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Abstract

In this article we introduce a FCT stabilized Radial Basis Function (RBF)-Finite Dif-

ference (FD) method for the numerical solution of convection dominated problems.

The proposed algorithm is designed to maintain mass conservation and to guarantee

positivity of the solution for an almost random placement of scattered data nodes. The

method can be applicable both for problems defined in a domain or if equipped with

level set techniques, on a stationary manifold. We demonstrate the numerical behavior

of the method by performing numerical tests for the solid-body rotation benchmark in

a unit square and for a transport problem along a curve implicitly prescribed by a level

set function. Extension of the proposed method to higher dimensions is straightforward

and easily realizable.

Key words: Flux correction, Radial basis functions, generalized finite differences, level set, con-

vection dominated problems

1 Introduction

Diffusion-convection equations, which are written with partial differentials, are used to de-

scribe many important problems in mechanics, fluid dynamics, medicine, biology and other

branches of science and technology. Numerical calculation of these equations are nontriv-

ial, especially when the convection strongly dominates the diffusion. As a result, conven-

tional space discretization methods (e.g. the method of finite differences, the finite volume

method, the finite element method) are not able to deliver a sufficiently smooth, positively

preserved numerical solution with the mass-conservation. Without additional stabilization

technique the resulting numerical solution will fail to predict the physical result. Namely,

the presence of numerical oscillations increases as marched in time and spoils the numerical

solution in the entire domain. The construction of a stabilization method that would elimi-

nate this effect is one of the most important problems in the numerical mathematics. In the
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last few decades, many profound and effective stabilization methods have been developed,

see e.g. [16]. Most of them were developed in the context of finite elements, which require

construction of a mesh and the corresponding mesh-related procedures. Creating such a

mesh and its maintenance/modification during the simulation process can be very expen-

sive and time-consuming. The kernel methods which are based on radial basis functions

are becoming increasingly popular for the numerical simulation of partial differential equa-

tions due to their flexibility of working with scattered data nodes, high spectral accuracy,

good convergence and significantly easier implementation. These methods demonstrated

promising results for various problems of PDEs in two- and three-dimensional domains,

see, e.g., [1, 3, 21, 12].

Recently, various attempts have been made to create stabilization methods for convec-

tion dominated problems within the meshless framework. Among them are approaches

which are based on the hyperviscosity [2]; use upwind-like techniques [15] or act by

adding extra nodes in the regions where the numerical solution has a steep gradient. Sub-

stantial drawbacks of these methods are: they do not automatically guarantee positivity-

preservation and mass-conservation of the numerical solution; they might lack the high

order of accuracy near steep gradients; and they might require a very scrupulous and often

heuristic hand-tuning of problem-dependent parameters.

In this article we introduce a flux-corrected transport (FCT) algorithm for the method of

Radial Basis Functions with generalized Finite-Differences (RBF-FD). The method guar-

antees mass conservation, positivity preservation and high-order accuracy of the numerical

solution. Besides these properties the considered methodology has the following additional

benefits:

• the method can be used for almost any set of scattered data nodes;

• the method admits the straightforward extension to higher spatial dimensions;

• the method does not require any artificially tuned problem-dependent parameters.

The FCT techniques are known since 1970s, see e.g. [32]. Recently they have been signif-

icantly improved in the context of the finite element method [17, 18, 19]. This paper is the

first attempt to apply the state-of-the-art FCT methodology to meshless methods.

We apply the FCT method to the numerical stabilization of convection dominated prob-

lems not only on domains, but also on manifolds, which is enabled by combining the RBF-

FD method with the level set technique, see [11, 26].

This paper is organized as follows. After this opening section we formulate the prob-

lem, which consists of a partial differential equation and which can be defined either

in a domain or on some sufficiently smooth and closed manifold of arbitrary curvature.

Here, we briefly introduce the level set method to be employed for the numerical treat-

ment of surface-defined PDEs. In section 3 we discuss the method of radial basis func-

tions with generalized finite differences and the corresponding numerical approximation of

the (general-purpose) diffusion and convection operators. After that, in section 4 we de-

scribe the flux corrected transport paradigm to be applied in combination with the RBF-FD

method for the numerical stabilization of the dominant convection. Therein we present nu-

merical results that illustrate the properties of the proposed scheme. After analysis of these

results, the last section is dedicated to some further remarks and discussions.
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2 Problem formulation

In this article we consider the general transport problem of the following type:

ut −∇P · (D∇Pu) + v · ∇Pu = 0, (1)

where ∇P = P∇. If P = I, the general problem (1) transforms into the diffusion-

convection equation

ut −∇ · (D∇u) + v · ∇u = 0, in Ω, (2)

where Ω ⊂ R
d, d = 2, 3 is a computational domain and v is some velocity vector-field.

G

W e

W in

W out

Figure 1: Geometric illustration.

In the case when P = PΓ is a projection onto the tan-

gent space TxΓ of a manifold Γ, we obtain the diffusion-

convection equation

ut −∇Γ · (D∇Γu) + v · ∇Γu = 0, on Γ. (3)

Here, ∇Γ · (D∇Γ·) is the generalized Laplace-Beltrami

operator. We assume that the solution u of (3) can be

(naturally) extended from Γ to an ε-band Ωε, see Fig-

ure 1. The domain of interest Ω is decomposed into Ω =
Ωin ∪Ωout ∪ Γ. For the sake of simplicity, we also assume

that the boundary ∂Ω is aligned with some level set and therefore no boundary conditions

for u on ∂Ω are necessary.

2.1 Level set method

For the implicit prescription of a compact, smoothly connected, oriented, time-independent

hypersurface Γ ⊂ Ω we introduce a smooth level set function

φ(t,x) =











< 0, if x is inside Γ,

= 0, if x ∈ Γ,

> 0, if x is outside Γ,

(4)

such that |∇φ| 6= 0 in Ωε. Then, an outward normal to Γ at the point x is

n(x) = (n1, n2, . . . , nd)T = ∇φ(x)/|∇φ(x)| (5)

and the matrix

PΓ = I − nnT =
(

δij − ninj
)d

i,j=1
(6)

is the projection onto the tangent space TxΓ. For a scalar function η and a tangential vector

field η = (η1, η2, . . . , ηd)T on Γ extended into Ω we can define

∇Γη := (PΓ∇) η =







∂η

∂xi
−

d
∑

j=1

ninj ∂η

∂xj







d

i=1

, (7)

∇Γ · η =

d
∑

i=1





∂ηi

∂xi
−

d
∑

j=1

ninj ∂η
i

∂xj



 , (8)

the surface gradient ∇Γ and the surface divergence ∇Γ· operators, respectively. Using this

notation, the Laplace-Beltrami operator can be written as

∆Γη = ∇Γ · ∇Γη = PΓ∇ · PΓ∇ η. (9)
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3 Numerical discretization in space and in time

3.1 Kernel interpolation and operator approximation

Given a set of scattered nodes X = {xj}
N
j=1 ⊂ Ω we are looking for a continuous function

u : Ω → R as a kernel interpolant, whose general form is

Iφu(x) =

N
∑

j=1

cjΦ(x,xj), x ∈ Ω, (10)

such that u is a solution of the corresponding partial differential equation. Here, Φ is a

positive definite kernel called a radial basis function (RBF) with the property Φ(x,y) =
ϕ(‖x − y‖). Denoting rj(xi) = ‖xi − xj‖, the interpolation coefficients {cj}

N
j=1 are

determined by enforcing Iϕu|X = u|X as the following linear system:

AXcX = uX , (11)

where

AX =











ϕ(r1(x1)) ϕ(r2(x1)) . . . ϕ(rN (x1))
ϕ(r1(x2)) ϕ(r2(x2)) . . . ϕ(rN (x2))

...
...

. . .
...

ϕ(r1(xN )) ϕ(r2(xN )) . . . ϕ(rN (xN ))











, cX =











c1
c2
...

cN











, uX =











u(x1)
u(x2)

...

u(xN )











.

For a positive definite ϕ, this system is positive definite and hence solvable.

In the following we use the radial basis function finite difference (RBF-FD) method for

approximation of all linear differential operators, which arise through our derivations. Let

L be one of these linear operators. Then the approximation of Lu at the point ζ is sought

as a weighted sum of function values u(ξj) at the points Ξ = Ξζ = {ξ1, ξ2, . . . , ξK}
neighboring to ζ:

Lu(ζ) ≈

K
∑

j=1

ωju(ξj), ξj ∈ Ξ, (12)

where the approximation weights ω = (ω1, ω2, . . . , ωK)T can be computed by solving the

linear system

AΞω = [Lϕ(rj(ζ))]
K
j=1 with AΞ := [ϕ(rj(ξi))]

K
i,j=1. (13)

In general, a good choice of sets of influence ξi for the accurate approximation of Lu(ζ)
is a nontrivial task which requires additional analysis [4, 21, 6]. In this article, the set Ξζ

consists of the K = 9 points nearest to ζ in the Euclidean distance, including ζ itself. The

more detailed study of the choice of the sets of influence and its consequences for the accu-

racy of the resulting disretization is of great importance, but further discussion lies outside

of the scope of this article. Either Gaussian ϕ(r) = exp(−ǫ2r2) with ǫ > 0 close to zero,

or the polyharmonic radial basis function ϕ(r) = rγ with γ = 5 are used in all presented

numerical simulations. In the case of Gaussian we use a QR preconditioning technique that

allows stable computation of the weights for any value of the shape parameter ǫ [14, 5, 20].

Polyharmonic RBF is only conditionally positive definite and therefore the interpolant (10)

is extended in this case by a polynomial term of degree ⌊γ/2⌋, see [12, 13] for details.
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In the case of a vector-valued operator L the weights ωj are vectors, and ω is a matrix.

In particular, (12) is replaced by

∇u(ζ) ≈ ω∇(ζ,Ξ)TuΞ (14)

for the gradient operator ∇, where each column of the matrix ω∇(ζ,Ξ) ∈ R
K×d is ob-

tained by solving (13) for the corresponding partial derivative operator. Clearly, a gradient-

type operator LA
gradu = A∇u with components

∑d
j=1

aij
∂u
∂xj

, i = 1, . . . , d, where A :

Ω → R
d×d, can be discretized as

LA
gradu(ζ) ≈

[

K
∑

i=1

ωiju(ξi)
]d

j=1

= A(ζ)ωT
∇(ζ,Ξ)uΞ, (15)

where ω := ω∇(ζ,Ξ)AT (ζ). A simple calculation shows that the same weight matrix

ω = ω∇(ζ,Ξ)AT (ζ) gives a discretization

LA
divu(ζ) ≈

K
∑

i=1

d
∑

j=1

ωijuj(ξi) = trace
(

A(ζ)ωT
∇(ζ,Ξ)uΞ

)

(16)

of the divergence-type operator LA
divu = A∇·u :=

∑d
i,j=1

aij
∂ui

∂xj
, where u = (u1, . . . , ud)

T

is a vector-function, and uΞ = [uj(ξi)]
K,d
i,j=1.

Formulas (15) and (16) can be combined to obtain an approximation of the anisotropic

diffusion operator

∆A,Bu := A∇ ·B∇u = LA
divL

B
gradu, A,B : Ω → R

d×d.

To this end, an auxiliary set of points Λ = {γ1, . . . ,γL} is chosen in the neighborhood of

ζ, an approximation of the vector

u(γs) := LB
gradu(γs) ≈

[

K
∑

i=1

ωij(γs)u(ξi)
]d

j=1

, ω(γs) := ω∇(γs,Ξ)B
T (γs),

is obtained by (15) for each s = 1, . . . , L, and inserted into (16), where Λ is used instead

of Ξ. Setting ω̃ := ω∇(ζ,Λ)AT (ζ), we arrive at

∆A,Bu(ζ) ≈
K
∑

i=1

ωiu(ξi), ωi =
L
∑

s=1

d
∑

j=1

ω̃sjωij(γs), (17)

that is

ωi = trace
(

ω̃ [ωij(γs)]
d,L
j,s=1

)

, i = 1, . . . ,K.

In the case when A = B and ζ ∈ Λ = Ξ the formulas for ωi in (17) can be simplified

since ω̃ coincides with one of the matrices ω(γs), see [11, 26]. We however prefer to

choose Λ closer to ζ, in order to obtain more reliable numerical differentiation formulas

for LB
gradu(γs). In this paper we use

γj = (ζ + ξj)/2, j = 1, . . . ,K, (18)

see Figure 2, where ξ1 = ζ.
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Figure 2: Discretization of the anisotropic diffusion operator.

3.2 RBF-FD discretization in space

Let us denote discrete counterparts of the involved continuous operators as follows:

L(t, I)u ≈ −∇ · (D(x)∇u) |X , (19)

L(t,P)u ≈ −∇P · (D(x)∇Pu) |X , (20)

K(t,v, I)u ≈ −v · ∇u|X , (21)

K(t,v,P)u ≈ −v · ∇Pu|X , (22)

where u = (u1, u2, . . . , uN )T ≈ u|X =
(

u(x1), u(x2), . . . , u(xN )
)T

, with X = {xj}
N
j=1 ⊂

Ω. We now describe the RBF-FD construction of the discrete operators (19)–(22).

After choosing a set of nodes X = {xj}
N
j=1 ⊂ Ω, we select for each ζ ∈ X a set

of neighbors Ξζ ⊂ X . Thanks to (9), the value of the operator −∇P · (D(x)∇Pu) can

be approximated according to (17) with A = −P and B = D(x)P , and the weights ωi

of this formula become the nonzero entries of the ζ-row of the matrix L(t,P) in (20).

In particular, for P = PΓ we obtain a discretization of the generalized Laplace-Beltrami

operator −∆Γu(ζ).
For the RBF-FD approximation of convection operators v · ∇u and w · ∇Pu we use

(w · ∇Pu)(ζ) ≈ wT (ζ)P(ζ)ωT
∇(ζ,Ξζ)uΞζ

as in (15), leading to the weights for the ζ-row of K(t,v,P) in (22). In particular, for

w · ∇Γu we make an assumption that both vector fields v and w can be extended outside

of Γ to the whole domain Ω. Then by (7), ∇Γu = PΓ∇u, and the above formula is used

with P = PΓ.

Construction of corresponding discretizations for the discrete operators (19) and (21) is

done in a similar way by setting P = I.

3.3 Discretization in time

For simplicity of notation we will not distinguish between operators K(t,v, I) and K(t,v,P)
and will denote them as K(t,v). Analogously, we will do for diffusion operators L(t, I)
and L(t,P) by denoting them as L(t). After the RBF-FD discretization of problem (2),
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resp. (3), one obtains a semi-discrete problem of the form:

M
du

dt
= Ku, (23)

where K = −M
(

L(t) + K(t,v)
)

, and M = diag(m1, . . . ,mN ) is a diagonal mass

matrix, where mi determines the area of a subdomain belonging to the ith node. The most

straightforward, though not optimal approach to constructing a matrix M is to use the areas

of the cells of the Voronoi tessellation of Ω generated by X . This method is, however, quite

laborious, so it is advisable to use other methods, for example the construction of primal-

dual grids fitted to meshless methods [30]. For a uniform grid the unit matrix M = I can

be used because the areas associated with all nodes are equal.

For the discretization in time of problem (23) we use the θ-scheme method: given un

and the time step ∆t = tn+1 − tn, solve for un+1

(M− θ∆tK)un+1 = (M+ (1− θ)∆tK)un. (24)

Here, the choice θ = 1,
1

2
, 0 corresponds to the Implicit-Euler, Crank-Nicolson and Explicit-

Euler schemes respectively.

4 Numerical stabilization

As shown by Kuzmin et al. [17, 18, 19], positivity constraints can be readily enforced

at the algebraic level using a conservative manipulation of the matrices M = {mi} and

K = {kij} in equation (23). In the RBF-FD context the mass-matrix M is already diag-

onal and therefore requires no additional changes of its entries. To enforce monotonicity,

all negative off-diagonal elements of the matrix K are eliminated by adding an artificial

diffusion operator D = {dij}:

KL = K +D. (25)

Physical meaning of (25) is addition of artificial diffusion; so that, the numerical solution

uL of

M
d u

dt
= KLu, (26)

satisfies positivity constraints but is of low order. For conservation reasons, the matrix D
must be symmetric with zero row and column sums. For any pair of neighboring nodes i
and j, the entry dij is defined as [17, 18]

dij = max{−kij , 0,−kji}, j 6= i. (27)

Note that dji = dij , so that D is a symmetric matrix. The diagonal coefficients dii are

defined so that the row and column sums of D are equal to zero

dii = −
∑

j 6=i

dij . (28)

It should be noted if the non-diagonal elements of K are positive in the absence of D, no

addition of artificial diffusion is necessary and K = KL. In this case the physical diffusion

is enough to guarantee positivity preservation of the numerical solution from the beginning.
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The procedure of addition of artificial diffusion is also applicable in the case θ ∈
[0, 1] in (24). By this we obtain the following discrete equation:

(

M− θ∆tKL
)

un+1 =
(

M+ (1− θ)∆tKL
)

un. (29)

Now, we wish to achieve high resolution while keeping the scheme positivity-preserving.

For this purpose, we rewrite the equation (29) as follows:

(

M− θ∆tKL
)

un+1 = Mun+θ +∆tf(un,un+1), (30)

where

Mun+θ =
(

M+ (1− θ)∆tKL
)

un (31)

and

f(un,un+1) = −(1− θ)Dun − θDun+1. (32)

Here, by f we denote the difference between the residuals of the low-order scheme and that

of the original high-order scheme. By virtue of the above decomposition, we have

fi =
∑

j 6=i

fij , fji = −fij , ∀j 6= i. (33)

To achieve high resolution while keeping the scheme positivity-preserving, each flux fij
is multiplied by a solution-dependent correction factor αij ∈ [0, 1] and inserted into the

right-hand side of the nonoscillatory low-order scheme (30):

(

M− θ∆tKL
)

un+1 = Mu∗ := Mun+θ +∆t f̄ , f̄i =
∑

j 6=i

αijfij . (34)

The original discretization (24) corresponds to the setting αij := 1. It may be used in

regions where the numerical solution is smooth and well-resolved. The setting αij := 0 is

appropriate in the neighborhood of steep fronts.

The limiting process begins with cancelling all fluxes that are diffusive in nature and

tend to flatten the solution profiles. The required modification is:

fij := 0 if fij · (u
n+θ
j − un+θ

i ) > 0,

where un+θ is the positivity-preserving solution of low order defined by (31).

The computation of correction factors αij is accomplished by using Zalezak’s algo-

rithm [32] and involves the following algorithmic steps:

1. Compute the sums of positive/negative antidiffusive fluxes into node i

P+

i =
∑

j 6=i

max{0, fij}, P−
i =

∑

j 6=i

min{0, fij}.

2. Compute the distance to a local extremum of the auxiliary solution u

Q+

i = max{0,max
j 6=i

(un+θ
j − un+θ

i )}, Q−
i = min{0,min

j 6=i
(un+θ

j − un+θ
i )}.
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3. Compute the nodal correction factors for the net increment to node i

R+

i =











min

{

1,
mi Q

+

i

∆tP+

i

}

, P+

i 6= 0

0, P+

i = 0

R−
i =











min

{

1,
mi Q

−
i

∆tP−
i

}

, P−
i 6= 0

0, P−
i = 0

4. Check the sign of the antidiffusive flux and apply the correction factor

αij =

{

min{R+

i , R
−
j }, if fij > 0,

min{R−
i , R

+

j }, otherwise.

By defining nodal correction factors αij in such a way, one immediately obtains the

boundedness of the right-hand-side of (34)=: miu
∗
i :

un+θ
i,min

:= un+θ
i +Q−

i ≤ u∗
i ≤ un+θ

i +Q+

i =: un+θ
i,max.

Furthermore, the limited anti-diffusion does not amplify local extrema, since

Q±
i = 0 ⇒ R±

i = 0 ⇒ αij = 0.

Finally, the FCT scheme can be summarized by the following algorithm:

1. Compute the high-order solution ūn+1 from the algebraic system

(M− θ∆tK) ūn+1 = (M+ (1− θ)∆tK)un. (35)

2. Compute the intermediate solution un+θ by the low-order scheme

Mun+θ =
(

M+ (1− θ)∆tKL
)

un. (36)

3. Compute antidiffusive fluxes fij(u
n,un+θ) from (32) and correction factors αn+θ

ij

to find the intermediate solution u∗:

Mu∗ = Mun+θ +∆t
∑

j 6=i

αn+θ
ij fij(u

n,un+θ). (37)

4. Compute the stabilized high-order solution un+1:

(

M− θ∆tKL
)

un+1 = Mu∗. (38)

Using the M-matrix property of M− θ∆tKL, a discrete maximum principle can be shown

for un+1 [17, 18].
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5 Numerical results

In this section, the developed FCT RBF-FD algorithm is applied to several domain- and

surface-defined convection dominated problems that require the use of positivity-preserving

discretization techniques. To ease the understanding of numerical results, we use the fol-

lowing notation in our examples:

uanalyt − analytical solution;

upure − numerical solution without any stabilization;

ustab − FCT-stabilized numerical solution;

udiff − overdiffusive numerical solution with no flux-limiting technique applied;

In our numerical experiments we use the polyharmonic radial basis function ϕ(r) = rγ

with γ = 5. As uniformly distributed nodes seem most appropriate for the demonstration

of the benefits of FCT in the benchmark problems we consider, we choose gridded nodes,

and use M = I in (23).

5.1 Example 1

In the first example we apply the proposed algorithm to the benchmark problem of the solid

body rotation in 2D [17, 18, 19]. We solve the following pure transport equation:

∂tu+ v · ∇u = 0, in Ω = (0, 1)2, (39)

where v = (0.5 − y, x − 0.5) is the incompressible velocity field which corresponds to a

counterclockwise rotation about the center P = (0.5, 0.5)T of the computational domain.

The initial condition is shown in Figure 3.

(a) front view (b) top view

Figure 3: Initial condition.

In Figures 4(a)–4(f) we compare the pure RBF-FD discretization method with the FCT

stabilized approach for various levels of spatial discretizations of Ω: N = 50 × 50, N =

100×100 and N = 200×200. Here, the angle of rotation α =
2π

3
and the time-step ∆t =

0.002 are chosen. One can clearly observe artificial oscillations and negative values by upure

near regions of steep gradients, see Figures 4(a), 4(c) and 4(e). These nonphysical negative

values grow rapidly as time evolves, which leads to the divergence of the algorithm and
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the corresponding termination of the simulation run. The corresponding FCT methodology

helps to stabilize this type of problems and delivers a sufficiently accurate solution, see

ustab in Figures 4(b), 4(d) and 4(f).

(a) non-stabilized, N = 50× 50 (b) FCT-stabilized, N = 50× 50

(c) non-stabilized, N = 100× 100 (d) FCT-stabilized, N = 100× 100

(e) non-stabilized, N = 200× 200 (f) FCT-stabilized, N = 200× 200

Figure 4: Numerical solution after rotation by the angle α =
2π

3
.

To demonstrate the comparative accuracy of solutions upure and ustab, we compare them

with the known uanalyt by plotting corresponding cutlines along a circle of a radius 0.25
which is centered at (0.5, 0.5)T , see figures 5(a)–5(c). We can observe convergence of

stabilized ustab and non-stabilized upure numerical solutions to the analytical one uanalyt as a

number of scattered data nodes increases. Also, as before we notice that the non-stabilized

solution does not preserve the positivity constraint; at the same time the stabilized solution
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(a) Cutline, N = 50× 50

(b) Cutline, N = 100× 100

(c) Cutline, N = 200× 200

Figure 5: Cutlines after rotation by the angle α =
2π

3
.
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preserves positivity even for a minimal number of unknowns N = 50× 50.

To conclude this example, in Figures 6(a)–6(d) we demonstrate the stabilized numerical

solution ustab at various time instances during the full counterclockwise rotation.

(a) α =
π

2
. (b) α = π.

(c) α =
3π

2
. (d) α = 2π.

Figure 6: An FCT-stabilized solution at various time instances, N = 200× 200.

5.2 Example 2

As the next example, we consider the pure transport equation on a curve:

∂tρ+ v · ∇Γρ = 0 on Γ. (40)

Here, Γ = {x : |x| = 1} is a unit circle, which is implicitly prescribed by the zero level-set

of the corresponding indicator function

φ(x) = |x| − 1.0.

For the sake of simplicity our computational domain Ω = {x : 0.5 ≥ |x| ≤ 1.5} is chosen

to be a union of all level sets Γc = {x : φ(x) = c}. The following initial condition

u(x) =

{

1 if |x− (0, 1)T | ≤ 0.1,

0 otherwise,
(41)

which is visualized in figure 7(b), and the advective velocity vector-field

v = (−1, 0)T
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are employed.

(a) placement of 1377 data points (b) initial condition

Figure 7: Initial setting.

(a) structured solution, rotation by π

4
(b) structured solution, rotation by π

2

(c) structured solution, rotation by π (d) structured solution, rotation by 3π

2

Figure 8: An FCT-statilized numerical solution.

The obtained FCT-stabilized numerical solution, which is shown in Figures 8(a)–8(d), re-

mains smooth and preserves positivity during the whole time of simulation. For the better

resolution of u on Γ, one requires additional data nodes.

In the RBF-FD approach there is more freedom for choosing the sets of influence than, e.g.,

in the finite element method [21]. Since for the approximation of surface operators the tan-

gential direction has a priority over the normal one, placement of nodes should to be much
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denser and more carefully chosen along the level set (tangential directions) than along its

gradient (the normal direction). For the construction of convection or, resp., advection op-

erators, it is more practically efficient to precalculate the convection or, resp., advection

field v and then choose nodes for a stencil taking into account that field. These manipula-

tions with nodes can significantly increase accuracy of a resulting numerical solution. This

is an interesting and relatively unexplored field of research. More detailed examination of

this issue is beyond the scope of this article and will be considered in our further work.

5.3 Example 3

In a final test we would like to demonstrate the universal applicability of the presented

method. To illustrate the applicability of our FCT stabilized RBF-FD method to general

initial data, a portrait of the famous mathematician Carl Friedrich Gauss∗ is rotated around

the point P = (0.5, 0.5)T in a counterclockwise direction. The initial condition viewed

from the front (left) and from the top (right) are shown in Figure 9 for N = 200 × 200
spatial data nodes.

(a) front view (b) top view

Figure 9: Initial condition.

Now the portrait of Gauss is rotated by α = 2π and the intermediate results for the pure

upure, diffusive udiff, and FCT-stabilized ustab numerical solutions are displayed in Fig-

ure 10-12.

∗extract from a portayal from Gottlieb Biermann, 1887; Link:

https://commons.wikimedia.org/wiki/File:Carl_Friedrich_Gauss.jpg

15

https://commons.wikimedia.org/wiki/File:Carl_Friedrich_Gauss.jpg


(a) rotation by π

2
(b) rotation by π

(c) rotation by 3π

2
(d) rotation by 2π

Figure 10: Pure upure numerical solution and various time instances.

(a) rotation by π

2
(b) rotation by π

(c) rotation by 3π

2
(d) rotation by 2π

Figure 11: Diffusive udiff numerical solution and various time instances.
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(a) rotation by π

2
(b) rotation by π

(c) rotation by 3π

2
(d) rotation by 2π

Figure 12: FCT-stabilized ustab numerical solution and various time instances.

After a full rotation by using pure-, diffusive- and FCT-stabilized approaches, we compare

the resulting numerical solutions. Oscillations of upure become noticeable in near-to-face

areas. The diffusive property of udiff is so strong, that the complete face is smeared out

and becomes unrecognizable. However, ustab shows no oscillatory behavior and the level

of smearing remains low: significant areas as, e.g. eyes or the nose, are recognizable.

This shows that the proposed stabilized method is able to approximate the problem for an

initial condition with many fine-scale features which are difficult to capture without gener-

ating numerical artifacts. We think that the quality of a numerical solution will improve as

more adaptive data nodes are employed to achieve higher resolution.

6 Conclusion

In the present article we introduced an FCT stabilized Radial Basis Function (RBF)-Finite

Difference (FD) scheme for the numerical solution of partial differential equations (PDEs)

of reaction-diffusion type with dominating convection terms. The proposed methodology

is fully multidimensional and applicable to arbitrary placements of scattered data nodes.

The scheme resolves steep gradients of the numerical solution without excessive smearing

and satisfies the discrete maximum principle.

The proposed method has a general-purpose nature: it can be applied not only to con-

vective terms of the form v ·∇u, but also to more general convection-, resp. advection-like,

operators, see, e.g. numerical simulation of chemotaxis equations, tumor-growth mod-

els, pattern formation in biology, etc. [28, 29]. We also showed that by using the level

set methodology, one can extend the proposed method to surface-PDEs. Thus, offering a

promising alternative to the currently existing stabilization methods, such as upwind-like
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methods, methods which use more nodes in regions of steep gradients and methods where

some amount of hyperviscosity is added into the system.

Our numerical results confirm the reliability of the proposed computational framework

in terms of numerical convergence and capturing of typical/expected solution profiles. We

have thus developed an FCT stabilized RBF-FD approach that can be employed for practi-

cal applications that involve PDEs in domains and on stationary surfaces.

The framework has a straightforward extension to three dimensional models which is

mandatory when considering real-life applications, though some computational and code

optimization are required, since the computational and analytical complexity significantly

increases in the three dimensional case.
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