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for evolutionary incompressible Navier–Stokes flows
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Abstract

This article focusses on the analysis of a conforming finite element method for the time-dependent incom-
pressible Navier–Stokes equations. For divergence-free approximations, in a semi-discrete formulation, we
prove error estimates for the velocity that hold independently of both pressure and Reynolds number. Here,
a key aspect is the use of the discrete Stokes projection for the error splitting. Optionally, edge-stabilisation
can be included in the case of dominant convection. Emphasising the importance of conservation proper-
ties, the theoretical results are complemented with numerical simulations of vortex dynamics and laminar
boundary layer flows.
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1 Introduction

In this paper, we consider the time-dependent incompressible Navier–Stokes equations (NSEs) [Tri88, SG00,
Dur08]





∂tu− ν∆u+ (u · ∇)u+∇p = f in (0, T )× Ω,

∇ · u = 0 in (0, T )× Ω,

u = 0 on (0, T )× ∂Ω,

u(0,x) = u0 (x) for x ∈ Ω,

(1a)
(1b)
(1c)
(1d)

with no-slip condition in a bounded, polyhedral and convex Lipschitz domain Ω ⊂ Rd for the space dimen-
sion d ∈ {2, 3}. Here, u : (0, T ) × Ω → Rd denotes the velocity field, p : (0, T ) × Ω → R is the (zero-mean)
kinematic pressure, f : (0, T )×Ω→ Rd represents external body forces and u0 : Ω→ Rd stands for a suitable
initial condition for the velocity. The underlying fluid is assumed to be a Newtonian fluid with constant
dimensionless kinematic viscosity ν > 0, where ν = 0 corresponds to the incompressible Euler equations.
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In this work, we consider the spatial approximation of (1) by ‘weakly divergence-free’, H1-conforming and
inf-sup stable finite element methods (FEMs). If Vh and Qh denote the finite element spaces for the discrete
velocity uh and pressure ph, respectively, weakly divergence-free FEM are characterised by the inclusion
property ∇·Vh ⊂ Qh, which leads to ∇·uh = 0 pointwise. A major advantage of such methods, for example
shown in [JLM+16] for the Stokes problem, is that the pressure approximation does not influence the velocity
approximation; a property called ‘pressure-robustness’. Concerning the regularity assumptions, we require
u ∈ L1

(
0, T ;W1,∞) which is a rather natural assumption in the context of FEM; cf. [MB02, BF07, GNS15].

The first aim of this paper is to perform a detailed semi-discrete numerical analysis, including stability anal-
ysis and error estimates, for the continuous-in-time solution of weakly divergence-free, conforming FEM.
In doing so, we attach great importance to ensuring that the constants in our estimates do not explicitly
depend on ν−1. That is, provided the exact solution is sufficiently smooth, the analysis allows for estimates
which hold uniformly in the Reynolds number and therefore also for the incompressible Euler equations.
Dependence on ν−1 can only be seen implicitly through certain Sobolev norms of the exact solution and,
inspired by [RST08], we call such estimates ‘semi-robust’.

Let us give a short overview of some previous research in this direction and highlight similarities and
differences. Note that the following selection is restricted to H1-conforming methods.

• Steady Oseen problem: An equal-order, continuous interior penalty (CIP) method with edge-based
stabilisation of the jumps of both the gradient in normal direction and the divergence is presented in
[BFH06], where the first stabilisation accounts for dominant convection and the second one gives
additional control of the incompressibility constraint. In [MT15], inf-sup stable FEMs with local
projection stabilisation (LPS) for controlling convection as well as the divergence of the discrete velocity
are considered. Furthermore, the CIP-based method penalises jumps of the pressure gradient to become
stable whereas the LPS-based method, for discontinuous pressures, optionally includes a pressure jump
penalisation term to recover O

(
h1/2
)
in the convergence analysis. In [BL08] a Scott–Vogelius (SV)

FEM with either LPS or edge-based stabilisation is analysed. SV-FEM fulfil ∇ · Vh ⊂ Qh and,
therefore, divergence stabilisation is redundant. On special macro triangulations, SV-FEM are inf-sup
stable and no pressure stabilisation is necessary. Actually, any kind of pressure stabilisation would
modify the discrete mass balance and in doing so destroy the exact mass conservation on the discrete
level.

• Evolutionary Oseen problem: Major contributions to the analysis of equal-order methods based on
orthogonal subscales can be found in [Cod02] and the references therein. For inf-sup stable FE pairs,
[dFGAJN16] considers grad-div stabilisation exclusively and in addition to semi-discrete analysis also
provides error estimates for commonly used time-stepping schemes (implicit Euler, BDF(2) and Crank–
Nicolson). An LPS method with stabilisation for both incompressibility constraint and dominant
convection is analysed in [DAL16], wherein some results from [MT15] are extended and improved.

• Evolutionary Navier–Stokes problem: Previous research where the full problem (1) is considered
from the point of view of semi-robustness is presented in [BF07, ADL15]. Being consequent extensions
of [BFH06, DAL16], respectively, the former work considers edge-stabilisation for equal-order methods,
whereas the latter relies on LPS for stabilising divergence, dominant convection and, for discontinuous
pressure approximations, pressure jumps. Assuming that both exact velocity and pressure are spatially
smooth according to u, p ∈Hk+1(Ω), the L2-velocity error of the edge-stabilised equal-order method
[BF07] is shown to converge quasi-optimally with O

(
hk+1/2

)
. Note that, due to using the L2-projection

as an approximation operator, no assumption for the regularity of ∂tu is needed. The analysis for the
inf-sup stable LPS method [ADL15], however, is based on an approximation operator that preserves
the discrete divergence and, in the standard case, has a suboptimal convergence rate O

(
hk
)
, provided

that u ∈ Hk+1(Ω) and ∂tu, p ∈ Hk(Ω). For high Reynolds numbers, similarly to the steady Oseen
problem, it is possible to recover O

(
h1/2
)
in the convergence analysis by means of an enriched discrete
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pressure space, whenever additionally ∂tu ∈ Hk+1(Ω). Moreover, for the two-dimensional Navier–
Stokes problem, [Bur15] shows that it is possible to use the stream function/vorticity formulation to
obtain semi-robust FEM error estimates. Interestingly, the analysis is based on a scale separation into
large eddies and small scales known from LES modelling.

Our second aim is to augment the theoretical results by a thorough analysis of some selected numerical
examples. In the literature, several CFD benchmarks can be found which demonstrate that the lack of
pressure-robustness of more popular numerical methods can cause severe practical problems. Exemplarily,
we want to refer to [JLM+16] where the no-flow problem, a stationary vortex, a flow with Coriolis force
and natural convection has been shown to benefit from pressure-robust methods. Convincing results in this
direction are also reported in [LM16, LLMS16] where pressure-robust reconstruction techniques are applied
advantageously to potential flows. In addition, emphasising the importance of the treatment of the inertia
term, in [CHOR17] a new formulation with improved conservation properties for the nonlinear term has
been developed. Numerical tests with the Gresho-vortex problem and several flows over immersed bodies
indicate that this aspect of discretisation schemes is also important for the successful application of a nu-
merical method. Our contribution lies in comparing weakly divergence-free methods with several versions
of the standard Taylor–Hood element. We find that while in the case of flows with vortical structure the
divergence-free methods are clearly superior, for the laminar Blasius boundary layer they are at least as
good as the Taylor–Hood type methods.

Organisation of the article: In Section 2, we introduce weakly divergence-free, H1-conforming and inf-
sup stable FEM for the time-dependent Navier–Stokes problem. Then, in Section 3, we briefly discuss the
stability and well-posedness of the method. The main part of this work, Section 4, is concerned with the
derivation of a-priori, pressure- and semi-robust error estimates for the discrete velocity. Some numerical
results for viscous vortex flows and laminar boundary layer flows are presented in Section 5. Supplementary,
an error analysis for the corresponding pressure approximation can be found in Section A.

2 A special class of FEM for incompressible flows

In this section, we recall the weak formulation with its functional analytic background and give regularity
assumptions for the incompressible flow problem (1). Afterwards, we introduce the key aspects of the space
semi-discretisation of this problem using H1-conforming, weakly divergence-free and inf-sup stable FEM.

2.1 Incompressible Navier–Stokes equations
In what follows, for K ⊆ Ω, we frequently use the standard Sobolev space Wm,p(K) for scalar-valued
functions with associated norm ‖·‖Wm,p(K) and seminorm |·|Wm,p(K) for m > 0 and p > 1. Spaces and
norms for vector- and matrix-valued functions are indicated with bold letters. In particular, we obtain the
Lebesgue space W0,p(K) = Lp(K) and the Hilbert space Wm,2(K) = Hm(K). Additionally, the closed
subspaces H1

0(K) consisting of H1(K)-functions with vanishing trace on ∂K and the set L2
0(K) of L2(K)-

functions with zero mean in K play an important role. The L2(K)-inner product is denoted by (·, ·)K and,
for brevity when no confusion can arise, if K = Ω we usually omit the domain completely. Furthermore,
given a Banach space X , the Bochner space Lp(0, T ;X ) for p ∈ [1,∞] is used. With the obvious modification
for p =∞, and for |||·|||X denoting either the norm ‖·‖X or the seminorm |·|X , we define

|||v|||pLp(0,T ;X ) =

∫ T

0

|||v (τ)|||pX dτ . (2)

Now, we can introduce suitable functions spaces for velocity and pressure, respectively, by

V = H1
0(Ω) and Q = L2

0(Ω) (3)
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and obtain the following continuous variational formulation of problem (1):




find (u, p) : (0, T )→ V ×Q with u(0) = u0 s.t. ∀(v, q) ∈ V ×Q
〈∂tu,v〉+ a(u,v) + t(u;u,v) + b(v, p) = 〈f ,v〉

−b(u, q) = 0

(4a)
(4b)
(4c)

Here, 〈·, ·〉 denotes the duality pairing between V and its dual space V∗ = H−1(Ω). The corresponding
multilinear forms are given by

a(u,v) =

∫

Ω

ν∇u : ∇v dx, t(w;u,v) =

∫

Ω

(w · ∇)u · v dx, b(v, q) = −
∫

Ω

q (∇ · v) dx. (5)

In the following, we recall some well-known properties of the trilinear form.
Lemma 2.1 (The trilinear form)

Let u,v,w ∈ V with ∇ · u = 0 and 1 6 p, q, r 6∞ with 1/p + 1/q + 1/r = 1. Then, the trilinear form is
continuous on V × V × V and

t(u;v,w) = −t(u;w,v) , t(u;v,v) = 0, (6a)
|t(u;v,w)| 6 ‖u‖Lp ‖∇v‖Lq ‖w‖Lr . (6b)

Proof : Cf., for example, [BF13, Lemma V.1.1] and [Lay08, Section 6.2, Lemma 13]. �

The divergence constraint in (4) prompts us to define the subspace

Vdiv = {v ∈ V : − b(v, q) = (q,∇ · v) = 0 ∀q ∈ Q} ⊂ V (7)

of weakly divergence-free functions. Lastly, concerning the regularity of both data and solution, we assume

f ∈ L2 (0, T ;V∗) , u ∈ L1
(
0, T ;W1,∞) , ∂tu ∈ L2

(
0, T ;L2

)
and u0 ∈ L2, (8)

which ensures uniqueness of the continuous weak solution as shown in the following lemma. As a motivation
for this, let us mention that, for the stationary case, [GNS15] discusses bounds of |u|W1,∞ against the data.
An analogous extension to the time-dependent case is possible, albeit implying considerable work.
Lemma 2.2 (Uniqueness)

If a solution u ∈ L1
(
0, T ;W1,∞) ∩H1

(
0, T ;L2

)
to the NSEs (4) exists, it is unique.

Proof : This proof is based on [MB02, Section 3.1], where only the Cauchy problem is considered. Let
(u1, p1) and (u2, p2) be two solutions of (4) with smooth velocities according to L1

(
0, T ;W1,∞)∩H1

(
0, T ;L2

)

and initial values u01 and u02 . Denote the difference of the solutions by (ũ, p̃) = (u1 − u2, p1 − p2).

Considering the difference of the PDEs (1) for (u1, p1) and (u2, p2), respectively, and adding a zero yields

∂tũ+ (u1 · ∇) ũ+ (ũ · ∇)u2 = −∇p̃+ ν∆ũ. (9)

Multiplication by ũ and integration over Ω yields

(∂tũ, ũ) + t(u1; ũ, ũ) + t(ũ;u2, ũ) = −(∇p̃, ũ) + ν (∆ũ, ũ) , (10)

where t(u1; ũ, ũ) = 0 due to Lemma 2.1. The two terms on the right-hand side can be treated using
integration by parts, where the boundary terms cancel out for no-slip or periodic boundary conditions on
∂Ω. With the estimate in Lemma 2.1 we thus obtain

1

2

d

dt
‖ũ‖2L2 6

1

2

d

dt
‖ũ‖2L2 + ν ‖∇ũ‖2L2 = −t(ũ;u2, ũ) 6 ‖∇u2‖L∞ ‖ũ‖

2
L2 . (11)
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Applying the differential form of Gronwall’s lemma gives, for all 0 6 t 6 T ,

‖ũ(t)‖2L2 6 ‖ũ(0)‖2L2 exp

(
2

∫ t

0

‖∇u2 (τ)‖L∞ dτ

)
, (12)

which, after taking the square root, becomes

‖ũ‖L∞(0,T ;L2) 6 ‖ũ(0)‖L2 e
|u2|L1(0,T ;W1,∞) . (13)

The claim follows immediately whenever u01
and u02

coincide.
�

2.2 Weakly divergence-free, conforming and inf-sup stable FEM
In this work, our aim is to consider conforming finite element approximations of the variational formulation
(4) by introducing finite-dimensional spaces Vh ⊂ V and Qh ⊂ Q of piecewise degree k > 1 and ` > 0
polynomials for the discrete velocity and pressure, respectively. The subscript h refers to a quasi-uniform and
exact decomposition Th of the domain Ω without hanging nodes. Also, h = maxK∈Th hK where hK denotes
the diameter of the particular element K ∈ Th. It is well-known that for shape-regular decompositions Th,
the discrete space Vh satisfies the local inverse inequality [EG04, Lemma 1.138]

∀vh ∈ Vh : ‖vh‖W`,p(K) 6 Cinv,Kh
m−`+d( 1

p− 1
q )

K ‖vh‖Wm,q(K) , ∀K ∈ Th, (14)

where 0 6 m 6 ` and 1 6 p, q 6 ∞. Furthermore, we define Cinv = maxK∈Th Cinv,K. Here, the decompo-
sition Th can either consist of simplices or tensor-product elements and we assume that the finite element
spaces possess the following optimal approximation properties. There is a velocity approximation operator
ih : V → Vh such that for all v ∈ V ∩Hr(Ω) with r > 2 and ru = min {r, k + 1}

‖v − ihv‖L2(K) + hK |v − ihv|H1(K) 6 Ch
ru
K |v|Hru(K) , ∀K ∈ Th. (15)

Furthermore, concerning the pressure, it is well-known that for all q ∈ Q ∩Hs(Ω) with s > 1 and rp =
min {s, `+ 1} the orthogonal L2-projection π0 : Q → Qh onto the discrete pressure space fulfils

‖q − π0q‖L2(K) 6 Ch
rp
K |q|Hrp(K) , ∀K ∈ Th. (16)

Furthermore, and very importantly, we assume that the finite element spaces fulfil the inclusion property

∇ · Vh ⊆ Qh. (17)

Then, the space-semidiscrete variational formulation of (4) reads as follows:




find (uh, ph) : (0, T )→ Vh ×Qh with uh (0) = u0h s.t. ∀(vh, qh) ∈ Vh ×Qh
(∂tuh,vh) + a(uh,vh) + t(uh;uh,vh) + b(vh, ph) = 〈f ,vh〉

−b(uh, qh) = 0

(18a)
(18b)
(18c)

Here, u0h denotes an approximation of u0 belonging to Vh, for example the Stokes projection [GNS05].

Introducing the space of discretely divergence-free functions

Vdiv
h = {vh ∈ Vh : − b(vh, qh) = (∇ · vh, qh) = 0 ∀qh ∈ Qh} , (19)

we note that the solution uh of (18) is by construction discretely divergence-free. Due to (17) we infer
that ∇ · uh ∈ Qh. Thus, taking ∇ · uh ∈ Qh as a discrete pressure test function, we deduce that uh is
divergence-free in the L2-sense. Moreover, since the velocity of an H1-conforming approximation is globally
continuous, that is Vh ⊂ C

(
Ω
)
, we know that uh is divergence-free even pointwise and hence

Vdiv
h = {vh ∈ Vh : ∇ · vh (x) = 0 ∀x ∈ Ω} ⊂ Vdiv. (20)
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Remark 2.3 : Note that the trilinear form t(·; ·, ·) is used for both the continuous problem (4) and the
semi-discrete problem (18). Contrary to non-divergence-free FEM, it is not necessary to modify the trilinear
form because skew-symmetry and important conservation properties [CHOR17], explained in more detail
in Section 2.3, hold automatically whenever the first argument is divergence-free; cf. Lemma 2.1. However,
the assembly process is computationally more efficient when using the non-modified trilinear form [Gun89,
Section 4.1], and the analysis simplifies considerably at various points. N

The last ingredient of the considered class of FEM is inf-sup stability. This means that we assume that the
spaces Vh and Qh satisfy a discrete inf-sup condition

inf
qh∈Qh\{0}

sup
vh∈Vh\{0}

(qh,∇ · vh)

‖∇vh‖L2 ‖qh‖L2

> βh, (21)

for a constant βh > 0 independent of h. Moreover, due to the (21) and the closed range theorem, Vdiv
h 6= {0}

and we thus avoid locking phenomena [GR86].

Remark 2.4 : Note that the gradient of a velocity field is actually a second order tensor and in writing (21)
we implicitly used the equivalence of the full norm ‖v‖H1 and the seminorm |v|H1 = ‖∇v‖L2 on H1

0(Ω),
due to Poincare–Friedrich’s inequality [BF13, Proposition III.2.38]. N

Remark 2.5 : One example of finite element spaces which fulfil the above conditions on simplicial decom-
positions is the Scott–Vogelius (SV) pair [SV85] of order k ∈ N. With

Pk =
{
vh ∈ C

(
Ω
)

: vh
∣∣
K
∈ Pk

(
K
)
, ∀K ∈ Th

}
, (22a)

Pdisc
k−1 =

{
qh ∈ L2(Ω): qh

∣∣
K
∈ Pk−1 (K) , ∀K ∈ Th

}
, (22b)

for the velocity components and pressure, respectively, we obtain the discrete function spaces by intersection:

Vh = [Pk]
d ∩ V = [Pk]

d ∩H1
0(Ω), Qh = Pdisc

k−1 ∩Q = Pdisc
k−1 ∩ L2

0(Ω) (23)

Inf-sup stability of SV elements is guaranteed on meshes without singular vertices and polynomial degree
k > 4 (d = 2), for k > 6 (d = 3) and on barycentre-refined meshes for k > d; cf. [Qin94, Zha05, Zha11].
Note that a once barycentre-refined mesh fulfils the local inverse inequality (14) even though the constant
might be very large. We will use this element for numerical simulations in Section 5. N

Remark 2.6 : Of course, there are other spaces which fulfil the above conditions. In [GN14a, GN14b],
conforming and divergence-free Stokes elements for d ∈ {2, 3} on simplicial meshes are introduced, whose
construction is based on enriching H(div; Ω)-conforming FE spaces with divergence-free rational functions
that enforce strong tangential continuity. On tensor-product meshes for d = 2, [Zha09, HZ11] shows that the
conforming element Vh/Qh = (Qk,k−1 ×Qk−1,k) /∇·Vh is inf-sup stable. Pointwise divergence-free velocity
approximations are ensured by polynomials of different degrees with respect to the coordinate directions,
where Qk,k−1 stands for the space of continuous piecewise polynomials of degree k in x1-direction and degree
k − 1 in x2-direction. In the context of IsoGeometric analysis, several conforming and divergence-free finite
element spaces have been constructed using splines on tensor-product meshes [BdFS11, EH13]. N

Lastly, an important result is stated which will be used frequently for the error estimates.

Corollary 2.7 (Galerkin orthogonality)

Let (u, p) ∈ V ×Q solve (4) and (uh, ph) ∈ Vh ×Qh solve (18). Then, with ξp = p− ph,

0 = (∂t [u− uh] ,vh) + a(u− uh,vh) + t(u;u,vh)− t(uh;uh,vh) + b(vh, ξp)− b(u− uh, qh) (24)

holds almost everywhere in (0, T ) and for all (vh, qh) ∈ Vh ×Qh.

Proof : Subtract (18) from (4) and use arbitrary (vh, qh) ∈ Vh ×Qh as test functions. �
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2.3 Conservation properties
This section is based on [CHOR17] and directly attaches to Remark 2.3. It is well-known that most of the
typical discretisations of the Navier–Stokes equations enforce the divergence-free condition only in a weak
sense, in general leading to discrete velocities with ∇ · uh 6= 0; cf. [JLM+16]. As a consequence, even
though the physics of the PDEs dictate otherwise, in addition to the potential lack of mass conservation,
the following quantities also may not be conserved on the discrete level:

Kinetic energy: E (u, t) =
1

2

∫

Ω

|u(t,x)|2 dx for ν = 0, f = 0

Linear momentum: M (u, t) =

∫

Ω

u(t,x) dx for f with zero linear momentum

Angular momentum: Mx (u, t) =

∫

Ω

u(t,x)× x dx for f with zero angular momentum

(25a)

(25b)

(25c)

Let us, for a moment, drop the assumption of using a weakly divergence-free FEM. Then, in general, (6a)
does not hold anymore and the particular choice of the trilinear form in the variational formulation is vital.
Writing the momentum balance of the strong formulation with a generic nonlinear term N (·) as

∂tu− ν∆u+N (u) +∇p = f , (26)

we distinguish the following formulations:

convective: N (u) = (u · ∇)u (27a)

skew-symmetric: N (u) = (u · ∇)u+
1

2
(∇ · u)u (27b)

EMAC: N (u) = 2D(u)u+ (∇ · u)u (27c)

For (27c), called ‘energy momentum and angular momentum conserving formulation’, we use the decompo-
sition of the velocity gradient tensor into deformation (symmetric) and spin (skew-symmetric) tensor:

∇u = D(u) + S(u) =
1

2

(
∇u+∇u†

)
+

1

2

(
∇u−∇u†

)
(28)

Theorem 2.8 (Conservation properties [CHOR17])

Regarding the corresponding FEM schemes to (27), the EMAC formulation conserves (25a)-(25c) whereas
the skew-symmetric formulation only conserves (25a) and the convective formulation does not conserve
anything. However, for exactly divergence-free FEMs all nonlinear formulations are equivalent and
therefore, all physical quantities (25) of the discrete solution are conserved automatically.

3 Stability analysis and well-posedness

In this section, we derive stability estimates for the semi-discrete, continuous-in-time velocity approxima-
tion. Furthermore, we address the existence and uniqueness of the discrete variational formulation (18).
The analysis in this section is in some places inspired by [BF07, ADL15, DAL16].

Motivated by symmetric testing in the bi- and trilinear forms of (18), that is

ν ‖∇v‖2L2 = a(v,v) = a(v,v) + t(uh;v,v) + b(v, q)− b(v, q) , (29)

we define the following dissipation energy norm:

‖v‖2e = ν ‖∇v‖2L2 = ν (∇v,∇v) = ν |v|2H1 = a(v,v) (30)

7



Our intent in the following is to decouple velocity and pressure. This can be done thanks to the LBB stability
which implies Vdiv

h 6= {0}. Indeed, from the second equation of (18) we know that uh ∈ Vdiv
h ⊂ Vdiv for

almost every t ∈ [0, T ], provided we additionally assume that u0h ∈ Vdiv
h . When we test the first equation

of (18) only with discretely divergence-free functions, the discrete velocity solution can be computed from
the following reduced, pressure-free variational formulation:

{
find uh : (0, T )→ Vdiv

h with uh (0) = u0h s.t. ∀vh ∈ Vdiv
h

(∂tuh,vh) + a(uh,vh) + t(uh;uh,vh) = 〈f ,vh〉
(31a)
(31b)

The following result shows that for the discrete solution, the kinetic energy at every time instance t ∈ [0, T ]
and the total kinetic energy dissipated over [0, t] is bounded by the data.

Lemma 3.1 (Energy estimate)

Let f ∈ L2 (0, T ;V∗) and u0h ∈ Vdiv
h . Then, for each 0 6 t 6 T we obtain

‖uh (t)‖2L2 +

∫ t

0

‖uh (τ)‖2e dτ 6 ‖u0h‖2L2 +
1

ν
‖f‖2L2(0,T ;V∗) . (32)

Proof : Cf., for example, [Lay08, Section 9.2]. �

Remark 3.2 : If we assume the more restrictive regularity f ∈ L1
(
0, T ;L2

)
in Lemma 3.1 one can even

remove the explicit dependence on the viscosity and prove [ADL15, Lemma 3.1]

1

2
‖uh (t)‖2L2 +

∫ t

0

‖uh (τ)‖2e dτ 6 ‖u0h‖2L2 +
3

2
‖f‖2L1(0,T ;L2) . (33)

N

Corollary 3.3 (Existence and uniqueness)

If f is Lipschitz continuous in time, there exists a unique semi-discrete velocity uh : [0, T ]→ Vdiv
h of the

variational formulation (31).

Proof : Cf., for example, [Lay08, Section 9.2]. On the right-hand side, the semi-discrete problem

(∂tuh,vh) = 〈f ,vh〉 − a(uh,vh)− t(uh;uh,vh) (34)

has a quadratic and thus locally Lipschitz continuous nonlinearity. As a consequence of Lemma 3.1, for a
fixed ν > 0, every potential solution of (34) cannot blow up in finite time and, therefore, there exists a
unique and global-in-time solution due to the theory of first-order ODEs. �

4 Pressure- and semi-robust error estimates

In this section, we assume that (u, p) ∈ V×Q solves (4) and (uh, ph) ∈ Vh×Qh is the unique FE solution to
(18). At some places, ideas from [BF07, ADL15, DAL16] are used again. With appropriate approximation
operators (πh, πh) : V ×Q → Vh ×Qh we decompose the error as

u− uh = (u− πhu) + (πhu− uh) = ηu + eu = ξu (35a)
p− ph = (p− πhp) + (πhp− ph) = ηp + ep = ξp (35b)

and refer to (ηu, ηp) and (eu, ep) as approximation and discretisation error, respectively.
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4.1 Discrete Stokes projection
For the above error splitting, we introduce here the discrete Stokes projection which is used frequently for
numerical analysis [EG04, Ing13]. The stationary incompressible Stokes problem with no-slip boundary
conditions and general body force term g is given by





−ν∆us +∇ps = g in Ω,

∇ · us = 0 in Ω,

us = 0 on ∂Ω,

(36a)
(36b)
(36c)

for which the standard finite element formulation reads as follows:




find (ush, psh) ∈ Vh ×Qh s.t. ∀(vh, qh) ∈ Vh ×Qh
ν (∇ush,∇vh)− (psh,∇ · vh) = (g,vh)

(qh,∇ · ush) = 0

(37a)
(37b)
(37c)

For this Galerkin approximation, error estimates are well-known [GR86, EG04]:

‖us − ush‖L2 + h |us − ush|H1 . h

(
inf

vh∈Vh

‖us − vh‖H1 + ν−1 inf
qh∈Qh

‖ps − qh‖L2

)
(38a)

‖ps − psh‖L2 . ν inf
vh∈Vh

‖us − vh‖H1 + inf
qh∈Qh

‖ps − qh‖L2 (38b)

Remark 4.1 : In order to obtain the estimate for ‖us − ush‖L2 an Aubin–Nitsche duality argument is
mandatory. However, to be able to apply such an argument, it is necessary for the Stokes problem to
have smoothing properties. Referring to [EG04, Section 4.2], a sufficient but rather restrictive assumption
guaranteeing this is that Ω is either a convex polygon in d = 2 or Ω is of class C1,1 for d ∈ {2, 3}. N

Following the concept of [dFGAJN16], the forcing term is chosen in particular as

g = f − ∂tu− (u · ∇)u−∇p = −ν∆u, (39)

where (u, p) ∈ V × Q denotes the exact solution of the Navier–Stokes problem (1). Therefore, on the
continuous level, we are searching for the unique solution (us, ps) fulfilling

−ν∆us +∇ps = f − ∂tu− (u · ∇)u−∇p. (40)

Since (u, p) solves the Navier–Stokes equations uniquely, the exact solution of the Stokes equations (36) with
g = −ν∆u is given by (us, ps) = (u, 0). This leads to the following definition.

Definition 4.2 (Discrete Stokes projection)

Let (u, p) ∈ V ×Q solve (4). Then, the discrete Stokes projection (πsu, πsp) ∈ Vh ×Qh is defined as
the unique solution (ush, psh) to (37) with g = −ν∆u.

In this way, the approximation properties of the projection operators can be derived from the error estimates
for the Stokes problem (38):

‖u− πsu‖L2 + h |u− πsu|H1 6 Csh inf
vh∈Vh

‖u− vh‖H1 (41a)

‖πsp‖L2 6 Csν inf
vh∈Vh

‖u− vh‖H1 (41b)

Furthermore, by construction, the Stokes projection is discretely divergence-free, that is πsu ∈ Vdiv
h . As-

suming sufficient smoothness in time such that g = ∂t (−ν∆u) can be chosen in (37), one obtains

‖∂t (u− πsu)‖L2 + h |∂t (u− πsu)|H1 6 Csh inf
vh∈Vh

‖∂tu− vh‖H1 . (42)
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Corollary 4.3

Let (u, p) ∈ V × Q solve (4) and (πhu, πhp) = (πsu, πsp) ∈ Vdiv
h × Qh be the Stokes projection of

Definition 4.2. Then, the following holds:

(i) Error equation:

a(ηu,vh)− b(vh, πsp)− b(ηu, qh) = 0, ∀(vh, qh) ∈ Vh ×Qh (43)

(ii) Stokes and Ritz projection coincide on Vdiv
h , that is

(∇πsu,∇vh) = (∇u,∇vh) , ∀vh ∈ Vdiv
h . (44)

(iii) Max-norm stability: Assuming additionally that Ω is convex, we have

|πsu|W1,∞ 6 C∞ |u|W1,∞ . (45)

Proof : Ad (i): Since u ∈ V solves (4), we know that u ∈ Vdiv and thus, b(u, qh) = 0 for all qh ∈ Qh.
Thus, inserting g = −ν∆u in (37) and integrating by parts yields the assertion:

ν (∇πsu,∇vh)− (πsp,∇ · vh) = ν (∇u,∇vh) (46a)
(qh,∇ · πsu) = (qh,∇ · u) (46b)

Ad (ii): Now, suppose that we test in (i) with vh ∈ Vdiv
h . Then, by construction, −b(vh, πsp) = 0.

Ad (iii): In general, for an approach from the direction of the Ritz projection, see [GLRS09]. In order
to obtain the result directly from the Stokes equations, we refer to [GNS15]; notice, however, that in the
present work we define the Stokes projection in a slightly different way. Having said this, it is nevertheless
possible to modify the approach in [GNS15] to obtain a pressure-independent max-norm estimate whenever
a weakly divergence-free FEM is used to compute the Stokes projection. �

Remark 4.4 : Note that in this subsection we did not use the inclusion property (17) and, therefore, all
previous explanations also hold true verbatim for general inf-sup stable and conforming FEMs. However, in
order to separate the pressure from the velocity error estimates, we will need the property ∇ ·Vh ⊂ Qh, or
more precisely Vdiv

h ⊂ Vdiv, for weakly divergence-free FEM to infer that b(vh, p) = 0 for all vh ∈ Vdiv
h . N

Remark 4.5 : The choice of an appropriate approximation operator for the error splitting is a crucial part
of the numerical analysis. Note that in [ADL15, DAL16] the error analysis is carried out in Vdiv

h with the
use of a divergence-preserving interpolation operator [GS03]. N

4.2 Unstabilised Galerkin-FEM

Now, let (πhu, πhp) = (πsu, πsp) ∈ Vdiv
h ×Qh be the Stokes projection of Definition 4.2.

Lemma 4.6 (Difference of convective terms)

Let u ∈ V solve (4), uh ∈ Vh solve (18) and suppose that u ∈ L∞
(
0, T ;W1,∞). Then, for all finite

ε > 0 and σ > 0, the following estimate holds true:

|t(u;u, eu)− t(uh;uh, eu) | 6 1

4εσ2
‖ηu‖2L2 +

1

4ε
|ηu|2H1 (47a)

+
(

2 |u|W1,∞ + εσ2 |u|2W1,∞ + ε ‖πsu‖2L∞ + |πsu|W1,∞

)
‖eu‖2L2 (47b)

10



Proof : Using uh = πsu− eu, we deduce that

t(uh;uh, eu) = (uh · ∇uh, eu) = (uh · ∇πsu, eu)− (uh · ∇eu, eu) = (uh · ∇πsu, eu) , (48)

where the last equality is due to Lemma 2.1 together with ∇ · uh = 0. Therefore, we obtain

t(u;u, eu)− t(uh;uh, eu) = t(u;u, eu)− t(uh;u, eu) + t(uh;u, eu)− (uh · ∇πsu, eu) (49a)

=

∫

Ω

([u− uh] · ∇)u · eu dx+

∫

Ω

(uh · ∇) [u− πsu] · eu dx (49b)

= t(ηu + eu;u, eu) + t(uh;ηu, eu) = T1 + T2. (49c)

Mainly using u(t) ∈ W1,∞(Ω) for 0 6 t 6 T and Young’s inequality, we can estimate these two terms
separately. For the first one, with the estimate from Lemma 2.1 and arbitrary ε > 0 and σ > 0, we get

|T1| = |t(ηu + eu;u, eu)| 6 (‖ηu‖L2 + ‖eu‖L2) ‖∇u‖L∞ ‖eu‖L2 (50a)

= |u|W1,∞ ‖eu‖2L2 + σ−1 ‖ηu‖L2 σ |u|W1,∞ ‖eu‖L2 (50b)

6
1

4εσ2
‖ηu‖2L2 +

(
|u|W1,∞ + εσ2 |u|2W1,∞

)
‖eu‖2L2 . (50c)

For the second term, again using uh = πsu− eu and the triangle inequality, we deduce that

|T2| = |t(uh;ηu, eu)| 6 |t(πsu;ηu, eu)|+ |t(eu;ηu, eu)| = |T2,1|+ |T2,2| , (51)

and, for the first part of the partition, with Young’s inequality (ε > 0) obtain

|T2,1| = |t(πsu;ηu, eu)| 6 ‖πsu‖L∞ ‖∇ηu‖L2 ‖eu‖L2 6 ε ‖πsu‖2L∞ ‖eu‖
2
L2 +

1

4ε
|ηu|2H1 (52)

and, by virtue of Lemma 2.1 plus the triangle inequality,

|T2,2| = |t(eu;ηu, eu)| 6 ‖∇ηu‖L∞ ‖eu‖
2
L2 = |ηu|W1,∞ ‖eu‖2L2 (53a)

6 (|u|W1,∞ + |πsu|W1,∞) ‖eu‖2L2 . (53b)

Combining the three estimates concludes the proof. �

Theorem 4.7 (Semi-robust velocity discretisation error estimate)

Let u ∈ V solve (4), uh ∈ Vh solve (18) and assume that u ∈ L∞
(
0, T ;W1,∞), ∂tu ∈ L2

(
0, T ;L2

)

and uh (0) = πsu0. Then, we obtain the following error estimate for the velocity of the FEM:

‖eu‖2L∞(0,T ;L2) +

∫ T

0

‖eu (τ)‖2e dτ 6 eCuT

∫ T

0

[
‖∂tηu (τ)‖2L2 +

1

h
‖ηu (τ)‖2L2 + |ηu (τ)|2H1

]
dτ (54)

Here, the Gronwall constant is given by

Cu = 1 + 4 |u|L∞(0,T ;W1,∞) + h |u|2L∞(0,T ;W1,∞) + ‖πsu‖2L∞(0,T ;L∞) + 2 |πsu|L∞(0,T ;W1,∞) . (55)

Remark 4.8 : Assuming additionally that u ∈ L2
(
0, T ;H1

)
, Theorem 4.7 directly implies strong velocity

convergence of the FEM; cf. [ADL15]. N
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Proof : Use (eu, ep) ∈ Vdiv
h ×Qh as test functions in Corollary 2.7:

0 = (∂tξu, eu) + a(ξu, eu) + t(u;u, eu)− t(uh;uh, eu) + b(eu, ξp)− b(ξu, ep) (56)

Inserting the definition of the full errors yields

0 = (∂teu, eu) + a(eu, eu) + a(ηu, eu) + b(eu, p)− b(eu, πsp) + b(eu, ep)− b(eu, ep) (57a)
− b(ηu, ep) + (∂tηu, eu) + [t(u;u, eu)− t(uh;uh, eu)] . (57b)

Now, using the properties of the Stokes projection, namely Corollary 4.3 and Remark 4.4, a lot of terms
drop out and, after rearranging, we obtain

(∂teu, eu) + a(eu, eu) = −(∂tηu, eu)− [t(u;u, eu)− t(uh;uh, eu)] . (58)

Note that we specifically used the property Vdiv
h ⊂ Vdiv for weakly divergence-free FEM to infer that

b(eu, p) = 0 and, therefore, the pressure drops out of the velocity error estimates entirely. Bearing in mind
that (∂teu, eu) = 1

2
d
dt ‖eu‖

2
L2 and using the definition of the energy norm (30) leads to

1

2

d

dt
‖eu‖2L2 + ‖eu‖2e = −(∂tηu, eu)− [t(u;u, eu)− t(uh;uh, eu)] . (59)

The convective terms have been estimated in Lemma 4.6 for all finite ε > 0 and σ > 0:

|t(u;u, eu)− t(uh;uh, eu) | 6 1

4εσ2
‖ηu‖2L2 +

1

4ε
|ηu|2H1 (60a)

+
(

2 |u|W1,∞ + εσ2 |u|2W1,∞ + ε ‖πsu‖2L∞ + |πsu|W1,∞

)
‖eu‖2L2 (60b)

Assuming that ∂tηu ∈ L2(Ω), the dynamical first term on the right-hand side can be estimated with
Cauchy–Schwarz and Young’s inequality:

|(∂tηu, eu)| 6 ‖∂tηu‖L2 ‖eu‖L2 6
1

2
‖∂tηu‖2L2 +

1

2
‖eu‖2L2 (61)

Combining all above estimates yields

1

2

d

dt
‖eu‖2L2 + ‖eu‖2e 6

1

2
‖∂tηu‖2L2 +

1

4εσ2
‖ηu‖2L2 +

1

4ε
|ηu|2H1 (62a)

+

(
1

2
+ 2 |u|W1,∞ + εσ2 |u|2W1,∞ + ε ‖πsu‖2L∞ + |πsu|W1,∞

)
‖eu‖2L2 . (62b)

Choosing σ =
√
h, ε = 1/2 and multiplying this inequality by 2 results in

d

dt
‖eu‖2L2 + 2 ‖eu‖2e 6 ‖∂tηu‖

2
L2 +

1

h
‖ηu‖2L2 + |ηu|2H1 (63a)

+
(

1 + 4 |u|W1,∞ + h |u|2W1,∞ + ‖πsu‖2L∞ + 2 |πsu|W1,∞

)
‖eu‖2L2 . (63b)

Using the abbreviation

g (τ) = 1 + 4 |u(τ)|W1,∞ + h |u(τ)|2W1,∞ + ‖πsu(τ)‖2L∞ + 2 |πsu(τ)|W1,∞ , (64)

from the regularity assumption, we infer that for all 0 6 t 6 T

G(t) =

∫ t

0

g (τ) dτ <∞. (65)
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By applying Gronwall’s lemma [EG04, Lemma 6.9] and acknowledging the monotonicity of G, we can drop
the exponential term on the left-hand side and, therefore, for all 0 6 t 6 T , reduce our inequality to

‖eu (t)‖2L2 +

∫ t

0

‖eu (τ)‖2e dτ 6
∫ t

0

eG(t)−G(τ)

[
‖∂tηu (τ)‖2L2 +

1

h
‖ηu (τ)‖2L2 + |ηu (τ)|2H1

]
dτ . (66)

On the other hand, using the regularity assumption u ∈ L∞
(
0, T ;W1,∞), we can estimate

G(t)−G(τ) =

∫ t

τ

g (s) ds 6 Cu [t− τ ] 6 CuT (67)

with a Gronwall constant

Cu = 1 + 4 |u|L∞(0,T ;W1,∞) + h |u|2L∞(0,T ;W1,∞) + ‖πsu‖2L∞(0,T ;L∞) + 2 |πsu|L∞(0,T ;W1,∞) . (68)

Given (45), this concludes the proof. �

Remark 4.9 : Note that the error estimate (54) for the velocity is independent of the pressure, that is,
pressure-robust. This is characteristic for weakly divergence-free methods and a major advantage over other
FEM. For a more general discussion of pressure-robustness, we refer to [LMT16, JLM+16]. N

Remark 4.10 : It is possible to relax the regularity assumptions in Theorem 4.7. In fact, we only require
that G(t) <∞ for all 0 6 t 6 T . Thus, assuming u,πsu ∈ L2

(
0, T ;W1,∞) would be sufficient. However, the

given regularity seems to be rather natural to us. Furthermore, we would like to make reference to [Bur15],
where the analysis for the two-dimensional Navier–Stokes problem is based on a scale separation u = u+u′

into large eddies u and small scales (fluctuations) u′. Assuming that u ∈W1,∞ and u′ ∈W1,p ∩ L∞ for
p > d = 2, this leads to error estimates where the Gronwall constant exp

(
1 + C ‖∇u‖L∞(0,T ;L∞) + . . .

)

can be replaced by exp
(

1 + C ‖∇u‖L∞(0,T ;L∞) + . . .
)
, which is much more realistic.

N

Corollary 4.11 (Velocity discretisation error convergence rate)
Under the assumptions of the previous theorem, assume a smooth solution according to

u ∈ L∞
(
0, T ;W1,∞) ∩ L2 (0, T ;Hr) , ∂tu ∈ L2

(
0, T ;Hr−1

)
. (69)

Then, we obtain the following convergence rate for the velocity of the FEM:

‖eu‖2L∞(0,T ;L2) +

∫ T

0

‖eu (τ)‖2e dτ 6 Ch2(ru−1)eCuT

∫ T

0

[
(1 + h) |u(τ)|2Hru + |∂tu(τ)|2Hru−1

]
dτ (70)

Here, ru = min {r, k + 1} and the Gronwall constant Cu is given in Theorem 4.7.

Proof : The proof is a consequence of the approximation result (41a) and (42) for the Stokes projection
and the interpolation result (15) for the velocity space:

1

h
‖ηu (τ)‖2L2 6 C2

sh inf
vh∈Vh

‖u(τ)− vh‖2H1 6 Ch2ru−1 |u(τ)|2Hru (71a)

|ηu (τ)|2H1 6 C2
s inf
vh∈Vh

‖u(τ)− vh‖2H1 6 Ch2(ru−1) |u(τ)|2Hru (71b)

‖∂tηu (τ)‖2L2 6 C2
sh

2 inf
vh∈Vh

‖∂tu(τ)− vh‖2H1 6 Ch2(ru−1) |∂tu(τ)|2Hru−1 (71c)

Those are the particular terms in Theorem 4.7 which must be estimated. �

Note that, using the triangle inequality, (54) and (70) also hold true for the full error ξu = u− uh.
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Lemma 4.12 (Max-norm estimate)

Under the assumptions of the previous corollary, additionally assume u ∈ L∞ (0, T ;Hr). Then,

‖u− uh‖2L∞(0,T ;L∞) 6 Ch
2 ‖u‖2L∞(0,T ;W1,∞) (72a)

+ Ch2(ru−1)−deCuT max
{
|u|2L2(0,T ;Hru ) , |∂tu|

2
L2(0,T ;Hru−1)

}
, (72b)

where ru = min {r, k + 1}. Especially, provided ru > d
2 + 1, this shows that uh ∈ L∞ (0, T ;L∞).

Proof : First of all, we introduce the orthogonal L2-projection π0 onto Vh. Then, as argued in [BF07],
quasi-uniformity of the mesh is sufficient to obtain the following estimate:

‖u− π0u‖L∞ + h ‖u− π0u‖W1,∞ 6 Ch ‖u‖W1,∞ (73)

Now, using the triangle inequality, we conclude that

‖u− uh‖L∞ 6 ‖u− π0u‖L∞ + ‖π0u− uh‖L∞ , (74)

and the first term can be bounded by Ch ‖u‖W1,∞ , see (73). For the second term, we use a global inverse
inequality (here, quasi-uniformity of the mesh is also required) based on the inverse inequality (14) with
` = m = 0, p =∞ and q = 2, which yields

‖π0u− uh‖L∞ 6 Cinvh
−d/2 ‖π0u− uh‖L2 . (75)

Once again with the triangle inequality, we deduce

‖π0u− uh‖L2 6 ‖π0u− u‖L2 + ‖u− uh‖L2 . (76)

Using the approximation properties of smooth functions, see [EG04, Proposition 1.134], we estimate

‖π0u− u‖L2 6 Chru |u|Hru . (77)

For the second term in (76), we invoke Corollary 4.11, which yields

‖(u− uh)(t)‖L2 6 Chru−1eCuT/2 max
{
|u|L2(0,T ;Hru ) , |∂tu|L2(0,T ;Hru−1)

}
. (78)

For 0 6 t 6 T , combining the above estimates, we obtain

‖(u− uh)(t)‖L∞ 6Ch ‖u(t)‖W1,∞ + Ch−
d/2+ru |u(t)|Hru (79a)

+Ch−
d/2+ru−1eCuT/2 max

{
|u|L2(0,T ;Hru ) , |∂tu|L2(0,T ;Hru−1)

}
, (79b)

from which the claim follows by squaring.
�

4.3 Edge-stabilised FEM
Assuming that the time derivative of the exact solution is only slightly smoother, to be precise, supposing
that ∂tu ∈ L2

(
0, T ;Hr−1/2

)
, the interpolation estimate (71c) can be improved by half an order to

‖∂tηu (τ)‖2L2 6 C2
sh

2 inf
vh∈Vh

‖∂tu(τ)− vh‖2H1 6 Ch2ru−1 |∂tu(τ)|2Hru−1/2 . (80)

Thus, it is estimate (71b) that prevents an additional factor ν+h (instead of 1+h) in (70). The appearance
of the unfavourable term |ηu (τ)|2H1 can be traced back directly to the estimation of the difference of the
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convective terms in Lemma 4.6 and is therefore due to the nonlinear term in the Navier–Stokes equations. A
standard remedy in the case of convection-dominated flows is the introduction of an additional stabilisation
term. Let us discuss briefly the potential impact of stabilisation on our method. To this end, with a
user-chosen parameter γ > 0, we add the term

sh (uh,vh) =
∑

F∈Fi
h

∮

F

γh2
F |uh · nF |2 J∇uhK : J∇vhK ds (81)

on the left-hand side of the weak formulation on the discrete level (18). Here, F ih denotes the set of interior
edges corresponding to the decomposition Th with outward unit normal vector nF and J·K denotes the stan-
dard jump operator. A term such as this is referred to as edge-stabilisation and, because it penalises the
jumps of the whole velocity gradient across interior edges, it acts as a stabiliser for problems with dominant
convection. Moreover, as shown in [BL08], it is also possible to replace the edge-stabilisation term with a
local projection stabilisation term.

Now, it is straightforward to show that Theorem 4.7 still holds true after adding the term sh (eu, eu) on the
left-hand side, thereby yielding an error of order k for this term as well. An improved error estimate of the
difference of convective terms (see Lemma 4.6) is possible if, for example, the orthogonal L2-projector onto
Vh is used instead of the Stokes projector; cf. [BF07, BL08]. Unfortunately, this projector does not act in
Vdiv
h and it is not obvious whether it is possible to obtain pressure-robust estimates with this technique.

Thus, the existence of an improved pressure- and semi-robust error estimate of order O
(
hk
√
ν + h

)
remains

an open question. Nonetheless, we will use convection stabilisation successfully in the form of (81) in the
next section concerning numerical examples.

5 Numerical experiments

In this section, we want to show numerical examples with u ∈ L∞
(
0, T ;W1,∞) for potentially high Reynolds

numbers but without consideration of turbulent flows. Recall the space-semidiscrete variational formulation
of (4) where we replaced the nonlinear term with a generic form n(·; ·, ·) to be specified later on:





find (uh, ph) : (0, T )→ Vh ×Qh with uh (0) = u0h s.t. ∀(vh, qh) ∈ Vh ×Qh
(∂tuh,vh) + a(uh,vh) + n(uh;uh,vh) + b(vh, ph) = 〈f ,vh〉

−b(uh, qh) = 0

(82a)
(82b)
(82c)

In the following, we compare the performance of different standard conforming FEM schemes of order k,
based on the Taylor–Hood velocity/pressure pair with the Scott–Vogelius pair as a representative of the
class of exactly divergence-free and conforming FEM. Inspired by [CHOR17], for the non-divergence-free
methods we consider different formulations of the nonlinear term n(·; ·, ·) which, together with the particular
finite element spaces, possess a varying degree of conservation properties and are all equivalent whenever
∇ · uh = 0; cf. Section 2.3. All considered methods are summarised in Table 1. Note that, contrary to all
other methods, the EMAC formulation leads to a velocity contribution in the pressure.

We always guarantee that the starting situation for the SV simulations is in general less favourable compared
to the TH simulations by using a coarser mesh for SV such that the total number of DOFs is approximately
the same. By doing this, results cannot only be compared in terms of accuracy, but also in terms of efficiency.
For numerical simulations, we take advantage of the finite element package COMSOL Multiphysics 5.1. The
time stepping is performed using the BDF(2)-scheme and Newton iterations are converged up to a relative
residual of 10−8.
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Table 1: Different finite element spaces and trilinear forms for comparison purposes.

Name Vh/Qh Trilinear form n(uh;uh,vh) Abbreviation

Scott–Vogelius [Pk]
d
/Pdisc

k−1 t(uh;uh,vh) SVk

convective Taylor–Hood [Pk]
d
/Pk−1 t(uh;uh,vh) convTHk

skew-symmetric Taylor–Hood [Pk]
d
/Pk−1 t(uh;uh,vh) + 1

2 (∇ · uh,uh · vh) skewTHk

EMAC Taylor–Hood [Pk]
d
/Pk−1 2(D(uh)uh,vh) + (∇ · uh,uh · vh) emacTHk

For the purpose of identifying vortical structures in the subsequent flows, we make use of the popular
Q(u)-criterion [HWM88, JH95, Hal05]

{
x ∈ Ω: Q(u) =

1

2

[
|S(u)|2 − |D(u)|2

]
> 0

}
, (83)

that is, we define the neighbourhood of a vortex as the set of points in a flow for which the Euclidean norm
of the spin tensor (local rigid body rotation) dominates the deformation tensor (shearing).

The first two examples deal with viscous vortex dynamics for f = 0 where the approximation of inviscid
flows by high Reynolds number viscous flows is considered. Indeed, denoting the inviscid solution of the
incompressible Euler equations by u0 and the corresponding viscous solution of the incompressible Navier–
Stokes equations by uν , it can be shown [MB02, Section 3.1.2] that, for small viscosity,

∥∥uν − u0
∥∥
L∞(0,T ;L2)

6 ν
∥∥∆u0

∥∥
L1(0,T ;L2)

e
|u0|L1(0,T ;W1,∞) . (84)

5.1 Gresho-vortex in viscous incompressible flow

At first, we consider the Gresho-vortex problem [GC90, LW03] on Ω = (−0.5, 0.5)
2, defined by the evolution

of an initial condition that solves the steady inviscid Euler equations. The initial state of the fluid system
is originally given in polar coordinates (r, φ) by means of the velocity

uφ (r, φ) =





5r,

2− 5r,

0,

⇒ u0 (x) =





(−5x2, 5x1)
†
, 0 6 r 6 0.2,(

− 2x2

r + 5x2,
2x1

r − 5x1

)†
, 0.2 6 r 6 0.4,

(0, 0)
†
, 0.4 6 r,

(85)

where the radial velocity component ur vanishes everywhere. The pressure is determined by the zero-mean
constraint. This problem is especially interesting because the initial vorticity ω = ∂xu2 − ∂yu1 is discon-
tinuous at r = {0.2, 0.4} and ∆u0 /∈ L2(Ω), see (84). However, with reference to Section 4, note that
u0 ∈W1,∞(Ω) with |u0|W1,∞ = 5.

Now, our numerical experiment consists in taking this vortex (85) as the initial condition of the simulation,
that is uh (0) = u0, and letting it evolve within a viscous incompressible flow. Then, depending on the
viscosity ν > 0, more or less viscous dissipation causes an alteration of the vortex flow and may give rise
to numerical instabilities. This is a different scenario than the one considered in [CHOR17, LW03] since we
are deliberately including viscous effects and also observe evolutions over longer time periods.

As regards the mesh construction, we always begin with a decomposition intoN×N quadratic elements which
is transformed into a simplicial mesh by inserting the diagonals and, for the SV-FEM, is then barycentre-
refined. The meshes for the TH-FEM are referred to as N/ whereas the barycentre-refined meshes are
denoted by N/b. We restrict the BDF(2) maximum time step to ∆tmax = 0.005.
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Figure 1: |uh|-evolution of Gresho-vortex for ν = 7× 10−5 with skewTH2 on 70/ at t ∈ {1, 2, 3, 4}.

In Figure 1, we see the evolution of the velocity magnitude |uh| for a skewTH2 method with ν = 7× 10−5

on a 70/ mesh (44 803 DOFs). It can be observed that, as time proceeds, the vortex looses its shape and
is dissipated quickly and in a rather fragmented manner. As we will see later on, this decay happens much
too fast and is due to the unsuitability of the skew-symmetric formulation for such a problem. Note that,
even though this formulation conserves kinetic energy, this property is obviously not strong enough in the
context of vortex dynamics. Moreover, conducted tests with higher-order finite element pairs revealed no
improvement for the skew-symmetric formulation, which is possibly due to the lack of smoothness of u0.

However, if we use the convective and EMAC formulation of the nonlinear term for the same problem, the
vortex is still rather distinct at t = 4 and therefore, in Figure 2, in order to be able to observe unusual
behaviour, we regard the problem for a smaller viscosity of ν = 4× 10−6. In the first two images, we
compare second-order P2/P1 TH-FEM with different nonlinear terms at the same time t = 4. Obviously,
both methods are better suited to this problem than the skew-symmetric formulation. However, the vortex
from convTH2 is also not truly stable and, for emacTH2, we see the outlines of artefacts arising outside of
the vortex, which oftentimes lead to divergence of the nonlinear solver as time proceeds.

(a) convTH2, 70/, t = 4 (b) emacTH2, 70/, t = 4 (c) convTH3, 45/, t = 2.7 (d) emacTH3, 45/, t = 0.8

Figure 2: Comparison of |uh| of Gresho-vortex for ν = 4× 10−6. Colour bar identical to other figures.

As can be seen in the third and fourth image in Figure 2, the use of a higher-order P3/P2 pair does not
resolve the problem either. In order to produce comparable situations we use a coarser 45/ mesh (45 273
DOFs) for the third-order methods. While the vortex itself is resolved well in both cases and especially its
boundary seems to be rather sharp, both convective and EMAC formulations yield the already mentioned
artefacts. Unfortunately, the nonlinear solvers failed before reaching t = 4 at the depicted time instances,
in each case. An improvement of both methods can of course be obtained by refining the mesh which yields
more DOFs, thereby making these standard methods computationally inefficient.
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Figure 3: |uh| of Gresho-vortex at t = 4 for ν ∈
{
7× 10−5, 4× 10−6, 10−8, 0

}
with SV2 on 32/b.

Finally turning our attention to the exactly divergence-free SV-FEM, in Figure 3 we compare the velocity
magnitude at t = 4 for the SV2 method on a 32/b mesh (43 266 DOFs) for different viscosities. The first
image represents the SV solution corresponding to the viscosity considered for the skewTH2 case and the
second image can be compared to the convTH2 and emacTH2 results. It can be observed that the exactly
divergence-free method is clearly superior in both cases, as neither considerable smearing or dissipation of
the vortex occurs nor any artefacts appear to incapacitate the method. In addition, we can even decrease
the viscosity for SV2 until reaching ν = 0 without losing the vortical characteristic. Interestingly, it is not
possible to see any significant differences between ν = 0 and ν = 10−8. Of course, diffusive effects result in
non-zero velocity outside the vortex, which is also slightly distorted; but nevertheless, we believe that these
are very convincing and satisfactory results for the SV-FEM.

Figure 4: |uh|-evolution of Gresho-vortex for ν = 4× 10−6 with SV4 on 20/b at t ∈ {4, 8, 16, 32}.

Lastly, we regard the long-term behaviour of the SV-FEM. To this end, the evolution of |uh| for a fourth-
order SV4 with viscosity ν = 4× 10−6 on a 20/b mesh (62 723 DOFs) is shown in Figure 4. First of all,
we note that, in contrast to Taylor–Hood, higher-order finite element pairs work fine for Scott–Vogelius.
Secondly, we see that the vortex is stable up to t = 8, which is remarkable. Going beyond this time
instance, the vortex dissolves as can be seen at t = 16. However, energy and momentum of the vortex
are not dissipated as, for example, is clearly the case for skewTH2. Indeed, a vortical structure somehow
reassembles until t = 32 and it is surprising that the SV-FEM is able to reliably produce results for such a
long period of time.

5.2 Dynamics of planar lattice flow
In this section, we again consider the evolution of an initial velocity, which solves the stationary incompress-
ible Euler equation, in a viscous incompressible Navier–Stokes flow. However, in this example, the following
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exact solution u for ν > 0 and corresponding initial condition u0 is known:

u0 (x) =

(
sin(2πx1) sin(2πx2)
cos(2πx1) cos(2πx2)

)
, u(t,x) = u0 (x) e−8π2νt, x ∈ Ω = (0, 1)

2 (86)

The initial velocity field induces a flow structure called ‘planar lattice flow’ [Ber88] which, due to its saddle
point character, is ‘dynamically unstable so that small perturbations result in a very chaotic motion’ [MB02].
Here, we impose periodic boundary conditions on the vertical and horizontal walls of ∂Ω, respectively, and
the zero-mean condition on ph. Extending the field 1-periodically to R2, we obtain u0 ∈ C∞

(
R2
)
and

|u|L∞(0,T ;W1,∞) = |u0|W1,∞ = 2π for any T > 0. In Figure 5, the velocity magnitude |u0|, the initial vor-
ticity ω0 and the Q(u0)-criterion coloured with the vorticity are shown. Similarly as for the Gresho-vortex,
the dynamical behaviour of such a system is observed when it is exposed to a viscous flow.

Figure 5: Initial state of planar lattice flow: Velocity magnitude |u0|, vorticity ω0 and Q(u0)-criterion coloured with ω0. The
arrows denote the velocity field and the triangles denote the maximum and minimum value attained.

Contrary to the previous subsection, we now consider unstructured Delaunay meshes where the separatrices
of the flow (here, zero level set of ω0) are deliberately not aligned with the mesh. The BDF(2) is restricted
to a slightly larger maximum time step of ∆tmax = 0.01. For the sake of brevity, only a fixed viscosity
ν = 4× 10−6 is considered and the Scott–Vogelius FEM is compared directly to the EMAC Taylor–Hood
FEM. We briefly demonstrate that the other TH formulations are practically useless for this problem.

Figure 6: Poor numerical solutions for planar lattice flow: Velocity magnitude and Q(uh)-criterion coloured with ω for skewTH2

at t = 0.47 (first and second image) and convTH2 at t = 6.4 (third and forth image) using 194 395 DOFs.

In order to show the unsuitability of skew-symmetric and convective formulations of the nonlinear term, we
take a fine mesh with h = 1.17× 10−2 (194 395 DOFs) and perform a simulation for the planar lattice flow.
Both methods fail to converge and the results, shown at the particular last possible time instance, can be
seen in Figure 6. Whilst the skew-symmetric formulation fails at an early stage and yields an obviously
poor solution, the convective formulation remains stable longer and the solution in principal seems to be
better. However, comparing the maximum and minimum values in the Q(uh)-criterion, we observe that the
vorticity blows up locally in comparison to the initial vorticity ω0. We shall see that this phenomenon is
not as pronounced for either the EMAC or SV method. Note that, in Figure 10, skewTH2 and convTH2 are
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also taken into account in a quantitative comparison.

Figure 7: Evolution of Q(uh)-criterion coloured with ω at t ∈ {2, 3, 6, 9} (columns). Comparison: emacTH2 using 61 808 DOFs
(upper row) and SV2 using 59 766 DOFs (lower row).

In Figure 7, we compare the performance of the EMAC-TH and SV method by means of the evolution of the
Q(uh)-criterion and the maximum values of the corresponding vorticity. The emacTH2 solution is computed
on a mesh with h = 2.14× 10−2 (61 808 DOFs) and SV2 uses h = 4.47× 10−2 (59 766 DOFs). Firstly, we
note that, despite using much coarser meshes, EMAC and SV do not fail to converge. However, regarding
emacTH2 in the upper row, we observe that the initially diamond-shaped form of the Q(uh)-criterion breaks
apart at t = 2 and at t = 9, we see a circular structure.

Compared with this, the Q(uh)-criterion of SV2 remains more diamond-shaped and even at t = 9, the
structure is not as circular as for the EMAC method. Regarding the values of the vorticity we observe that,
although the SV method yields an increased vorticity compared to the initial vorticity, its minimum and
maximum at least have the same absolute value. The vorticity of the EMAC method, on the other hand,
is significantly increased and the absolute values do not coincide. Based on these insights we conclude that
the SV-FEM is superior to all TH-type FEM for this kind of planar lattice flow. However, for TH-FEM,
the EMAC formulation clearly outperforms the convective and skew-symmetric formulations.

With regard to Section 4.3, let us briefly demonstrate the impact of convection stabilisation. Therefore,
edge-stabilisation is now added to our method, referred to as stabSV2. In Figure 8, we compare the per-
formance of the unstabilised and edge-stabilised (γ = 10−1) SV method by means of the evolution of |uh|.
On the left-hand side, we observe that, as time proceeds, the initial lattice structure of the flow begins to
‘vibrate’ until, eventually, it breaks apart and a chaotic motion develops for the unstabilised SV2 method.
The flow at t = 12 does not have any resemblance to a vortical structure anymore. Furthermore, at this
time, we get ‘overshoots’ of about 19 % as the velocity magnitude is overpredicted by the unstabilised method.

This instability can be treated with a stabilising term of the form (81). Indeed, the right-hand side of Figure
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Figure 8: Velocity magnitude at t ∈ {6, 12} with SV2 (59 766 DOFs). Comparison: Unstabilised method (left group) and
edge-stabilised method with γ = 10−1 (right group).

8 shows the impact of the addition of such a term with γ = 10−1 to the SV2 method. It can be seen that,
although the same kind of ‘vibration’ occurs, the edge-stabilisation is able to counteract the impending
collapse of the vortex structure. Thus, at t = 12 no chaotic behaviour is visible and the overshoots are
reduced to 2 %. However, the vortices at t = 12 are about to break loose from the lattice, which ultimately
leads to them merging; therefore, edge-stabilisation can only postpone, not prevent, the breakdown of the
initial planar lattice flow.

Figure 9: Q(uh)-criterion coloured with ω at t = 12. Comparison (left to right): emacTH2 (61 808 DOFs), unstabilised SV2

and edge-stabilised SV2 with γ = 10−1 (both 59 766 DOFs).

Finally, we compare the Q(uh)-criterion and vorticity at t = 12 for emacTH2, unstabilised SV2 and stabSV2

in Figure 9 and observe that only the stabilised method pâĂăreserves the initial diamond shape. Further-
more, the maximum and minimum values ±12.6 of the vorticity still exactly coincide with the initial values,
see Figure 5, and the Q(uh)-criterion does not indicate an accumulation of diffusive vortical structures in
between the diamonds. In contrast, the vorticity of both unstabilised SV2 and emacTH2 increases and the
Q(uh)-criterion shows a chaotic structure. Therefore, we have proven that stabilisation of the Scott–Vogelius
method clearly and visibly improves the quality of the approximate solution in practical applications.

The last observations are made with regard to Section 2.3. Since we know the exact solution (86) to the
problem, we can also compute the evolution of its kinetic energy, linear momentum and angular momentum
(of course, ∇ ·u = 0). Thus, in Figure 10, it is observable how the errors of the different FEMs w.r.t. those
conservation properties evolve over time. Note that the exact solution has vanishing linear and angular
momentum, i.e.M (u, t) = Mx (u, t) = 0 for all t ∈ [0, T ], which does not hold for the FEM approximation.
Corresponding to the already shown failure of skewTH2, it can be seen that divergence, kinetic energy and
linear momentum of uh explode after a short time (t = 0.47). For the convTH2 method the same blow-up
is apparent, but occurs after a considerable longer time (t = 6.4). At this point we note that, as long
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Figure 10: Comparison of the errors w.r.t. the conservation properties (Section 2.3) for all different methods with ν = 4× 10−6.

as convTH2 gives results, the error in the kinetic energy is relatively low. However, the simulations with
the skew-symmetric and convective nonlinear term are based on a very fine mesh which yields about three
times more DOFs than the other formulations. As expected, the conservation properties of emacTH2, SV2

and stabSV2 are clearly superior and do not demonstrate blow-up in either divergence, kinetic energy or
linear momentum. The divergence error of the EMAC method is bounded in time and, by construction, the
Scott–Vogelius methods have a divergence close to machine precision. Concerning the linear momentum,
SV2 and stabSV2 yield the same error and emacTH2 seems to be better; but the overall magnitude is so
small anyway that this does not seem to make a difference in the results. The error plot of the angular
momentum shows comparable results for the unstabilised SV and the EMAC-TH whereas the edge-stabilised
SV-FEM, in general, is slightly less error-prone.

Perhaps the most interesting comparison can be observed for the error in the kinetic energy. Here, we added
the black solid line which represents a function proportional to exp(1.4t) with the purpose of verifying
experimentally that the error in the kinetic energy increases exponentially in time. The corresponding
theoretical prediction manifests in the Gronwall exponent of Theorem 4.7. Obviously, the errors of emacTH2,
SV2 and stabSV2 show this exponential behaviour also in practice which is a very interesting observation.
In addition, it becomes quantitatively apparent that the edge-stabilised method is far more accurate than
the pure Galerkin method. Lastly, the dashed black line results from a stabilised SV simulation with high
resolution in both space and time (226 656 DOFs and ∆tmax = 10−3). Since the slope is similar to stabSV2

we infer that the exponential growth of the error in the kinetic energy is invariant against mesh refinement
and temporal discretisation. Moreover, the total error of the high resolution simulation did not decrease
in comparison to the stabSV2 method. Therefore, we conclude that the exponential term in Theorem 4.7
dominates the total error and its dynamics. Simultaneously, this problem serves as a warning example,
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since neither mesh refinement nor decreasing the time step size significantly improves the quality of the
approximation.

5.3 Laminar Blasius boundary layer
Let us consider the laminar Blasius boundary layer, that is, the viscous two-dimensional and stationary
flow which forms around a semi-infinite flat plate parallel to the incident free-stream. Denoting the velocity
of the free-stream by u∞, the attached laminar boundary layer flow is known to be a self-similar solution.
The dimensionless similarity variable is given by η = x2

√
u∞/(νx1) and the velocity, in the vicinity of the

plate, can be written as u = u∞f ′ (η). Here, f solves a third-order ordinary differential equation which can
be derived from Prandtl’s boundary layer equations [Tri88, SG00, Dur08] and we note that |u|W1,∞ ∼ ν−1/2.

We now want to see whether the Scott–Vogelius method gives reliable numerical results for such a problem.
Comparable computations for Taylor–Hood elements can be found in [ADL15, DAL16]. In this work, we
restrict ourselves to the domain Ω = (−0.5, 0.5) × (0, 0.5) which is actually the upper half of the domain
considered in the aforementioned publications. A schematic representation of the setup can be taken from
Figure 11 and, as can be seen there, the whole problem is determined by its boundary conditions on ∂Ω = Γ.
Using the free-stream, we impose the Dirichlet condition u = (u∞, 0)

†
= (1, 0)

† on Γ∞ and on Γ0 we prescribe
the no-slip condition u = 0 which represents the flat plate. On ΓN we artificially truncate the plate and
use a homogeneous Neumann (do-nothing) condition to mimic a semi-infinite plate. For the symmetry
plane Γsymm we follow [GS00, Gun89] and use the decomposition u = (u · n)n+ n× (u× n) to define the
projection of u onto the tangent plane by uτ = u− (u · n)n. Hence, we impose the free-slip condition

u · n = 0, 2νD(u)n− [2νD(u)n · n]n = ∇uτ · n =
∂uτ
∂n

= 0, (87)

which ensures vanishing normal velocity (no flow across the boundary) and vanishing shear stress (no viscous
stress in tangential direction) on Γsymm. Note that the simplification in the shear stress condition is only
valid for planar boundaries [GS00]. The pressure is already determined uniquely by the do-nothing condition.

Dirichlet: free-stream
Neumann: semi-infinite plate

Dirichlet: no-slipSymmetry: free-slip

(-0.5,0)

(-0.5,0.5) (0.5,0.5)

(0.5,0)(0,0)

bb

b

b

b

u∞ u

Γsymm

Γ∞

Γ∞

Γ0

ΓNx2

x1

Figure 11: Schematic representation of the setup for the laminar Blasius boundary layer problem.

As already mentioned, our intent is to consider laminar boundary layers and, therefore, our simulations
must remain below a certain critical Reynolds number. The interesting Reynolds number is formed with
the distance x1 to the leading edge, that is

Rex1 =
u∞x1

ν
. (88)

The critical Reynolds number, above which transition to turbulence typically occurs, is approximately
Recrit ≈ 5× 105, see [SG00]. In our described setting, both the free-stream velocity and the domain are
fixed and thus only the kinematic viscosity ν can be used to adjust the Reynolds number. In the following,
we set ν = 2.6× 10−5 as corresponding to Re0.5 ≈ 2× 104 and thus consider a laminar flow configuration
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not subject to the onset of turbulence yet still computationally challenging.

For the numerical simulations, we always guarantee that SV and TH computations are comparable by using
a coarser mesh for SV such that the total number of DOFs is approximately the same. Indeed, Table 2
shows that the meshes are chosen such that the SV-FEM is always computationally cheaper. Experience
with Taylor–Hood FEM for this test case has revealed that the skewTH2 method always yields better results
than both EMAC and convective formulation. Thus, we exclusively compare skewTH2 and SV2.

Figure 12: Cutout of barycentre-refined meshes in the range (−0.28, 0.28)×(0, 0.3) for the Blasius simulations near the leading
edge of the plate. Column-wise: Anisotropic (aspect ratio up to 500), structured isotropic and unstructured isotropic meshes.

In the following, we compare three different types of meshes: anisotropically refined, structured isotropically
refined and unstructured isotropically refined. In Figure 12, cutouts of the meshes used for SV-FEM are
shown, where the refinement is always made towards the flat plate, in order to better resolve the processes
occurring in the boundary layer. For the TH-FEM, except the barycentre-refinement, the isotropically re-
fined meshes are basically similar. However, the anisotropic mesh for the TH method has a maximum aspect
ratio of only 50, whereas the barycentre-refined mesh for the SV method has a maximum aspect ratio of
500. Our experiments with anisotropic meshes revealed that exactly divergence-free methods allow for much
more anisotropy (here, ten times higher aspect ratios) without corrupting either convergence or accuracy.

Table 2: Number of DOFs arising from different meshes; see Figure 12 for barycentre-refined meshes.

Method Type of mesh Anisotropic Structured isotropic Unstructured isotropic

Taylor–Hood standard 45 503 59 928 54 348
Scott–Vogelius barycentre 40 834 53 466 51 954

In Figure 13 a comparison of computed Blasius profiles (skewTH2 and SV2) with the self-similar reference
solution on the previously introduced meshes for the normalised u1h-component is shown. For each method,
the profiles are evaluated at three different lines x1 ∈ {0.075, 0.25, 0.475}, thereby shedding light on the situ-
ation at different distances away from the leading edge of the plate. Let us first focus on apparent similarities
between the exactly divergence-free and non divergence-free FEM. First of all, we note that both methods
yield satisfactory results for this kind of laminar boundary layer flows. Furthermore, with increasing distance
from the leading edge at (0, 0)

†, all numerical solutions become more accurate. Given the nature of the flow
which impinges on the edge of the plate, this is not too surprising. Even though our analysis does not per se
hold for anisotropic meshes, both skewTH2 and SV2 yield the most accurate solutions with comparably few
DOFs on such meshes. This is surprising because the anisotropic meshes, shown in Figure 12, contain el-
ements with angles very close to 180◦; the barycentre-refined meshes even more so than the standard meshes.

The differences between skewTH2 and SV2 for the Blasius problem are more difficult to recognise. In Figure
13 we see that skewTH2 yields the worse profiles on the unstructured isotropic mesh, whereas the results
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Figure 13: Comparison of computed Blasius profiles (skewTH2 and SV2) with the self-similar reference solution. Shown are
the normalised velocities u1h/u∞ in x1-direction against the similarity variable η. For each method, the profiles are evaluated
at three different lines x1 ∈ {0.075, 0.25, 0.475} corresponding to positions far off, in between and near to the leading edge.
The results for the different meshes are vertically shifted only for better clarity.

from the SV2 method on this kind of mesh are satisfying. Vice versa, on the structured isotropic meshes
the skewTH2 method outperforms SV2 slightly.

Summarising, we conclude that, despite the rather unfavourable need for barycentre-refined meshes, Scott–
Vogelius FEM are at least not inferior to standard Taylor–Hood FEM for this kind of laminar boundary layer
flow. For the same amount of computational cost, both methods produce reasonably accurate results on all
kinds of considered meshes. However, an advantage of exactly divergence-free FEM over non divergence-
free FEM can indeed be observed, since the former allows for stronger anisotropy in the underlying mesh.
Thus, we believe that exact mass conservation plays a role in accurately resolving the processes occurring
in boundary layers.

6 Summary and conclusions

We have considered weakly divergence-free, H1-conforming and inf-sup stable FE approximations of the
time-dependent Navier–Stokes problem. Whilst this work has primarily concerned itself with unstabilised
Galerkin-FEM, we also pointed to a possible use of edge-stabilisation in the case of high Reynolds number
flows. Because we were dealing with pointwise divergence-free approximations, there was no need for any
mechanism stabilising the divergence of the velocity approximation (as, for example, in the case of grad-div
stabilisation).

A stability and convergence analysis was carried out for the continuous-in-time problem, where the focus was
on statements concerning the velocity approximation. Similarly to [BF07, ADL15], we have shown that the
Gronwall constant is independent of the Reynolds number and therefore our error estimates also hold true
verbatim for the incompressible Euler equations. In contrast to these works, our analysis is based on the use
of the discrete Stokes projection, which allowed us to fall back on known results for the stationary Stokes
problem. Even more to the point, we recognised that Stokes and Ritz projection coincide for discretely
divergence-free functions.

Assuming that the exact solution fulfils u ∈ L∞
(
0, T ;W1,∞) ∩ L2

(
0, T ;Hk+1

)
, we have derived error

estimates of order O
(
hk
)
for the velocity approximation that are independent of the pressure. Additionally,
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under the above assumption, we have been able to show that for the discrete velocity, uh ∈ L∞ (0, T ;L∞)
holds true. The ability to bound uh in the corresponding norm has been crucial for obtaining O

(
hk
)
error

bounds for the discrete pressure, provided p ∈ L2
(
0, T ;Hk

)
.

We also conducted numerical experiments aimed at comparing the performance of the standard Taylor–Hood
method to the Scott–Vogelius method, as it is a representative of the class of exactly divergence-free and
conforming FEM. The first two studies were concerned with viscous vortex dynamics, where we took initial
velocities that solve the incompressible Euler equations and let them evolve within a viscous incompressible
flow. For the third study, the laminar Blasius boundary layer flow has been revisited.

The vortex dynamics examples have revealed that, for such flows, divergence-free approximations are supe-
rior to standard ones. In particular, we have shown that the conservation of kinetic energy, as well as linear
and angular momentum, play a key role for the stability of the particular FEM, and that edge-stabilisation
clearly improves the quality of the approximation. Lastly, as a proof of concept, the Blasius problem has
revealed that Scott–Vogelius FEM can be used successfully even on highly anisotropic meshes where Taylor–
Hood elements fail to yield a converged solution.

Finally, let us briefly comment on possible directions for future research. Concerning the error analysis, the
question as to whether it is possible to recover half an order in the velocity estimates remains open; however,
we found that it is directly connected to the smoothness of ∂tu and the presence of the nonlinear inertia term
in the momentum balance. Furthermore, it would be interesting to see whether the reconstruction methods
of [LMT16, LM16, LLMS16] also allow for semi-robust error estimates; pressure-robustness is guaranteed
by construction.
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A Analysis of the pressure approximation

For the analysis of the pressure approximation, in some places, ideas from [BF07, ADL15, DAL16, dFGAJN16]
have been used. Note that, for the sake of brevity, we omit stability estimates for ph. However, the well-
posedness of the problem for the pressure can be shown similarly as for the velocity in Section 3.
Lemma A.1 (Pressure discretisation error estimate)

Under the assumptions of Lemma 4.12, we obtain the following error estimate for the pressure:

‖ep‖2L2(0,T ;L2) 6
C

β2
h

∫ T

0

[
‖ηp (τ)‖2L2 + ‖∂tξu (τ)‖2V∗ + ν ‖ξu (τ)‖2e +K2 ‖ξu (τ)‖2L2

]
dτ (A.1)

where K = ‖u‖L∞(0,T ;L∞) + ‖uh‖L∞(0,T ;L∞).

Proof : Contrary to Section 4, we now use the L2-projection as an approximation operator for the pressure:

u− uh = (u− πsu) + (πsu− uh) = ηu + eu = ξu, (A.2)
p− ph = (p− π0p) + (π0p− ph) = ηp + ep = ξp, (A.3)

It is well-known that the discrete inf-sup condition (21) is equivalent to [GR86]

∀qh ∈ Qh ∃!v̂h ∈ Vh such that ∇ · v̂h = qh and ‖∇v̂h‖L2 6 β−1
h ‖qh‖L2 . (A.4)
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Denoting the velocity lifting of the discretisation error ep by v̂h, we use Cauchy–Schwarz to infer

‖ep‖2L2 = (ep,∇ · v̂h) = (ξp,∇ · v̂h)− (ηp,∇ · v̂h) 6 (ξp,∇ · v̂h) + ‖ηp‖L2 ‖∇ · v̂h‖L2 (A.5a)
6 (ξp,∇ · v̂h) + ‖ηp‖L2 ‖∇v̂h‖L2 . (A.5b)

Corollary 2.7 with (v̂h, 0) ∈ Vdiv
h ×Qh as test functions leads to

〈∂tξu, v̂h〉+ a(ξu, v̂h) + t(u;u, v̂h)− t(uh;uh, v̂h) + b(v̂h, ξp)− b(ξu, 0) = 0, (A.6)

from which, using Cauchy–Schwarz for both the duality pairing and L2-inner product, we obtain

(ξp,∇ · v̂h) 6 ‖∂tξu‖V∗ ‖∇v̂h‖L2 + ν ‖∇ξu‖L2 ‖∇v̂h‖L2 + t(u;u, v̂h)− t(uh;uh, v̂h) . (A.7)

For the estimation of the difference of convective terms, we add a zero to introduce the error ξu and then
use Lemma 2.1 to interchange the second and third argument of the trilinear form:

t(u;u, v̂h)− t(uh;uh, v̂h) = (u · ∇u, v̂h)− (u · ∇uh, v̂h) + (u · ∇uh, v̂h)− (uh · ∇uh, v̂h) (A.8a)
= (u · ∇ [u− uh] , v̂h) + ([u− uh] · ∇uh, v̂h) = t(u; ξu, v̂h) + t(ξu;uh, v̂h) (A.8b)
= −t(u; v̂h, ξu)− t(ξu; v̂h,uh) (A.8c)

Now, we again invoke Lemma 2.1 to estimate this term using

|t(u; v̂h, ξu)− t(ξu; v̂h,uh)| 6 (‖u‖L∞ + ‖uh‖L∞) ‖ξu‖L2 ‖∇v̂h‖L2 . (A.9)

Collecting the estimates and using the equivalent formulation of the discrete inf-sup condition yields

βh ‖ep‖L2 6
‖ep‖2L2

‖∇v̂h‖L2

=
(ep,∇ · v̂h)

‖∇v̂h‖L2

(A.10a)

6 ‖ηp‖L2 + ‖∂tξu‖V∗ + ν ‖∇ξu‖L2 + (‖u‖L∞ + ‖uh‖L∞) ‖ξu‖L2 . (A.10b)

Squaring this inequality and integration over (0, t), for 0 6 t 6 T , concludes the proof.
�

Theorem A.2 (Pressure discretisation error convergence rate)
Under the assumptions of the previous lemma, assume a smooth solution according to

u ∈ L∞
(
0, T ;W1,∞) ∩ L∞ (0, T ;Hr) , ∂tu ∈ L2

(
0, T ;Hr−1

)
, p ∈ L2 (0, T ;Hs) . (A.11)

Then, with ru = min {r, k + 1} and rp = min {s, `+ 1}, we obtain the following convergence rate:

‖ep‖2L2(0,T ;L2) 6
C

β2
h

[
h2(ru−1)K2eCuT

∫ T

0

[
|u(τ)|2Hru + |∂tu(τ)|2Hru−1

]
dτ + h2rp

∫ T

0

|p(τ)|2Hrp dτ

]

(A.12)
where K = ‖u‖L∞(0,T ;L∞) + ‖uh‖L∞(0,T ;L∞). The Gronwall constant Cu is given in Theorem 4.7.

Proof : The first part of the proof is a consequence of the approximation properties of the L2-projection
(16) and Corollary 4.11 (use the triangle inequality to extend the result to the full error u− uh):

∫ T

0

‖ηp (τ)‖2L2 dτ 6 Ch2rp

∫ T

0

|p(τ)|2Hrp dτ (A.13a)

ν

∫ T

0

‖ξu (τ)‖2e dτ 6 Cνh2(ru−1)eCuT

∫ T

0

[
|u(τ)|2Hru + |∂tu(τ)|2Hru−1

]
dτ (A.13b)

K2

∫ T

0

‖ξu (τ)‖2L2 dτ 6 CK2h2(ru−1)eCuT

∫ T

0

[
|u(τ)|2Hru + |∂tu(τ)|2Hru−1

]
dτ (A.13c)
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These are the terms in Lemma A.1 that can be estimated directly. The remaining task is then to obtain an
estimate of the time derivative of the velocities in the dual norm of H1. First of all, let us concentrate on
the dual norm for the discretisation error, that is

‖∂teu‖V∗ = sup
v∈V\{0}

|〈∂teu,v〉|
‖∇v‖L2

. (A.14)

Introducing the linear operator Ah : Vdiv
h → Vdiv

h defined by

(Ahvh,wh) = (∇vh,∇wh) , ∀vh,wh ∈ Vdiv
h , (A.15)

it is shown in [dFGAJN16], for Oseen’s equations, that ‖∂teu‖V∗ 6 C
∥∥∥A−1/2

h ∂teu

∥∥∥
L2

. For this estimate, an
inverse inequality must be used. In the remainder of the proof, we derive a bound for the last norm, thereby
extending some ideas from [dFGAJN16] to the nonlinear Navier–Stokes case.

Based on Corollary 2.7, we use the same reasoning as in the beginning of the proof of Theorem 4.7 to infer
that for all vh ∈ Vdiv

h ,

(∂teu,vh) + a(eu,vh) = −(∂tηu,vh)− [t(u;u,vh)− t(uh;uh,vh)] (A.16)

holds true. Note the absence of the pressure, thanks to the weakly divergence-free FEM. In the next step,
we want to reformulate this equality in terms of an operator equality. To this end, we additionally need the
discrete Leray projector πdiv

0 : L2(Ω)→ Vdiv
h (L2-projection onto Vdiv

h ), defined by
(
πdiv
h v,wh

)
= (v,wh) , ∀wh ∈ Vdiv

h . (A.17)

Then, equation (A.16) can be recast in Vdiv
h as

∂teu = −νAheu − πdiv
0 (∂tηu)− πdiv

0 (u · ∇u− uh · ∇uh) . (A.18)

After applying A−
1/2

h and taking the L2-norm, the triangle inequality and the fact that
∥∥∥A−1/2

h πdiv
0 g

∥∥∥
L2
6 ‖g‖V∗ , ∀g ∈ L2(Ω), (A.19)

cf. [dFGAJN16], leads to
∥∥∥A−1/2

h ∂teu

∥∥∥
L2
6 ν

∥∥∥A1/2
h eu

∥∥∥
L2

+ ‖∂tηu‖V∗ + ‖(u · ∇)u− (uh · ∇)uh‖V∗ . (A.20)

Squaring and integrating this inequality in [0, t], for 0 6 t 6 T , yields
∫ t

0

∥∥∥A1/2
h ∂teu (τ)

∥∥∥
2

L2
dτ .

∫ t

0

ν2
∥∥∥A1/2

h eu (τ)
∥∥∥

2

L2
dτ +

∫ t

0

‖∂tηu (τ)‖2V∗ dτ (A.21a)

+

∫ t

0

‖(u · ∇u− uh · ∇uh)(τ)‖2V∗ dτ . (A.21b)

Using that
∥∥∥A1/2

h vh

∥∥∥
L2

= ‖∇vh‖L2 for all vh ∈ Vdiv
h , the first two terms on the right-hand side can be

handled as in Corollary 4.11:
∫ t

0

ν2
∥∥∥A1/2

h eu (τ)
∥∥∥

2

L2
dτ 6 Cνh2(ru−1)eCuT

∫ T

0

[
|u(τ)|2Hru + |∂tu(τ)|2Hru−1

]
dτ (A.22a)

∫ t

0

‖∂tηu (τ)‖2V∗ dτ 6 C
∫ t

0

‖∂tηu (τ)‖2L2 dτ 6 Ch2(ru−1)

∫ t

0

|∂tu(τ)|2Hru−1 dτ (A.22b)
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For the remaining dual norm of the convective terms, we have

‖u · ∇u− uh · ∇uh‖V∗ = sup
v∈V\{0}

|t(u;u,v)− t(uh;uh,v)|
‖∇v‖L2

6 (‖u‖L∞ + ‖uh‖L∞) ‖ξu‖L2 , (A.23)

which follows from the same computation as (A.9). Finally, again using Corollary 4.11 results in
∫ t

0

‖(u · ∇u− uh · ∇uh)(τ)‖2V∗ dτ 6 K2

∫ T

0

‖ξu (τ)‖2L2 dτ (A.24a)

6 CK2h2(ru−1)eCuT

∫ T

0

[
|u(τ)|2Hru + |∂tu(τ)|2Hru−1

]
dτ . (A.24b)

Combining the above estimates concludes the proof. �
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