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DOUBLY-ADAPTIVE ARTIFICIAL COMPRESSION METHODS FOR

INCOMPRESSIBLE FLOW

WILLIAM LAYTON ∗ AND MICHAEL MCLAUGHLIN †

Abstract. This report presents adaptive artificial compression methods in which the time-step
and artificial compression parameter ε are independently adapted. The resulting algorithms are
supported by analysis and numerical tests. The first and second-order methods are embedded. As
a result, the computational, cognitive and space complexities of the adaptive ε, k algorithms are
negligibly greater than that of the simplest, first-order, constant ε, constant k artificial compression
method.

1. Introduction. Artificial compression (AC) methods are based on replacing
∇ · u = 0 by εpt + ∇ · u = 0 (0 < ε small), uncoupling velocity and pressure and ad-
vancing the pressure explicitly in time. Their high speed and low storage requirements
recommend them for complexity bound fluid flow simulations. Unfortunately, time-
accurate artificial compression approximations have proven elusive. Time accuracy
(along with increased efficiency and decreased memory) is obtained by time-adaptive
algorithms. To our knowledge, the defect correction based scheme of Guermond and
Minev [17] and the non-autonomous AC method in [6], both adapting the time-step
with ε = k (time-step), are the only previous implicit, time-adaptive AC methods.

This report presents time-adaptive AC algorithms based on a new approach of
independently adapting the AC parameter ε and time-step k. The methods proceed
as follows. A standard, first-order, implicit method, (1st Order) below, is used to
advance the momentum equation in the artificial compression equations. A second-
order velocity approximation, (2nd Order) below, is then computed at negligible cost
using a time filter adapted from [19]. The difference between the first-order and
second-order approximations gives a reliable estimator, EST(1), for the local error in
the momentum equation for the first-order method and is used to adapt the time step
in Algorithm 4.1, Section 4.

Adapting the AC parameter ε is more challenging. Stability of the standard AC
discrete continuity equation (εpt + ∇ · u = 0) is unknown for variable ε, [6]. We
present two new, variable ε, discrete continuity equations in (1.4) below and prove
their unconditional, long-time stability in Theorems 2.1, 2.2 and 3.2. These results
show that adaptivity will respond to accuracy constraints rather than try to correct
stability problems with small time-steps. In these continuity equations, the size of
||∇ · u|| is monitored and used to adapt the choice of the AC parameter ε (e.g.,
Algorithm 3.1, Section 3) whereupon the calculation proceeds to the next time step.
The self-adaptive strategy for independently adapting ε also side steps the practical
problem of how to pick ε in AC methods and related penalty methods, even for
constant time-steps. The new discrete continuity equations reduce to the standard
εpt + ∇ · u = 0 for constant ε, improve, through greater simplicity, a non-autonomous
(ε = ε(t)) AC formulation in [6] and yield now three proven stable extensions of the
discrete AC continuity equation to variable ε. A comparison of the three is presented
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in Section 5. Determining if one or some combination of the three1 or some other, yet
undetermined, possibility is to be preferred is an important open problem.

The second-order method. To obtain an O(k2) approximation of the momen-
tum equation (with embedded error estimator), Algorithms 4.1 and 4.2 incorporate a
recent idea of [19] of increasing accuracy and estimating errors by time filters. Theo-
rem 3.2 of Section 3.1 gives a proof of unconditional, long-time stability of the second
order, constant time-step but variable ε method. The resulting embedded structure
of Algorithms 4.1 and 4.2 suggests low-complexity, variable-order methods may be
possible once an adaptive ε strategy is well developed.

The second-order method is a one leg method. Reliable estimators of the local
truncation error (LTE) in one leg methods are expensive as detailed in [10]. An
inexpensive estimator, EST(2) in Algorithm 4.2, of the LTE in the method’s linear
multistep twin, based on a second time filter, is presented. For the one leg method, this
estimator is inexpensive but heuristic. The doubly adapted, second-order method in
Algorithm 4.2 is tested in Section 5. The embedded structure of the first and second-
order method suggests that adapting the method order in addition to the time-step
and AC parameter ε may increase accuracy and efficiency further.

Three stable treatments of the momentum equation (first, second and even vari-
able order) are possible. Three stable treatments of the variable ε continuity are now
possible: two in (1.1) below and one in [6]. The result is nine adaptive AC meth-
ods with computational complexity comparable to the common first-order method,
described next.

1.1. Review of a Common Artificial Compression Method. Denote by u
the velocity, p the pressure, ν the kinematic viscosity, and f the external force. Con-
sider the slightly compressible/hyposonic2, [38], approximation to the incompressible
Navier-Stokes equations in a domain Ω in R

d, d = 2, 3

{

ut + u · ∇u + 1
2 (∇ · u)u + ∇p − ν∆u = f

εpt + ∇ · u = 0, where 0 < ε is small.
(1.1)

This is the most common of several possible formulations reviewed in Section 1.1 of
[6]. To present methods herein we will consistently suppress the secondary spacial
discretization3. Let u∗ denote the standard (second order) linear extrapolation of u
from previous values4 to tn+1

u∗ =

(

1 +
kn+1

kn

)

un − kn+1

kn
un−1 (= 2un − un−1 for constant time-step) .

To fix ideas, among many possible, e.g., [14], [15], [16], [22], [24], [27], [9], [26], [37],
consider a common, constant time-step, semi-implicit time discretization of (1.1):

un+1 − un

k
+ u∗ · ∇un+1 +

1

2
(∇ · u∗)un+1 + ∇pn+1 − ν∆un+1 = f(tn+1), (1.2)

ε
pn+1 − pn

k
+ ∇ · un+1 = 0.

1The stability proof extends to weighted averages of the three discrete continuity equations.
2We do not include a traditional superscript "ε" as we shall focus only on AC models and methods.
3All stability results proven herein hold, by the same proof, for standard variational spatial

discretizations such as finite element methods with div-stable elements.
4Temperton and Staniforth [33] advocated even higher order extrapolation.
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Here k is the time-step, tn = nk, un, pn are approximations to the velocity and
pressure at t = tn. This has consistency error O(k + ε) leading to the most common
choice of selecting ε = k to balance errors. Since ∇pn+1 = ∇pn − (k/ε)∇∇ · un+1,
this uncouples into a velocity solve followed by an algebraic pressure update

un+1 − un

k
+ u∗ · ∇un+1 +

1

2
(∇ · u∗)un+1 − k

ε
∇∇ · un+1

−ν∆un+1 = −∇pn + fn+1,

then given un+1: pn+1 = pn − k

ε
∇ · un+1. (1.3)

For constant ε, k, this method is unconditionally, nonlinearly, long-time stable, e.g.,
[14], [15], [31], [30]. Its long-time stability for variable ε, k is an open problem, [6].

1.2. New Methods for Variable ε, k. Although well motivated, the choice
ε = k cannot be more than a step to a correct choice. First observe that Units(ε) =
T ime2/Length3 while Units(k) = T ime. Thus, a correct choice of ε should be
scaled to be dimensionally consistent and afterwards the constant multiplier opti-
mized. Aside from dimensional inconsistency, the standard choice ε = k ignores the
different roles of ε and k. To leading orders, the consistency error in the continuity
equation is O(ε), independent of k, and the consistency error in the momentum equa-
tion is O(k), independent of ε. This observation on the standard method (1.2), (1.3)
motivates the development plan for the doubly adaptive algorithms herein:

• Develop first (Section 2) and second (Section 3) order methods stable for
variable k, ε.

• Adapt εn to control the consistency error in the continuity equation by mon-
itoring ||∇ · u||, Sections 3, 4.

• Develop inexpensive estimators for momentum equation consistency error and
adapt k = kn for its control, Section 4.

• Use (Section 4) and test (Section 5) the estimators in a doubly adaptive,
variable ε, k, algorithm.

In adaptive methods, strong stability is necessary, so εn, kn can be adapted for
time-accuracy rather than to correct instabilities. One key difficulty, resolved by the
two methods (1.4) below, is that useful stability is unknown for the common AC
method (1.2) with variable ε, see [6], and even for the continuum model (1.1) with
ε = ε(t). A second key difficulty is that (unconditional, nonlinear) G-stability for
variable time-steps is uncommon5. (For example, the popular BDF2 method loses
A−stability for increasing time-steps.)

The continuity equation is treated by either a geometric average (GA-Method)
or a minimum term (min-Method) as follows. Given un, pn, εn, select εn+1, kn+1

calculate un+1 then6

GA-Method:
εn+1pn+1−√

εn+1εnpn

kn+1
+ ∇ · un+1 = 0, or

min-Method: εn+1pn+1−min{εn+1,εn}pn

kn+1
+ ∇ · un+1 = 0.

(1.4)

5To our knowledge, the only such two-step method is the little explored one of Dahlquist, Liniger,
and Nevanlinna [7]. This second issue may be resolvable by a variable (first and second) order
implementation since it would include the A-stable, fully implicit method.

6A convex combination of the two continuity equations discretizations is also stable.
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These methods are proven in Section 2 to be unconditionally, variable ε, k stable.
For the discrete momentum equation, recall u∗ is an extrapolated approximation to
u(tn+1). The first-order method’s momentum equation is the standard one (1.2) above
given by

un+1 − un

kn+1
+ u∗ · ∇un+1 +

1

2
(∇ · u∗)un+1 + ∇pn+1 − ν∆un+1 = fn+1. (1st Order)

The (linearly implicit) treatment of the nonlinear term is inspired by Baker [4]. The
second method, adapted from [19], adds a time filter to obtain O(k2) accuracy and au-
tomatic error estimation as follows. Let the time-step ratio be denoted τ = kn+1/kn.
Call u1

n+1 the solution obtained from the first-order method (1st Order) above. The
second-order approximation un+1 is obtained by filtering u1

n+1:

u1
n+1 − un

kn+1
+ u∗ · ∇u1

n+1 +
1

2
(∇ · u∗)u1

n+1 + ∇pn+1 − ν∆u1
n+1 = fn+1,

For τ =
kn+1

kn
let α1 =

τ (1 + τ )

(1 + 2τ )
, then :

un+1 = u1
n+1 − α1

2

{

2kn

kn + kn+1
u1

n+1 − 2un +
2kn+1

kn + kn+1
un−1

}

.

(2nd Order)

Denote by D2(n + 1) the quantity above in braces

D2(n + 1) :=
2kn

kn + kn+1
u1

n+1 − 2un +
2kn+1

kn + kn+1
un−1.

Note that D2(n + 1) is 2knkn+1×(a second divided difference).

The usual L2 norm || · || and inner product (·, ·) are denoted

||v|| =

(
∫

Ω

|v(x)|2dx

)1/2

and (v, w) =

∫

Ω

v(x) · w(x)dx.

A simple estimate of the local error in the first-order approximation u1
n+1 is given by

a measure (here the L2 norm) of the difference of the two approximations

EST (1) = ||un+1 − u1
n+1|| =

α1

2
||D2(n + 1)||.

Estimating the error in the second-order approximation. Naturally one
would like to use the second-order approximation for more than an estimator. It
is possible to use EST (1) above as a pessimistic estimator for un+1. In Section 3
we show that, eliminating the intermediate step u1

n+1, the second-order method is
equivalent to the second-order, one leg method (3.4) below. Estimation of the LTE
for this OLM cannot be done by a simple time filter for reasons delineated in [10] and
based on classical analysis of the LTE in OLMs of Dahlquist. We test an inexpensive
but heuristic estimator that can be calculated by a second time filter. EST (2) below
is an LTE estimator for the OLMs linear multi-step twin. To estimate the local error
in the second order approximation we use the third divided difference with multiplier
chosen (by a lengthy but elementary Taylor series calculation) to cancel the first term
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of the LTE of the methods linear multi-step twin

EST (2) =
α2

6

∥

∥

∥

∥

3kn−1

kn+1 + kn + kn−1
D2(n + 1) − 3kn−1

kn+1 + kn + kn−1
D2(n)

∥

∥

∥

∥

where

α2 =
τn(τn+1τn + τn + 1)(4τ3

n+1 + 5τ2
n+1 + τn+1)

3(τnτ2
n+1 + 4τnτn+1 + 2τn+1 + τn + 1)

, and τn = kn/kn−1.

The resulting adaptive algorithm uncouples like (1.3) into a velocity update with a
grad-div term then an algebraic pressure update. More reliable but more expensive
estimators are possible. The above inexpensive but heuristic one is tested herein
because the motivation for AC methods is often based on the need for faster and
reduced memory algorithms in specific applications.

Section 2 presents the analysis of the two first-order methods, proving long-time,
unconditional stability for variable ε, k. This analysis develops the key treatment of
the discrete continuity equation necessary for stability. Section 3.1 gives a proof of
unconditional, long time stability for the variable ε, constant k second order method.
This proof can be extended to decreasing time-steps but not increasing time-steps.

1.3. Related work. Artificial compression (AC) methods were introduced in
the 1960’s by Chorin, Oskolkov and Temam. Their mathematical foundation has
been extensively developed by Shen [29], [30], [31], [32] and Prohl [27]. Recent work
includes [24], [9], [15], [16], [22], [26] and [37]. The GA-method (geometric averaging
method) herein is motivated by work in [5] for uncoupling atmosphere-ocean problems
stably.

There has been extensive development of adaptive methods for assured accuracy
in fully coupled, v − p discretizations, e.g., [21], and adaptive methods based on
estimates of local truncation errors including [20], [23], [34]. In complement, the
work herein aims at methods that use less expensive local (rather than global) error
estimators, do not provide assured time-accuracy but emphasize (consistent with the
artificial compression methods) low cognitive, computational, and space complexity.
Aside from [6] and Guermond and Minev [17], extension of implicit, time-adaptive
methods to artificial compression discretizations is undeveloped.

Herein accuracy is increased and local errors estimated by time filters. Other
approaches are clearly possible. Time filters are an important tool in GFD to correct
weak instabilities and extend forecast horizons, [3], [25], [28], [35], [36]. In [19], it
was noticed that a time filter can also increase the convergence rate of the backward
Euler method and estimate errors. G-stability of the resulting (constant time-step)
time discretization was recently proven for the fully-coupled, velocity-pressure Navier-
Stokes equations in [11].

2. First-Order, Variable k, ε Methods. This section establishes uncondi-
tional, long-time, nonlinear stability of the two variable k, ε first-order methods of
Section 1.2 in the usual L2(Ω) norm, denoted || · || with associated inner product (·, ·).
The methods differ in the treatment of the discrete continuity equation and reduce
to the standard AC method (1.2) for constant ε, k. We prove that the first order
implicit discretization of the momentum equation with both new methods (2.1), (2.2)
are unconditionally, nonlinearly, long-time stable without assumptions on εn, kn. We
study these new methods in a bounded, regular domain Ω subject to the initial and
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boundary conditions

u0 = u0(x) and p0 = p0(x), in Ω,

un = 0 on ∂Ω for t > 0.

The two, first-order methods are: Given un, pn, εn, select εn+1, kn+1 and

un+1 − un

kn+1
+ u∗ · ∇un+1 +

1

2
(∇ · u∗)un+1 + ∇pn+1 − ν∆un+1 = fn+1,

εn+1pn+1 − ε̂pn

kn+1
+ ∇ · un+1 = 0, where

ε̂ = min{εn+1, εn} for the min-Method and (2.1)

ε̂ =
√

εn+1, εn for the GA-Method (2.2)

For constant ε both methods reduce to the standard method (1.2), (1.3) for which
stability is known. Thus, the interest is stability for variable ε.

Stability of the min-Method. It is useful to recall that

(εn+1 − εn)
+

= max{0, εn+1 − εn} = εn+1 − min{0, εn+1 − εn}.

Theorem 2.1 (Stability of the min Method). The variable ε, k min-Method is
unconditionally, long-time stable. For any N > 0 the energy equality holds:

1

2

∫

Ω

|uN |2 + εN |pN |2dx+

N−1
∑

n=0

1

2

∫

Ω

min{εn+1, εn}(pn+1 − pn)2 + (εn+1 − εn)
+

pn+1
2

+ (εn − εn+1)
+

pn
2dx +

N−1
∑

n=0

∫

Ω

1

2
|un+1 − un|2 + kn+1ν|∇un+1|2dx

=
1

2

∫

Ω

|u0|2 + ε0p0
2dx +

N−1
∑

n=0

kn+1

∫

Ω

un+1 · fn+1dx.

Consequently, the stability bound holds:

1

2

∫

Ω

|uN |2 + εN pN
2dx+

N−1
∑

n=0

1

2

∫

Ω

min{εn+1, εn}(pn+1 − pn)2dx + (εn+1 − εn)
+

p2
n+1

+ (εn − εn+1)
+

pn
2dx +

N−1
∑

n=0

1

2

∫

Ω

|un+1 − un|2 + kn+1ν|∇un+1|2dx

≤ 1

2

∫

Ω

|u0|2 + ε0p0
2dx +

N−1
∑

n=0

kn+1
1

2ν
||fn+1||2−1.
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Proof. First we note that using the polarization identity, algebraic rearrangement
and considering the cases εn+1 > εn and εn+1 < εn we have

(εn+1pn+1 − min{εn+1, εn}pn, pn+1)

= εn+1||pn+1||2 − min{εn+1, εn}(pn, pn+1)

= εn+1||pn+1||2 − min{εn+1, εn}
{

1

2
||pn||2 +

1

2
||pn+1||2 − 1

2
||pn − pn+1||2

}

=

(

εn+1 − 1

2
min{εn+1, εn}

)

||pn+1||2

−1

2
min{εn+1, εn}||pn||2 +

1

2
min{εn+1, εn}||pn − pn+1||2

=
1

2
εn+1||pn+1||2 − 1

2
εn||pn||2 +

1

2
min{εn+1, εn}||pn − pn+1||2+

+
1

2
(εn+1 − min{εn+1, εn}) ||pn+1||2 +

1

2
(εn − min{εn+1, εn}) ||pn||2.

We have εn+1 − min{εn+1, εn} = (εn+1 − εn)
+

and εn − min{εn+1, εn} =
(εn − εn+1)+ . Thus,

(εn+1pn+1 − min{εn+1, εn}pn, pn+1) = (2.3)

=
1

2
εn+1||pn+1||2 − 1

2
εn||pn||2 +

1

2
min{εn+1, εn}||pn − pn+1||2+

+
1

2
(εn+1 − εn)

+ ||pn+1||2 +
1

2
(εn − εn+1)

+ ||pn||2.

With this identity, take the inner product of the first equation with kn+1un+1, the
second with kn+1pn+1, integrate over the flow domain, integrate by parts, use skew
symmetry, use the polarization identity twice and add. This yields

1

2

∫

Ω

|un+1|2 − |un|2 + |un+1 − un|2dx +

∫

Ω

kn+1ν|∇un+1|2dx

1

2

∫

Ω

(εn+1pn+1 − min{εn+1, εn}pn)pn+1dx = kn+1

∫

Ω

un+1 · fn+1dx.

From (2.3) the energy equality becomes

1

2

∫

Ω

|un+1|2 + εn+1|pn+1|2dx − 1

2

∫

Ω

|un|2 + εnpn
2dx

+

∫

Ω

kn+1ν|∇un+1|2dx +
1

2

∫

Ω

(un+1 − un)2 + min{εn+1, εn}(pn − pn+1)2

+ (εn+1 − εn)+ pn+1
2 + (εn − εn+1)+ pn

2dx = kn+1

∫

Ω

un+1 · fn+1dx.

Upon summation the first two terms telescope, completing the proof of the energy
equality. The stability estimate follows from the energy equality and the Cauchy-
Schwarz-Young inequality.

The stability analysis shows that the numerical dissipation in the min-Method is

Numerical
Dissipation

=
1

2
k2

n+1

∫

Ω

|un+1 − un

kn+1
|2 + min{εn+1, εn}(

pn+1 − pn

kn+1
)2 +

+

(

εn+1 − εn

kn+1

)+

p2
n+1 +

(

εn − εn+1

kn+1

)+

pn
2dx.
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The GA-Method. The proof of stability of the GA-method differs from the last
proof only in the treatment of the variable ε term, resulting is a different numerical
dissipation for the method.

Theorem 2.2 (Stability of GA-Method). The variable ε, k, first-order GA-
Method is unconditionally, long-time stable. For any N > 0 the energy equality holds:

1

2

∫

Ω

|uN |2 + εN |pN |2dx+

+

N−1
∑

n=0

1

2

∫

Ω

|un+1 − un|2 + (
√

εn+1pn+1 − √
εnpn)2 + 2kn+1ν|∇un+1|2dx

=
1

2

∫

Ω

|u0|2 + ε0|p0|2dx +

N−1
∑

n=0

kn+1

∫

Ω

un+1 · fn+1dx

and the stability bound holds:

1

2

∫

Ω

|uN |2 + εN |pN |2dx+

+

N−1
∑

n=0

[

1

2

∫

Ω

|un+1 − un|2 + (
√

εn+1pn+1 − √
εnpn)2 + kn+1ν|∇un+1|2dx

]

≤ 1

2

∫

Ω

|u0|2 + ε0|p0|2dx +

N−1
∑

n=0

kn+1
1

2ν
||fn+1||2−1.

Proof. First we note that using the polarization identity we have

(εn+1pn+1 − √
εn+1εnpn, pn+1) =

= εn+1||pn+1||2 − (
√

εnpn,
√

εn+1pn+1)

= εn+1||pn+1||2 −
{

1

2
εn||pn||2 +

1

2
εn+1||pn+1||2 − 1

2
||√εnpn − √

εn+1pn+1||2
}

=
1

2
εn+1||pn+1||2 − 1

2
εn||pn||2 +

1

2
||√εn+1pn+1 − √

εnpn||2.

The remainder of the proof is the same as for the min-Method.
The stability analysis shows that the numerical dissipation in the GA-Method is

Numerical
Dissipation

=
1

2
k2

n+1

∫

Ω

[

∣

∣

∣

∣

un+1 − un

kn+1

∣

∣

∣

∣

2

+

(√
εn+1pn+1 − √

εnpn

kn+1

)2
]

dx.

There is no obvious way to tell á priori which method’s numerical dissipation is larger
or to be preferred. A numerical comparison is thus presented in Section 5.

Remark 2.3. The continuum analogs. It is natural to ask if there is a
non-autonomous continuum AC model associated with each method. The momentum
equation for each continuum model is the standard

ut + u · ∇u +
1

2
(∇ · u)u + ∇p − ν∆u = f.

The associated continuum continuity equation for the min-Method is

ε(t)pt + ε+
t p + ∇ · u = 0, (2.4)

8



whereas the continuum continuity equation for the GA-method is

√
ε(

√
εp)t + ∇ · u = 0.

Analyzing convergence of each to a weak solution of the incompressible NSE as (non-
autonomous) ε(t) → 0 is a significant open problem.

3. Second-Order, Variable ε Methods. The first-order methods are now
extended to embedded first and second-order methods adapting [19] from ODEs to
the NSE. First we review the idea of extension used.

Review of the ODE algorithm. Consider the initial value problem

y′(t) = f(t, y(t)), y(0) = y0.

Recall τ = kn+1/kn is the time-step ratio. The second-order accurate, variable time-
step method of [19] is the standard backward Euler (fully implicit) method followed
by a time filter:

Step 1
y1

n+1−yn

kn+1
= f(tn+1, y1

n+1),

pick filter parameter α(1) = τ(1+τ)
(1+2τ) , then

Step 2 yn+1 = y1
n+1 − α1

2

{

2kn

kn+kn+1
y1

n+1 − 2yn + 2kn+1

kn+kn+1
yn−1

}

.

(3.1)

The combination is second-order accurate, A−stable for constant or decreasing time-
steps and a measure of the pre- and post-filter difference

EST (1) = |y1
n+1 − yn+1| (3.2)

can be used in a standard way as a local error estimator for the lower order approxi-
mation y1

n+1 or a (pessimistic) estimator for the higher order approximation yn+1.
A simple, adaptive−ε, second-order AC algorithm. The continuity equa-

tion for both methods can be written

εn+1pn+1 − ε̂pn

kn+1
+ ∇ · un+1 = 0 where ε̂ =

√
εn+1εn or min{εn+1, εn}.

This can be used to uncouple velocity and pressure using

∇pn+1 =
ε̂

εn+1
∇pn − kn+1

εn+1
∇∇ · un+1.

The discrete momentum equation for either first-order method is then

u1
n+1 − un

kn+1
+ u∗ · ∇u1

n+1 +
1

2
(∇ · u∗)u1

n+1 − kn+1

εn+1
∇∇ · u1

n+1

−ν∆u1
n+1 = fn+1 − ε̂

εn+1
∇pn.

Applying the time filter of (3.1) to the velocity approximation increases the methods
accuracy to O(k2). This combination yields a simple, second-order, constant time-
step but adaptive ε algorithm. In the algorithm below the change in ε is restricted to
be between halving and doubling the previous ε value.

Algorithm 3.1. [Simple, adaptive ε, constant time-step, second-order
AC method]. Given un, un−1, pn, k, εn+1, εn, and tolerance T OLc,

9



Select: ε̂ =
√

εn+1εn or ε̂ = min{εn+1, εn}
Set: u∗ = 2un − un−1.

Solve for u1
n+1

u1
n+1 − un

k
+ u∗ · ∇u1

n+1 +
1

2
(∇ · u∗)u1

n+1 − k

εn+1
∇∇ · u1

n+1

−ν∆u1
n+1 = fn+1 − ε̂

εn+1
∇pn.

Filter, Compute estimator ESTc , Find pn+1

un+1 = u1
n+1 − 1

3

{

u1
n+1 − 2un + un−1

}

,

ESTc = ||∇ · un+1|| =
1

3

∥

∥u1
n+1 − 2un + un−1

∥

∥ ,

pn+1 =
ε̂

εn+1
pn − kn+1

εn+1
∇ · un+1.

Adapt ε : IF ESTc > T OLc , THEN repeat step after resetting εn+1 by

εn+1 = max{0.9εn+1
T OLc

ESTc
, 0.5εn+1}

ELSE

εn+2 = max{min{0.9εn+1
T OLc

ESTc
, 2εn+1}, .5εn+1}

and proceed to next step.

3.1. Stability of the second-order method for variable ε, constant k.

This section establishes unconditional, nonlinear, long-time stability of the second-
order GA-method for constant time-steps but variable ε. The proof addresses the
interaction between the filter step with the continuity equation. It is adapted to the
min-Method following ideas in the proof of Theorem 2.1. For constant time-steps
and variable ε the GA-method is as follows. Given un, pn, εn, select εn+1 and u∗ =
2un − un−1 (since the time-step is here constant). Then,

u1
n+1 − un

k
+ u∗ · ∇u1

n+1 +
1

2
(∇ · u∗)u1

n+1 + ∇pn+1 − ν∆u1
n+1 = fn+1,

Filter: un+1 = u1
n+1 − 1

3

{

u1
n+1 − 2un + un−1

}

(3.3)

Find pn+1 :
εn+1pn+1 − √

εn+1εnpn

k
+ ∇ · u1

n+1 = 0 & proceed to next step.

10



We now prove an energy equality for the method which implies stability.
Theorem 3.2. The method (3.3) satisfies the following discrete energy equality

(from which stability follows). For any N > 1
[

1

4

∫

Ω

|uN+1|2 + |2uN+1 − uN |2 + |uN+1 − uN |2 + 2εN+1|pN+1|2dx

]

+

N
∑

n=1

∫

Ω

3

4
|un+1 − 2un + un−1|2 +

1

2
|√εn+1pn+1 − √

εnpn|2dx+

+

N
∑

n=1

k

∫

Ω

ν|∇
[

3

2
un+1 − un +

1

2
un−1

]

|2dx+

=

[

1

4

∫

Ω

|u1|2 + |2u1 − u0|2 + |u1 − u0|2 + 2ε1|p1|2
]

+k

N
∑

n=1

∫

Ω

fn+1 ·
(

3

2
un+1 − un +

1

2
un−1

)

dx.

Proof. To prove stability, eliminate the intermediate value u1
n+1 in the momentum

equation. From the filter step un+1 = u1
n+1 − 1

3

{

u1
n+1 − 2un + un−1

}

we have

u1
n+1 =

3

2
un+1 − un +

1

2
un−1.

Replacing u1
n+1 by 3

2 un+1 − un + 1
2 un−1 yields the equivalent discrete momentum

equation:

3
2 un+1 − 2un + 1

2 un−1

k
+

+u∗
n · ∇

(

3

2
un+1 − un +

1

2
un−1

)

+
1

2
(∇ · u∗

n)

(

3

2
un+1 − un +

1

2
un−1

)

(3.4)

+∇pn+1 − ν∆

(

3

2
un+1 − un +

1

2
un−1

)

= fn+1.

Multiply by the time-step k, take the L2 inner product of the momentum equation
(3.4) with 3

2 un+1−un+ 1
2 un−1, the L2 inner product of the discrete continuity equation

with pn+1 and add. Two pressure terms cancel since u1
n+1 = 3

2 un+1 − un + 1
2 un−1and

the nonlinear terms vanish due to skew-symmetry. Thus, we obtain
(

3

2
un+1 − 2un +

1

2
un−1,

3

2
un+1 − un +

1

2
un−1

)

+

+
(

εn+1pn+1 − √
εn+1εnpn, pn+1

)

+νk

∥

∥

∥

∥

∇
[

3

2
un+1 − un +

1

2
un−1

]∥

∥

∥

∥

2

= k

(

fn+1,
3

2
un+1 − un +

1

2
un−1

)

The key terms are the first two. For the first term, apply the following identity from
[11] with a = un+1, b = un, c = un−1

[

a2

4
+

(2a − b)2

4
+

(a − b)2

4

]

−
[

b2

4
+

(2b − c)2

4
+

(b − c)2

4

]

+
3

4
(a − 2b + c)2 = (

3

2
a − 2b +

1

2
c)(

3

2
a − b +

1

2
c).

11



This yields
(

3

2
un+1 − 2un +

1

2
un−1,

3

2
un+1 − un +

1

2
un−1

)

=

[

1

4
||un+1||2 +

1

4
||2un+1 − un||2 +

1

4
||un+1 − un||2

]

−
[

1

4
||un||2 +

1

4
||2un − un−1||2 +

1

4
||un − un−1||2

]

+
3

4
||un+1 − 2un + un−1||2.

For the pressure term
(√

εn+1εnpn, pn+1

)

the polarization identity, suitably applied,
yields

(√
εn+1εnpn, pn+1

)

=
(√

εnpn,
√

εn+1pn+1

)

=

=
1

2
εn+1||pn+1||2 +

1

2
εn||pn||2 − 1

2
||√εn+1pn+1 − √

εnpn||2.

Thus
(

εn+1pn+1 − √
εn+1εnpn, pn+1

)

=

=
1

2
εn+1||pn+1||2 − 1

2
εn||pn||2 +

1

2
||√εn+1pn+1 − √

εnpn||2.

Combining the pressure and velocity identities, we have
[

1

4
||un+1||2 +

1

4
||2un+1 − un||2 +

1

4
||un+1 − un||2 +

εn+1

2
||pn+1||2

]

−
[

1

4
||un||2 +

1

4
||2un − un−1||2 +

1

4
||un − un−1||2 +

εn

2
||pn||2

]

+

+
3

4
||un+1 − 2un + un−1||2 +

1

2
||√εn+1pn+1 − √

εnpn||2

+νk

∥

∥

∥

∥

∇
[

3

2
un+1 − un +

1

2
un−1

]∥

∥

∥

∥

2

= k

(

fn+1,
3

2
un+1 − un +

1

2
un−1

)

.

Summing from n = 1 to N proves unconditional, long-time stability.

4. Doubly k, ε Adaptive Algorithms. We present three doubly adaptive AC
algorithms: first-order, second-order method and a third that adapts the method order.
The first two are tested in Section 5. While not tested herein, we include the variable
order adaptive algorithm for its clear interest. In the first algorithm, the error is
estimated by a time filter and the next time-step and next ε are adapted7 based on

first-order prediction: knew = kold

(

T OLm

EST (1)

)1/2

and εnew = εold
T OLc

||∇ · un+1|| .

In our implementation, a safety factor of 0.9 is used and the maximum change in both
is (additionally) restricted to be between 0.5 & 2.0.

Algorithm 4.1 (Doubly k, ε Adaptive, First-Order Method). Given T OLm,

T OLc, un, un−1, un−2 and kn+1, kn, kn−1

7The formula for εnew could be improvable.
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Compute: τ = kn+1

kn

and α1 = τ(1.0+τ)
1.0+2.0τ

Select: ε̂ =
√

εn+1εn or ε̂ = min{εn+1, εn}.
Set u∗ = (1 + τ ) un − τun−1.
Find BE approximation un+1

un+1 − un

kn+1
+u∗ ·∇un+1+

1

2
(∇·u∗)un+1− kn+1

εn+1
∇∇·un+1−ν∆un+1 = fn+1− ε̂

εn+1
∇pn.

Compute difference D2 and Estimators

D2 =
2kn

kn + kn+1
u1

n+1 − 2un +
2kn+1

kn + kn+1
un−1

EST (1) =
α1

2
||D2||,

EST c = ||∇ · un+1||.

IF ESTc > T OLc or EST (1) > T OLm THEN repeat step after resetting

εn+1, kn+1 by

εn+1 = max{0.9εn+1
T OLc

ESTc
, 0.5εn+1}

kn+1 = 0.9 ∗
(

T OLm

EST (1)

)1/2

max

{

0.9kn

(

T OLm

EST (1)

)1/2

, 0.5kn+1

}

ELSE Predict best next step for each approximation:

kn+2 = max

{

min

{

0.9kn+1

(

T OLm

EST (1)

)1/2

, 2kn+1

}

, 0.5kn+1

}

εn+2 = max{min{0.9εn+1
T OLc

ESTc
, 2εn+1}, 0.5εn+1}

ENDIF

Update pressure: pn+1 = ε̂
εn+1

pn − kn+1

εn+1
∇ · un+1.

Proceed to next step.

The second-order, doubly adaptive algorithm. For the second-order, dou-
bly adaptive method, we predict the next ε value the same as in the first-order method
and predict the next time step based on

second-order prediction: knew = kold

(

T OLm

EST (2)

)1/3

.

EST (2) is calculated as follows. The second-order method is equivalent, after elim-
ination of the intermediate (first-order) approximation, to a one leg method exactly
as in (3.3) in the constant time-step case. The one leg method’s linear multistep twin
has local error proportionate to k3uttt + O(k4). Thus, an estimate of uttt is computed
using difference of D2 as follows. Write

D2(n + 1) =
2kn

kn + kn+1
u1

n+1 − 2un +
2kn+1

kn + kn+1
un−1

13



From differences of D2(n + 1), D2(n) we obtain the estimator:

EST (2) =
α2

6

∥

∥

∥

∥

3kn−1

kn+1 + kn + kn−1
D2(n + 1) − 3kn−1

kn+1 + kn + kn−1
D2(n)

∥

∥

∥

∥

,

where the coefficient α2 is determined through a Taylor series calculation to be

α2 =
τn(τn+1τn + τn + 1)(4τ3

n+1 + 5τ2
n+1 + τn+1)

3(τnτ2
n+1 + 4τnτn+1 + 2τn+1 + τn + 1)

Algorithm 4.2 (Doubly Adaptive, Second-Order Algorithm). Given T OLm,

T OLc, un, un−1, un−2, previous 2nd difference D2(n) and kn+1, kn, kn−1

Compute: τ = kn+1

kn

, α1 = τ(1.0+τ)
1.0+2.0τ , α2 =

τn(τn+1τn+τn+1)(4τ3
n+1+5τ2

n+1+τn+1)

3(τnτ2
n+1

+4τnτn+1+2τn+1+τn+1)

Select: ε̂ =
√

εn+1εn or ε̂ = min{εn+1, εn}.
Set: u∗ = (1 + τ ) un − τun−1.
Find BE approximation u1

n+1

u1
n+1 − un

kn+1
+u∗ ·∇u1

n+1+
1

2
(∇·u∗)u1

n+1− kn+1

εn+1
∇∇·u1

n+1−ν∆u1
n+1 = fn+1− ε̂

εn+1
∇pn.

Compute difference D2 and update velocity

D2(n + 1) =
2kn

kn + kn+1
u1

n+1 − 2un +
2kn+1

kn + kn+1
un−1

un+1 = u1
n+1 − α1

2
D2(n + 1)

Compute estimators

EST (2) =
α2

6

∥

∥

∥

∥

3kn−1

kn+1 + kn + kn−1
D2(n + 1) − 3kn−1

kn+1 + kn + kn−1
D2(n)

∥

∥

∥

∥

,

EST c = ||∇ · un+1||.

IF ESTc > T OLc or EST (2) > T OLm THEN repeat step after resetting

εn+1, kn+1 by

εn+1 = max{0.9εn+1
T OLc

ESTc
, 0.5εn+1}

kn+1 = max

{

min

{

0.9kn+1

(

T OLm

EST (2)

)1/3

, 2kn+1

}

, 0.5kn+1

}

ELSE Predict best next step:

kn+2 = max

{

min

{

0.9kn+1

(

T OLm

EST (2)

)1/3

, 2kn+1

}

, 0.5kn+1

}

εn+2 = max{min{0.9εn+1
T OLc

ESTc
, 2εn+1}, 0.5εn+1}

Update pressure: pn+1 = ε̂
εn+1

pn − kn+1

εn+1
∇ · un+1.

Proceed to next step.
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The adaptive order, time-step and ε algorithm. To adapt ε, k and the
method order we use the local truncation error indicators for the momentum and
continuity equations, respectively,

Adapt k for u1 using : EST (1)
Adapt k for u using : EST (2)
Adapt ε for p using : ESTc := ||∇ · un+1||.

The algorithm computes two velocity approximations. The first u1 is first-order and
A−stable for all combinations of time-step and ε. The second u is second-order,
A-stable for constant (or decreasing) time-step but only 0−stable for increasing time-
steps. Variable (1 or 2) order is introduced as follows. The local error in each approx-
imation is estimated. If both are above the tolerance, the step is repeated. Otherwise,
the optimal next time-step is predicted for each method by

first-order prediction: kn+1 = kn

(

T OLm

EST (1)

)1/2

,

second-order prediction: kn+1 = kn

(

T OLm

EST (2)

)1/3

The actual kn+1 presented below and in the tests in Section 5 is restricted to be (0.5
to 2.0) × kn and includes a safety factor of 0.9.

Algorithm 4.3 (Adaptive order, k, ε). Given T OLm, T OLc, un, un−1,
un−2, previous second difference D2(n) and kn+1, kn, kn−1

Compute: τ = kn+1

kn

, α1 = τ(1.0+τ)
1.0+2.0τ , α2 =

τn(τn+1τn+τn+1)(4τ3
n+1+5τ2

n+1+τn+1)

3(τnτ2
n+1

+4τnτn+1+2τn+1+τn+1)

Select: ε̂ =
√

εn+1εn or ε̂ = min{εn+1, εn}.

Set: u∗ = (1 + τ ) un − τun−1.

Find BE approximation u1
n+1

u1
n+1 − un

kn+1
+u∗ ·∇u1

n+1+
1

2
(∇·u∗)u1

n+1− kn+1

εn+1
∇∇·u1

n+1−ν∆u1
n+1 = fn+1− ε̂

εn+1
∇pn.

Compute difference D2 and updated velocity

D2(n + 1) =
2kn

kn + kn+1
u1

n+1 − 2un +
2kn+1

kn + kn+1
un−1

un+1 = u1
n+1 − α1

2
D2(n + 1)

Compute estimators

EST (1) =
α1

2
‖D2(n + 1)‖ ,

EST (2) =
α2

6

∥

∥

∥

∥

3kn−1

kn+1 + kn + kn−1
D2(n + 1) − 3kn−1

kn+1 + kn + kn−1
D2(n)

∥

∥

∥

∥

,

EST c = ||∇ · un+1||.

IF ESTc > T OLc or min{EST (1), EST (2)} > T OLm THEN repeat step,
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resetting εn+1, kn+1 by

εn+1 = max{0.9εn+1
T OLc

ESTc
, 0.5εn+1}

ST EP BE = 0.9 ∗
(

T OLm

EST (1)

)1/2

max

{

0.9kn

(

T OLm

EST (1)

)1/2

, 0.5kn+1

}

ST EP Filter = 0.9 ∗
(

T OLm

EST (2)

)1/3

max

{

0.9kn

(

T OLm

EST (2)

)1/3

0.5kn+1

}

kn+1 = max{ST EP BE, ST EP Filter}
ELSE Predict ε, k for each approximation:

ST EP BE = max

{

min

{

0.9kn+1

(

T OLm

EST (1)

)1/2

, 2kn+1

}

, 0.5kn+1

}

ST EP Filter = max

{

min

{

0.9kn+1

(

T OLm

EST (2)

)1/3

, 2kn+1

}

, 0.5kn+1

}

εn+2 = max{min{0.9εn+1
T OLc

ESTc
, 2εn+1}, 0.5εn+1}

Select method order with larger next step:

IF (ST EP BE > ST EP Filter) Then

un+1 = u1
n+1

kn+2 = ST EP BE
ELSE kn+2 = ST EP Filter
ENDIF

Update pressure: pn+1 = ε̂
εn+1

pn − kn+1

εn+1
∇ · un+1.

Proceed to next step

The fixed order methods can, if desired, be implemented by commenting out parts
of the variable order Algorithm 4.3.

5. Three Numerical Tests. The stability and accuracy of the new methods
are interrogated in two numerical tests and the three discrete continuity equations are
compared in our third test. The tests employ the finite element method to discretize
space, with Taylor-Hood (P2/P1) elements, [18]. All the stability results proven herein
hold for this spatial discretization by essentially the same proofs. The meshes used
for both tests are generated using a Delaunay triangulation. The software package
FEniCS is used for both experiments [1].

We begin with comparative tests of the adaptive k, ε, first and second-order
method. Both adapt ε based on ||∇·u||. The first-order method accepts the first-order
approximation u1

n+1 and adapts the time-step based on EST (1). The second-order
method accepts un+1 as the approximation and adapts the time step based on EST (2).

5.1. Test 1: Flow Between Offset Circles. To interrogate stability and ac-
curacy of the GA-method, we present the results of two numerical tests. Pick

Ω = {(x, y) : x2 + y2 ≤ r2
1 and (x − c1)2 + (y − c2)2 ≥ r2

2},

r1 = 1, r2 = 0.1, c = (c1, c2) = (
1

2
, 0),

f = min{t, 1}(−4y(1 − x2 − y2), 4x(1 − x2 − y2))T , for 0 ≤ t ≤ 10.
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with no-slip boundary conditions on both circles and ν = 0.001. The finite element
discretization has a maximal mesh width of hmax = 0.0133, and the flow was solved
using the direct solver UMFPACK [8]. For this test, we use fixed tolerances T OLm =
T OLc = 0.001. The flow (inspired by the extensive work on variants of Couette flow,
[12]), driven by a counterclockwise force (with f ≡ 0 at the outer circle), rotates about
(0, 0) and interacts with the immersed circle. This induces a von Kármán vortex street
which re-interacts with the immersed circle creating more complex structures. There
is also a central (polar) vortex that alternately self-organizes then breaks down. Each
of these events includes a significant pressure response.

For both approximations we track the evolution of kn and εn, the pressure at
the origin, the violation of incompressibility, and the algorithmic energy ‖un+1

h ‖2 +
εn+1‖pn+1

h ‖2. These are all depicted in Figure 5.1 below. Figure 5.1A shows that
the second-order scheme consistently chooses larger time-steps than the first-order
method. The evolution of ε, in Figure 5.1B, behaves similarly for both methods once
the flow evolves. In testing AC methods pressure initialization often causes irregular,
transient spiky behavior near t = 0 such as in Figures 5.1A, 5.1B, 5.1D.

The behavior of the pressure at the origin, p(0, 0; t) vs. t, is depicted in Figure
5.1C. To our knowledge, there is no convergence theory for AC methods (or even
fully coupled methods) which implies maximum norm convergence for the pressure
over significant time intervals and for larger Reynolds numbers. Still, the irregular
behavior observed in approximate solutions, while not conforming to a convergence
theory, reflects vortex events across the whole domain and is interesting to compare.
The profiles of the pressure at the origin are similar for both methods over 0 ≤
t ≤ 4. For t > 4, p(0, 0; t) for the second-order scheme is less oscillatory. This
is surprising because the first-order scheme has more numerical dissipation. The
divergence evolution of the schemes also differ in the initial transient of ||∇ · u(t)||.
After the initial transient, the divergence behavior is similar. It is also possible that
the difference in ||∇ · u|| transients is due to the strategy of ε−adaptation being sub-
optimal. The model energy of both methods is largely comparable. We note that the
model energy depends on the choices of ε made. Thus model energy is not expected to
coincide exactly. Generally, Figures 5.1D–5.1E behave similarly for both algorithms.

5.2. Test 2: Convergence and Adaptivity. The second numerical test con-
cerns the accuracy and adaptivity of the GA-method. Let Ω =]0, 1[2, with ν = 1.
Consider the exact solution (obtained from [14] and applied to the Navier-Stokes
equations)

u = π sin t(sin 2πy sin2 πx, − sin 2πx sin2 πy)

p = cos t cos πx sin πy,

and consider a discretization of Ω obtained by 300 nodes on each edge of the square.
We proceed by running five experiments, adapting both the first- and second-order
schemes using the algorithms above, where the tolerance for the continuity and mo-
mentum equations is 10−(.25i+3) for i = 0, 1, 2, 3, 4. To control the size of the timesteps,
we require kn to be chosen such that EST (1) ∈ (T OLm/10, T OLm). The solutions
were obtained in parallel, utilizing the MUMPS direct solver [2]. To examine con-
vergence, we present in Figure 5.2 log-log plots of the errors of the pressure and the
velocity against the average time-step taken during the test. We also present semilog
plots of the evolution of the pressure error and timestep during the final test below.
The plots show that the time-step adaptation is working as expected and reducing
the velocity error, Figure 5.2C. Our intuition is that the pressure error is linked to
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Fig. 5.1: Stability and adaptability results.

satisfaction of incompressibility; however, Figure 5.2D indicates convergence with re-
spect to the timestep. In our calculations we did observe the following: If ||∇ · u|| is,
e.g., two orders of magnitude smaller then the tolerance, ε is rapidly increased to be
even O(1). At this point the pressure error and violation of incompressibility spike
upward and ε is then cut rapidly. This behavior suggests that a band of acceptable
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Fig. 5.2: Accuracy and adaptability results.

ε-values should be imposed in the adaptive algorithm.
To compare the GA, Min method and the scheme introduced in [6], we use the

test problem given above in this section with a known exact solution. The results are
given in Figure 5.3 below. Here, we use a mesh with the same density and final time
T = 1. A timestep kn = 10−2 is kept constant in this run to highlight differences in
the evolution of the variable εn, which has an initial value ε0 = 10−4. These tests
are preliminary: In them, the min-Method seems preferable in error behavior but
yields smaller values and thus less well-conditioned systems. In the evolution of all
four quantities, the GA- and the CLM [6] method exhibit near identical behavior.
The min-Method, however, forces ε to be an order of magnitude lower than the values
obtained by the other two schemes. This, in turn, forces the divergence to be reduced.
Furthermore, both the velocity and pressure errors for the min-Method are smaller
than those of the GA- and CLM-Methods.

6. Conclusions, open problems and future prospects. There are many
open problems and algorithmic improvements possible. The doubly adaptive algo-
rithm selected smaller values of ε than k in our tests with the same tolerance for
both. A further synthesis of the methods herein with the modular grad-div algorithm
of [13] would eliminate any conditioning issues in the linear system arising. Develop-
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Fig. 5.3: Comparison between GA, Min, and CLM methods.

ing doubly adaptive methods of order greater than two (with modular grad-div) is an
important step to greater time accuracy. We mention in particular the new embedded
family of orders 2,3,4 of [10] as a natural extension. The method of Dahlquist, Liniger
and Nevanlinna [7] is unexplored for PDEs, but has promise in CFD because it is
A-stable for both increasing and decreasing time-steps. Improved error estimators for
the second-order method herein would increase reliability. For AC methods, pressure
initialization and damping of nonphysical acoustics are important problems where
further progress would be useful.

Open problems. The idea of adapting independently k and ε is promising but
new so there are many open problems. These include:

• Is the ε-adaptation formula εnew = εold(T OL/||∇ · u||) improvable? Perhaps
the quotient should be to some fractional power. Perhaps adapting ε should
be based of a relative error in ||∇ · u||, such as ||∇ · u||/||∇u||. Analysis of the
local (in time) error in ||∇ · u|| is needed to support an improvement.

• The ε-adaptation strategy seems to need preset limits, εmin, εmax, to enforce
εmin ≤ ε ≤ εmax. The preset of εmin is needed because ∇ · u = 0 cannot
be enforced pointwise in many finite element spaces. Finding a reasonable
strategy for these presets is an open problem. Similarly, it would be useful to
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develop a coherent strategy for relating the two tolerances rather than simply
picking them to be equal (as herein).

• Proving convergence to a weak solution of the incompressible NSE of solutions
to the continuum analogs of the GA-method and min-Method for variable ε
is an important open problem. In this analysis it is generally assumed that
ε(t) → 0 in an arbitrary fashion. A more interesting problem is to link ε(t)
and ||∇ · u|| in the analysis. Similarly, an á priori error analysis for variable
ε is an open problem and may yield insights on how the variance of ε(t)
should be controlled within an adaptive algorithm. The consistency error of
the two methods are O(k + ε) and O(k2 + ε), respectively. Energy stability
has been proven herein for the first order method and for the constant time-
step, second order method. Thus, error estimation while technical, should be
achievable.

• Comprehensive testing of the variable (first or second) order method is an
open problem. VSVO methods are the most effective for systems of ODEs
but have little penetration in CFD. Testing the relative costs and accuracy
of VSVO in CFD is an important problem.
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