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Abstract

In this work, we further develop multigoal-oriented a posteriori error estimation with two objec-

tives in mind. First, we formulate goal-oriented mesh adaptivity for multiple functionals of interest

for nonlinear problems in which both the Partial Differential Equation (PDE) and the goal func-

tionals may be nonlinear. Our method is based on a posteriori error estimates in which the adjoint

problem is used and a partition-of-unity is employed for the error localization that allows us to

formulate the error estimator in the weak form. We provide a careful derivation of the primal and

adjoint parts of the error estimator. The second objective is concerned with balancing the nonlinear

iteration error with the discretization error yielding adaptive stopping rules for Newton’s method.

Our techniques are substantiated with several numerical examples including scalar PDEs and PDE

systems, geometric singularities, and both nonlinear PDEs and nonlinear goal functionals. In these

tests, up to six goal functionals are simultaneously controlled.

1 Introduction

A posteriori error estimation and mesh adaptivity are well-developed methodologies for finite element

computations, see, e.g., the monographs [2, 7, 25, 38, 42, 49] and the references therein. Specifically,

goal-oriented error estimation is a powerful method when the evaluation of certain functionals of

interest (often these are technical quantities) is the main aim rather than the computation of global

error norms. Here, the dual-weighted residual (DWR) method is often applied [9, 10].

Thanks to increasing computational resources, multiphysics applications such as multiphase flow,

porous media applications, fluid-structure interaction and electromagnectics are currently one main

focus in applied mathematics and engineering. Here, mesh adaptivity (ideally combined with parallel

computing) can greatly reduce the computational cost while measuring functionals of interest with

sufficient accuracy. Since in multiphysics, several physical phenomena interact, it might be desirable

that more than one goal functional shall be controlled. However, only a few studies have appeared yet.
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A first methodology was proposed in [26, 27]. Other studies can be found in [29, 39] and more recently

in [20, 31, 48].

Until a few years ago, one principle problem in using the DWR method was the fact that the

error estimator was based on the strong form of the equations [10] or the weak form using special

interpolation operators working on patched meshes [12]. In [44], the previous localization techniques

were analyzed in more detail and additionally a novel localization strategy based on a partition-of-

unity (PU) was proposed. The PU localization specifically allows for a much simpler application of

the DWR method to multiphysics and nonlinear, vector-valued equations [44, 51]. In addition, the

PU-DWR method works well with other discretization techniques such as BEM-based FEM [50] or the

finite cell method [46]. On the other hand, the methodology of the PU-DWR method with multiple

goal functionals has recently been worked out for linear, scalar-valued problems in [20].

The first goal of this paper is to extend this work to nonlinear problems and PDE systems. Here, our

focus is on a careful design of the error estimator that includes both the primal part and the adjoint

part. The latter one is often neglected in the literature because the evaluation requires additional

computational cost and renders the method even more expensive. It is clear and well-known (see e.g.,

[10]) that, in the linear case, the primal and adjoint residuals yield the same error values, but possibly

different locally refined meshes; see e.g. [44]. In our current work, we will see that the adjoint estimator

part is crucial to obtain good effectivity indices. Therefore, this term should not be neglected.

The second objective of this paper is concerned with balancing the discretization and the nonlinear

iteration error. In recent years, there has been published some work on balancing the iteration error

(of the linear or nonlinear solver) with the discretization error [8, 21, 37, 40, 41]. We base ourselves on

[40], and we employ specifically the PU localization. Consequently, the DWR method is used to design

an adaptive stopping criterion for Newton’s method that is in balance with the estimated discretization

error. The main aspects comprise a careful choice of the weighting functions to design an appropriate

joined goal functional. Moreover, we provide all details for the nonlinear solver, which is a Newton-type

method with backtracking line-search. Since we know a solution on the previous mesh, we use this

solution as initial guess for Newton’s method yielding a nested iteration. Specifically, nested solution

methods or nonlinear nested iterations were developed, for instance, in [10, 24]. We refer to [24, 43]

for the analysis of nested iteration methods.

In summary, the goals of this work are two-fold:

• Design of the PU-DWR method for multigoal-oriented error estimation for nonlinear problems

and PDE systems.

• Balancing iteration and discretization errors for nonlinear multigoal-oriented error estimation

and mesh adaptivity. The nonlinearities may appear in the PDE itself as well as in the goal

functionals.

The outline of this is paper is as follows: In Section 2, our setting is described. Next, in Section 3,

we describe the methodology for one goal functional. This is followed by a detailed derivation of a

multigoal-oriented approach presented in Section 4. The key algorithms are formulated in Section 5. In

Section 6 several numerical tests substantiate our developments. We summarize our work in Section 7.
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2 An abstract setting

Let U and V be Banach spaces, and let A : U 7→ V ∗ be a (possibly) nonlinear operator, where V ∗

denotes the dual space of the Banach space V . We have in mind nonlinear differential operators

A acting between Sobolev spaces. We now consider the following weak formulation of the operator

equation A(u) = 0 in V ∗: Find u ∈ U such that

A(u)(v) = 0 ∀v ∈ V. (1)

The discretization of the nonlinear variational problem (1) can be performed by means of different

methods. Our favored method is the Finite Element Method (FEM), see also Section 5.1. The corre-

sponding discrete problem reads as follows: Find uh ∈ Uh such that

A(uh)(vh) = 0 ∀vh ∈ Vh, (2)

where Uh and Vh are finite-dimensional subspaces of U and V , respectively. For the time being, let us

assume that both problems are solvable. Later we will specify our assumptions imposed on A. We are

primarily not interested in approximating a solution u of (1), but in the approximate computation of

one or more possibly nonlinear functionals at a solution.

An example for such an operator A is given by the weak formulation of the regularized p-Laplace

equation (see also [19, 28, 47]) that reads as follows: Find u ∈ U := W 1,p
0 (Ω) such that

A(u)(v) :=〈(ε2 + |∇u|2)
p−2
2 ∇u,∇v〉(Lp(Ω))∗×Lp(Ω) − 〈f, v〉(W 1,p

0 (Ω))∗×W 1,p
0 (Ω)

= 0 (3)

for all v ∈ V := W 1,p
0 (Ω), where ε denotes a fixed positive regularization parameter, f ∈ (W 1,p

0 (Ω))∗ =

W−1,q(Ω) is some given source, with p−1 + q−1 = 1 and fixed p > 1, and 〈·, ·〉 denots the corresponding
duality products. Here, Ω ⊂ Rd, d = 1, 2, 3, is a bounded Lipschitz domain, and W 1,p

0 (Ω) denotes the

usual Sobolev space of all functions from the Lebesgue space Lp(Ω) with weak derivatives in Lp(Ω)

and trace zero on the boundary ∂Ω, see, e.g., [1]. The notation | · | is used for the Euclidean norm of

some vector. The corresponding strong form is formally given by

−div((ε2 + |∇u|2)
p−2
2 ∇u) = f in Ω,

u = 0 on ∂Ω.

In Subsection 6.2, the regularized p-Laplace (3) serves as first example for our numerical experiments.

Remark 2.1. We refer the reader to [23] for the investigation of the original p-Laplace problem.

3 The dual weighted residual method for nonlinear problems in the

case of a single-goal functional

In this section, we apply the DWR method to nonlinear problems. The general method was developed

in [10]. The extension to balance discretization and iteration errors was undertaken in [37, 40, 41]. We

base ourselves on the latter study [40], in which algorithms for nonlinear problems have been worked
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out. This last paper, together with [20, 44], form the basis of the current paper. We are interested

in the goal functional evaluation J : U → R with u 7→ J(u), where u ∈ U is a solution of the primal

problem (1). Examples for such goal functionals are:

• point evaluation:

J(u) := u(x0),

• integral evaluation:

J(u) :=

∫
Ω
u(x)ξ(x) dx,

• nonlinear functional evaluation:

J(u) :=

∫
Ω
u(x)ξ(x)u(x0)2 dx

∫
Ω
u(y)φ(y) dy,

where ξ and φ are given functions from L2(Ω) and x0 a given point in Ω. For the DWR approach we

need to solve the adjoint problem: Find z ∈ V corresponding to u ∈ U such that

A′(u)(v, z) = J ′(u)(v) ∀v ∈ U, (4)

where u denotes a (primal) solution of the primal problem (1), and A′(u) and J ′(u) denote the Fréchet-

derivatives of the nonlinear operator or functional, respectively, evaluated at u. Later we also need

the corresponding discrete solution of the adjoint problem. This reads as follows: Find zh ∈ Vh

corresponding to uh ∈ Uh such that

A′(uh)(vh, zh) = J ′(uh)(vh) ∀vh ∈ Uh, (5)

with uh as a solution of (2).

Similarly to the findings in [10, 40, 41] for the Galerkin case (U = V ), we derive an error represen-

tation in the following theorem:

Theorem 3.1. Let us assume that A ∈ C3(U, V ) and J ∈ C3(U,R). If u solves (1) and z solves (4)

for u ∈ U , then it holds for arbitrary fixed ũ ∈ U and z̃ ∈ V :

J(u)− J(ũ) =
1

2
ρ(ũ)(z − z̃) +

1

2
ρ∗(ũ, z̃)(u− ũ)− ρ(ũ)(z̃) +R(3), (6)

where

ρ(ũ)(·) := −A(ũ)(·), (7)

ρ∗(ũ, z̃)(·) := J ′(u)−A′(ũ)(·, z̃), (8)

and the remainder term

R(3) :=
1

2

∫ 1

0
[J ′′′(ũ+ se)(e, e, e)−A′′′(ũ+ se)(e, e, e, z̃ + se∗)− 3A′′(ũ+ se)(e, e, e)]s(s− 1) ds, (9)

with e = u− ũ and e∗ = z − z̃.
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Proof. For the completeness of the presentation we add the proof below, which is very similar to [40].

First we define x := (u, z) ∈ X := U × V and x̃ := (ũ, ṽ) ∈ X. By assuming that A ∈ C3(U, V ) and

J ∈ C3(U,R) we know that the Lagrange function

L(x̂) := J(û)−A(û)(ẑ) ∀(û, ẑ) =: x̂ ∈ X,

is in C3(X,R). Assuming this it holds

L(x)− L(x̃) =

∫ 1

0
L′(x̃+ s(x− x̃))(x− x̃) ds.

Using the trapezoidal rule [40], we obtain∫ 1

0
f(s) ds =

1

2
(f(0) + f(1)) +

1

2

∫ 1

0
f ′′(s)s(s− 1) ds,

for f(s) := L′(x̃+ s(x− x̃))(x− x̃) we conclude

L(x)− L(x̃) =
1

2
(L′(x)(x− x̃) + L′(x̃)(x− x̃)) +R(3).

From the definition of L we observe that

J(u)− J(ũ) = L(x)− L(x̃) +A(u)(z)︸ ︷︷ ︸
=0

+A(ũ)(z̃) =
1

2
(L′(x)(x− x̃) + L′(x̃)(x− x̃)) +A(ũ)(z̃) +R(3).

It remains to show that 1
2(L′(x)(x− x̃) +L′(x̃)(x− x̃)) = 1

2ρ(ũ)(z − z̃) + 1
2ρ
∗(ũ, z̃)(u− ũ). But this is

true since

L′(x)(x− x̃) + L′(x̃)(x− x̃) = J ′(u)(e)−A′(u)(e, z)︸ ︷︷ ︸
=0

−A(u)(e∗)︸ ︷︷ ︸
=0

+ J ′(ũ)(e)−A′(ũ)(e, z̃)︸ ︷︷ ︸
=ρ∗(ũ,z̃)(u−ũ)

− A(ũ)(e∗)︸ ︷︷ ︸
=−ρ(ũ)(z−z̃)

.

Remark 3.2. Instead of A ∈ C3(U, V ) and J ∈ C3(U,R) it is sufficient that A ∈ C2(U, V ), J ∈ C2(U,R)

and J ′′′, A′′′ exist and are bounded. Moreover one can further relax these assumptions. Indeed the

boundedness of the derivatives is just needed in the set {w ∈ U |w = (1− s)u+ sũ} and just in direction

u− ũ.

Remark 3.3. It might happen that A ∈ C3(U, V ) and J ∈ C3(U,R) do not hold for the continuous

spaces. Since the result holds for general Banach spaces U and V , it is sufficient to be shown for the

discrete spaces Uh,u, Vh,z, where Uh,u := {w + cu|w ∈ Uh, c ∈ R}, Vh,z := {v + cz|v ∈ Vh, c ∈ R}.

Remark 3.4. In accordance with the literature, we denote the parts ρ(ũ)(z− z̃) and ρ∗(ũ, z̃)(u− ũ) by

primal error estimator and adjoint error estimator, respectively. The remainder term R(3), as in (9),

is of the order O(‖e‖2Umax(‖e‖U , ‖e∗‖V )). Therefore, it can be neglected if {ũ, z̃} are close enough to

{u, z}.

As in [40] ,we can identify

ηh := |1
2
ρ(ũ)(z − z̃) +

1

2
ρ∗(ũ, z̃)(u− ũ)|, (10)
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as the discretization error and

ηm := |ρ(ũ)(z̃)|, (11)

as the linearization error if we neglect the remainder termR(3). Since Theorem 3.1 is valid for arbitrary

z̃ and ũ it also holds for approximations uh and zh, even if they are not computed exactly. Of course,

formula (10) still contains an exact solution u. Since u is not known, we either use an approximation

in an enriched discrete space (for example, in a finite element space, with higher polynomial degree),

or we use an interpolant Ih2h , such as in [10], to obtain a more accurate solution u(2)
h . If not mentioned

otherwise, we use the approximation in the enriched (finite element) space. An enriched discrete space

is also used to compute an approximation z(2)
h of z. If one would use the same finite-dimensional space

as for the test space used in the discrete primal problem (2), then A(uh)(zh) = 0 for our approximate

solution uh of (2) (if the nonlinear problem is solved exactly). Therefore, the discrete adjoint problem

reads as follows: Find z(2)
h ∈ V

(2)
h such that

A′(u(2)
h )(v

(2)
h , z

(2)
h ) = J ′(u

(2)
h )(v

(2)
h ) ∀v(2)

h ∈ U
(2)
h , (12)

where U (2)
h and V (2)

h denote the enriched finite dimensional spaces, and u(2)
h denotes the more accurate

solution, obtained by solving (2) with Uh = U
(2)
h and Vh = V

(2)
h or by interpolation u(2)

h = Ih2h uh. With

these approximations, the practical error estimator reads:

ηh := |1
2
ρ(uh)(z

(2)
h − zh) +

1

2
ρ∗(uh, zh)(u

(2)
h − uh)|. (13)

For localization of the error estimator, we use the partition of unity (PU) technique which is presented

in [44]. This means that we choose a set of functions {ψ1, ψ2, · · · , ψN} such that
∑N

i=1 ψi ≡ 1. Inserting

this into (13) leads to

ηh := |
N∑
i=1

ηi|, (14)

with

ηi :=
1

2
ρ(ũ)((z

(2)
h − z̃)ψi) +

1

2
ρ∗(ũ, z̃)((u

(2)
h − ũ)ψi). (15)

We notice that in the primal part of the error indicator z̃ is replaced by ihz
(2)
h as in [10]. For instance,

a typical partition of unity is given by the finite element basis. In this case, we distribute |ηi| to the

corresponding elements with a certain weight as for example illustrated in Figure 1.

6



|ηi|

1
4
|ηi|

1
4
|ηi|

1
4
|ηi|

1
4
|ηi|

Figure 1: Equal distribution of the local error estimator using the Q1
c basis function at the central

vertex to the corresponding elements as in [44], see also Section 5.1.

4 Multiple-goal functionals

Now let us assume that we are interested in the evaluation of N functionals, which we denote by

J1, J2, . . . , JN . From Section 3, we know how to compute a local error estimator for one functional.

We could compute the local error estimators separately. However, we would have to solve the adjoint

problem (4) N times [26, 27]. Let us now assume that a solution u of problem (1) and the chosen

ũ ∈ U belong to
⋂N
i=1D(Ji), where D(Ji) describes the domain of Ji.

Definition 4.1 (error-weighting function). Let M ⊆ RN . We say that E : (R+
0 )N × M 7→ R+

0 is

an error-weighting function if E(·,m) ∈ C1((R+
0 )N ,R+

0 ) is strictly monotonically increasing in each

component and E(0,m) = 0 for all m ∈M .

Let ~J :
⋂N
i=1D(Ji) ⊆ U 7→ RN be defined as ~J(v) := (J1(v), J2(v), · · · , JN (v)) for all v ∈⋂N

i=1D(Ji). Furthermore, we define the operation | · |N : RN 7→ (R+
0 )N as |x|N := (|x1|, |x2|, · · · , |xN |)

for x ∈ RN . This allows us to define the error functional as follows

J̃E(v) := E(| ~J(u)− ~J(v)|N , ~J(ũ)) ∀v ∈
N⋂
i=1

D(Ji). (16)

It is trivial to see from the definition of E that JE(v) ∈ R+
0 for all v ∈

⋂N
i=1D(Ji).

Remark 4.2. The idea of the construction of J̃E(v) is that E(| ~J(u) − ~J(v)|N , ~J(ũ)) is a semi-metric

(as in [32, 45]) on the set of equivalence classes ( ~J)−1(R( ~J)) := {( ~J)−1(x) : x ∈ R( ~J)}, where

( ~J)−1(x) := {v ∈
⋂N
i=1D(Ji) : ~J(v) = x}, with R( ~J) denotes the range of ~J , measuring the distance

between the equivalence classes containing u and v. Hence, J̃E(v) represents a semi-metric distance

which ensures that J̃E is monotonically increasing if |Ji(u)− Ji(ũ)| is monotonically increasing.

Remark 4.3. If we drop the monotonicity condition in the definition of E, then, for example,

E(| ~J(u)− ~J(v)|N , ~J(ũ)) :=
N∏
i=0

|Ji(u)− Ji(v)|,
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would be an error-weighting function, resulting in JE(ũ) = 0 iff Ji(u) = Ji(ũ) at least for one i ∈
{1, 2, · · · , N}.

Remark 4.4. The derivation given in this section holds for a general ũ such that ~J(ũ) ∈ M . In

particular, we are interested in ũ to be an approximation to uh solving (2).

The weak derivative of (16) in U at ũ is given by

J̃ ′E(ũ)(v) := −
N∑
i=1

sign(Ji(u)− Ji(ũ))
∂E

∂xi
(| ~J(u)− ~J(ũ)|N , ~J(ũ))J ′i(ũ)(v) ∀v ∈ D(J̃ ′E(ũ)), (17)

with

sign(x) :=


x
|x| , for x 6= 0,

0 else
(18)

In [20, 26, 27], the functionals where combined as follows

J̃c(v) :=
N∑
i=1

ωi sign(Ji(u)− Ji(ũ))

|Ji(ũ)|︸ ︷︷ ︸
=:wi

Ji(v) ∀v ∈
N⋂
i=0

D(Ji). (19)

Carefully inspecting [26], we see that the following result can be established:

Proposition 4.1. If J̃c is defined as in (19) and J̃E as in (16), then we have

J̃c(u)− J̃c(ũ) = J̃E(ũ), (20)

−J̃ ′c(ũ)(v) = J̃ ′E(ũ)(v), ∀v ∈ D(J̃ ′c(ũ)) ∩ D(J̃ ′E(ũ)), (21)

D(J̃ ′c(ũ)) = D(J̃ ′E(ũ)) (22)

with E(x, ~J(ũ)) :=
∑N

i=1
ωixi
|Ji(ũ)| .

Proof. First we conclude that

J̃c(u)− J̃c(ũ) =

N∑
i=1

ωi sign(Ji(u)− Ji(ũ))

|Ji(ũ)|
(Ji(u)− Ji(ũ))

=
N∑
i=1

ωi|Ji(u)− Ji(ũ)|
|Ji(ũ)|

= E(| ~J(u)− ~J(ũ)|N , ~J(ũ)) = J̃E(ũ),

which already shows (20). The weak derivative of J̃c is given by

J̃ ′c(ũ)(v) =
N∑
i=1

ωi sign(Ji(u)− Ji(ũ))

|Ji(ũ)|
J ′i(ũ)(v). (23)

From ∂E
∂xi

(| ~J(u)− ~J(ũ)|N , ~J(ũ)) = ωi
|Ji(ũ)| for all i ∈ {1, 2, · · · , N}, and because (23) and (17) coincide

up to the sign, it holds that (21) and (22) are valid.

8



Remark 4.5. E(x, ~J(ũ)) :=
∑N

i=1
ωixi
|Ji(ũ)| is an error-weighting function with M := {x ∈ RN :

min(|x|) > 0} provided that ωi > 0 for all i = 1, 2, . . . , N .

Remark 4.6. Proposition 4.1 does not use the property that u solves (1). We just need that u ∈⋂N
i=0D(Ji). However, the goal is to measure the error to an exact solution.

Since an exact solution u is not known, neither J̃c nor J̃E can be constructed. As in Section 3,

we use the approximation u(2)
h instead of an exact solution u to approximate J̃c or J̃E by Jc and JE,

respectively. This approximation reads as follows

JE(v) := E(| ~J(u
(2)
h )− ~J(v)|N , ~J(ũ)) ∀v ∈

N⋂
i=1

D(Ji), (24)

with the derivative

J ′E(ũ)(v) := −
N∑
i=1

sign(Ji(u
(2)
h )− Ji(ũ))

∂E

∂xi
(| ~J(u

(2)
h )− ~J(ũ)|N , ~J(ũ))J ′i(ũ)(v) ∀v ∈ D(J̃ ′E(ũ)).

(25)

Using this approximation of the error functional, we can apply the methods for the single-functional

case in Section 3 with J = JE.

Remark 4.7. We notice that Theorem 3.1 formally does not hold for J̃E since the sign-function enters.

However, if E(·,m) ∈ C3((R+
0 )N ,R+

0 ) and the functionals are sufficiently smooth, then the singularities

(due to the signum function) in higher derivatives of JE just appear if Ji(u) = Ji(uh), or more precisely

Ji(u
(2)
h ) = Ji(uh), since we use the better approximation u(2)

h instead of u. Alternatively, we can replace

the signum function with a sufficiently smooth approximation.

5 Algorithms

We now describe the algorithmic realization of the previous methods when we use the FEM as spatial

discretization. To this end, we first introduce the finite element (FE) discretizations that we are going

to use in our numerical experiments presented in Section 6. Then we recapitulate the basic structure

of Newton’s method including a line search procedure. Afterwards, we state the adaptive Newton

algorithm for multiple-goal functionals followed by the structure of the final algorithm.

5.1 Spatial discretization

For simplicity, we assume that Ω ⊂ Rd is a polyhedral domain. Let Th be a subdivision (trianglation)

of Ω into quadrilateral elements such that
⋃
K∈Th K = Ω and K ∩ K ′ = ∅ for all K,K ′ ∈ Th with

K 6= K ′. Furthermore, let ψK be a multilinear mapping from the reference domain K̂ = (0, 1)d to the

element K ∈ Th. We now define the space Qrc as

Qrc := {vh ∈ C(Ω) : vh|K ∈ Qr(K), ∀K ∈ Th}, (26)

with Qr(K) := {v|K̂ ◦ ψ
−1
K : v(x̂) =

∏d
i=1(

∑r
β=0 cβ,ix̂

β
i ), cβ,i ∈ R}. Specifically, we use continuous

tensor-product finite elements as described in [17] and [13]. We also refer the reader to [4] for the specific
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approximation properties of these finite element spaces. Let T lh be the triangulation of refinement level

l. Then our finite element spaces are given by U lh := U ∩Qrc and V l
h := V ∩Qrc, whereas the enriched

finite element spaces are defined by U l,(2)
h := U ∩Qr̃c and V

l,(2)
h := V ∩Qr̃c, where Qrc and Qr̃c are defined

as in (26) with Th = T lh and r̃ > r. If U and V are spaces of vector-valued functions, then intersection

has to be understood component-wise with possibly different r in each component.

Remark 5.1. The algorithms presented in this section are formulated for FEM [4, 13, 15, 17]. How-

ever, we are not restricted to a particular discretization technique, but we must be able to realize the

adaptivity in an appropriate way. For instance, in isogeometric analysis (IGA) that was originally

introduced in [30] on tensor-product meshes, local mesh refinement is more challenging than in the

FEM. Truncated hierarchical B-splines (THB-splines) are one possible choice to create localized basises

which form a PU, see [22].

Higher-order B-splines of highest smoothness even on coaerser meshes can be used to construct

enriched spaces U l,(2)
h and V l,(2)

h that lead to cheap problems on the enriched spaces, see [33, 34, 35] for

the successful use of this technique in functional-type a posteriori error estimates.

5.2 Newton’s algorithm

Newton’s algorithm for solving the nonlinear variational problem (2) belonging to refinement level l

is given by Algorithm 1. Below we identify A(ul,kh ) with the corresponding vector with respect to the

chosen basis when we compute ‖A(ul,kh )‖`∞ .

Algorithm 1 Newton’s algorithm on level l

1: Start with some initial guess ul,0h ∈ U
l
h, set k = 0, and set TOLlNewton > 0.

2: while ‖A(ul,kh )‖`∞ > TOLlNewton do

3: Solve for δul,kh ,

A′(ul,kh )(δul,kh , vh) = −A(ul,kh )(vh) ∀vh ∈ V l
h.

4: Update : ul,k+1
h = ul,kh + αδul,kh for some good choice α ∈ (0, 1].

5: k = k + 1.

Remark 5.2. In order to save computational cost we do not rebuild the matrices in every step. We

rebuild the matrices if ‖A(ul,kh )‖`∞/‖A(ul,k−1
h )‖`∞ > 0.85 in Algorithm 1.

Remark 5.3. Motivated by nested iterations, see, e.g., Section 6 in [10], and the analysis for non-

linear nested iterations as given in Section 9.5 from [24], we use TOL1
Newton = 10−8‖A(u1,0

h )‖`∞ and

TOLlNewton = 10−2‖A(ul,0h )‖`∞ for l > 1 as stopping criteria.

Remark 5.4. The parameter α can be obtained by means of a line search procedure. To obtain a good

convergence, we used α = γL with 0 < γ < 1, where the smallest L that fulfills

‖A(ul,kh + αδul,kh )‖`∞ < c(L,Lmax)‖A(ul,kh )‖`∞ ,
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with

c(L,Lmax) :=


0.8 L = 0

0.888 L = 1

(0.888 + 0.112
√

L+1
Lmax

) L > 1

,

L = {0, 1, 2 · · · , Lmax − 1} and Lmax = 200, is accepted. This choice of α was taken heuristically to

obtain a better convergence of the Newton method in the numerical Example 6.2.3. In Algorithm 1,

we choose γ = 0.9, and in Algorithm 2, γ = 0.85. We remark that a standard backtracking line search

method also works, see, e.g., [47], but the previous exotic choice yields better iteration numbers.

5.3 Adaptive Newton algorithms for multiple-goal functionals

In this section, we describe the key algorithm. The basic structure of the algorithm is similar to that

presented in [40] and [21]. Our contribution is the extension to multiple-goal functionals.

Algorithm 2 Adaptive Newton algorithm for multiple-goal functionals on level l

1: Start with some initial guess ul,0h ∈ U
l
h and k = 0.

2: For zl,0h , solve

A′(ul,0h )(vh, z
l,0
h ) = (J

(0)
E )′(ul,0h )(vh) ∀vh ∈ V l

h,

with (J
(0)
E )′ constructed with ul,(2)

h and ul,0h as defined in (25).

3: while |A(ul,kh )(zl,kh )| > 10−2ηl−1
h do

4: For δul,kh , solve

A′(ul,kh )(δul,kh , vh) = −A(ul,kh )(vh) ∀vh ∈ V l
h.

5: Update : ul,k+1
h = ul,kh + αδul,kh for some good choice α ∈ (0, 1].

6: k = k + 1.

7: For zl,kh , solve

A′(ul,kh )(vh, z
l,k
h ) = (J

(k)
E )′(ul,kh )(vh) ∀vh ∈ U lh,

with (J
(k)
E )′ constructed with ul,(2)

h and ul,kh as in (25).

5.4 The final algorithm

Now let us compose the final adaptive algorithm that starts from an initial mesh T 1
h and the corre-

sponding finite element spaces V 1
h , U

1
h , U

1,(2)
h and V 1,(2)

h , where U1,(2)
h and V 1,(2)

h are the enriched finite

element spaces as described in Section 5.1. The refinement procedure produces a sequence of finer and

finer meshes T lh with the correponding FE spaces V l
h, U

l
h, U

l,(2)
h and V l,(2)

h for l = 2, 3, . . . .

11



Algorithm 3 The final algorithm

1: Start with some initial guess u0,(2)
h ,u0

h, set l = 1 and set TOLdis > 0.

2: Solve (2) for ul,(2)
h using Algorithm 1 with the initial guess ul−1,(2)

h on the discrete space U l,(2)
h .

3: Solve (2) and (5) using Algorithm 2 with the initial guess ul−1
h on the discrete spaces U lh and V l

h .

4: Construct the combined functional JE as in (24).

5: Solve the adjoint problem (4) for JE on V l,(2)
h .

6: Construct the error estimator ηK by distributing ηi defined in (15) to the elements.

7: Mark elements with some refinement strategy.

8: Refine marked elements: T lh 7→ T
l+1
h and l = l + 1.

9: If |ηh| < TOLdis stop, else go to 2.

In step 3 of Algorithm 3, we replaced the estimated error ηlh by ηl−1
h in Algorithm 2, because we

want to avoid the solution of the adjoint problem on the space V l,(2)
h . Since the error in the previous

estimate might be larger in general, we take 10−2ηl−1
h instead of 10−1ηlh, which was suggested in [40].

Thus, ηl−1
h is not defined on the first level. Therefore, we set it to η0

h := 10−8. This means that we

perform more iterations on the coarsest level. However, solving on this level is very cheap.

Remark 5.5. We notice that step 2 in Algorithm 3 is costly, because we have to solve a problem

corresponding to an enriched finite element space.

Remark 5.6. In step 7 of Algorithm 3, we mark all elements K ′ where ηK′ ≤ 1
|T l

h|
∑

K∈T l
h
ηK , where

|T lh | denotes the number of elements.

Remark 5.7. Inspecting Algorithm 3, we need solve at each refinement level four problems: two are

solved in step 3, and one in step 2 and 5, respectively. On the one hand, this is costly in comparison

to other error estimators, e.g., residual-based, where only the primal problem needs to be solved. On

the other hand, the adjoint solutions yield precise sensitivity measures for accurate measurements of

the goal functionals. In addition, we control both the discretization and nonlinear iteration error for

multiple goal functionals. Finally, the proposed approach is nonetheless much cheaper for many goal

functionals. A naive approach (for a discussion in the linear case of multiple goal functionals or for

using the primal part of the error estimator only, we refer the reader again to [26, 27]) would mean to

solve 2N + 2 problems (i.e., N + 1 for the primal part).

6 Numerical examples

In this section, we perform numerical tests for two nonlinear problems, where the first problem contains

two model parameters. We consider different choices of these parameters that lead to different levels

of difficulty with respect to their numerical treatment.

• Example 1 (p-Laplacian):

12



a) Smooth solution with homogeneous Dirichlet boundary conditions and right hand side on

the unit square for p = 2 and p = 4 with ε = 1 as regularization parameter, and an integral

evaluation over the whole domain as functional of interest.

b) Smooth solution with inhomogeneous Dirichlet boundary conditions on the unit square with

a disturbed grid and p = 5 and p = 1.5 with ε = 0.5 and a point evaluation as functional of

interest.

c) Solution with corner singularities and homogeneous Dirichlet boundary conditions on a

cheese domain with p = 4 and p = 1.33 with a very small regularization parameter ε = 10−10,

and two nonlinear and two linear functionals of interest.

• Example 2 (a quasilinear PDE system):

Solution with low regularity on a slit domain with mixed boundary conditions, and one linear

and five nonlinear functionals of interest.

The implementation is based on the finite element library deal.II [5] and the extension of our

previous work [20].

6.1 Preliminaries

The following examples are discretized using globally continuous isoparametric quadrilateral elements

as introduced in Section 5.1. If not mentioned otherwise, we use U (2)
h = Qr+1

c ∩U and V (2)
h = Qr+1

c ∩V
for the enriched finite element spaces, if Uh = Qrc ∩ U and Vh = Qrc ∩ V is used for the original finite

element spaces. In all numerical experiments we used r = 1 except in Section 6.2.1 Case 1, where the

used discretization is given explicitly. To solve the arising linear systems, we used the sparse direct

solver UMFPACK [18]. The error-weighting function E(x, ~J(uh)) :=
∑N

i=1
xi

|Ji(uh)| is used to construct

JE as in (24). In our computations, we used the finite element function which is 1 at the nodes which do

not belong to the Dirichlet boundary and fulfills the boundary conditions at the nodes which belongs

to the Dirichlet boundary as initial guess for u0,(2)
h and u0

h.

To investigate how well our error estimator performs in estimating the error, we introduce the

effectivity indices for the functional J as follows:

Ieff :=
ηh

|J(u)− J(uh)|
, (27)

Ieffp :=
|ρ(ũ)(z

(2)
h − zh)|

|J(u)− J(uh)|
, (28)

Ieffa :=
|ρ∗(ũ, z̃)(u(2)

h − uh)|
|J(u)− J(uh)|

, (29)

where ρ is defined by (7), ρ∗ as in (8), and ηh as in (13). We call (27) the effectivity index, (28)

the primal effectivity index, and (29) the adjoint effectivity index. In the first part, we analyze the

behavior of our algorithm for the regularized p-Laplace equation (30). In Section 6.2.1, Case 1, we

apply our algorithm to the linear problem given in [44], i.e., for p = 2. For Section 6.2.1, Case 2,

we chose p = 4, ε = 1, and apply our algorithm to a nonlinear problem, and compare the refinement

evolution for the different error estimators |ρ(ũ)(z
(2)
h − zh)|, |ρ∗(ũ, z̃)(u(2)

h − uh)| and ηh.

13



In Section 6.2.2, we solve the p-Laplace equation for p = 5 and p = 1.5 on a disturbed grid,

aiming for a point evaluation. We compare the results of our algorithm with the results of global

refinement and also to the different error estimators. The examples in Section 6.2.3 consider several

reentrant corners, several nonlinear functionals, and a very small regularization parameter ε = 10−10.

In Section 6.3, we investigate the behavior of our algorithm for a quasilinear PDE system.

6.2 Example 1: p-Laplace

Let ε > 0 and p ∈ R with p > 1, and let Ω be a bounded Lipschitz domain in R2. We again consider

the Dirichlet problem for p-Laplace equation, cf. Section 2, but now with inhomogeneous Dirichlet

boundary conditions: Find u such that:

−div((ε2 + |∇u|2)
p−2
2 ∇u) = f ∀in Ω,

u = g on ∂Ω.
(30)

The Fréchet derivative A′(u) at u of the nonlinear operator A corresponding to the p-Laplace

problem problem 30, cf. also Section 2, is given by the variational identity

A′(u)(q, v) =〈(ε2 + ‖∇u‖2`2)
p−2
2 ∇q,∇v〉

+〈(p− 2)(ε2 + ‖∇u‖2`2)
p−4
2 (∇u,∇q)`2∇u,∇v〉 ∀q, v ∈W

1,p
0 (Ω).

6.2.1 Regular cases

Here we consider a problem with a smooth solution and a smooth adjoint solution.

Case 1 (p = 2, i.e. Poisson problem): This is the same example as Example 1 in [44]. In this

example, the data are given by Ω = (0, 1)× (0, 1), f = 1 and g = 0. We are interested in the following

functional evaluation:

J1(u) :=

∫
Ω
u(x) dx ≈ 0.03514425375± 10−10.

This reference value was taken from [44]. If we compare our results in Table 1 with the results in [44],

then we observe that they are quite similar. The estimated error ηh is almost the same, and the DOFs

exactly coincide with the DOFs in [44]. However, using just one polynomial degree higher for U (2)
h , we

obtain similar results with less computational cost as is shown in Table 2.
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l DOFs |J(u)− J(uh)| ηh Ieff Ieffp Ieffa

1 169 8.51E-07 8.47E-07 1.00 1.00 1.00

2 317 1.12E-07 1.37E-07 1.23 1.23 1.23

3 937 5.57E-09 7.55E-09 1.35 1.35 1.36

4 1 813 1.15E-09 1.41E-09 1.22 1.23 1.22

5 3 877 6.48E-11 8.05E-11 1.24 1.24 1.24

6 7 057 2.81E-11 2.07E-11 0.74 0.74 0.74

Table 1: Section 6.2.1, Case 1. Display of exact error |J(u)−J(uh)| , estimated error ηh, and effectivity

indices for Uh = Q3
c and U (2)

h = Q6
c .

l DOFs |J(u)− J(uh)| ηh Ieff Ieffp Ieffa

1 169 8.51E-07 7.72E-07 0.91 0.91 0.91

2 317 1.12E-07 1.32E-07 1.18 1.18 1.18

3 789 5.12E-08 5.33E-08 1.04 1.04 1.04

4 1 301 4.11E-09 4.06E-09 0.99 0.99 0.99

5 1 977 1.06E-09 1.58E-09 1.49 1.49 1.5

6 4 149 6.56E-11 7.91E-11 1.2 1.2 1.21

7 7 273 2.65E-11 2.11E-11 0.8 0.8 0.8

Table 2: Section 6.2.1, Case 1. Display of exact error |J(u)−J(uh)| , estimated error ηh, and effectivity

indices for Uh = Q3
c and U (2)

h = Q4
c .

Case 2 (p = 4, ε = 1): We use the same setting as above, but with p = 4 and ε = 1. The finite

element spaces are given by Uh = Q1
c and U (2)

h = Q2
c . We are interested in the following functional

evaluation

J1(u) :=

∫
Ω
u(x) dx ≈ 0.033553988572± 10−6.

This reference value was computed on a fine grid with 263 169 DOFs (9 global refinement steps). In

this example, we compare the refinements for different error estimators.
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l DOFs |J(u)− J(uh)| Ieff Ieffp Ieffa

1 9 1.08E-02 0.98 0.92 1.05

2 25 2.82E-03 0.99 0.92 1.07

3 81 7.11E-04 1.00 0.92 1.08

4 289 1.78E-04 1.00 0.92 1.08

5 1 089 4.44E-05 1.00 0.92 1.09

6 4 193 1.15E-05 1.07 0.98 1.15

7 6 545 9.45E-06 1.08 0.99 1.17

8 16 769 2.61E-06 1.07 0.98 1.16

9 36 009 1.75E-06 1.13 1.04 1.22

Table 3: Section 6.2.1, Case 2. Refinement is only based on the primal part of the error estimator ηh.

l DOFs |J(u)− J(uh)| Ieff Ieffp Ieffa

1 9 1.08E-02 0.98 0.92 1.05

2 25 2.82E-03 0.99 0.92 1.07

3 81 7.11E-04 1.00 0.92 1.08

4 289 1.78E-04 1.00 0.92 1.08

5 913 7.54E-05 1.15 1.09 1.21

6 1 545 4.08E-05 1.09 1 .00 1.18

7 4 225 1.10E-05 1.02 0.93 1.10

8 10 513 6.56E-06 1.10 1.04 1.16

9 20 649 2.48E-06 1.12 1.03 1.22

Table 4: Section 6.2.1, Case 2. Refinement is only based on the adjoint part of the error estimator ηh.

l DOFs |J(u)− J(uh)| Ieff Ieffp Ieffa

1 9 1.08E-02 0.98 0.92 1.05

2 25 2.82E-03 0.99 0.92 1.07

3 81 7.11E-04 1.00 0.92 1.08

4 289 1.78E-04 1.00 0.92 1.08

5 1 089 4.44E-05 1.00 0.92 1.09

6 3 137 2.26E-05 1.14 1.07 1.20

7 5 833 1.02E-05 1.10 1.01 1.19

8 16 641 2.61E-06 1.07 0.98 1.15

9 38 993 1.59E-06 1.15 1.08 1.21

Table 5: Section 6.2.1, Case 2. Refinement for the error estimator ηh.
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In this example, we obtain quite good effectivity indices for the refinements based on the the primal

part of the error estimator, cf. Table 3, the adjoint part of the error estimator, cf. Table 4, and the full

error estimator ηh, cf. Table 5. Furthermore, the convergence rates are also very similar. One might

conclude that the adjoint error estimator is not required to obtain good effectivity indices. However,

in the following examples, we observe that this is not the case for less regular solutions and adjoint

solutions.

6.2.2 Semiregular cases

As in the regular cases, we consider a smooth solution, but a low regular adjoint solution. This example

is motivated by an example in [47]. We choose the right-hand side and the boundary conditions

such that exact solution is given by u(x, y) = sin(6x + 6y). The computation was done on the unit

square Ω = (0, 1) × (0, 1) on a slightly perturbed mesh (generated with the deal.II [5, 6] command

distort_random with 0.2 on a 4 times globally refined grid unit square). The resulting mesh is shown

in Figure 6. The functional of interest is J(u) = u(0.6, 0.6). We consider the following two cases:

• Case 1 (p = 5, ε = 0.5),

• Case 2 (p = 1.5, ε = 0.5).

In both cases, the method also worked for the perturbed meshes. For the case p = 5 and ε = 0.5, we

observe from Figure 3 that the adjoint solution almost vanishes in the set outside the domain which is

covered by the condition ∇u = 0, and contains the point (0.6, 0.6). This was not observed in Case 2.

However, the condition ∇u = 0 seems to be important in both cases. The adaptively refined meshes

shown in Figure 2 and Figure 7 have more refinement levels in these regions. In Figure 4 and Figure 5,

we observe that we get the same convergence rate as in the case of uniform refinement. Since the

solution is smooth, a global refinement already attains the optimal convergence rate. However, we get

a reduction of the number of DOFs that are needed to obtain the same error. Furthermore, we monitor

that the effectivity index is better on finer meshes. The reason might be the neglected remainder term

from Theorem 3.1. From Table 6 and Table 7, we conclude that this does not necessarily hold for the

primal and the adjoint error estimator separately.
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Figure 2: Section 6.2.2, Case 1. Primal solu-

tion and mesh after six adaptive refinements.

Figure 3: Section 6.2.2, Case 1. Adjoint solu-

tion on the mesh as given in Figure 2.

1e-07

1e-06

1e-05

0.0001

0.001

0.01

1000 10000 100000 1e+06

|u
(0
.6
,0
.6

)
−
u
h
(0
.6
,0
.6

)|

DOFs

Error (adaptive)
ηh

Error (uniform)
O(DOFs−1)

Figure 4: Section 6.2.2, Case 1. Error vs DOFs

for p = 5 and ε = 0.5.
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Figure 5: Section 6.2.2, Case 2. Error vs DOFs

for p = 1.5 and ε = 0.5.

l DOFs |J(u)− J(uh)| Ieff Ieffp Ieffa

1 289 4.24E-03 0.48 0.60 1.56

2 599 5.23E-03 0.80 0.63 0.98

3 1 095 7.72E-04 0.16 0.02 0.34

4 2 418 8.52E-05 1.81 2.58 1.03

5 4 918 1.28E-05 4.92 3.35 6.49

6 10 112 2.64E-05 2.03 1.83 2.22

7 20 068 3.46E-06 5.59 10.33 0.86

8 40 302 1.02E-05 1.66 2.16 1.16

9 79 468 4.45E-06 1.51 1.60 1.43

10 157 272 2.68E-06 1.62 1.68 1.55

11 305 901 1.36E-06 1.32 1.62 1.01

12 602 720 8.52E-07 1.29 1.46 1.12

13 1 157 353 3.40E-07 1.28 1.55 1.01

Table 6: Section 6.2.2, Case 1. Effectivity in-

dices for p = 5 and ε = 0.5.

l DOFs |J(u)− J(uh)| Ieff Ieffp Ieffa

1 289 2.07E-02 0.61 0.47 0.75

2 503 5.55E-03 0.72 0.89 0.55

3 994 2.88E-03 0.89 1.30 0.49

4 2 090 8.55E-04 1.23 1.50 0.96

5 4 233 4.34E-04 1.45 1.90 1.00

6 8 667 1.42E-04 1.34 1.88 0.80

7 17 276 8.14E-05 1.40 2.71 0.09

8 34 846 3.54E-05 1.28 1.75 0.80

9 68 765 1.64E-05 1.36 2.58 0.14

10 136 267 8.59E-06 1.29 2.07 0.51

11 263 508 4.30E-06 1.19 2.20 0.18

12 514 223 2.18E-06 1.22 1.99 0.44

13 988 042 1.01E-06 1.22 2.20 0.24

Table 7: Section 6.2.2, Case 2. Effectivity in-

dices for p = 1.5 and ε = 0.5.
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Figure 6: Disturbed initial mesh for Case 1

and Case 2 of Section 6.2.2.

Figure 7: Marked elements (in red) at refine-

ment level l = 7 for Case 2 of Section 6.2.2.

6.2.3 Low regularity cases

As in Section 6.2.1, we consider homogeneous Dirichlet conditions and f = 1 as right-hand side for the

p-Laplace equation (30). However, here both the solution and adjoint solution have low regularity. The

initial mesh is given as in Figure 12, which was constructed using the deal.II [5, 6] command cheese.

With this data, we have singularities on each of the reentrant corners. Furthermore, in this example, we

chose the regularization parameter ε to be 10−10, which makes the problem very ill-conditioned (in fact

it is practically the original p-Laplace problem) where ∇u = 0, but it is very close to the unregularized

p-Laplace problem as in [36] and[23]. We are interested in the following four goal functionals:

J1(u) :=(1 + u(2.9, 2.1))(1 + u(2.1, 2.9)),

J2(u) :=

(∫
Ω
u(x, y)− u(2.5, 2.5) d(x, y)

)2

,

J3(u) :=

∫
(2,3)×(2,3)

u(x, y) d(x, y),

J4(u) :=u(0.6, 0.6).

These functionals will be combined to JE as formulated in (24).

Case 1 (p = 4, ε = 10−10): First we consider a case where p > 2. The following values, which

were computed on a fine grid (8 global refinements, Q2
c elements, 22 038 525 DOFs) on the cluster

RADON11, are used to compute the reference values:

∫
Ω
u(x, y) d(x, y) ≈4.1285036414± 4× 10−5,∫

(2,3)×(2,3)
u(x, y) d(x, y) ≈0.31999986649± 10−5,

u(2.9, 2.1) ≈0.16071095234± 10−5,

u(2.9, 2.1) ≈0.16071095234± 10−5,

u(0.6, 0.6) ≈0.35554352679± 2× 10−6,

u(2.5, 2.5) ≈0.49244705234± 4× 10−6.

1https://www.ricam.oeaw.ac.at/hpc/overview/
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Considering the accuracy of the functional evaluations above, we observe that the relative errors in

the functionals J1, J2, J3 and J4 are less than 5 × 10−5. Our algorithm yields the results shown in

Table 8. In Figure 8, we can see that the absolute error in the error functional JE bounds the rela-

tive errors of the functionals J1, J2, J3 and J4. Furthermore, we observe that J2 is the dominating

functional and J1 is the one with the smallest error on most refinement levels. Therefore, we compare

the convergence of this functionals in Figure 10. For uniform refinement, we obtain an error behavior

of approximately O(DOFs−
3
4 ) for J2 and O(DOFs−

3
5 ) for J1, whereas we obtain excellent convergence

rates of O(DOFs−1) for both functionals using our refinement algorithm. We are not aware of a full

convergence analysis on adaptive meshes for pointwise estimates for the p-Laplacian, but mention two

related studies [16] for p > 2 showing a posteriori estimates for the W 1,p norm and [14] with pointwise

a priori estimates for the p-Laplacian. The bad convergence of J2 might result from the fact that the

point (2.5, 2.5) is the intersection of two lines, where the problem is ill-conditioned, and also leads to

a kink in the solution at this point (see Figure 13). This kink is not visible in the case p = 1.33 (see

Figure 14). Comparing the number of Newton steps in Table 9 and Table 10, we observe that the

number of Newton steps is less than for Algorithm 2. However, the additional computational cost has

to be considered, but we face a problem with nonlinear functionals, several reentrant corners and a

very small regularization parameter ε = 10−10. Furthermore, these tables also suggest that we should

compute both the primal and the adjoint error estimator to obtain a better approximation of the error.

l DOFs Ieff

∣∣∣ J1(u)−J1(uh)

J1(u)

∣∣∣ ∣∣∣ J2(u)−J2(uh)

J2(u)

∣∣∣ ∣∣∣ J3(u)−J3(uh)

J3(u)

∣∣∣ ∣∣∣ J4(u)−J4(uh)

J4(u)

∣∣∣
1 117 0.63 5.05E-02 3.02E-01 1.10E-01 1.17E-01

2 161 0.53 1.53E-02 5.09E-02 4.94E-02 1.17E-01

3 290 0.84 8.25E-03 4.41E-02 2.14E-02 1.09E-01

4 447 0.81 4.86E-03 5.07E-02 1.53E-02 1.51E-02

5 791 0.96 2.09E-03 3.26E-02 1.12E-02 8.82E-03

6 1 331 1.14 1.37E-03 1.69E-02 8.44E-03 2.40E-03

7 2 541 1.92 1.65E-03 3.37E-03 4.38E-03 1.21E-03

8 4 582 1.38 6.56E-04 3.78E-03 2.43E-03 8.57E-04

9 7 378 1.64 3.14E-04 2.52E-03 1.05E-03 2.06E-04

10 11 772 1.51 2.72E-04 1.73E-03 8.83E-04 3.51E-04

11 20 443 1.87 9.65E-05 5.65E-05 5.24E-04 5.84E-05

12 37 747 1.87 6.09E-05 3.05E-04 2.17E-04 1.20E-04

13 64 316 1.63 2.80E-05 1.30E-04 1.41E-04 4.25E-05

14 104 832 1.44 1.04E-05 1.39E-04 7.18E-05 2.02E-05

Table 8: Section 6.2.3, Case 1. Relative errors for the goal functionals on several refinement levels (l)

and effectivity index Ieff that is computed for JE (24).
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Figure 8: Section 6.2.3, Case 1. Error vs DOFs

for p = 4, ε = 10−10.
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Figure 9: Section 6.2.3, Case 2. Error vs DOFs

for p = 1.33 and ε = 10−10.

l DOFs Error in JE Ieff Ieffp Ieffa Newton steps

1 117 7.43E-01 0.63 0.6 0.65 8

2 161 2.54E-01 0.53 0.27 0.79 2

3 290 1.94E-01 0.84 0.24 1.43 2

4 447 8.40E-02 0.81 0.28 1.34 5

5 791 5.39E-02 0.96 0.48 1.45 4

6 1 331 2.89E-02 1.14 0.24 2.05 1

7 2 541 1.06E-02 1.92 0.02 3.86 3

8 4 582 7.71E-03 1.38 0.41 2.36 4

9 7 378 4.09E-03 1.64 0.74 2.55 2

10 11 772 3.23E-03 1.51 0.7 2.32 4

11 20 443 6.23E-04 1.87 1.06 2.67 2

12 37 747 7.03E-04 1.87 0.66 3.07 6

13 64 316 3.41E-04 1.63 0.39 2.87 4

14 104 832 2.42E-04 1.44 0.5 2.38 3

Table 9: Errors in JE, effectivity indices and number of Newton steps for p = 4 and Algorithm 2.

l DOFs Error in JE Ieff Ieffp Ieffa Newton steps

1 117 7.43E-01 0.63 0.60 0.65 7

2 161 2.58E-01 0.52 0.26 0.79 4

3 290 1.94E-01 0.84 0.24 1.44 4

4 447 8.41E-02 0.81 0.28 1.34 6

5 791 5.40E-02 0.96 0.48 1.45 4

6 1 331 2.70E-02 1.38 0.38 2.39 6

7 2 198 2.02E-02 1.13 0.56 1.70 5

8 4 012 9.07E-03 1.43 0.70 2.16 6

9 6 879 4.02E-03 1.75 0.32 3.18 5

10 11 576 3.27E-03 1.40 0.62 2.19 6

11 20 187 8.20E-04 2.11 0.85 3.37 6

12 38 302 6.77E-04 1.78 0.54 3.02 7

13 64 740 3.12E-04 1.67 0.32 3.02 7

14 105 350 2.46E-04 1.35 0.47 2.22 5

Table 10: Errors in JE, effectivity indices and number of Newton steps for p = 4 and Algorithm 2

where |A(ul,kh )(zl,kh )| > 10−2ηl−1
h is replaced by ‖A(ul,kh )‖`∞ > 10−8.

Case 2 (p = 1.33, ε = 10−10):

We are interested in the same goal functional as in Case 1 but with p = 1.33. The following values,

which are computed on a fine grid (8 global refinements, Q2
c elements, 22 038 525 DOFs) on the cluster

RADON1, are used to compute the reference values:
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Figure 10: Section 6.2.3, Case 1. Error vs

DOFs for p = 4 and ε = 10−10.
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Figure 11: Section 6.2.3, Case 2. Error vs

DOFs for p = 1.33 and ε = 10−10.

∫
Ω
u(x, y) d(x, y) ≈0.48510099008± 4× 10−5,∫

(2,3)×(2,3)
u(x, y) d(x, y) ≈0.038058285978± 4× 10−6,

u(2.9, 2.1) ≈0.034930138311± 4× 10−6,

u(2.9, 2.1) ≈0.034930138311± 4× 10−6,

u(0.6, 0.6) ≈0.024478640536± 2× 10−6,

u(2.5, 2.5) ≈0.039616834482± 4× 10−6.

Considering again that the accuracy of the functional evaluations is valid, we observe that the

relative error of J2 is less than 8 × 10−4 and the relative error of J1, J3, J4 is less than 10−4. As in

Case 1, we compare the relative errors of the functionals in Figure 9. Here we see that the error in JE
bounds the relative errors. However, we loose control of the single functionals as long as they do not

dominate the error, as for J2 in Figure 9. In Case 2, J3 and J1, are these functionals. In the error plot

given in Figure 11, we observe that the error approximately behaves like O(DOFs−
3
4 ) for a uniformly

refined mesh, and O(DOFs−1) for adaptive refinement, as for p = 4. It turns out that the regions of

refinement (except for corner singularities and the point evaluations) have almost a complementary

structure for p = 1.33 and p = 4 as we can conclude from Figure 16 and Figure 17.

Figure 12: Initial mesh. Figure 13: 6.2.3: Solution for

p = 4.

Figure 14: Section 6.2.3: Solu-

tion for p = 1.33.
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Figure 15: Section 6.2.3: Local

error estimator after 6 uniform

refinements for p = 4.

Figure 16: Section 6.2.3: Mesh

after 11 adaptive refinements

for p = 4 (37 747 DOFs).

Figure 17: Section 6.2.3: Mesh

after 11 adaptive refinements

for p = 1.33 (40 499 DOFs).

6.3 Example 2: A quasilinear PDE system

In this second numerical test, we further substantiate our approach for a nonlinear, coupled, PDE

system. We consider the following nonlinear boundary value problem: Find u = (u1, u2, u3) such that

−∆u1 + u2 + u3 = 1, in Ω,

−∆u2 + g1(1− u2)− g1(u3) = 0, in Ω,

−div(g2(u1 + u2)∇u3) + g1(u3)− g1(u1) = 0, in Ω,

is fulfilled in a weak sense, where

u1(x, y) = 1− u2(x, y) = u3(x, y) = sign(y)
√√

x2 + y2 − x on ΓD,

∇u1.~n = ∇u2.~n = g2(u1 + u2)∇u3.~n = 0 on ΓN .

Here sign denotes the signum function as defined in (18). The functions g1 and g2 are given by

g1(t) := et − sin(t − 1) and g2(t) := et
2−t, respectively. Obviously a solution is given by u1(x, y) =

1− u2(x, y) = u3(x, y) = sign(y)
√√

x2 + y2 − x in Ω. The computational domain is a slit domain as

in [3, 20, 51] and visualised in Figure 18. The boundary conditions above introduces a discontinuity

on the slit-boundary (−1, 0)× {0} and consequently a discontinuity in the solution. The construction

of this example was motivated by [3, 11]. Let JA, JB, JC , JD, JE , JF be defined as follows:

JA(u) :=u3(−0.5, 0.01),

JD(u) :=

∫
Ω

ΦD(x, y) · u(x, y) d(x, y),

JB(u) := u1(−0.01, 0.01),

JE(u) := u1(−0.9,−0.9),

JC(u) :=

∫
Ω

ΦC(x, y) · u(x, y) d(x, y),

JF (u) :=u2(−0.9,−0.1),

where ΦC(x, y) := (0, 0, χC(x, y)) and

ΦD(x, y) := (−4χD(x, y),
2χD(x, y)

1− sign(y)
√√

x2 + y2 − x
, 4χD(x, y)),
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with

χC(x, y) :=

y − x x < y

0 x ≥ y
and χD(x, y) :=

1 x, y > 0

0 else
.

We are now interested in the six goal functionals

J1(u) :=JB(u)JD(u),

J4(u) :=JB(u)JE(u),

J2(u) :=JA(u)JC(u),

J6(u) :=J3
B(u)JE(u),

J3(u) :=JA(u)JC(u)JF (u),

J6(u) =JC(u).

For the functional JB, we can not expect optimal convergence rates for uniform refinement due to the

singularity at the slit tip. Consequently, the same is true for the functionals J1, J4 and J5 as monitored

in Figures 21,20 and 22. For uniform refinement, we got a relative error in J1 of about 1.409531×10−2

with 3 153 411 DOFs as visualized in Figure 21. To achieve a relative error less than 1.409531× 10−2

our adaptive algorithm just needs 2 538 DOFs ( 1.042219×10−2 ). If we use a similar number of DOFs

(3 021 045), then a relative error of 2.829422 × 10−6 is achieved. Figures 21, 20 and 22 might also

lead to the conclusion that we obtain a convergence rate O(DOFs−1) for all given functionals, where

the functionals for uniform refinement just converge with approximately O(DOFs−
1
2 ). This means,

to obtain a relative error in J1 of about 2.829422 × 10−6 for uniform refinement, we would need ap-

proximately 5 × 1013 DOFs. This would mean just storing the solution would require approximately

400 Terabyte. Therefore, obtaining this accuracy by means of uniform refinement would even be a

hard task on the supercomputer Sunway TaihuLight2, which is number one the of TOP5003 list from

November 2017.

We remark that Ieff , illustrated in Figure 23, has no importance on course meshes since the

approximations properties are bad anyway. On finer meshes, we see excellent behavior.
2http://www.nsccwx.cn/wxcyw/
3https://www.top500.org/lists/2017/11/
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Figure 18: Example 2: The slit domain Ω with

ΓD (red) and ΓN (blue).

Figure 19: Example 2: Adaptively refined

mesh for JE after 24 refinements (683 118

DOFs).
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Figure 20: Example 2: Error vs DOFs.
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Figure 21: Example 2: Error vs DOFs.
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Figure 22: Example 2: Error vs DOFs.
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7 Conclusions

In this work, we have further developed adaptive schemes for multigoal-oriented a posteriori error

estimation and mesh adaptivity. First, we extended the existing methods to nonlinear problems.

Second, we combined the estimation of the discretization error with an estimation of the nonlinear

iteration error in order to obtain adaptive stopping rules for Newton’s method. In the key Sections

4 and 5, we formulated an abstract framework and its algorithmic realization. In Section 6, these

developments were substantiated with several numerical tests. Here, we studied the regularized p-

Laplace problem and a nonlinear, coupled PDE system. Our findings demonstrate the performance of

the algorithms and specifically that the adjoint part of the error estimator, which is often neglected in

the literature because of its higher computational cost, must be taken into account in order to achieve

good effectivity indices. In view of the geometric singularities, nonlinearities in both the PDE and the

goal functionals, our results show excellent performance of our algorithms.
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