoff functions for two or more assets are discussed in [8].
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This parabolic obstacle problem with terminal condition at ¢ = T, can be rewrit-
ten as a parabolic problem with initial condition at ¢ = 0 and constant coefficients
by a change of variables S; = e%i, 7 =T —t.

Following [38], we can rewrite the operator £ in a conservative form

LV = -V (AVV +bV) + ¢V
g [ o a2 2(0151)*  1p010251S,
az axp 300102515 3(025:)?

b— bl (T‘*61)Sl (0’1)251 — ;,00'10251
) (r— — (02)29, — 3901029

andc=3r — 6, — 6 — ((01)* + (02) + palaz). If W € H}(D), then

where

/(a/) WdS :/ (VINTAVV + V(b- VW) +cVIW)dS  (44)
D D

We use the right-hand side of (44) for solving the parabolic problem by the fi-
nite element method. In this case, we have to impose non-homogeneous Dirichlet
boundary conditions g;, g» on the boundaries (S;,0), S; € [0, L] and (0, .5,),
S, € [0, H]. In [31], the left-hand side of (44) is used and homogeneous Neu-
mann boundary conditions are imposed on the boundaries (.57, 0), S} € [0, L] and
(0,52), S, € [0, H]

The functions g;, g, used to impose Dirichlet boundary conditions, are the
solutions of the one-dimensional Black-Scholes equations. For example, g; :
[0,L] x [0,T] — R verifies

5] 0
5]]+£191_, <%+£191>(w191)207 g1 = Y1

with the conditions
91(0,t) = K, g1(L,t) =0, g1(S1,T) = ¢1(S1)

2
where ¥1(S1) = (K — S1), Ligi = (r — 61)$1 5% + %(0151)26?;1])2‘ —rg.

Integrating by parts, we get for all w; € H}(0, L)

L L
B 1 28g1 ow
/0 (L1g1)wy dS) —/0 2(015) 05, 95, o dS| +

L Ow L
+/ (T—51 — (01)2)51g1 85 d51 +/ (2T—51 —(0'1)2)91 w1 dS]
0 1 0
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We use the right-hand side of the above equality for solving the parabolic problem
by Algorithm 3.

The numerical parameters are: L = H = 105, T = 5, K = 4, r = 0.3,
5] = (52 = 0.1, g1 =0 = 0.5, P = 0.7.

We have applied the Algorithm 3 with a mesh of 47918 triangles and 95034
vertices, the mesh size is h = 10.5/200, the time step At = 0.1, the tolerance for

the stopping test tol = 10~ and a fixed penalization parameter ¢, = 1073, for all
n € N.
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Figure 9. Test 5. The evolution of g; (-, ¢) : [0, L] — R from ¢ = T (foreground) to
t = 0 (background). Here, 7' = 5 and L = 10.5.

Figure 10. Test 5. Coincidence set (blue) at t = 0.

The convergence is very fast. At the first time step the Algorithm 3 finds g1, g2
after n = 7 iterations and the solution V' after n = 30 iterations, but after £k = 10
time steps, the boundary conditions g;, g are computed in n = 3 iterations and
the value of the option V is obtained in n = 4 iterations.

We used a fixed mesh. Since the obstacle is non-smooth, some noise appears
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Figure 11. Test 5. The computed solution V" at ¢t = 0.

at the diagonal of Figure 10. Mesh adaptation techniques are employed as in [31]
and [1].

Figure 12. Test 5. The solution on the diagonal S} = S, at T —¢ =0, 1, 5.

Our numerical results in this example are comparable with the augmented La-
grangian method (ALM) [11]. It is known [37] that ALM is superior to linear
penalty methods or Lagrangian methods and comparable with the primal-dual ac-
tive set algorithm applied to elliptic [17] or parabolic obstacle problems [18].
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