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Stefano Maset*

Relative error analysis of matrix exponential
approximations for numerical integration

Abstract: In this paper, we study the relative error in the numerical solution of a linear ordinary differential
equation y(t) = Ay(t), t ⩾ 0, where A is a normal matrix. The numerical solution is obtained by using at
any step an approximation of the matrix exponential, e.g., a polynomial or a rational approximation. The
error of the numerical solution with respect to the exact solution is due to this approximation as well as to
a possible perturbation in the initial value. For an unperturbed initial value, we have found: (1) unlike the
absolute error, the relative error always grows linearly in time; (2) in the long-time, the contributions to the
relative error relevant to non-rightmost eigenvalues of A disappear.

Keywords: relative error, numerical integration, approximation of the matrix exponential

1 Introduction
The paper [9] considered the Ordinary Differential Equation (ODE):

{
y (t) = Ay (t) , t ⩾ 0
y (0) = y0

(1.1)

where A ∈ ℝd×d and y (t) ∈ ℝd, and studied the propagation along the solution y of a perturbation in the
initial value y0, by considering relative errors rather than absolute errors. Whereas the propagation of the
absolute error of such a perturbation is a well-known subject (the absolute error is propagated at the time t
by thematrix exponential etA and bounds for it can be found, e.g., in [4]), the propagation of the relative error
has not been considered and [9] tried to fill this gap. It is important to consider relative errors since they are
scale-independent indicators of the quality of an approximation: unlike absolute errors, relative errors are
dimensionless.

By assuming that in (1.1) the initial value y0 ̸= 0 is perturbed to ỹ0 and then the solution y is perturbed
to ỹ, the paper [9] studied the relation between the relative error

ε =
ỹ0 − y0

2
‖y0‖2

(1.2)

of the perturbed initial value ỹ0 and the relative error

δ (t) =
ỹ (t) − y (t)

2
‖y (t)‖2

, t ⩾ 0 (1.3)

of the perturbed solution ỹ, in case of a normal matrix A.
In [9], the following theorem was stated.

Theorem 1.1. Let A be a normal matrix. Partition the spectrum

Λ = {λ1, λ2, . . . , λp}
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Fig. 1: Spectrum of A partitioned by decreasing real part.

of matrix A, where λ1, λ2, . . . , λp are the distinct eigenvalues of A, by decreasing real part in the subsets
Λ1, Λ2, . . . , Λq: we have

Λj = {λij−1+1, λij−1+2, . . . , λij }
Re (λij−1+1) = Re (λij−1+2) = ⋅ ⋅ ⋅ = Re (λij) = rj , j = 1, 2, . . . , q

with 0 = i0 < i1 < ⋅ ⋅ ⋅ < iq = p (i1, . . . , iq are the final indices ij in the sets Λj) and

r1 > r2 > ⋅ ⋅ ⋅ > rq

(see Fig. 1).
Suppose that the initial value y0 ̸= 0 of (1.1) is perturbed to ỹ0. We have

δ (t) =
√

q
∑
j=1
(e(rj−r1)t Qj ẑ02)

2

√
q
∑
j=1
(e(rj−r1)t Qj ŷ02)

2
⋅ ε, t ⩾ 0 (1.4)

where
ẑ0 =

ỹ0 − y0
ỹ0 − y0

2
is the direction of the perturbation,

ŷ0 =
y0
‖y0‖2

and
Qj = ∑

λi∈Λj

Pi , j = 1, . . . , q (1.5)

with Pi the orthogonal projection on the eigenspace of λi.

In (1.5), λi ∈ Λj means i = ij−1+1, ij−1+2, . . . , ij . Observe that there is a one-to-one correspondence between
indices in {1, . . . , p} and eigenvalues in Λ = {λ1, . . . , λp}.

Throughout the paper we use the notations introduced in Theorem 1.1.

Remark 1.1. In practical situations of uncertainty, we do not know the direction ẑ0 of the perturbation but
only the order of magnitude of ε. In this case, we can only say that

δ (t) ⩽ K(t, A, y0) ⋅ ε, t ⩾ 0 (1.6)
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where

K(t, A, y0) = max
ẑ0∈ℝn
‖ẑ0‖2=1

√
q
∑
j=1
(e(rj−r1)t Qj ẑ02)

2

√
q
∑
j=1
(e(rj−r1)t Qjŷ02)

2
=

1

√
q
∑
j=1
(e(rj−r1)t Qjŷ02)

2

with ‘⩽ ’ replaced by ‘= ’ for all t ⩾ 0 if Q1 ẑ0 = ẑ0 (see [9]). The number K(t, A, y0) is the normwise condition
number (in the euclidean norm) for the problem y0  etAy0 (see [1]).

If the initial value y0 is also not known, we can only say

δ (t) ⩽ K(t, A) ⋅ ε, t ⩾ 0 (1.7)

where
K(t, A) = max

y0∈ℝn\{0}
K(t, A, y0) = e(r1−rq)t

with ‘⩽ ’ replaced by ‘= ’ for all t ⩾ 0 if Q1 ẑ0 = ẑ0 and Qqy0 = y0. The number K(t, A) is the condition number
(in the spectral norm) of the matrix exponential etA.

The bound (1.7) is too pessimistic, since it holds with equality in a non-generic situation for y0. For this
reason, the bound (1.6) involving y0 should be preferred.

In our relative error analysis presented below, the direction ẑ0 of the perturbationwill be always involved.
In situation of uncertainty about ẑ0, one can consider the worst case, or the average case, for ẑ0.

Theorem 1.1 describes the propagation of the relative error when the initial value of (1.1) is perturbed and (1.1)
is exactly solved. Aim of this paper is to study the propagation of the relative error when the initial value of
(1.1) is perturbed and (1.1) is numerically solved rather than exactly solved.

So, we suppose that the initial value y0 ̸= 0 of (1.1) is perturbed to ỹ0 and the relevant perturbed solution
ỹ is numerically computed over the mesh

tn = nh, n = 0, 1, 2, . . . (1.8)

of constant stepsize h > 0, with numerical solution ỹ0, ỹ1, ỹ2, . . . given by

ỹn+1 = R (hA) ỹn , n = 0, 1, 2, . . . (1.9)

and then
ỹn = R (hA)n ỹ0, n = 0, 1, 2, . . .

where R(z), z ∈ D ⊆ ℂ, is an analytic approximant of the exponential ez, z ∈ ℂ, e.g., a polynomial or
a rational approximant. Here, D is the domain of R. When a Runge–Kutta (RK) method is applied over the
mesh (1.8), we obtain a numerical solution (1.9) with R the stability function of the RKmethod (see [7]), which
is a polynomial or a rational function. We assume that the approximant R has order l, where l is a positive
integer, i.e., we have

R(z) − ez = Czl+1 + O(zl+2), z  0 (1.10)

for some constant C ̸= 0. Moreover, we assume hλi ∈ D, i = 1, . . . , p.
In this paper, we study the relative error

δn =
ỹn − y (tn)

2
‖y (tn)‖2

, n = 0, 1, 2, . . . (1.11)

of the perturbed numerical solution ỹn with respect to the exact solution y(tn). This error is due to the per-
turbed initial value and to the approximant. Let

γn =
‖yn − y (tn)‖2
‖y (tn)‖2

, n = 0, 1, 2, . . . (1.12)

2
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Fig. 1: Spectrum of A partitioned by decreasing real part.
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with 0 = i0 < i1 < ⋅ ⋅ ⋅ < iq = p (i1, . . . , iq are the final indices ij in the sets Λj) and
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Suppose that the initial value y0 ̸= 0 of (1.1) is perturbed to ỹ0. We have
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is the direction of the perturbation,
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and
Qj = ∑
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Pi , j = 1, . . . , q (1.5)

with Pi the orthogonal projection on the eigenspace of λi.

In (1.5), λi ∈ Λj means i = ij−1+1, ij−1+2, . . . , ij . Observe that there is a one-to-one correspondence between
indices in {1, . . . , p} and eigenvalues in Λ = {λ1, . . . , λp}.

Throughout the paper we use the notations introduced in Theorem 1.1.

Remark 1.1. In practical situations of uncertainty, we do not know the direction ẑ0 of the perturbation but
only the order of magnitude of ε. In this case, we can only say that

δ (t) ⩽ K(t, A, y0) ⋅ ε, t ⩾ 0 (1.6)

where
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2

with ‘⩽ ’ replaced by ‘= ’ for all t ⩾ 0 if Q1 ẑ0 = ẑ0 (see [9]). The number K(t, A, y0) is the normwise condition
number (in the euclidean norm) for the problem y0  etAy0 (see [1]).

If the initial value y0 is also not known, we can only say

δ (t) ⩽ K(t, A) ⋅ ε, t ⩾ 0 (1.7)

where
K(t, A) = max

y0∈ℝn\{0}
K(t, A, y0) = e(r1−rq)t

with ‘⩽ ’ replaced by ‘= ’ for all t ⩾ 0 if Q1 ẑ0 = ẑ0 and Qqy0 = y0. The number K(t, A) is the condition number
(in the spectral norm) of the matrix exponential etA.

The bound (1.7) is too pessimistic, since it holds with equality in a non-generic situation for y0. For this
reason, the bound (1.6) involving y0 should be preferred.

In our relative error analysis presented below, the direction ẑ0 of the perturbationwill be always involved.
In situation of uncertainty about ẑ0, one can consider the worst case, or the average case, for ẑ0.

Theorem 1.1 describes the propagation of the relative error when the initial value of (1.1) is perturbed and (1.1)
is exactly solved. Aim of this paper is to study the propagation of the relative error when the initial value of
(1.1) is perturbed and (1.1) is numerically solved rather than exactly solved.

So, we suppose that the initial value y0 ̸= 0 of (1.1) is perturbed to ỹ0 and the relevant perturbed solution
ỹ is numerically computed over the mesh

tn = nh, n = 0, 1, 2, . . . (1.8)

of constant stepsize h > 0, with numerical solution ỹ0, ỹ1, ỹ2, . . . given by

ỹn+1 = R (hA) ỹn , n = 0, 1, 2, . . . (1.9)

and then
ỹn = R (hA)n ỹ0, n = 0, 1, 2, . . .

where R(z), z ∈ D ⊆ ℂ, is an analytic approximant of the exponential ez, z ∈ ℂ, e.g., a polynomial or
a rational approximant. Here, D is the domain of R. When a Runge–Kutta (RK) method is applied over the
mesh (1.8), we obtain a numerical solution (1.9) with R the stability function of the RKmethod (see [7]), which
is a polynomial or a rational function. We assume that the approximant R has order l, where l is a positive
integer, i.e., we have

R(z) − ez = Czl+1 + O(zl+2), z  0 (1.10)

for some constant C ̸= 0. Moreover, we assume hλi ∈ D, i = 1, . . . , p.
In this paper, we study the relative error

δn =
ỹn − y (tn)

2
‖y (tn)‖2

, n = 0, 1, 2, . . . (1.11)

of the perturbed numerical solution ỹn with respect to the exact solution y(tn). This error is due to the per-
turbed initial value and to the approximant. Let

γn =
‖yn − y (tn)‖2
‖y (tn)‖2

, n = 0, 1, 2, . . . (1.12)
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where
yn = R (hλ)n y0

be the relative error δn for an unperturbed initial value.
As in [9], we suppose A normal. The assumption that A is normal is not too much restrictive, since the

family of normal matrices includes important types of matrices as symmetric, skew-symmetric, shifted skew-
symmetric, and orthogonal matrices. Moreover, the test problem (1.1) with A normal is worthwhile to be in-
vestigated in this context of the relative error analysis, since it shows new and unexplored situations about
the numerical integration of ODEs. Finally, it seems adequate to consider normal matrices in a first paper on
the subject, as the present paper is.

The linear ODE (1.1) with A normal can be seen as d uncoupled linear scalar ODEs, once we consider
components in the orthonormal base of eigenvectors. So, we could assume from the beginning that A is diag-
onal, but we do not do this because it does not simplify the exposition: for example, a formula like (1.4) is not
simplified by knowing that A is diagonal. However, it is clear that the net and simple form that this formula
has is due to the decoupling of the ODE.

We remark that a relative error analysis of numerical solutions of ODEs is not yet accomplished in liter-
ature. Indeed, it is tradition in numerical ODEs to measure errors by absolute errors, not by relative errors,
perhaps because one assumes that the solution does not become neither small nor large and so absolute and
relative errors have the same order ofmagnitude. Clearly, absolute error and relative error have the same order
of convergence to zero with respect to h, but the fundamental point is that the two errors behave differently
with respect to time.

The only situation (however important) where relative errors are considered is in the error control for
variable stepsize integrators. Such integrators produce a sequence {yn} of approximations for the values y(tn)
of the solution y of a d-dimensional ODE by selecting stepsizes hn+1 = tn+1 − tn, n = 0, 1, 2, . . ., such that

yn+1,i − zn+1,i(tn+1)
 ⩽ ATOLi + RTOLi ⋅

yn,i


holds for each component yn+1,i, i = 1, . . . , d, of the numerical solution yn+1. Here, zn+1 of components
zn+1,i, i = 1, . . . , d, is the solution exiting from (tn , yn) and ATOLi and RTOLi, i = 1, . . . , d, are fixed toler-
ances on absolute and relative errors, respectively, see [15]. In this context, the relative errors are considered
componentwise, not normwise as in the present paper.

We recall that in literature both componentwise and normwise approaches are considered in studying
relative errors (see [1]). Moreover, it is worthwhile to remark that normwise relative error and componentwise
relative errors are strictly related (see the introduction in [9]): we have

ε ⩽ max
i=1,...,d

ỹ0,i − y0,i
y0,i


δn ⩽ max
i=1,...,d

ỹn,i − yi (tn)


|yi (tn)|
, n = 0, 1, 2, . . .

ỹn,i − yi (tn)


|yi (tn)|
⩽
‖y(tn)‖2
|yi(tn)|

δn , n = 0, 1, 2, . . . , i = 1, . . . , d

where ỹ0,i, y0,i, ỹn,i, and yi(tn), i = 1, . . . , d, are the components of ỹ0, y0, ỹn, and y(tn), respectively. So, if
all the components of y0 are perturbed with relative errors within a tolerance TOL, then ε ⩽ TOL and if δn is
known to be large, then some component of y(t) has a large relative error.

The plan of the paper is as follows: In Section 2,we give a formula for the relative error δn defined in (1.11),
on which our relative error analysis of the numerical solution is based on. In Section 3, we define the errors
introduced by the approximant. The relative error analysis is presented in Section 4: the main finding of this
section is that the relative error γn defined in (1.12) and relevant to an unperturbed initial value grows linearly
in time. A long-time relative error analysis is given in Section 5: the main finding of this section is that, in the
long-time, the contributions to the error γn coming from non-rightmost eigenvalues of A vanish. Examples
with numerical experiments are considered in Section 6 and Section 7 and conclusions are draft in Section 8.
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Observe that the classical ‘scaling and squaring method’ (see [5]) for computing the matrix exponential
is related to our study. In fact, this method computes eA as R(hA)n, where h = 1/2s and n = 2s for a suit-
able positive integer s, with R a polynomial or rational approximant of the exponential. In literature several
relative error analyses of the ‘scaling and squaring method’ can be found (see [2, 5, 6, 13, 21]), but they are
different from the analysis presented here. In fact, in these analyses the interest is on the computation of
the matrix exponential, not on the computation of the matrix exponential times a vector: in other words, the
interest is on the relative error R(hA)

n − eA2
eA
2

not on the relative error

γn =
(R(hA)

n − eA) y0
2

eAy0
2

considered in the present paper.
We conclude this introduction by precising the meaning of the relations a ≈ b and a ⪅ b, which are used

throughout the paper. For a, b ∈ ℂ or a, b ∈ ℝ, a ≈ b means

a = b (1 + e)

with |e| ≪ 1. For a, b ∈ ℝ, a ⪅ b means a ⩽ c for some c ∈ ℝ such that c ≈ b. For a, b ∈ ℝd, a ≈ b means

‖a − b‖2
‖b‖2
≪ 1.

In the present paper, for a ⩾ 0, ‘a small’ is the same as ‘a ≪ 1’ and ‘a large’ is the same as ‘a ≫ 1’.

2 A formula for the error δn
We introduce the relative approximant S : D→ ℂ given by

S (z) = e−zR (z) , z ∈ D.

The following theorem provides an useful formula for the relative error δn defined in (1.11), in case of a
normal matrix A.

Theorem 2.1. Let A be a normal matrix. For the relative error δn, we have

δn =
√

q
∑
j=1
(e(rj−r1)tn εn,j)

2

√
q
∑
j=1
(e(rj−r1)tn Qj ŷ02)

2
, n = 0, 1, 2, . . . (2.1)

where
εn,j :=

∑
λi∈Λj

((S (hλi)n − 1) Pi ŷ0 + εS (hλi)n Pi ẑ0)
2
. (2.2)

Proof. Fix n = 0, 1, 2, . . .We have

ỹn = etnAe−tnAR (hA)n ỹ0 = etnA Ỹn

i.e., ỹn is the perturbed exact solution of (1.1) at tn, when the initial value y0 is perturbed to

Ỹn = e−tnAR (hA)n ỹ0 = S(hA)n ỹ0.

This is backward error analysis.
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where
yn = R (hλ)n y0

be the relative error δn for an unperturbed initial value.
As in [9], we suppose A normal. The assumption that A is normal is not too much restrictive, since the
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symmetric, and orthogonal matrices. Moreover, the test problem (1.1) with A normal is worthwhile to be in-
vestigated in this context of the relative error analysis, since it shows new and unexplored situations about
the numerical integration of ODEs. Finally, it seems adequate to consider normal matrices in a first paper on
the subject, as the present paper is.
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onal, but we do not do this because it does not simplify the exposition: for example, a formula like (1.4) is not
simplified by knowing that A is diagonal. However, it is clear that the net and simple form that this formula
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ature. Indeed, it is tradition in numerical ODEs to measure errors by absolute errors, not by relative errors,
perhaps because one assumes that the solution does not become neither small nor large and so absolute and
relative errors have the same order ofmagnitude. Clearly, absolute error and relative error have the same order
of convergence to zero with respect to h, but the fundamental point is that the two errors behave differently
with respect to time.

The only situation (however important) where relative errors are considered is in the error control for
variable stepsize integrators. Such integrators produce a sequence {yn} of approximations for the values y(tn)
of the solution y of a d-dimensional ODE by selecting stepsizes hn+1 = tn+1 − tn, n = 0, 1, 2, . . ., such that

yn+1,i − zn+1,i(tn+1)
 ⩽ ATOLi + RTOLi ⋅
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holds for each component yn+1,i, i = 1, . . . , d, of the numerical solution yn+1. Here, zn+1 of components
zn+1,i, i = 1, . . . , d, is the solution exiting from (tn , yn) and ATOLi and RTOLi, i = 1, . . . , d, are fixed toler-
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relative errors (see [1]). Moreover, it is worthwhile to remark that normwise relative error and componentwise
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where ỹ0,i, y0,i, ỹn,i, and yi(tn), i = 1, . . . , d, are the components of ỹ0, y0, ỹn, and y(tn), respectively. So, if
all the components of y0 are perturbed with relative errors within a tolerance TOL, then ε ⩽ TOL and if δn is
known to be large, then some component of y(t) has a large relative error.

The plan of the paper is as follows: In Section 2,we give a formula for the relative error δn defined in (1.11),
on which our relative error analysis of the numerical solution is based on. In Section 3, we define the errors
introduced by the approximant. The relative error analysis is presented in Section 4: the main finding of this
section is that the relative error γn defined in (1.12) and relevant to an unperturbed initial value grows linearly
in time. A long-time relative error analysis is given in Section 5: the main finding of this section is that, in the
long-time, the contributions to the error γn coming from non-rightmost eigenvalues of A vanish. Examples
with numerical experiments are considered in Section 6 and Section 7 and conclusions are draft in Section 8.
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is related to our study. In fact, this method computes eA as R(hA)n, where h = 1/2s and n = 2s for a suit-
able positive integer s, with R a polynomial or rational approximant of the exponential. In literature several
relative error analyses of the ‘scaling and squaring method’ can be found (see [2, 5, 6, 13, 21]), but they are
different from the analysis presented here. In fact, in these analyses the interest is on the computation of
the matrix exponential, not on the computation of the matrix exponential times a vector: in other words, the
interest is on the relative error R(hA)

n − eA2
eA
2

not on the relative error

γn =
(R(hA)

n − eA) y0
2

eAy0
2

considered in the present paper.
We conclude this introduction by precising the meaning of the relations a ≈ b and a ⪅ b, which are used

throughout the paper. For a, b ∈ ℂ or a, b ∈ ℝ, a ≈ b means

a = b (1 + e)

with |e| ≪ 1. For a, b ∈ ℝ, a ⪅ b means a ⩽ c for some c ∈ ℝ such that c ≈ b. For a, b ∈ ℝd, a ≈ b means

‖a − b‖2
‖b‖2
≪ 1.

In the present paper, for a ⩾ 0, ‘a small’ is the same as ‘a ≪ 1’ and ‘a large’ is the same as ‘a ≫ 1’.

2 A formula for the error δn
We introduce the relative approximant S : D→ ℂ given by

S (z) = e−zR (z) , z ∈ D.

The following theorem provides an useful formula for the relative error δn defined in (1.11), in case of a
normal matrix A.

Theorem 2.1. Let A be a normal matrix. For the relative error δn, we have

δn =
√

q
∑
j=1
(e(rj−r1)tn εn,j)

2

√
q
∑
j=1
(e(rj−r1)tn Qj ŷ02)

2
, n = 0, 1, 2, . . . (2.1)

where
εn,j :=

∑
λi∈Λj

((S (hλi)n − 1) Pi ŷ0 + εS (hλi)n Pi ẑ0)
2
. (2.2)

Proof. Fix n = 0, 1, 2, . . .We have

ỹn = etnAe−tnAR (hA)n ỹ0 = etnA Ỹn

i.e., ỹn is the perturbed exact solution of (1.1) at tn, when the initial value y0 is perturbed to

Ỹn = e−tnAR (hA)n ỹ0 = S(hA)n ỹ0.

This is backward error analysis.
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Theorem 1.1 says that

δn =
√

q
∑
j=1
(e(rj−r1)tn QjẐn

2)
2

√
q
∑
j=1
(e(rj−r1)tn Qjŷ02)

2
⋅ En =
√

q
∑
j=1
(e(rj−r1)tn QjEnẐn

2)
2

√
q
∑
j=1
(e(rj−r1)tn Qjŷ02)

2

where

Ẑn =
Ỹn − y0
Ỹn − y0

2
, En =

Ỹn − y0
2

‖y0‖2
.

By writing the perturbed initial value ỹ0 as

ỹ0 = y0 + ε ‖y0‖2 ẑ0

we have
Ỹn − y0 = S (hA)n ỹ0 − y0 = (S (hA)n − I) y0 + ε ‖y0‖2 S (hA)

n ẑ0.

So

EnẐn = (S(hA)n − I) ŷ0 + εS (hA)n ẑ0

=
p
∑
i=1
((S (hλi)n − 1) Pi ŷ0 + εS (hλi)n Pi ẑ0)

and then, for j = 1, 2, . . . , q,

QjEnẐn = ∑
λi∈Λj

((S (hλi)n − 1) Pi ŷ0 + εS (hλi)n Pi ẑ0) .

This completes the proof.

The errors εn,j in (2.1) are defined in (2.2) in terms of two sources of error: the number ε, which takes into
account the fact that the initial data is perturbed, and the function S, which takes into account the fact that
we are numerically integrating (1.1) and not solving it exactly.

When ε = 0 the initial data is not perturbed and when

S(z) = 1, z ∈ D = ℂ (2.3)

the ODE (1.1) is exactly solved.
Of course, (2.3) never holds when we are numerically integrating (1.1) and it holds when R(z) = ez , z ∈

D = ℂ, i.e., when we use
ỹn+1 = ehA ỹn , n = 0, 1, 2, . . .

instead of (1.9), namely we use the matrix exponential ehA instead of an its approximation. We can think that
this is implemented in MATLAB by the matrix exponential function expm. In the numerical tests of Section 6
we compute exact solutions in this manner.

The situation ε = 0, where the initial value is not perturbed and the sole source of error is the approximant
of the exponential, is of particular interest: we have already observed above that a systematic analysis of the
relative error of numerical solutions of ODEs has not been developed in literature. In this situation, the error
δn becomes the error γn defined in (1.12).

The situation (2.3), where the ODE (1.1) is exactly solved and the sole source of error is the perturbation in
the initial data, has been already studied in [9]. In this situation, the error δn becomes the error δ(tn) defined
in (1.3).
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3 The errors of the approximant
We can rewrite the error εn,j in (2.2) as

εn,j :=

∑
λi∈Λj

(φ (nσi) Pi ŷ0 + ε (1 + φ (nσi)) Pi ẑ0)
2

(3.1)

where
φ (nσi) := enσi − 1

and
σi := log S(hλi). (3.2)

Here, we are considering the principal value of the complex logarithm log, which is the branch defined by
the Mercator series

log z =
∞
∑
i=1

(−1)i

i!
(z − 1)i , |z − 1| < 1.

The complex numbers σi, i = 1, . . . , p, defined in (3.2) are considered as the errors introduced by the
approximant R: observe that in (2.2) we have S(hλi) = 1 if and only if σi = 0.

The next proposition says how small is the error σi when hλi is small.

Proposition 3.1. For i = 1, . . . , p, we have

σi = C (hλi)l+1 (1 + O (hλi)) , hλi → 0 (3.3)

where l is the order of the approximant and C is the constant in (1.10).

Proof. By (1.10) we obtain
S (z) = 1 + Czl+1 + O (zl+2) , z → 0

and then
log S(z) = log (1 + Czl+1 + O (zl+2)) = Czl+1 + O (zl+2) , z → 0.

This completes the proof.

Next remark contains important observations or consequences of Proposition 3.1. In the following, a similar
remark is presented for each proposition or theorem.

Remark 3.1.
1. If λi = 0, then σi = 0.
2. If the approximant R has real coefficients, then, for a pair λi , λk of complex conjugate eigenvalues of A,

σi and σk are complex conjugate and so |σi| = |σk|.
3. Let Γ be a nonempty subset of the spectrum Λ of A and let

ρΓ := max
λi∈Γ
|λi|

µΓ := min
λi∈Γ
|λi| .

We have

max
λi∈Γ
|σi| = |C| (hρΓ)l+1 (1 + O (hρΓ))

min
λi∈Γ
|σi| = |C| (hµΓ)l+1 (1 + O (hρΓ))

as hρΓ → 0.
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Ỹn − y0
2

‖y0‖2
.

By writing the perturbed initial value ỹ0 as
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and then, for j = 1, 2, . . . , q,

QjEnẐn = ∑
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This completes the proof.

The errors εn,j in (2.1) are defined in (2.2) in terms of two sources of error: the number ε, which takes into
account the fact that the initial data is perturbed, and the function S, which takes into account the fact that
we are numerically integrating (1.1) and not solving it exactly.

When ε = 0 the initial data is not perturbed and when

S(z) = 1, z ∈ D = ℂ (2.3)

the ODE (1.1) is exactly solved.
Of course, (2.3) never holds when we are numerically integrating (1.1) and it holds when R(z) = ez , z ∈

D = ℂ, i.e., when we use
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instead of (1.9), namely we use the matrix exponential ehA instead of an its approximation. We can think that
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in (1.3).
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We can rewrite the error εn,j in (2.2) as
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∑
λi∈Λj

(φ (nσi) Pi ŷ0 + ε (1 + φ (nσi)) Pi ẑ0)
2

(3.1)

where
φ (nσi) := enσi − 1

and
σi := log S(hλi). (3.2)

Here, we are considering the principal value of the complex logarithm log, which is the branch defined by
the Mercator series

log z =
∞
∑
i=1

(−1)i

i!
(z − 1)i , |z − 1| < 1.

The complex numbers σi, i = 1, . . . , p, defined in (3.2) are considered as the errors introduced by the
approximant R: observe that in (2.2) we have S(hλi) = 1 if and only if σi = 0.

The next proposition says how small is the error σi when hλi is small.

Proposition 3.1. For i = 1, . . . , p, we have

σi = C (hλi)l+1 (1 + O (hλi)) , hλi → 0 (3.3)

where l is the order of the approximant and C is the constant in (1.10).

Proof. By (1.10) we obtain
S (z) = 1 + Czl+1 + O (zl+2) , z → 0

and then
log S(z) = log (1 + Czl+1 + O (zl+2)) = Czl+1 + O (zl+2) , z → 0.

This completes the proof.

Next remark contains important observations or consequences of Proposition 3.1. In the following, a similar
remark is presented for each proposition or theorem.

Remark 3.1.
1. If λi = 0, then σi = 0.
2. If the approximant R has real coefficients, then, for a pair λi , λk of complex conjugate eigenvalues of A,

σi and σk are complex conjugate and so |σi| = |σk|.
3. Let Γ be a nonempty subset of the spectrum Λ of A and let

ρΓ := max
λi∈Γ
|λi|

µΓ := min
λi∈Γ
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We have

max
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Let Γ and ∆ nonempty subsets of Λ and let

KΓ∆ :=
max
λi∈Γ
|σi|

min
λi∈∆
|σi|

. (3.4)

We have

KΓ∆ = (
ρΓ
µ∆
)
l+1
(1 + O (hρΓ∪∆)) , hρΓ∪∆ → 0.

4. In the previous point 3, we prefer to write hρΓ → 0 and hρΓ∪∆ → 0 rather than h → 0. We use the
dimensionless stepsizes hρΓ and hρΓ∪∆ rather than the stepsize h, because hρΓ and hρΓ∪∆ are small or
large independently of the particular unit used for the time t.

The errors σi appear in the errors εn,j by means of φ (nσi) (see (3.1)). Next proposition says something about
this.

Proposition 3.2. Let i = 1, . . . , p and let c ⩾ 0. If n |σi| ⩽ c, then

φ(nσi) = nσi (1 + wi)

where
|wi| ⩽ g(c) :=

ec − 1 − c
c

.

Proof. Let z ∈ ℂ. For
φ(z) = ez − 1

we have
φ(z) = z (1 + w)

where
|w| ⩽ e

c − 1 − c
c

whenever |z| ⩽ c. In fact, we have

φ(z) = z(1 + z
2!
+
z2

3!
+
z3

4!
+ ⋅ ⋅ ⋅)

with


z
2!
+
z2

3!
+
z3

4!
+ ⋅ ⋅ ⋅

⩽

ec − 1 − c
c

.

This completes the proof.

Remark 3.2.
1. The function

g(c) = e
c − 1 − c

c
, c ⩾ 0

is increasing and we have
g(c) = c

2
+ O(c2), c → 0.

Since the function g is oftenused throughout thepaper, some reference values of g are collected inTable 1.
2. If n|σi| ≪ 1, then φ(nσi) ≈ nσi.
3. Remind point 3 in Remark 3.1. Let Γ be a nonempty subset of Λ. We can write

nmax
λi∈Γ
|σi| = tnρΓEΓ

nmin
λi∈Γ
|σi| = tnρΓFΓ
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c g(c)
0.5 0.29744
1 0.71828
1.5 1.3211
2 2.1945

Tab. 1: Reference values of g. Value g(c) = 1 is for c = 1.2564.

where

EΓ :=
max
λi∈Γ
|σi|

hρΓ
= |C| (hρΓ)l (1 + O (hρΓ))

FΓ :=
min
λi∈Γ
|σi|

hρΓ
=

1
KΓΓ

EΓ = (
µΓ
ρΓ
)
l+1
|C| (hρΓ)l (1 + O (hρΓ))

as hρΓ → 0.
4. Remind point 4 in Remark 3.1. In the previous point 3, we use the dimensionless times tnρΓ rather than

the time tn, because tnρΓ is small or large independently of the particular unit used for the time.

4 Analysis of the error δn
In the present section, we study how the relative error δn in (1.11) grows with the index n. We consider sepa-
rately the situation of an unperturbed initial value, i.e., ε = 0, and of a perturbed initial value.

The following notation is introduced. Let

Λ∗ := {λi ∈ Λ : Piy0 ̸= 0}
Λ∗∗ := {λi ∈ Λ : Pi ẑ0 ̸= 0}

and, for j = 1, . . . , q,

Λ∗j := {λi ∈ Λj : Piy0 ̸= 0}
Λ∗∗j := {λi ∈ Λj : Pi ẑ0 ̸= 0} .

Moreover, let

j∗ := min {j ∈ {1, . . . , q} : Λ∗j ̸= ⌀}

j∗∗ := min {j ∈ {1, . . . , q} : Λ∗∗j ̸= ⌀} .

The generic situation is Λ∗ = Λ∗∗ = Λ, Λ∗j = Λ
∗∗
j = Λj for j = 1, . . . , q and j∗ = j∗∗ = 1.

4.1 Unperturbed initial value

Next theorem gives lower and upper bounds for the relative error γn given in (1.12) and relevant to an unper-
turbed initial value.

Theorem 4.1. Fix c ⩾ 0. For an index n such that

nmax
λi∈Λ∗
|σi| ⩽ c (4.1)

we have
n min
λi∈Λ∗
|σi| (1 − g(c)) ⩽ γn ⩽ nmax

λi∈Λ∗
|σi| (1 + g(c)) . (4.2)
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In the present section, we study how the relative error δn in (1.11) grows with the index n. We consider sepa-
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j = Λj for j = 1, . . . , q and j∗ = j∗∗ = 1.

4.1 Unperturbed initial value

Next theorem gives lower and upper bounds for the relative error γn given in (1.12) and relevant to an unper-
turbed initial value.

Theorem 4.1. Fix c ⩾ 0. For an index n such that
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Proof. In the situation ε = 0, for n = 0, 1, 2, . . . and j = 1, . . . , q, we have

εn,j =

∑
λi∈Λj

φ (nσi) Pi ŷ0
2
= √ ∑

λi∈Λj

φ (nσi)

2 Pi ŷ0

2
2. (4.3)

By (2.1), (4.3), (4.1) and Proposition 3.2, we easily obtain (4.2).

The theorem says that the error γn grows linearly with the index n, i.e., it grows linearly in time: see point 3 in
Remark 4.1 below.

Remark 4.1.
1. For an index n such that

nmax
λi∈Λ∗
|σi| ≪ 1

we have
n min
λi∈Λ∗
|σi| ⪅ γn ⪅ nmax

λi∈Λ∗
|σi| .

2. Recall point 3 in Remark 3.2. In (4.1) and (4.2) we have

nmax
λi∈Λ∗
|σi| = tnρΛ∗EΛ∗

n min
λi∈Λ∗
|σi| = tnρΛ∗FΛ∗

where

EΛ∗ = |C| (hρΛ∗ )l (1 + O (hρΛ∗ ))

FΛ∗ = (
µΛ∗

ρΛ∗
)
l+1
|C| (hρΛ∗ )l (1 + O (hρΛ∗ ))

as hρΛ∗ → 0.
3. Fix c > 0. The Theorem 4.1 and point 2 above say that for a dimensionless time tnρΛ∗ such that

tnρΛ∗ ⩽ τ

where
τ := c

EΛ∗
→ +∞, 1

τ
= O ((hρΛ∗ )l) as hρΛ∗ → 0 (4.4)

we have
btnρΛ∗ ⩽ γn ⩽ atnρΛ∗ (4.5)

with a and b independent of n and

a = O( (hρΛ∗ )l ), b = O ((hρΛ∗ )l) , hρΛ∗ → 0.

Hence, the relative error γn grows linearly in time and this linear growth holds for any normal matrix A, for
any approximant R and for any stepsize h (such that hλi ∈ D, i = 1, . . . , p). Of course, the absolute error

‖yn − y (tn)‖2 = γn ‖y (tn)‖2

has a completely different behavior, due to the exponential growth or decrease in time of ‖y (tn)‖2.
Observe that the linear growth of γn is not a true linear growth, since (4.5) is not guaranteed to be valid
for all dimensionless times tnρΛ∗ , but only for tnρΛ∗ ⩽ τ. However, asymptotically as hρΛ∗ → 0, it is valid
for all dimensionless times tnρΛ∗ : we have τ → +∞ as hρΛ∗ → 0.

4. When Λ∗ = {0}, we have
γn = 0, n = 0, 1, 2, . . .
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5. When Λ∗ ̸= {0}, Theorem 4.1 can be improved as follows. Fix c ⩾ 0. For an index n such that

nmax
λi∈Λ∗
|σi| ⩽ c

we have
n min
λi∈Λ∗\{0}

|σi| (1 − g(c)) Bn ⩽ γn ⩽ nmax
λi∈Λ∗
|σi| (1 + g(c)) Bn

where

Bn =

√
q
∑
j=j∗
(e(rj−r1)tn√ ∑

λi∈Λ∗
j \{0}

Pi ŷ0

2
2)

2

√
q
∑
j=j∗
(e(rj−r1)tn Qj ŷ02)

2

and
e(rj∗1 −rj∗)tn√ ∑

λi∈Λ∗
j1
\{0}

Pi ŷ0

2
2 ⩽ Bn ⩽ 1

holds with
j∗1 := min {j ∈ {j∗, . . . , q} : Λ∗j \ {0} ̸= ⌀}. (4.6)

This result, unlike Theorem 4.1, gives a nonzero lower bound for γn in the case 0 ∈ Λ∗ and Λ∗ ̸= {0}.
6. The bounds (4.2) are valid for indices n satisfying (4.1). Bounds valid for all indices n are

min
λi∈Λ∗

φ (nσi)
 ⩽ γn ⩽ max

λi∈Λ∗

φ (nσi)
 .

However, it is not interesting consider bounds valid for all indices n because, for a sufficiently large n,
the error γn becomes not small (although it could become again small or even zero for a very large n if all
the complex numbers σi, λi ∈ Λ∗, are imaginary).

4.2 Perturbed initial value

Recall that γn (see (1.12) and the previous subsection) is the relative error due to the sole approximant and that
δ (t) (see (1.3) and (1.4)) is the relative error due to the sole perturbation in the initial value. For a perturbed
initial value, next theorem describes the growth of the relative error δn (see (1.11)) due to the approximant
and the perturbation in the initial value, in terms of the two relative errors γn and δ (tn).

Theorem 4.2. For n = 0, 1, 2, . . ., we have

δn − γn
 ⩽ δ (tn) + βnδ (tn) (4.7)

and
δn − δ (tn)

 ⩽ γn + βnδ (tn) (4.8)

where

βn :=

√
q
∑
j=1
(e(rj−r1)tn


∑

λi∈Λj

φ (nσi) Pi ẑ0
2
)
2

√
q
∑
j=1
(e(rj−r1)tn Qj ẑ02)

2
(4.9)

is the error γn when the initial value y0 of (1.1) is such that ŷ0 = ẑ0.
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Proof. In the situation ε = 0, for n = 0, 1, 2, . . . and j = 1, . . . , q, we have

εn,j =

∑
λi∈Λj

φ (nσi) Pi ŷ0
2
= √ ∑

λi∈Λj

φ (nσi)

2 Pi ŷ0

2
2. (4.3)

By (2.1), (4.3), (4.1) and Proposition 3.2, we easily obtain (4.2).

The theorem says that the error γn grows linearly with the index n, i.e., it grows linearly in time: see point 3 in
Remark 4.1 below.

Remark 4.1.
1. For an index n such that

nmax
λi∈Λ∗
|σi| ≪ 1

we have
n min
λi∈Λ∗
|σi| ⪅ γn ⪅ nmax

λi∈Λ∗
|σi| .

2. Recall point 3 in Remark 3.2. In (4.1) and (4.2) we have

nmax
λi∈Λ∗
|σi| = tnρΛ∗EΛ∗

n min
λi∈Λ∗
|σi| = tnρΛ∗FΛ∗

where

EΛ∗ = |C| (hρΛ∗ )l (1 + O (hρΛ∗ ))

FΛ∗ = (
µΛ∗

ρΛ∗
)
l+1
|C| (hρΛ∗ )l (1 + O (hρΛ∗ ))

as hρΛ∗ → 0.
3. Fix c > 0. The Theorem 4.1 and point 2 above say that for a dimensionless time tnρΛ∗ such that

tnρΛ∗ ⩽ τ

where
τ := c

EΛ∗
→ +∞, 1

τ
= O ((hρΛ∗ )l) as hρΛ∗ → 0 (4.4)

we have
btnρΛ∗ ⩽ γn ⩽ atnρΛ∗ (4.5)

with a and b independent of n and

a = O( (hρΛ∗ )l ), b = O ((hρΛ∗ )l) , hρΛ∗ → 0.

Hence, the relative error γn grows linearly in time and this linear growth holds for any normal matrix A, for
any approximant R and for any stepsize h (such that hλi ∈ D, i = 1, . . . , p). Of course, the absolute error

‖yn − y (tn)‖2 = γn ‖y (tn)‖2

has a completely different behavior, due to the exponential growth or decrease in time of ‖y (tn)‖2.
Observe that the linear growth of γn is not a true linear growth, since (4.5) is not guaranteed to be valid
for all dimensionless times tnρΛ∗ , but only for tnρΛ∗ ⩽ τ. However, asymptotically as hρΛ∗ → 0, it is valid
for all dimensionless times tnρΛ∗ : we have τ → +∞ as hρΛ∗ → 0.

4. When Λ∗ = {0}, we have
γn = 0, n = 0, 1, 2, . . .

5. When Λ∗ ̸= {0}, Theorem 4.1 can be improved as follows. Fix c ⩾ 0. For an index n such that

nmax
λi∈Λ∗
|σi| ⩽ c

we have
n min
λi∈Λ∗\{0}

|σi| (1 − g(c)) Bn ⩽ γn ⩽ nmax
λi∈Λ∗
|σi| (1 + g(c)) Bn

where

Bn =

√
q
∑
j=j∗
(e(rj−r1)tn√ ∑

λi∈Λ∗
j \{0}

Pi ŷ0

2
2)

2

√
q
∑
j=j∗
(e(rj−r1)tn Qj ŷ02)

2

and
e(rj∗1 −rj∗)tn√ ∑

λi∈Λ∗
j1
\{0}

Pi ŷ0

2
2 ⩽ Bn ⩽ 1

holds with
j∗1 := min {j ∈ {j∗, . . . , q} : Λ∗j \ {0} ̸= ⌀}. (4.6)

This result, unlike Theorem 4.1, gives a nonzero lower bound for γn in the case 0 ∈ Λ∗ and Λ∗ ̸= {0}.
6. The bounds (4.2) are valid for indices n satisfying (4.1). Bounds valid for all indices n are

min
λi∈Λ∗

φ (nσi)
 ⩽ γn ⩽ max

λi∈Λ∗

φ (nσi)
 .

However, it is not interesting consider bounds valid for all indices n because, for a sufficiently large n,
the error γn becomes not small (although it could become again small or even zero for a very large n if all
the complex numbers σi, λi ∈ Λ∗, are imaginary).

4.2 Perturbed initial value

Recall that γn (see (1.12) and the previous subsection) is the relative error due to the sole approximant and that
δ (t) (see (1.3) and (1.4)) is the relative error due to the sole perturbation in the initial value. For a perturbed
initial value, next theorem describes the growth of the relative error δn (see (1.11)) due to the approximant
and the perturbation in the initial value, in terms of the two relative errors γn and δ (tn).

Theorem 4.2. For n = 0, 1, 2, . . ., we have

δn − γn
 ⩽ δ (tn) + βnδ (tn) (4.7)

and
δn − δ (tn)

 ⩽ γn + βnδ (tn) (4.8)

where

βn :=

√
q
∑
j=1
(e(rj−r1)tn


∑

λi∈Λj

φ (nσi) Pi ẑ0
2
)
2

√
q
∑
j=1
(e(rj−r1)tn Qj ẑ02)

2
(4.9)

is the error γn when the initial value y0 of (1.1) is such that ŷ0 = ẑ0.

11



Proof. For n = 0, 1, 2, . . ., we have

δn − γn
 √

q
∑
j=1
(e(rj−r1)tn Qjŷ02)

2
=



√
q
∑
j=1
(e(rj−r1)tn εn,j)

2
−√

q
∑
j=1
(e(rj−r1)tn


∑
λi∈Λj

φ (nσi) Pi ŷ0
2
)
2


⩽ √
q
∑
j=1
(e(rj−r1)tn(εn,j −


∑
λi∈Λj

φ (nσi) Pi ŷ0
2
))

2

⩽ √
q
∑
j=1
(e(rj−r1)tn


∑
λi∈Λj

ε (1 + φ (nσi)) Pi ẑ0
2
)
2

⩽ √
q
∑
j=1
(e(rj−r1)tn(


∑
λi∈Λj

εPi ẑ0
2
+

∑
λi∈Λj

εφ (nσi) Pi ẑ0
2
))

2

⩽ √
q
∑
j=1
(e(rj−r1)tn


∑
λi∈Λj

εPi ẑ0
2
)
2

+√
q
∑
j=1
(e(rj−r1)tn


∑
λi∈Λj

εφ (nσi) Pi ẑ0
2
)
2

.

The bound (4.7) now easily follows.
For the other bound (4.8), the proof proceeds similarly: for n = 0, 1, 2, . . ., we have

δn − δ (tn)
 √

q
∑
j=1
(e(rj−r1)tn Qjŷ02)

2
=


√

q
∑
j=1
(e(rj−r1)tn εn,j)

2
−√

q
∑
j=1
(e(rj−r1)tn εQj ẑ02)

2


⩽ √
q
∑
j=1
(e(rj−r1)tn


∑
λi∈Λj

(φ (nσi) Pi ŷ0 + εφ (nσi) Pi ẑ0)
2
)
2

⩽ √
q
∑
j=1
(e(rj−r1)tn


∑
λi∈Λj

φ (nσi) Pi ŷ0
2
)
2

+√
q
∑
j=1
(e(rj−r1)tn


∑
λi∈Λj

εφ (nσi) Pi ẑ0
2
)
2

.

This completes the proof.

The bound (4.7) shows how a perturbation in the initial value affects the error γn and the bound (4.8) shows
how the numerical integration affects the error δ(tn).

Remark 4.2.
1. Fix c > 0. For an index n such that

n max
λi∈Λ∗∗
|σi| ⩽ c

we have
n min
λi∈Λ∗∗
|σi| (1 − g(c)) ⩽ βn ⩽ n max

λi∈Λ∗∗
|σi| (1 + g(c)) .

Moreover, for an index n such that
n max
λi∈Λ∗∗
|σi| ≪ 1
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we have
n min
λi∈Λ∗∗
|σi| ⪅ βn ⪅ n max

λi∈Λ∗∗
|σi| .

This follows by Theorem 4.1.
2. For an index n such that

βn ≪ 1 (4.10)

we have
δn − γn

 ⪅ δ (tn)

by (4.7). The condition (4.10) holds when

n max
λi∈Λ∗∗
|σi| ≪ 1.

3. Assume Λ∗ ̸= {0}. For an index n such that

βnδ (tn)
γn
=

√
q
∑
j=1
(e(rj−r1)tn


∑

λi∈Λj

φ (nσi) Pi ẑ0
2
)
2

√
q
∑
j=1
(e(rj−r1)tn


∑

λi∈Λj

φ (nσi) Pi ŷ0
2
)
2
ε ≪ 1 (4.11)

we have
δn − δ (tn)

 ⪅ γn

by (4.8). The condition (4.11) holds when

Λ∗∗ ⊆ Λ∗, max
λi∈Λ∗∗

Pi ẑ0
2

Pi ŷ0
2
⋅ ε ≪ 1

or

0 ∉ Λ∗j∗ , nmaxλi∈Λ∗
j∗
|σi| ≪ 1, nmaxλi∈Λ∗∗ |σi| ≪ 1

KΛ∗∗Λ∗
j∗
e(rj∗∗ −rj∗ )tn
‖Qj∗ ŷ0‖2 ε ≪ 1

where KΛ∗∗Λ∗
j∗
is defined in (3.4).

4. Assume Λ∗∗ ̸= {0}. For an index n such that

γn
βnδ (tn)

=

√
q
∑
j=1
(e(rj−r1)tn


∑

λi∈Λj

φ (nσi) Pi ŷ0
2
)
2

√
q
∑
j=1
(e(rj−r1)tn


∑

λi∈Λj

φ (nσi) Pi ẑ0
2
)
2

ε

≪ 1 (4.12)

we have δn − δ (tn)


δ (tn)
⪅ βn

by (4.8). The condition (4.12) holds when

0 ∉ Λ∗∗j∗∗ , nmaxλi∈Λ∗ |σi| ≪ 1, nmaxλi∈Λ∗∗ |σi| ≪ 1
KΛ∗Λ∗∗

j∗∗

e(rj∗∗−rj∗ )tn‖Qj∗∗ ẑ0‖2ε
≪ 1.

5. Recall point 4. For an index n such that (4.10) and (4.12) hold we have δn ≈ δ(tn).
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Proof. For n = 0, 1, 2, . . ., we have

δn − γn
 √

q
∑
j=1
(e(rj−r1)tn Qjŷ02)

2
=



√
q
∑
j=1
(e(rj−r1)tn εn,j)

2
−√

q
∑
j=1
(e(rj−r1)tn


∑
λi∈Λj

φ (nσi) Pi ŷ0
2
)
2


⩽ √
q
∑
j=1
(e(rj−r1)tn(εn,j −


∑
λi∈Λj

φ (nσi) Pi ŷ0
2
))

2

⩽ √
q
∑
j=1
(e(rj−r1)tn


∑
λi∈Λj

ε (1 + φ (nσi)) Pi ẑ0
2
)
2

⩽ √
q
∑
j=1
(e(rj−r1)tn(


∑
λi∈Λj

εPi ẑ0
2
+

∑
λi∈Λj

εφ (nσi) Pi ẑ0
2
))

2

⩽ √
q
∑
j=1
(e(rj−r1)tn


∑
λi∈Λj

εPi ẑ0
2
)
2

+√
q
∑
j=1
(e(rj−r1)tn


∑
λi∈Λj

εφ (nσi) Pi ẑ0
2
)
2

.

The bound (4.7) now easily follows.
For the other bound (4.8), the proof proceeds similarly: for n = 0, 1, 2, . . ., we have

δn − δ (tn)
 √

q
∑
j=1
(e(rj−r1)tn Qjŷ02)

2
=


√

q
∑
j=1
(e(rj−r1)tn εn,j)

2
−√

q
∑
j=1
(e(rj−r1)tn εQj ẑ02)

2


⩽ √
q
∑
j=1
(e(rj−r1)tn


∑
λi∈Λj

(φ (nσi) Pi ŷ0 + εφ (nσi) Pi ẑ0)
2
)
2

⩽ √
q
∑
j=1
(e(rj−r1)tn


∑
λi∈Λj

φ (nσi) Pi ŷ0
2
)
2

+√
q
∑
j=1
(e(rj−r1)tn


∑
λi∈Λj

εφ (nσi) Pi ẑ0
2
)
2

.

This completes the proof.

The bound (4.7) shows how a perturbation in the initial value affects the error γn and the bound (4.8) shows
how the numerical integration affects the error δ(tn).

Remark 4.2.
1. Fix c > 0. For an index n such that

n max
λi∈Λ∗∗
|σi| ⩽ c

we have
n min
λi∈Λ∗∗
|σi| (1 − g(c)) ⩽ βn ⩽ n max

λi∈Λ∗∗
|σi| (1 + g(c)) .

Moreover, for an index n such that
n max
λi∈Λ∗∗
|σi| ≪ 1

we have
n min
λi∈Λ∗∗
|σi| ⪅ βn ⪅ n max

λi∈Λ∗∗
|σi| .

This follows by Theorem 4.1.
2. For an index n such that

βn ≪ 1 (4.10)

we have
δn − γn

 ⪅ δ (tn)

by (4.7). The condition (4.10) holds when

n max
λi∈Λ∗∗
|σi| ≪ 1.

3. Assume Λ∗ ̸= {0}. For an index n such that

βnδ (tn)
γn
=

√
q
∑
j=1
(e(rj−r1)tn


∑

λi∈Λj

φ (nσi) Pi ẑ0
2
)
2

√
q
∑
j=1
(e(rj−r1)tn


∑

λi∈Λj

φ (nσi) Pi ŷ0
2
)
2
ε ≪ 1 (4.11)

we have
δn − δ (tn)

 ⪅ γn

by (4.8). The condition (4.11) holds when

Λ∗∗ ⊆ Λ∗, max
λi∈Λ∗∗

Pi ẑ0
2

Pi ŷ0
2
⋅ ε ≪ 1

or

0 ∉ Λ∗j∗ , nmaxλi∈Λ∗
j∗
|σi| ≪ 1, nmaxλi∈Λ∗∗ |σi| ≪ 1

KΛ∗∗Λ∗
j∗
e(rj∗∗ −rj∗ )tn
‖Qj∗ ŷ0‖2 ε ≪ 1

where KΛ∗∗Λ∗
j∗
is defined in (3.4).

4. Assume Λ∗∗ ̸= {0}. For an index n such that

γn
βnδ (tn)

=

√
q
∑
j=1
(e(rj−r1)tn


∑

λi∈Λj

φ (nσi) Pi ŷ0
2
)
2

√
q
∑
j=1
(e(rj−r1)tn


∑

λi∈Λj

φ (nσi) Pi ẑ0
2
)
2

ε

≪ 1 (4.12)

we have δn − δ (tn)


δ (tn)
⪅ βn

by (4.8). The condition (4.12) holds when

0 ∉ Λ∗∗j∗∗ , nmaxλi∈Λ∗ |σi| ≪ 1, nmaxλi∈Λ∗∗ |σi| ≪ 1
KΛ∗Λ∗∗

j∗∗

e(rj∗∗−rj∗ )tn‖Qj∗∗ ẑ0‖2ε
≪ 1.

5. Recall point 4. For an index n such that (4.10) and (4.12) hold we have δn ≈ δ(tn).
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6. By (4.7) or (4.8), we have
δn ⩽ γn + δ (tn) + βnδ (tn) , n = 0, 1, 2, . . .

For an index n such that (4.10) holds we have

δn ⪅ γn + δ (tn) .

7. Recall point 6. If Λ∗ = {λi}, φ(nσi) ⩾ 0, and ẑ0 = ŷ0, then

δn = γn + δ (tn) + βnδ (tn) , n = 0, 1, 2, . . .

5 Long-time behavior
In the present section, we are interested in the behavior of the error δn for large indices n. As in the previous
section, we consider separately the situations of an unperturbed initial value and of a perturbed initial value.

5.1 Unperturbed initial value

5.1.1 The long-time solution ylong

Let ylong be the solution of (1.1) with initial value Qj∗y0 rather than y0. This solution is a long-time solution as
stated in the following theorem.

Theorem 5.1. For a time t ⩾ 0 such that

√
q
∑

j=j∗+1
(e(rj−rj∗ )t

Qjŷ02
Qj∗ ŷ02

)
2

≪ 1 (5.1)

we have
y(t) ≈ ylong(t).

Proof. For t ⩾ 0, we have

y (t) =
q
∑
j=j∗
∑
λi∈Λj

eλi tPiy0

and
ylong (t) = ∑

λi∈Λj∗

eλi tPiy0.

Then

 y (t) − y
long (t)

2
2

ylong (t)

2
2

=



q
∑

j=j∗+1
∑

λi∈Λj

eλi tPiy0


2

2

∑

λi∈Λj∗
eλi tPiy0



2

2

=

q
∑

j=j∗+1
(erj t Qjy02)

2

(erj∗ t Qj∗y02)
2 =

q
∑

j=j∗+1
(e(rj−rj∗ )t

Qjy02
Qj∗y02

)
2

.

This completes the proof.

Remark 5.1.
1. Theorem 5.1 says that y (t) − y

long (t)2
ylong (t)

2
≪ 1 for a sufficiently large t.

In addition, by looking at the proof of Theorem 5.1, we see that
y (t) − y

long (t)2
ylong (t)

2
→ 0, t → +∞.
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2. For Λ∗ \ Λ∗j∗ ̸= ⌀, the condition (5.1) holds when

e(rm∗−rj∗ )tn
√1 − Qj∗ ŷ0

2
2

Qj∗ ŷ02
≪ 1

where
m∗ := min {j ∈ {j∗ + 1, . . . , q} : Λ∗j ̸= ⌀}. (5.2)

5.1.2 The error γlongn

Let γlongn be the error γn relevant to the long-time solution ylong. By considering the formula (2.1) with initial
value Qj∗y0 rather than y0, we obtain

γlongn =
εn,j∗
Qj∗ ŷ02

, n = 0, 1, 2, . . .

with
εn,j∗ =

∑

λi∈Λ∗
j∗

φ (nσi) Pi ŷ0
2
.

Observe that εn,j∗/‖Qj∗ ŷ0‖2 is also obtained by considering, in the formula (2.1) with initial value y0, only the
leading exponential terms e(rj∗−r1)tn εn,j∗ at the numerator and e(rj∗−r1)tn‖Qj∗ ŷ0‖2 at the denominator.

Next theorem gives lower and upper bounds for the error γlongn .

Theorem 5.2. Fix c ⩾ 0. For an index n such that

n max
λi∈Λ∗

j∗
|σi| ⩽ c (5.3)

we have
n min
λi∈Λ∗

j∗
|σi| (1 − g(c)) ⩽ γlongn ⩽ n max

λi∈Λ∗
j∗
|σi| (1 + g(c)) . (5.4)

Theorem5.2 is identical to Theorem4.1 excepts for Λ∗ replacedwith its subset Λ∗j∗ constituted by the rightmost
eigenvalue in Λ∗. The proof proceeds similarly to the proof of Theorem 4.1.

Remark 5.2.
1. For an index n such that

n max
λi∈Λ∗

j∗
|σi| ≪ 1

we have
n min
λi∈Λ∗

j∗
|σi| ⪅ γlongn ⪅ n max

λi∈Λ∗
j∗
|σi| .

2. Recall point 2 in Remark 3.1. If Λ∗j∗ is constituted by a single real eigenvalue λi or by a single pair λi , λi of
complex conjugate eigenvalues and the approximant R has real coefficients, then

n |σi| (1 − g(c)) ⩽ γlongn ⩽ n |σi| (1 + g(c))

whenever
n |σi| ⩽ c

and
γlongn ≈ n |σi|

whenever
n |σi| ≪ 1.
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6. By (4.7) or (4.8), we have
δn ⩽ γn + δ (tn) + βnδ (tn) , n = 0, 1, 2, . . .

For an index n such that (4.10) holds we have

δn ⪅ γn + δ (tn) .

7. Recall point 6. If Λ∗ = {λi}, φ(nσi) ⩾ 0, and ẑ0 = ŷ0, then

δn = γn + δ (tn) + βnδ (tn) , n = 0, 1, 2, . . .

5 Long-time behavior
In the present section, we are interested in the behavior of the error δn for large indices n. As in the previous
section, we consider separately the situations of an unperturbed initial value and of a perturbed initial value.

5.1 Unperturbed initial value

5.1.1 The long-time solution ylong

Let ylong be the solution of (1.1) with initial value Qj∗y0 rather than y0. This solution is a long-time solution as
stated in the following theorem.

Theorem 5.1. For a time t ⩾ 0 such that

√
q
∑

j=j∗+1
(e(rj−rj∗ )t

Qjŷ02
Qj∗ ŷ02

)
2

≪ 1 (5.1)

we have
y(t) ≈ ylong(t).

Proof. For t ⩾ 0, we have

y (t) =
q
∑
j=j∗
∑
λi∈Λj

eλi tPiy0

and
ylong (t) = ∑

λi∈Λj∗

eλi tPiy0.

Then

 y (t) − y
long (t)

2
2

ylong (t)

2
2

=



q
∑

j=j∗+1
∑

λi∈Λj

eλi tPiy0


2

2

∑

λi∈Λj∗
eλi tPiy0



2

2

=

q
∑

j=j∗+1
(erj t Qjy02)

2

(erj∗ t Qj∗y02)
2 =

q
∑

j=j∗+1
(e(rj−rj∗ )t

Qjy02
Qj∗y02

)
2

.

This completes the proof.

Remark 5.1.
1. Theorem 5.1 says that y (t) − y

long (t)2
ylong (t)

2
≪ 1 for a sufficiently large t.

In addition, by looking at the proof of Theorem 5.1, we see that
y (t) − y

long (t)2
ylong (t)

2
→ 0, t → +∞.

2. For Λ∗ \ Λ∗j∗ ̸= ⌀, the condition (5.1) holds when

e(rm∗−rj∗ )tn
√1 − Qj∗ ŷ0

2
2

Qj∗ ŷ02
≪ 1

where
m∗ := min {j ∈ {j∗ + 1, . . . , q} : Λ∗j ̸= ⌀}. (5.2)

5.1.2 The error γlongn

Let γlongn be the error γn relevant to the long-time solution ylong. By considering the formula (2.1) with initial
value Qj∗y0 rather than y0, we obtain

γlongn =
εn,j∗
Qj∗ ŷ02

, n = 0, 1, 2, . . .

with
εn,j∗ =

∑

λi∈Λ∗
j∗

φ (nσi) Pi ŷ0
2
.

Observe that εn,j∗/‖Qj∗ ŷ0‖2 is also obtained by considering, in the formula (2.1) with initial value y0, only the
leading exponential terms e(rj∗−r1)tn εn,j∗ at the numerator and e(rj∗−r1)tn‖Qj∗ ŷ0‖2 at the denominator.

Next theorem gives lower and upper bounds for the error γlongn .

Theorem 5.2. Fix c ⩾ 0. For an index n such that

n max
λi∈Λ∗

j∗
|σi| ⩽ c (5.3)

we have
n min
λi∈Λ∗

j∗
|σi| (1 − g(c)) ⩽ γlongn ⩽ n max

λi∈Λ∗
j∗
|σi| (1 + g(c)) . (5.4)

Theorem5.2 is identical to Theorem4.1 excepts for Λ∗ replacedwith its subset Λ∗j∗ constituted by the rightmost
eigenvalue in Λ∗. The proof proceeds similarly to the proof of Theorem 4.1.

Remark 5.2.
1. For an index n such that

n max
λi∈Λ∗

j∗
|σi| ≪ 1

we have
n min
λi∈Λ∗

j∗
|σi| ⪅ γlongn ⪅ n max

λi∈Λ∗
j∗
|σi| .

2. Recall point 2 in Remark 3.1. If Λ∗j∗ is constituted by a single real eigenvalue λi or by a single pair λi , λi of
complex conjugate eigenvalues and the approximant R has real coefficients, then

n |σi| (1 − g(c)) ⩽ γlongn ⩽ n |σi| (1 + g(c))

whenever
n |σi| ⩽ c

and
γlongn ≈ n |σi|

whenever
n |σi| ≪ 1.

15



3. Recall point 3 in Remark 3.2. In (5.3) and (5.4) we can write

n max
λi∈Λ∗

j∗
|σi| = tnρΛ∗

j∗
EΛ∗

j∗

n min
λi∈Λ∗

j∗
|σi| = tnρΛ∗

j∗
FΛ∗

j∗

where

EΛ∗
j∗
= |C| (hρΛ∗

j∗
)
l
(1 + O (hρΛ∗

j∗
))

FΛ∗
j∗
= (

µΛ∗
j∗

ρΛ∗
j∗

)
l+1

|C| (hρΛ∗
j∗
)
l
(1 + O (hρΛ∗

j∗
))

as hρΛ∗
j∗
→ 0.

4. If Λ∗j∗ = {0}, then
γlongn = 0, n = 0, 1, 2, . . .

5. When Λ∗j∗ ̸= {0}, Theorem 5.2 can be improved as follows. Fix c ⩾ 0. For an index n such that

n max
λi∈Λ∗

j∗
|σi| ⩽ c

we have
n min
λi∈Λ∗

j∗ \{0}
|σi| (1 − g(c)) Blong ⩽ γlongn ⩽ n max

λi∈Λ∗
j∗
|σi| (1 + g(c)) Blong

where

Blong =
√ ∑

λi∈Λ∗
j∗ \{0}

Pi ŷ0

2
2

Qj∗ ŷ02
⩽ 1.

This result, unlike Theorem 5.2, gives a nonzero lower bound for γlongn in the case 0 ∈ Λ∗j∗ and Λ
∗
j∗ ̸= {0}.

5.1.3 Long-time behavior of the error γn

Since y(t) ≈ ylong(t) holds in the long-time and the error γn for ylong is γlongn , an important question is:

Does γn ≈ γlongn hold in the long-time? (5.5)

Regarding the meaning of ‘long-time’, observe that it is not of interest to consider what happens asymptot-
ically as n → ∞, since γn becomes not small for a sufficiently large n: we are interested to have γn ≈ γlongn
when γn is small. See also point 6 in Remark 4.1.

About the question (5.5), we have the following result.

Theorem 5.3. Assume Λ∗ \ Λ∗j∗ ̸= ⌀ and 0 ∉ Λ
∗
j∗ . Fix cj∗ ⩾ 0 with cj∗ such that g (cj∗) < 1, i.e., cj∗ < 1.2564

(remind point 1 in Remark 3.2). Fix cj ⩾ 0 for j = j∗ + 1, . . . , q such that Λ∗j ̸= ⌀.
For an index n such that

n max
λi∈Λ∗

j∗
|σi| ⩽ cj∗

nmax
λi∈Λ∗

j

|σi| ⩽ cj , j = j∗ + 1, . . . , q, Λ∗j ̸= ⌀

q
∑

j=j∗+1
(e(rj−rj∗ )tn

Qjŷ02
Qj∗ ŷ02

)
2

≪ 1 (5.6)

q
∑

j=j∗+1
Λ∗
j ̸=⌀

(e(rj−rj∗ )tn
1 + g(cj)
1 − g(cj∗ )

KΛ∗
j Λ

∗
j∗

Qjŷ02
Qj∗ ŷ02

)
2

≪ 1
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where KΛ∗
j Λ

∗
j∗
is defined in (3.4) and

KΛ∗
j Λ

∗
j∗
= (

ρΛ∗
j

µΛ∗
j∗

)
l+1

(1 + O (hρΛ∗ )) , hρΛ∗ → 0

holds, we have
γn ≈ γlongn .

Proof. For n = 0, 1, 2, . . ., we write

γn = γlongn

√1 +
q
∑

j=j∗+1
(e(rj−rj∗ )tn εn,j

εn,j∗ )
2

√1 +
q
∑

j=j∗+1
(e(rj−rj∗ )tn ‖Qj ŷ0‖2

‖Qj∗ ŷ0‖2
)
2
= γlongn (1 + en)

where

|en| =



√1 +
q
∑

j=j∗+1
(e(rj−rj∗ )tn εn,j

εn,j∗ )
2

√1 +
q
∑

j=j∗+1
(e(rj−rj∗ )tn ‖Qj ŷ0‖2

‖Qj∗ ŷ0‖2
)
2
− 1



⩽
1
2
max
{
{
{

q
∑

j=j∗+1
(e(rj−rj∗ )tn

εn,j
εn,j∗
)
2
,

q
∑

j=j∗+1
(e(rj−rj∗ )tn

Qj ŷ02
Qj∗ ŷ02

)
2}
}
}
.

Now, for j = j∗ + 1, . . . , q such that Λ∗j ̸= ⌀, we have

εn,j
εn,j∗
=


∑
i∈Λ∗

j

φ (nσi) Pi ŷ0
2


∑

i∈Λ∗
j∗

φ (nσi) Pi ŷ0
2

⩽

max
λi∈Λ∗

j

φ (nσi)

Qjŷ02

min
λi∈Λ∗

j∗

φ (nσi)

Qj∗ ŷ02

⩽
1 + g(cj)
1 − g(cj∗ )

KΛ∗
j Λ

∗
j∗

Qjŷ02
Qj∗ ŷ02

.

This completes the proof.

In the case cj∗ = cj = c, where c > 0 is such that g(c) < 1, the condition (5.6) becomes

nmaxλi∈Λ∗ |σi| ⩽ c
q
∑

j=j∗+1
(e(rj−rj∗ )tn

Qj ŷ02
Qj∗ ŷ02

)
2

≪ 1

(
1 + g(c)
1 − g(c))

2 q
∑

j=j∗+1
Λ∗
j ̸=⌀

(e(rj−rj∗ )tn KΛ∗
j Λ

∗
j∗

Qjŷ02
Qj∗ ŷ02

)
2

≪ 1. (5.7)

Theorem 5.3 says that γn ≈ γlongn holds in the long-time: see points 3 and 4 in Remark 5.3 below. In other
words, the contributions to the error γn coming from non-rightmost eigenvalues in Λ∗ vanish in the long-time.

Remark 5.3.
1. For an index n such that

nmax
λi∈Λ∗
|σi| ≪ 1

q
∑

j=j∗+1
(e(rj−rj∗ )tn

Qj ŷ02
Qj∗ ŷ02

)
2

≪ 1 (5.8)

q
∑

j=j∗+1
Λ∗
j ̸=⌀

(e(rj−rj∗ )tn KΛ∗
j Λ

∗
j∗

Qjŷ02
Qj∗ ŷ02

)
2

≪ 1
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3. Recall point 3 in Remark 3.2. In (5.3) and (5.4) we can write

n max
λi∈Λ∗

j∗
|σi| = tnρΛ∗

j∗
EΛ∗

j∗

n min
λi∈Λ∗

j∗
|σi| = tnρΛ∗

j∗
FΛ∗

j∗

where

EΛ∗
j∗
= |C| (hρΛ∗

j∗
)
l
(1 + O (hρΛ∗

j∗
))

FΛ∗
j∗
= (

µΛ∗
j∗

ρΛ∗
j∗

)
l+1

|C| (hρΛ∗
j∗
)
l
(1 + O (hρΛ∗

j∗
))

as hρΛ∗
j∗
→ 0.

4. If Λ∗j∗ = {0}, then
γlongn = 0, n = 0, 1, 2, . . .

5. When Λ∗j∗ ̸= {0}, Theorem 5.2 can be improved as follows. Fix c ⩾ 0. For an index n such that

n max
λi∈Λ∗

j∗
|σi| ⩽ c

we have
n min
λi∈Λ∗

j∗ \{0}
|σi| (1 − g(c)) Blong ⩽ γlongn ⩽ n max

λi∈Λ∗
j∗
|σi| (1 + g(c)) Blong

where

Blong =
√ ∑

λi∈Λ∗
j∗ \{0}

Pi ŷ0

2
2

Qj∗ ŷ02
⩽ 1.

This result, unlike Theorem 5.2, gives a nonzero lower bound for γlongn in the case 0 ∈ Λ∗j∗ and Λ
∗
j∗ ̸= {0}.

5.1.3 Long-time behavior of the error γn

Since y(t) ≈ ylong(t) holds in the long-time and the error γn for ylong is γlongn , an important question is:

Does γn ≈ γlongn hold in the long-time? (5.5)

Regarding the meaning of ‘long-time’, observe that it is not of interest to consider what happens asymptot-
ically as n → ∞, since γn becomes not small for a sufficiently large n: we are interested to have γn ≈ γlongn
when γn is small. See also point 6 in Remark 4.1.

About the question (5.5), we have the following result.

Theorem 5.3. Assume Λ∗ \ Λ∗j∗ ̸= ⌀ and 0 ∉ Λ
∗
j∗ . Fix cj∗ ⩾ 0 with cj∗ such that g (cj∗) < 1, i.e., cj∗ < 1.2564

(remind point 1 in Remark 3.2). Fix cj ⩾ 0 for j = j∗ + 1, . . . , q such that Λ∗j ̸= ⌀.
For an index n such that

n max
λi∈Λ∗

j∗
|σi| ⩽ cj∗

nmax
λi∈Λ∗

j

|σi| ⩽ cj , j = j∗ + 1, . . . , q, Λ∗j ̸= ⌀

q
∑

j=j∗+1
(e(rj−rj∗ )tn

Qjŷ02
Qj∗ ŷ02

)
2

≪ 1 (5.6)

q
∑

j=j∗+1
Λ∗
j ̸=⌀

(e(rj−rj∗ )tn
1 + g(cj)
1 − g(cj∗ )

KΛ∗
j Λ

∗
j∗

Qjŷ02
Qj∗ ŷ02

)
2

≪ 1

where KΛ∗
j Λ

∗
j∗
is defined in (3.4) and

KΛ∗
j Λ

∗
j∗
= (

ρΛ∗
j

µΛ∗
j∗

)
l+1

(1 + O (hρΛ∗ )) , hρΛ∗ → 0

holds, we have
γn ≈ γlongn .

Proof. For n = 0, 1, 2, . . ., we write

γn = γlongn

√1 +
q
∑

j=j∗+1
(e(rj−rj∗ )tn εn,j

εn,j∗ )
2

√1 +
q
∑

j=j∗+1
(e(rj−rj∗ )tn ‖Qj ŷ0‖2

‖Qj∗ ŷ0‖2
)
2
= γlongn (1 + en)

where

|en| =



√1 +
q
∑

j=j∗+1
(e(rj−rj∗ )tn εn,j

εn,j∗ )
2

√1 +
q
∑

j=j∗+1
(e(rj−rj∗ )tn ‖Qj ŷ0‖2

‖Qj∗ ŷ0‖2
)
2
− 1



⩽
1
2
max
{
{
{

q
∑

j=j∗+1
(e(rj−rj∗ )tn

εn,j
εn,j∗
)
2
,

q
∑

j=j∗+1
(e(rj−rj∗ )tn

Qj ŷ02
Qj∗ ŷ02

)
2}
}
}
.

Now, for j = j∗ + 1, . . . , q such that Λ∗j ̸= ⌀, we have

εn,j
εn,j∗
=


∑
i∈Λ∗

j

φ (nσi) Pi ŷ0
2


∑

i∈Λ∗
j∗

φ (nσi) Pi ŷ0
2

⩽

max
λi∈Λ∗

j

φ (nσi)

Qjŷ02

min
λi∈Λ∗

j∗

φ (nσi)

Qj∗ ŷ02

⩽
1 + g(cj)
1 − g(cj∗ )

KΛ∗
j Λ

∗
j∗

Qjŷ02
Qj∗ ŷ02

.

This completes the proof.

In the case cj∗ = cj = c, where c > 0 is such that g(c) < 1, the condition (5.6) becomes

nmaxλi∈Λ∗ |σi| ⩽ c
q
∑

j=j∗+1
(e(rj−rj∗ )tn

Qj ŷ02
Qj∗ ŷ02

)
2

≪ 1

(
1 + g(c)
1 − g(c))

2 q
∑

j=j∗+1
Λ∗
j ̸=⌀

(e(rj−rj∗ )tn KΛ∗
j Λ

∗
j∗

Qjŷ02
Qj∗ ŷ02

)
2

≪ 1. (5.7)

Theorem 5.3 says that γn ≈ γlongn holds in the long-time: see points 3 and 4 in Remark 5.3 below. In other
words, the contributions to the error γn coming from non-rightmost eigenvalues in Λ∗ vanish in the long-time.

Remark 5.3.
1. For an index n such that

nmax
λi∈Λ∗
|σi| ≪ 1

q
∑

j=j∗+1
(e(rj−rj∗ )tn

Qj ŷ02
Qj∗ ŷ02

)
2

≪ 1 (5.8)

q
∑

j=j∗+1
Λ∗
j ̸=⌀

(e(rj−rj∗ )tn KΛ∗
j Λ

∗
j∗

Qjŷ02
Qj∗ ŷ02

)
2

≪ 1
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we have γn ≈ γlongn .
2. For an index n such that (5.7) holds, we have γn ≈ γlongn and

n min
λi∈Λ∗

j∗
|σi| (1 − g(c)) ⩽ γlongn ⩽ n max

λi∈Λ∗
j∗
|σi| (1 + g(c)) .

Hence
n min
λi∈Λ∗

j∗
|σi| (1 − g (c)) ⪅ γn ⪅ n max

λi∈Λ∗
j∗
|σi| (1 + g (c))

and the lower and upper bounds here are tighter than the lower and upper bounds in (4.2): Λ∗ is replaced
with its subset Λ∗j∗ constituted by the rightmost eigenvalues in Λ∗.
For an index n such that (5.8) holds, we have γn ≈ γlongn and

n min
λi∈Λ∗

j∗
|σi| ⪅ γlongn ⪅ n max

λi∈Λ∗
j∗
|σi| .

Hence
n min
λi∈Λ∗

j∗
|σi| ⪅ γn ⪅ n max

λi∈Λ∗
j∗
|σi| .

3. In (5.7) the index n should be sufficiently small in order to have the first condition satisfied but sufficiently
large in order to have the second and third conditions satisfied. For indices n such that

kc ⩽ nmax
λi∈Λ∗
|σi| ⩽ c

where 0 < k < 1, the exponentials terms e(rj−rj∗ )tn in the second and third conditions satisfy

e (rj−rj∗ )tn ⩽ ekc h(rj−rj∗ )/maxλi∈Λ∗ |σi |

and for the exponent in the right-hand side, we have

kc
h(rj − rj∗ )
max
λi∈Λ∗
|σi|
=
rj − rj∗
ρΛ∗

kτ

where τ is given in (4.4). Hence, if

kc ⩽ nmax
λi∈Λ∗
|σi| ⩽ c

q
∑

j=j∗+1
(e(rj−rj∗ )/(ρΛ∗ )kτ

Qjŷ02
Qj∗ ŷ02

)
2

≪ 1

(
1 + g(c)
1 − g(c))

2 q
∑

j=j∗+1
Λ∗
j ̸=⌀

(e(rj−rj∗ )/(ρΛ∗ )kτKΛ∗
j Λ

∗
j∗

Qjŷ02
Qj∗ ŷ02

)
2

≪ 1

then γn ≈ γlongn . By assuming kτ ≫ 1 (remind τ → +∞, as hρΛ∗ → 0), it is expected to have in (5.7) the
second and the third conditions satisfied for large indices satisfying the first condition.
In the next point 4, we provide an interval I such that γn ≈ γlongn for tnρΛ∗ ∈ I.

4. Suppose hρΛ∗ sufficiently small so that

KΛ∗
j Λ

∗
j∗
⩽ 2(

ρΛ∗
j

µΛ∗
j∗

)
l+1

, j = j∗ + 1, . . . , q such that Λ∗j ̸= ⌀

holds. Fix c > 0 such that g(c) < 1. Theorem 5.3 says that for

τ0 ⩽ tnρΛ∗ ⩽ τ
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where τ is given in (4.4) and τ0 ⩾ 0 is such that

q
∑

j=j∗+1
(e(rj−rj∗ )/(ρΛ∗ )τ0

Qjŷ02
Qj∗ ŷ02

)
2

≪ 1

(21 + g (c)1 − g (c)
)
2 q
∑

j=j∗+1
Λ∗
j ̸=⌀

(e(rj−rj∗ )/(ρΛ∗ )τ0 (
ρΛ∗

j

µΛ∗
j∗

)
l+1 Qjŷ02
Qj∗ ŷ02

)

2

≪ 1

we have γn ≈ γlongn . Observe that τ → +∞, as hρΛ∗ → 0, and τ0 can be chosen independently of hρΛ∗ .
We conclude that, for a dimensionless time tnρΛ∗ in the interval [τ0, τ], the contributions to the relative
error γn given by errors σi with λi ∈ Λ∗ \ Λ∗j∗ , i.e., the contributions given by non-rightmost eigenvalues
in Λ∗, vanish. Of course, this is coherent with the fact that, in the long-time, the solution y becomes the
long-time solution ylong, which depends only on the rightmost eigenvalues of Λ∗, namely the eigenvalues
in Λ∗j∗ .

5. The second and third conditions in (5.7) hold when

(e(rm∗−rj∗ )tn
√1 − Qj∗ ŷ0

2
2

Qj∗ ŷ02
)

2

≪ 1

(
1 + g (c)
1 − g(c) )

2
(e(rm∗−rj∗ )tn KΛ∗\Λ∗

j∗Λ
∗
j∗

√1 − Qj∗ ŷ0
2
2

Qj∗ ŷ02
)

2

≪ 1

where m∗ is given in (5.2) and KΛ∗\Λ∗
j∗Λ

∗
j∗
is defined in (3.4) and

KΛ∗\Λ∗
j∗Λ

∗
j∗
= (

ρΛ∗\Λ∗
j∗

µΛ∗
j∗

)
l+1

(1 + O (hρΛ∗ )) , hρΛ∗ → 0

holds.
6. Theorem 5.3 assumes Λ∗ \ Λ∗j∗ ̸= ⌀ and 0 ∉ Λ

∗
j∗ . If Λ

∗ \ Λ∗j∗ = ⌀, then

γn = γlongn , n = 0, 1, 2, . . .

If Λ∗ \ Λ∗j∗ ̸= ⌀ and Λ
∗
j∗ = {0}, then

γlongn = 0, n = 0, 1, 2, . . .

In this case, by considering in the formula (2.1) only the leading exponential terms e(rj∗1 −r1)tn εn,j∗1 at the
numerator (j∗1 defined in (4.6)) and e(rj

∗−r1)tn ⋅ Qj∗ ŷ02 at the denominator, we obtain

e(rj∗1 −rj∗)tn εn,j∗1
Qj∗ ŷ02

, n = 0, 1, 2, . . .

which is exponentially decreasing in time.
For Λ∗ \ Λ∗j∗ ̸= ⌀ and Λ∗j∗ ̸= {0}, an improved version of theorem holds with the fourth condition in (5.6)
replaced by

q
∑

j=j∗+1
Λ∗
j ̸=⌀

(e(rj−rj∗ )tn
1 + g(cj)
1 − g(cj∗ )

KΛ∗
j Λ

∗
j∗ \{0}

√ ∑
λi∈Λ∗

j \{0}

Pi ŷ0

2
2

√ ∑
λi∈Λ∗

j∗ \{0}

Pi ŷ0

2
2

)

2

≪ 1
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we have γn ≈ γlongn .
2. For an index n such that (5.7) holds, we have γn ≈ γlongn and

n min
λi∈Λ∗

j∗
|σi| (1 − g(c)) ⩽ γlongn ⩽ n max

λi∈Λ∗
j∗
|σi| (1 + g(c)) .

Hence
n min
λi∈Λ∗

j∗
|σi| (1 − g (c)) ⪅ γn ⪅ n max

λi∈Λ∗
j∗
|σi| (1 + g (c))

and the lower and upper bounds here are tighter than the lower and upper bounds in (4.2): Λ∗ is replaced
with its subset Λ∗j∗ constituted by the rightmost eigenvalues in Λ∗.
For an index n such that (5.8) holds, we have γn ≈ γlongn and

n min
λi∈Λ∗

j∗
|σi| ⪅ γlongn ⪅ n max

λi∈Λ∗
j∗
|σi| .

Hence
n min
λi∈Λ∗

j∗
|σi| ⪅ γn ⪅ n max

λi∈Λ∗
j∗
|σi| .

3. In (5.7) the index n should be sufficiently small in order to have the first condition satisfied but sufficiently
large in order to have the second and third conditions satisfied. For indices n such that

kc ⩽ nmax
λi∈Λ∗
|σi| ⩽ c

where 0 < k < 1, the exponentials terms e(rj−rj∗ )tn in the second and third conditions satisfy

e (rj−rj∗ )tn ⩽ ekc h(rj−rj∗ )/maxλi∈Λ∗ |σi |

and for the exponent in the right-hand side, we have

kc
h(rj − rj∗ )
max
λi∈Λ∗
|σi|
=
rj − rj∗
ρΛ∗

kτ

where τ is given in (4.4). Hence, if

kc ⩽ nmax
λi∈Λ∗
|σi| ⩽ c

q
∑

j=j∗+1
(e(rj−rj∗ )/(ρΛ∗ )kτ

Qjŷ02
Qj∗ ŷ02

)
2

≪ 1

(
1 + g(c)
1 − g(c))

2 q
∑

j=j∗+1
Λ∗
j ̸=⌀

(e(rj−rj∗ )/(ρΛ∗ )kτKΛ∗
j Λ

∗
j∗

Qjŷ02
Qj∗ ŷ02

)
2

≪ 1

then γn ≈ γlongn . By assuming kτ ≫ 1 (remind τ → +∞, as hρΛ∗ → 0), it is expected to have in (5.7) the
second and the third conditions satisfied for large indices satisfying the first condition.
In the next point 4, we provide an interval I such that γn ≈ γlongn for tnρΛ∗ ∈ I.

4. Suppose hρΛ∗ sufficiently small so that

KΛ∗
j Λ

∗
j∗
⩽ 2(

ρΛ∗
j

µΛ∗
j∗

)
l+1

, j = j∗ + 1, . . . , q such that Λ∗j ̸= ⌀

holds. Fix c > 0 such that g(c) < 1. Theorem 5.3 says that for

τ0 ⩽ tnρΛ∗ ⩽ τ

where τ is given in (4.4) and τ0 ⩾ 0 is such that

q
∑

j=j∗+1
(e(rj−rj∗ )/(ρΛ∗ )τ0

Qjŷ02
Qj∗ ŷ02

)
2

≪ 1

(21 + g (c)1 − g (c)
)
2 q
∑

j=j∗+1
Λ∗
j ̸=⌀

(e(rj−rj∗ )/(ρΛ∗ )τ0 (
ρΛ∗

j

µΛ∗
j∗

)
l+1 Qjŷ02
Qj∗ ŷ02

)

2

≪ 1

we have γn ≈ γlongn . Observe that τ → +∞, as hρΛ∗ → 0, and τ0 can be chosen independently of hρΛ∗ .
We conclude that, for a dimensionless time tnρΛ∗ in the interval [τ0, τ], the contributions to the relative
error γn given by errors σi with λi ∈ Λ∗ \ Λ∗j∗ , i.e., the contributions given by non-rightmost eigenvalues
in Λ∗, vanish. Of course, this is coherent with the fact that, in the long-time, the solution y becomes the
long-time solution ylong, which depends only on the rightmost eigenvalues of Λ∗, namely the eigenvalues
in Λ∗j∗ .

5. The second and third conditions in (5.7) hold when

(e(rm∗−rj∗ )tn
√1 − Qj∗ ŷ0

2
2

Qj∗ ŷ02
)

2

≪ 1

(
1 + g (c)
1 − g(c) )

2
(e(rm∗−rj∗ )tn KΛ∗\Λ∗

j∗Λ
∗
j∗

√1 − Qj∗ ŷ0
2
2

Qj∗ ŷ02
)

2

≪ 1

where m∗ is given in (5.2) and KΛ∗\Λ∗
j∗Λ

∗
j∗
is defined in (3.4) and

KΛ∗\Λ∗
j∗Λ

∗
j∗
= (

ρΛ∗\Λ∗
j∗

µΛ∗
j∗

)
l+1

(1 + O (hρΛ∗ )) , hρΛ∗ → 0

holds.
6. Theorem 5.3 assumes Λ∗ \ Λ∗j∗ ̸= ⌀ and 0 ∉ Λ

∗
j∗ . If Λ

∗ \ Λ∗j∗ = ⌀, then

γn = γlongn , n = 0, 1, 2, . . .

If Λ∗ \ Λ∗j∗ ̸= ⌀ and Λ
∗
j∗ = {0}, then

γlongn = 0, n = 0, 1, 2, . . .

In this case, by considering in the formula (2.1) only the leading exponential terms e(rj∗1 −r1)tn εn,j∗1 at the
numerator (j∗1 defined in (4.6)) and e(rj

∗−r1)tn ⋅ Qj∗ ŷ02 at the denominator, we obtain

e(rj∗1 −rj∗)tn εn,j∗1
Qj∗ ŷ02

, n = 0, 1, 2, . . .

which is exponentially decreasing in time.
For Λ∗ \ Λ∗j∗ ̸= ⌀ and Λ∗j∗ ̸= {0}, an improved version of theorem holds with the fourth condition in (5.6)
replaced by

q
∑

j=j∗+1
Λ∗
j ̸=⌀

(e(rj−rj∗ )tn
1 + g(cj)
1 − g(cj∗ )

KΛ∗
j Λ

∗
j∗ \{0}

√ ∑
λi∈Λ∗

j \{0}

Pi ŷ0

2
2

√ ∑
λi∈Λ∗

j∗ \{0}

Pi ŷ0

2
2

)

2

≪ 1
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where KΛ∗
j Λ

∗
j∗ \{0} is defined in (3.4) and

KΛ∗
j Λ

∗
j∗ \{0} = (

ρΛ∗
j

µΛ∗
j∗ \{0}
)
l+1

(1 + O (hρΛ∗ )) , hρΛ∗ → 0

holds. This result can be used for the case 0 ∈ Λ∗j∗ and Λ
∗
j∗ ̸= {0}.

5.2 Perturbed initial value

In the previous subsection we have described the long-time behavior of the relative error γn due to the sole
approximant. Now, we describe the long-time behavior of the relative error δ (t) due to the sole perturbation
in the initial value.

5.2.1 Long-time behavior of the error δ(t)

By considering in the formula (1.4) only the leading exponential terms e(rj∗∗−r1)tn Qj∗∗ ẑ02 at the numerator
and e(rj∗−r1)tn Qj∗ ŷ02 at the denominator, we define

δlong (t) := e(rj∗∗−rj∗ )t
Qj∗∗ ẑ02
Qj∗ ŷ02

ε, t ⩾ 0.

The error δlong (t) is exponentially decreasing in t when j∗ < j∗∗, exponentially increasing when j∗ > j∗∗

and constant
δlong (t) = δlong :=

Qj∗ ẑ02
Qj∗ ŷ02

ε, t ⩾ 0

when j∗ = j∗∗. In the generic situation j∗ = j∗∗ = 1, we have

δlong (t) = δlong =
Q1 ẑ02
Q1 ŷ02

ε, t ⩾ 0.

Next theorem describe the long-time behavior of the relative error δ (t).

Theorem 5.4. For t ⩾ 0 such that
q
∑

j=j∗+1
(e(rj−rj∗ )t

Qj ŷ02
Qj∗ ŷ02

)
2

≪ 1

q
∑

j=j∗∗+1
(e(rj−rj∗∗ )t

Qj ẑ02
Qj∗∗ ẑ02

)
2

≪ 1 (5.9)

we have
δ (t) ≈ δlong (t) .

Proof. For t ⩾ 0, we have

δ (t) = δlong (t)
√1 +

q
∑

j=j∗∗+1
(e(rj−rj∗∗ )t ‖Qj ẑ0‖2

‖Qj∗∗ ẑ0‖2
)
2

√1 +
q
∑

j=j∗+1
(e(rj−rj∗ )t ‖Qj ŷ0‖2

‖Qj∗ ŷ0‖2
)
2

= δlong (t) (1 + e(t))

with

|e(t)| ⩽
1
2
max
{
{
{

q
∑

j=j∗∗+1
(e(rj−rj∗ )t

Qj ẑ02
Qj∗∗ ẑ02

)
2

,
q
∑

j=j∗+1
(e(rj−rj∗ )t

Qjŷ02
Qj∗ ŷ02

)
2}
}
}
.

This completes the proof.
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Remark 5.4.
1. Theorem 5.4 says that

δ (t) ≈ δlong (t) for a sufficiently large t.

In addition, by looking at the proof of the theorem, we see that

δ (t)
δlong (t)

→ 1, t → +∞.

On the other hand, Theorem 5.3 about the error γn says neither
γn
γlongn
→ 1, n →∞

nor
γn ≈ γlongn for a sufficiently large index n.

In fact, Theorem 5.3 cannot give asymptotic results as n →∞ because of the first and second conditions
in (5.6), which require to take n sufficiently small.

2. For Λ∗ \ Λ∗j∗ ̸= ⌀ and Λ
∗∗ \ Λ∗∗j∗∗ ̸= ⌀, the condition (5.9) holds when

(e(rm∗−rj∗ )tn
√1 − Qj∗ ŷ0

2
2

Qj∗ ŷ02
)

2

≪ 1

(e(rm∗∗−rj∗∗ )tn
√1 − Qj∗∗ ẑ0

2
2

Qj∗∗ ẑ02
)

2

≪ 1

where m∗ is defined in (5.2) and similarly we have

m∗∗ = min { j ∈ {j∗∗ + 1, . . . , q} : Λ∗∗j ̸= 0 }.

5.2.2 Long-time behavior of the error δn

Theorem4.2 and the consequent points 2, 3, 4, and 6 in Remark 4.2 describe the growth of the error δn in terms
of the errors γn, βn, and δ(tn). The long-time behaviors of the errors γn and βn are described in Theorem 5.3
(remind that βn in (4.9) is the error γn for ŷ0 = ẑ0) and the long-time behavior of the error δ(tn) is described
in Theorem 5.4.

In sight of this, we can have information about the long-time behavior of δn. Below, in the next remark,
we show what can be said by means of points 2, 3, and 4 in Remark 4.2.

Remark 5.5. Assume Λ∗ \ Λ∗j∗ ̸= ⌀, 0 ∉ Λ
∗
j∗ , Λ
∗∗ \ Λ∗j∗∗ ̸= ⌀, and 0 ∉ Λ

∗∗
j∗∗ . Consider an index n such that

nmax
λi∈Λ∗
|σi| ≪ 1, n max

λi∈Λ∗∗
|σi| ≪ 1

q
∑

j=j∗+1
(e(rj−rj∗ )tn

Qjŷ02
Qj∗ ŷ02

)
2

≪ 1

q
∑

j=j∗+1
Λ∗
j ̸=⌀

(e(rj−rj∗ )tn KΛ∗
j Λ

∗
j∗

Qj ŷ02
Qj∗ ŷ02

)
2

≪ 1

q
∑

j=j∗∗+1
(e(rj−rj∗∗ )tn

Qj ẑ02
Qj∗∗ ẑ02

)
2

≪ 1

q
∑

j=j∗∗+1
Λ∗∗
j ̸=⌀

(e(rj−rj∗∗ )tn KΛ∗∗
j Λ∗∗

j∗∗

Qj ẑ02
Qj∗ ẑ02

)
2

≪ 1
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where KΛ∗
j Λ

∗
j∗ \{0} is defined in (3.4) and

KΛ∗
j Λ

∗
j∗ \{0} = (

ρΛ∗
j

µΛ∗
j∗ \{0}
)
l+1

(1 + O (hρΛ∗ )) , hρΛ∗ → 0

holds. This result can be used for the case 0 ∈ Λ∗j∗ and Λ
∗
j∗ ̸= {0}.

5.2 Perturbed initial value

In the previous subsection we have described the long-time behavior of the relative error γn due to the sole
approximant. Now, we describe the long-time behavior of the relative error δ (t) due to the sole perturbation
in the initial value.

5.2.1 Long-time behavior of the error δ(t)

By considering in the formula (1.4) only the leading exponential terms e(rj∗∗−r1)tn Qj∗∗ ẑ02 at the numerator
and e(rj∗−r1)tn Qj∗ ŷ02 at the denominator, we define

δlong (t) := e(rj∗∗−rj∗ )t
Qj∗∗ ẑ02
Qj∗ ŷ02

ε, t ⩾ 0.

The error δlong (t) is exponentially decreasing in t when j∗ < j∗∗, exponentially increasing when j∗ > j∗∗

and constant
δlong (t) = δlong :=

Qj∗ ẑ02
Qj∗ ŷ02

ε, t ⩾ 0

when j∗ = j∗∗. In the generic situation j∗ = j∗∗ = 1, we have

δlong (t) = δlong =
Q1 ẑ02
Q1 ŷ02

ε, t ⩾ 0.

Next theorem describe the long-time behavior of the relative error δ (t).

Theorem 5.4. For t ⩾ 0 such that
q
∑

j=j∗+1
(e(rj−rj∗ )t

Qj ŷ02
Qj∗ ŷ02

)
2

≪ 1

q
∑

j=j∗∗+1
(e(rj−rj∗∗ )t

Qj ẑ02
Qj∗∗ ẑ02

)
2

≪ 1 (5.9)

we have
δ (t) ≈ δlong (t) .

Proof. For t ⩾ 0, we have

δ (t) = δlong (t)
√1 +

q
∑

j=j∗∗+1
(e(rj−rj∗∗ )t ‖Qj ẑ0‖2

‖Qj∗∗ ẑ0‖2
)
2

√1 +
q
∑

j=j∗+1
(e(rj−rj∗ )t ‖Qj ŷ0‖2

‖Qj∗ ŷ0‖2
)
2

= δlong (t) (1 + e(t))

with

|e(t)| ⩽
1
2
max
{
{
{

q
∑

j=j∗∗+1
(e(rj−rj∗ )t

Qj ẑ02
Qj∗∗ ẑ02

)
2

,
q
∑

j=j∗+1
(e(rj−rj∗ )t

Qjŷ02
Qj∗ ŷ02

)
2}
}
}
.

This completes the proof.

Remark 5.4.
1. Theorem 5.4 says that

δ (t) ≈ δlong (t) for a sufficiently large t.

In addition, by looking at the proof of the theorem, we see that

δ (t)
δlong (t)

→ 1, t → +∞.

On the other hand, Theorem 5.3 about the error γn says neither
γn
γlongn
→ 1, n →∞

nor
γn ≈ γlongn for a sufficiently large index n.

In fact, Theorem 5.3 cannot give asymptotic results as n →∞ because of the first and second conditions
in (5.6), which require to take n sufficiently small.

2. For Λ∗ \ Λ∗j∗ ̸= ⌀ and Λ
∗∗ \ Λ∗∗j∗∗ ̸= ⌀, the condition (5.9) holds when

(e(rm∗−rj∗ )tn
√1 − Qj∗ ŷ0

2
2

Qj∗ ŷ02
)

2

≪ 1

(e(rm∗∗−rj∗∗ )tn
√1 − Qj∗∗ ẑ0

2
2

Qj∗∗ ẑ02
)

2

≪ 1

where m∗ is defined in (5.2) and similarly we have

m∗∗ = min { j ∈ {j∗∗ + 1, . . . , q} : Λ∗∗j ̸= 0 }.

5.2.2 Long-time behavior of the error δn

Theorem4.2 and the consequent points 2, 3, 4, and 6 in Remark 4.2 describe the growth of the error δn in terms
of the errors γn, βn, and δ(tn). The long-time behaviors of the errors γn and βn are described in Theorem 5.3
(remind that βn in (4.9) is the error γn for ŷ0 = ẑ0) and the long-time behavior of the error δ(tn) is described
in Theorem 5.4.

In sight of this, we can have information about the long-time behavior of δn. Below, in the next remark,
we show what can be said by means of points 2, 3, and 4 in Remark 4.2.

Remark 5.5. Assume Λ∗ \ Λ∗j∗ ̸= ⌀, 0 ∉ Λ
∗
j∗ , Λ
∗∗ \ Λ∗j∗∗ ̸= ⌀, and 0 ∉ Λ

∗∗
j∗∗ . Consider an index n such that

nmax
λi∈Λ∗
|σi| ≪ 1, n max

λi∈Λ∗∗
|σi| ≪ 1

q
∑

j=j∗+1
(e(rj−rj∗ )tn

Qjŷ02
Qj∗ ŷ02

)
2

≪ 1

q
∑

j=j∗+1
Λ∗
j ̸=⌀

(e(rj−rj∗ )tn KΛ∗
j Λ

∗
j∗

Qj ŷ02
Qj∗ ŷ02

)
2

≪ 1

q
∑

j=j∗∗+1
(e(rj−rj∗∗ )tn

Qj ẑ02
Qj∗∗ ẑ02

)
2

≪ 1

q
∑

j=j∗∗+1
Λ∗∗
j ̸=⌀

(e(rj−rj∗∗ )tn KΛ∗∗
j Λ∗∗

j∗∗

Qj ẑ02
Qj∗ ẑ02

)
2

≪ 1
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By point 1 in Remark 5.3 and Theorem 5.4, we have

δ (tn) ≈ δlong (tn) , γn ≈ γlongn , βn ≈ βlongn .

The following points A, B, and C can be stated.
A. Recall point 2 in Remark 4.2. We have

δn − γn
 ⪅ δ

long (tn) .

B. Recall point 3 in Remark 4.2. If
KΛ∗∗

j∗∗Λ
∗
j∗
δlong (tn) ≪ 1

then
δn − δ (tn)

 ⪅ γ
long
n .

C. Recall point 4 in Remark 4.2. If

KΛ∗
j∗Λ

∗∗
j∗∗

δlong (tn)
≪ 1

then δn − δ (tn)


δ (tn)
⪅ βlongn .

A more detailed analysis of the long-time behavior of the error δn is presented in [11].

6 A first example
As an example, we consider an ODE (1.1) with A ∈ ℝ2×2 symmetric and non-singular. Let λ1 and λ2 be the
non-zero eigenvalues of A with λ1 > λ2.

Regarding the errors σ1 and σ2 of the approximant, we have

|σ1| = C (h |λ1|)l+1 (1 + O (hρ))
|σ2| = C (h |λ2|)l+1 (1 + O (hρ))

max {σ1, σ2} = (hρ)l+1 (1 + O (hρ))
min {σ1, σ2} = (hµ)l+1 (1 + O (hρ))

as hρ → 0, where l is the order of the approximant, ρ := max {|λ1| , |λ2|} and µ := min {|λ1| , |λ2|}.
All information given in the next Subsections 6.2, 6.3, and 6.4 derives from the theory developed in the

previous sections. We consider indices n such that

nmax {|σ1| , |σ2|} ≪ 1.

Moreover, we set

K := |σ2|
|σ1|
= (
|λ2|
|λ1|
)
l+1
(1 + O (hρ)) , hρ → 0.

6.1 Numerical experiments

We accomplish numerical experiments with the particular 2 × 2 symmetric and non-singular matrix

A = 1
2 [

a + b a − b
a − b a + b

]

where the eigenvalues are λ1 = awith relevant eigenvector (1, 1) and λ2 = bwith relevant eigenvector (1, −1).
We consider two possibilities:
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l Σ1 Σ2 K = Σ2/Σ1 = |σ2| / |σ1|
(A1) 1 2.21e-01 2.48e-02 0.113

2 2.20e-03 8.27e-05 0.0376
3 1.65e-05 2.07e-07 0.0126

(A2) 1 2.52e-02 2.21e-01 8.77
2 8.40e-05 2.20e-03 26.2
3 2.10e-07 1.65e-05 78.4

Tab. 2: Two possibilities for matrix A.

(A1) a = 3 and b = 1;
(A2) a = −1 and b = −3.

We use the Taylor approximants of the exponential

z  1 + z, z  1 + z + z
2

2
, z  1 + z + z

2

2
+
z3

6
, z ∈ ℂ

of orders l = 1, 2, 3, respectively, for the numerical integration. This numerical integration is accomplished
with stepsize h = 1/100 over N = 500 steps up to tN = Nh = 5. The numbers Σ1 = N |σ1| and Σ2 = N |σ2| in
possibilities (A1) and (A2) are listed in Table 5.2.

Observe that
max {Σ1, Σ2} ≪ 1

holds (but weakly for the order one approximant) and then we have

nmax {|σ1| , |σ2|} ≪ 1

for all indices n = 0, 1, . . . , N. Moreover, observe that

K = Σ2
Σ1
=
|σ2|
|σ1|
≈ (
|b|
|a|
)
l+1

.

6.2 Unperturbed initial value

Assume the generic situation Λ∗ = {λ1, λ2}.
Solutions y and ylong. We have

y(t) = eλ1 tP1y0 + eλ2 tP2y0, t ⩾ 0
ylong(t) = eλ1 tP1y0, t ⩾ 0.

Long-time behavior: y(t) ≈ ylong(t) for t such that

e(λ2−λ1)t
P2 ŷ0
2

P1 ŷ0
2
≪ 1.

Errors γn and γlongn . We have

nmin {|σ1| , |σ2|} ⪅ γn ⪅ nmax {|σ1| , |σ2|}
γlongn ≈ n |σ1| .

Long-time behavior: γn ≈ γlongn for n such that

(e(λ2−λ1)tn max{1, K}
P2 ŷ0
2

P1 ŷ0
2
)
2

≪ 1.
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By point 1 in Remark 5.3 and Theorem 5.4, we have

δ (tn) ≈ δlong (tn) , γn ≈ γlongn , βn ≈ βlongn .

The following points A, B, and C can be stated.
A. Recall point 2 in Remark 4.2. We have

δn − γn
 ⪅ δ

long (tn) .

B. Recall point 3 in Remark 4.2. If
KΛ∗∗

j∗∗Λ
∗
j∗
δlong (tn) ≪ 1

then
δn − δ (tn)

 ⪅ γ
long
n .

C. Recall point 4 in Remark 4.2. If

KΛ∗
j∗Λ

∗∗
j∗∗

δlong (tn)
≪ 1

then δn − δ (tn)


δ (tn)
⪅ βlongn .

A more detailed analysis of the long-time behavior of the error δn is presented in [11].

6 A first example
As an example, we consider an ODE (1.1) with A ∈ ℝ2×2 symmetric and non-singular. Let λ1 and λ2 be the
non-zero eigenvalues of A with λ1 > λ2.

Regarding the errors σ1 and σ2 of the approximant, we have

|σ1| = C (h |λ1|)l+1 (1 + O (hρ))
|σ2| = C (h |λ2|)l+1 (1 + O (hρ))

max {σ1, σ2} = (hρ)l+1 (1 + O (hρ))
min {σ1, σ2} = (hµ)l+1 (1 + O (hρ))

as hρ → 0, where l is the order of the approximant, ρ := max {|λ1| , |λ2|} and µ := min {|λ1| , |λ2|}.
All information given in the next Subsections 6.2, 6.3, and 6.4 derives from the theory developed in the

previous sections. We consider indices n such that

nmax {|σ1| , |σ2|} ≪ 1.

Moreover, we set

K := |σ2|
|σ1|
= (
|λ2|
|λ1|
)
l+1
(1 + O (hρ)) , hρ → 0.

6.1 Numerical experiments

We accomplish numerical experiments with the particular 2 × 2 symmetric and non-singular matrix

A = 1
2 [

a + b a − b
a − b a + b

]

where the eigenvalues are λ1 = awith relevant eigenvector (1, 1) and λ2 = bwith relevant eigenvector (1, −1).
We consider two possibilities:

l Σ1 Σ2 K = Σ2/Σ1 = |σ2| / |σ1|
(A1) 1 2.21e-01 2.48e-02 0.113

2 2.20e-03 8.27e-05 0.0376
3 1.65e-05 2.07e-07 0.0126

(A2) 1 2.52e-02 2.21e-01 8.77
2 8.40e-05 2.20e-03 26.2
3 2.10e-07 1.65e-05 78.4

Tab. 2: Two possibilities for matrix A.

(A1) a = 3 and b = 1;
(A2) a = −1 and b = −3.

We use the Taylor approximants of the exponential

z  1 + z, z  1 + z + z
2

2
, z  1 + z + z

2

2
+
z3

6
, z ∈ ℂ

of orders l = 1, 2, 3, respectively, for the numerical integration. This numerical integration is accomplished
with stepsize h = 1/100 over N = 500 steps up to tN = Nh = 5. The numbers Σ1 = N |σ1| and Σ2 = N |σ2| in
possibilities (A1) and (A2) are listed in Table 5.2.

Observe that
max {Σ1, Σ2} ≪ 1

holds (but weakly for the order one approximant) and then we have

nmax {|σ1| , |σ2|} ≪ 1

for all indices n = 0, 1, . . . , N. Moreover, observe that

K = Σ2
Σ1
=
|σ2|
|σ1|
≈ (
|b|
|a|
)
l+1

.

6.2 Unperturbed initial value

Assume the generic situation Λ∗ = {λ1, λ2}.
Solutions y and ylong. We have

y(t) = eλ1 tP1y0 + eλ2 tP2y0, t ⩾ 0
ylong(t) = eλ1 tP1y0, t ⩾ 0.

Long-time behavior: y(t) ≈ ylong(t) for t such that

e(λ2−λ1)t
P2 ŷ0
2

P1 ŷ0
2
≪ 1.

Errors γn and γlongn . We have

nmin {|σ1| , |σ2|} ⪅ γn ⪅ nmax {|σ1| , |σ2|}
γlongn ≈ n |σ1| .

Long-time behavior: γn ≈ γlongn for n such that

(e(λ2−λ1)tn max{1, K}
P2 ŷ0
2

P1 ŷ0
2
)
2

≪ 1.
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6.2.1 Numerical experiments

We numerically test the possibilities (A1) and (A2) with the initial value y0 = (2, −1), for which

P1y0 =
1
2 (

1, 1) , P2y0 =
3
2
(1, −1)

and
P1 ŷ0
2 =

1
√10

, P2 ŷ0
2 =

3
√10

.

Solutions y and ylong. We have

y(t) = 1
2
eat(1, 1) + 3

2
ebt(1, −1), t ⩾ 0

ylong(t) = 1
2
eat(1, 1), t ⩾ 0.

Long-time behavior: y(t) ≈ ylong(t) for t such that 3e−2t ≪ 1.
Errors γn and γlongn . We have

n
N
min {Σ1, Σ2} ⪅ γn ⪅

n
N
max {Σ1, Σ2}

γlongn ≈
n
N
Σ1

for all n = 0, 1, . . . , N. Long-time behavior: γn ≈ γlongn for n = 0, 1, . . . , N such that

(3max{1, K}e−2tn)2 ≪ 1

In Figs. 2 and 3, for possibilities (A1) and (A2), respectively, we see the error γn (solid red line) along with
n
N Σ1 (dashed blue line) and

n
N Σ2 (dash-dotted green line) for n = 0, 1, . . . , N.

6.3 Perturbed initial value, I

Assume the generic situation Λ∗ = Λ∗∗ = {λ1, λ2}.
Solutions y and ylong: as in Subsection 6.2.
Errors δ(t) and δlong(t). We have

δ (t) =
√P1 ẑ0


2
2 + (e(λ2−λ1)t

P2 ẑ0
2)

2

√P1 ŷ0

2
2 + (e(λ2−λ1)t

P2 ŷ0
2)

2
ε, t ⩾ 0

δlong(t) = δlong =
P1 ẑ0
P1 ŷ0
2
ε, t ⩾ 0.

Long-time behavior: δ (t) ≈ δlong for t such that

(e(λ2−λ1)t
P2 ŷ0
2

P1 ŷ0
2
)
2

≪ 1

(e(λ2−λ1)t
P2 ẑ0
2

P1 ẑ0
2
)
2

≪ 1.

Errors γn and γlongn : as in Subsection 6.2.

Error δn. We have
δn − γn

 ⪅ δ (tn)
and

δn − δ (tn)
 ⪅ γn

when
max{
P1 ẑ0
2

P1 ŷ0
2
,
P2 ẑ0
2

P2 ŷ0
2
} ε ≪ 1.
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Fig. 2: Possibility (A1) with initial value y0 = (2, −1) unperturbed. The l-th row, l = 1, 2, 3, corresponds to the approximant
of order l. Error γn (solid red line) along with n

N Σ1 (dashed blue line) and
n
N Σ2 (dash-dotted green line). The abscissas are the

times tn = nh, n = 0, 1, 2, . . . , N.
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6.2.1 Numerical experiments

We numerically test the possibilities (A1) and (A2) with the initial value y0 = (2, −1), for which

P1y0 =
1
2 (

1, 1) , P2y0 =
3
2
(1, −1)

and
P1 ŷ0
2 =

1
√10

, P2 ŷ0
2 =

3
√10

.

Solutions y and ylong. We have

y(t) = 1
2
eat(1, 1) + 3

2
ebt(1, −1), t ⩾ 0

ylong(t) = 1
2
eat(1, 1), t ⩾ 0.

Long-time behavior: y(t) ≈ ylong(t) for t such that 3e−2t ≪ 1.
Errors γn and γlongn . We have

n
N
min {Σ1, Σ2} ⪅ γn ⪅

n
N
max {Σ1, Σ2}

γlongn ≈
n
N
Σ1

for all n = 0, 1, . . . , N. Long-time behavior: γn ≈ γlongn for n = 0, 1, . . . , N such that

(3max{1, K}e−2tn)2 ≪ 1

In Figs. 2 and 3, for possibilities (A1) and (A2), respectively, we see the error γn (solid red line) along with
n
N Σ1 (dashed blue line) and

n
N Σ2 (dash-dotted green line) for n = 0, 1, . . . , N.

6.3 Perturbed initial value, I

Assume the generic situation Λ∗ = Λ∗∗ = {λ1, λ2}.
Solutions y and ylong: as in Subsection 6.2.
Errors δ(t) and δlong(t). We have

δ (t) =
√P1 ẑ0


2
2 + (e(λ2−λ1)t

P2 ẑ0
2)

2

√P1 ŷ0

2
2 + (e(λ2−λ1)t

P2 ŷ0
2)

2
ε, t ⩾ 0

δlong(t) = δlong =
P1 ẑ0
P1 ŷ0
2
ε, t ⩾ 0.

Long-time behavior: δ (t) ≈ δlong for t such that

(e(λ2−λ1)t
P2 ŷ0
2

P1 ŷ0
2
)
2

≪ 1

(e(λ2−λ1)t
P2 ẑ0
2

P1 ẑ0
2
)
2

≪ 1.

Errors γn and γlongn : as in Subsection 6.2.

Error δn. We have
δn − γn

 ⪅ δ (tn)
and

δn − δ (tn)
 ⪅ γn

when
max{
P1 ẑ0
2

P1 ŷ0
2
,
P2 ẑ0
2

P2 ŷ0
2
} ε ≪ 1.

Fig. 2: Possibility (A1) with initial value y0 = (2, −1) unperturbed. The l-th row, l = 1, 2, 3, corresponds to the approximant
of order l. Error γn (solid red line) along with n

N Σ1 (dashed blue line) and
n
N Σ2 (dash-dotted green line). The abscissas are the

times tn = nh, n = 0, 1, 2, . . . , N.
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Fig. 3: Possibility (A2) with initial value y0 = (2, −1) unperturbed. The l-th row, l = 1, 2, 3, corresponds to the approximant
of order l. Error γn (solid red line) along with n

N Σ1 (dashed blue line) and
n
N Σ2 (dash-dotted green line). The abscissas are the

times tn = nh, n = 0, 1, 2, . . . , N.
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6.3.1 Numerical experiments

For the numerical tests we consider the same initial value y0 = (2, −1) as in Subsubsection 6.2.1, but now it
is perturbed with ẑ0 ∈ span (1, 2), for which

P1 ẑ0
2 =

3
√10

, P2 ẑ0
2 =

1
√10

.

Solutions y and ylong: as in Subsubsection 6.2.1.

Errors δ(t) and δlong(t). We have

δ (t) =
√32 + (e−2t)2

√1 + (3e−2t)2
ε, t ⩾ 0

δlong (t) = δlong = 3ε, t ⩾ 0.

Long-time behavior: δ (t) ≈ δlong for t such that (3e−2t)2 ≪ 1.

Errors γn and γlongn : as in Subsubsection 6.2.1.

Error δn. We have
δn − γn

 ⪅ δ(tn)

for all indices n = 0, 1, . . . , N and
δn − δ(tn)

 ⪅ γn
for all indices n = 0, 1, . . . , N when

3ε ≪ 1.

In Figs. 4 and 5, for possibilities (A1) and (A2), respectively, and ε = 10−2, we see, for n = 0, 1, 2, . . . , N,
in the left column the deviation δn − γn

 (solid red line) along with the error δ (tn) (dashed blue line) and in
the right column the deviation δn − δ (tn)

 (solid red line) along with the error γn (dashed blue line).

6.4 Perturbed initial value, II

Assume the non-generic situation Λ∗ = {λ2} and Λ∗∗ = {λ1, λ2}.

Solutions y and ylong. We have

y(t) = ylong(t) = eλ2 ty0, t ⩾ 0.

Errors δ(t) and δlong(t). We have

δ (t) =
√P1 ẑ0


2
2 + (e(λ2−λ1)t

P2 ẑ0
2)

2

e(λ2−λ1)t
ε, t ⩾ 0

δlong (t) = e(λ1−λ2)t P1 ẑ0
 ε, t ⩾ 0.

Long-time behavior: δ (t) ≈ δlong (t) for t such that

(e(λ2−λ1)t
P2 ẑ0
2

P1 ẑ0
2
)
2

≪ 1.

Errors βn and βlongn : as the errors γn and γlongn in Subsection 6.2.

Error δn. We have δn − δ (tn)


δ (tn)
⪅ βn

for n such that
K

e(λ1−λ2)tn‖P1 ẑ0‖2ε
≪ 1.
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Fig. 3: Possibility (A2) with initial value y0 = (2, −1) unperturbed. The l-th row, l = 1, 2, 3, corresponds to the approximant
of order l. Error γn (solid red line) along with n

N Σ1 (dashed blue line) and
n
N Σ2 (dash-dotted green line). The abscissas are the

times tn = nh, n = 0, 1, 2, . . . , N.

6.3.1 Numerical experiments

For the numerical tests we consider the same initial value y0 = (2, −1) as in Subsubsection 6.2.1, but now it
is perturbed with ẑ0 ∈ span (1, 2), for which

P1 ẑ0
2 =

3
√10

, P2 ẑ0
2 =

1
√10

.

Solutions y and ylong: as in Subsubsection 6.2.1.

Errors δ(t) and δlong(t). We have

δ (t) =
√32 + (e−2t)2

√1 + (3e−2t)2
ε, t ⩾ 0

δlong (t) = δlong = 3ε, t ⩾ 0.

Long-time behavior: δ (t) ≈ δlong for t such that (3e−2t)2 ≪ 1.

Errors γn and γlongn : as in Subsubsection 6.2.1.

Error δn. We have
δn − γn

 ⪅ δ(tn)

for all indices n = 0, 1, . . . , N and
δn − δ(tn)

 ⪅ γn
for all indices n = 0, 1, . . . , N when

3ε ≪ 1.

In Figs. 4 and 5, for possibilities (A1) and (A2), respectively, and ε = 10−2, we see, for n = 0, 1, 2, . . . , N,
in the left column the deviation δn − γn

 (solid red line) along with the error δ (tn) (dashed blue line) and in
the right column the deviation δn − δ (tn)

 (solid red line) along with the error γn (dashed blue line).

6.4 Perturbed initial value, II

Assume the non-generic situation Λ∗ = {λ2} and Λ∗∗ = {λ1, λ2}.

Solutions y and ylong. We have

y(t) = ylong(t) = eλ2 ty0, t ⩾ 0.

Errors δ(t) and δlong(t). We have

δ (t) =
√P1 ẑ0


2
2 + (e(λ2−λ1)t

P2 ẑ0
2)

2

e(λ2−λ1)t
ε, t ⩾ 0

δlong (t) = e(λ1−λ2)t P1 ẑ0
 ε, t ⩾ 0.

Long-time behavior: δ (t) ≈ δlong (t) for t such that

(e(λ2−λ1)t
P2 ẑ0
2

P1 ẑ0
2
)
2

≪ 1.

Errors βn and βlongn : as the errors γn and γlongn in Subsection 6.2.

Error δn. We have δn − δ (tn)


δ (tn)
⪅ βn

for n such that
K

e(λ1−λ2)tn‖P1 ẑ0‖2ε
≪ 1.
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Fig. 4: Possibility (A1) with y0 = (2, −1) perturbed with ε = 10−2 and ẑ0 ∈ span (1, 2). The l-th row, l = 1, 2, 3, corresponds to
the approximant of order l. Left column: deviation δn − γn

 (solid red line) along with the error δ (tn) (dashed blue line). Right
column: deviation |δn − δ (tn)| (solid red line) along with the error γn (dashed blue line). The abscissas are the times tn = nh,
n = 0, 1, 2, . . . , N.
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Fig. 5: Possibility (A2) with y0 = (2, −1) perturbed with ε = 10−2 and ẑ0 ∈ span (1, 2). The l-th row, l = 1, 2, 3, corresponds to
the approximant of order l. Left column: deviation δn − γn

 (solid red line) along with the error δ (tn) (dashed blue line). Right
column: deviation |δn − δ (tn)| (solid red line) along with the error γn (dashed blue line). The abscissas are the times tn = nh,
n = 0, 1, 2, . . . , N.
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Fig. 4: Possibility (A1) with y0 = (2, −1) perturbed with ε = 10−2 and ẑ0 ∈ span (1, 2). The l-th row, l = 1, 2, 3, corresponds to
the approximant of order l. Left column: deviation δn − γn

 (solid red line) along with the error δ (tn) (dashed blue line). Right
column: deviation |δn − δ (tn)| (solid red line) along with the error γn (dashed blue line). The abscissas are the times tn = nh,
n = 0, 1, 2, . . . , N.

Fig. 5: Possibility (A2) with y0 = (2, −1) perturbed with ε = 10−2 and ẑ0 ∈ span (1, 2). The l-th row, l = 1, 2, 3, corresponds to
the approximant of order l. Left column: deviation δn − γn

 (solid red line) along with the error δ (tn) (dashed blue line). Right
column: deviation |δn − δ (tn)| (solid red line) along with the error γn (dashed blue line). The abscissas are the times tn = nh,
n = 0, 1, 2, . . . , N.
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6.4.1 Numerical experiments

In the numerical tests, we consider the initial value y0 = (1, −1), for which Λ∗ = {λ2}, perturbed with ẑ0 ∈
span (1, 2) (as in Subsubsection 6.3.1).

Solutions y and ylong. We have

y(t) = ylong(t) = ebt(1, 1), t ⩾ 0.

Errors δ(t) and δlong(t). We have

δ (t) =
1
√10
⋅
√32 + (e−2t)2

e−2t
ε, t ⩾ 0

δlong (t) =
3
√10

e2tε, t ⩾ 0.

Long-time behavior: δ (t) ≈ δlong (t) for t such that (13e
−2t)

2
≪ 1.

Errors βn and βlongn : as the errors γn and γlongn in Subsubsection 6.2.1.

Error δn. We have δn − δ (tn)


δ (tn)
⪅ βn

for n = 0, 1, . . . , N such that
√10
3
⋅

K
e2tn ε
≪ 1.

In Figs. 6 and 7, for possibilities (A1) and (A2), respectively, and ε = 10−2, we see the relative deviation
δn − δ (tn)

 /δ (tn) (solid red line) along with the error βn (dashed blue line) for n = 0, 1, . . . , N.
In Fig. 6, it is surprising to have, at the beginning of the integration where δ(tn) ≪ 1, relative deviations

not much larger than βn. This can be explained by observing that
δn − δ (tn)


δ(tn)

⩽ βn (1 +
γn

βnδ(tn)
) , n = 0, 1, 2, . . .

and, whenever
0 ∉ Λ∗∗j∗∗ , nmax

λi∈Λ∗
|σi| ≪ 1, n max

λi∈Λ∗∗
j∗∗
|σi| ≪ 1

we have
γn

βnδ(tn)
⪅

KΛ∗Λ∗∗
j∗∗

e(rj∗∗−rj∗ )tn‖Qj∗∗ ẑ0‖2ε

(this bound has been used at point 4 in Remark 4.2 for concluding that (4.12) holds whenever (4.13) holds).
Then

γn
βnδ(tn)

⪅
KΛ∗Λ∗∗

j∗∗

‖Qj∗∗ ẑ0‖2ε
, n = 0, 1, 2, . . .

for j∗ > j∗∗. In the possibility (A1) of Fig. 6,

KΛ∗Λ∗∗
j∗∗

‖Qj∗∗ ẑ0‖2ε
=
√10
3
⋅
K
ε

is not large.
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Fig. 6: Possibility (A1) with y0 = (1, −1) perturbed with ε = 10−2 and ẑ0 ∈ span (1, 2). The l-th row, l = 1, 2, 3, corresponds
to the approximant of order l. Relative deviations |δn − δ (tn)| /δ (tn) (solid red line) along with the error βn (dashed blue line).
The abscissas are the times tn = nh, n = 0, 1, 2, . . . , N.

30



148 | S.Maset, Relative error analysis in numerical integration

6.4.1 Numerical experiments

In the numerical tests, we consider the initial value y0 = (1, −1), for which Λ∗ = {λ2}, perturbed with ẑ0 ∈
span (1, 2) (as in Subsubsection 6.3.1).

Solutions y and ylong. We have

y(t) = ylong(t) = ebt(1, 1), t ⩾ 0.

Errors δ(t) and δlong(t). We have

δ (t) =
1
√10
⋅
√32 + (e−2t)2

e−2t
ε, t ⩾ 0

δlong (t) =
3
√10

e2tε, t ⩾ 0.

Long-time behavior: δ (t) ≈ δlong (t) for t such that (13e
−2t)

2
≪ 1.

Errors βn and βlongn : as the errors γn and γlongn in Subsubsection 6.2.1.

Error δn. We have δn − δ (tn)


δ (tn)
⪅ βn

for n = 0, 1, . . . , N such that
√10
3
⋅

K
e2tn ε
≪ 1.

In Figs. 6 and 7, for possibilities (A1) and (A2), respectively, and ε = 10−2, we see the relative deviation
δn − δ (tn)

 /δ (tn) (solid red line) along with the error βn (dashed blue line) for n = 0, 1, . . . , N.
In Fig. 6, it is surprising to have, at the beginning of the integration where δ(tn) ≪ 1, relative deviations

not much larger than βn. This can be explained by observing that
δn − δ (tn)


δ(tn)

⩽ βn (1 +
γn

βnδ(tn)
) , n = 0, 1, 2, . . .

and, whenever
0 ∉ Λ∗∗j∗∗ , nmax

λi∈Λ∗
|σi| ≪ 1, n max

λi∈Λ∗∗
j∗∗
|σi| ≪ 1

we have
γn

βnδ(tn)
⪅

KΛ∗Λ∗∗
j∗∗

e(rj∗∗−rj∗ )tn‖Qj∗∗ ẑ0‖2ε

(this bound has been used at point 4 in Remark 4.2 for concluding that (4.12) holds whenever (4.13) holds).
Then

γn
βnδ(tn)

⪅
KΛ∗Λ∗∗

j∗∗

‖Qj∗∗ ẑ0‖2ε
, n = 0, 1, 2, . . .

for j∗ > j∗∗. In the possibility (A1) of Fig. 6,

KΛ∗Λ∗∗
j∗∗

‖Qj∗∗ ẑ0‖2ε
=
√10
3
⋅
K
ε

is not large.
Fig. 6: Possibility (A1) with y0 = (1, −1) perturbed with ε = 10−2 and ẑ0 ∈ span (1, 2). The l-th row, l = 1, 2, 3, corresponds
to the approximant of order l. Relative deviations |δn − δ (tn)| /δ (tn) (solid red line) along with the error βn (dashed blue line).
The abscissas are the times tn = nh, n = 0, 1, 2, . . . , N.
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Fig. 7: Possibility (A2) with y0 = (1, −1) perturbed with ε = 10−2 and ẑ0 ∈ span (1, 2). The l-th row, l = 1, 2, 3, corresponds
to the approximant of order l. Relative deviations |δn − δ (tn)| /δ (tn) (solid red line) along with the error βn (dashed blue line).
The abscissas are the times tn = nh, n = 0, 1, 2, . . . , N.
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7 A second example
As a second example, we consider ODEs (1.1) with A symmetric arising in consensus problems on networks
modelledbygraphs (see [3, 17–19]). SuchODEsalso appear indescribingdiffusion signals ongraphs (see [16]).

Given an undirected graphwith d vertices, the d×d symmetricmatrix A in (1.1) has off-diagonal elements

aij = {
1 if there is an edge between vertices i and j
0 otherwise

(7.1)

i, j = 1, . . . , d, i ̸= j

and diagonal elements

aii = −
d
∑
j=1
j ̸=i

aij , i = 1, . . . , d. (7.2)

The matrix A is negative semi-definite and it has zero as rightmost eigenvalue. The solution y(t) of (1.1) con-
verges to (µ, . . . , µ) as t → +∞, µ being the average of the components of y0. The eigenvectors relevant to
the zero eigenvalue are the equilibria (µ, . . . , µ), µ ∈ ℝ.

In the deformed consensus protocol (see [14]), the matrix A depends on a parameter s ∈ ℝ regarded as
an input control and it has elements

aij = {
s if there is an edge between nodes i and j
0 otherwise

(7.3)

i, j = 1, . . . , d, i ̸= j

and diagonal elements

aii = s2 − 1 − s
d
∑
j=1
j ̸=i

aij , i = 1, . . . , d. (7.4)

When s = 1, we have the matrix given in (7.1)–(7.2).

7.1 Numerical experiments

We accomplish numerical experiments in the two possibilities:
(B1) The 8 × 8matrix of type (7.3)–(7.4):

A =

[[[[[[[[[[[

[

−1.75 0.5 0.5
0.5 −1.75 0.5

0.5 −1.75 0.5
0.5 −1.75 0.5

0.5 −1.75 0.5
0.5 −1.75 0.5

0.5 −1.75 0.5
0.5 0.5 −1.75

]]]]]]]]]]]

]

whose eigenvalues are

−0.75, −1.0429, −1.0429, −1.75, −1.75, −2.4571, −2.4571, −2.75.

This possibility, taken from [14], corresponds to a cycle graphwith8 verticeswith input control parameter
s = 0.5 in the deformed consensus protocol.
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Fig. 7: Possibility (A2) with y0 = (1, −1) perturbed with ε = 10−2 and ẑ0 ∈ span (1, 2). The l-th row, l = 1, 2, 3, corresponds
to the approximant of order l. Relative deviations |δn − δ (tn)| /δ (tn) (solid red line) along with the error βn (dashed blue line).
The abscissas are the times tn = nh, n = 0, 1, 2, . . . , N.

7 A second example
As a second example, we consider ODEs (1.1) with A symmetric arising in consensus problems on networks
modelledbygraphs (see [3, 17–19]). SuchODEsalso appear indescribingdiffusion signals ongraphs (see [16]).

Given an undirected graphwith d vertices, the d×d symmetricmatrix A in (1.1) has off-diagonal elements

aij = {
1 if there is an edge between vertices i and j
0 otherwise

(7.1)

i, j = 1, . . . , d, i ̸= j

and diagonal elements

aii = −
d
∑
j=1
j ̸=i

aij , i = 1, . . . , d. (7.2)

The matrix A is negative semi-definite and it has zero as rightmost eigenvalue. The solution y(t) of (1.1) con-
verges to (µ, . . . , µ) as t → +∞, µ being the average of the components of y0. The eigenvectors relevant to
the zero eigenvalue are the equilibria (µ, . . . , µ), µ ∈ ℝ.

In the deformed consensus protocol (see [14]), the matrix A depends on a parameter s ∈ ℝ regarded as
an input control and it has elements

aij = {
s if there is an edge between nodes i and j
0 otherwise

(7.3)

i, j = 1, . . . , d, i ̸= j

and diagonal elements

aii = s2 − 1 − s
d
∑
j=1
j ̸=i

aij , i = 1, . . . , d. (7.4)

When s = 1, we have the matrix given in (7.1)–(7.2).

7.1 Numerical experiments

We accomplish numerical experiments in the two possibilities:
(B1) The 8 × 8matrix of type (7.3)–(7.4):

A =

[[[[[[[[[[[

[
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0.5 −1.75 0.5
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0.5 −1.75 0.5
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]

whose eigenvalues are

−0.75, −1.0429, −1.0429, −1.75, −1.75, −2.4571, −2.4571, −2.75.

This possibility, taken from [14], corresponds to a cycle graphwith8 verticeswith input control parameter
s = 0.5 in the deformed consensus protocol.
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Tab. 3: Values Σ1 and Σ for possibility (B1).

l Σ1 Σ

1 2.83 ⋅ 10−2 3.85 ⋅ 10−1

2 7.07 ⋅ 10−5 3.54 ⋅ 10−3

3 1.33 ⋅ 10−7 2.44 ⋅ 10−5

Tab. 4: Values Σ2 and Σ for possibility (B2).

l Σ2 Σ

1 7.28 ⋅ 10−2 7.29 ⋅ 10−1

2 4.13 ⋅ 10−4 1.29 ⋅ 10−2

3 1.75 ⋅ 10−6 1.72 ⋅ 10−4

(B2) The 6 × 6matrix of type (7.1)–(7.2):

A =

[[[[[[[

[

−2 1 1 0 0 0
1 −4 1 1 1 0
1 1 −4 0 1 1
0 1 0 −2 1 0
0 1 1 1 −4 1
0 0 1 0 1 −2

]]]]]]]

]
whose eigenvalues are

0, −1.6972, −1.6972, −4.0000, −5.3028, −5.3028.

This possibility, taken from [17], corresponds to a graph with 6 vertices arranged as an equilateral trian-
gular array, where the vertices 1, 4, and 6 are the vertices of the triangle and the vertices 2, 3, and 5 are
the midpoints of the sides of the triangle.

As in the previous section, we consider the Taylor approximants of the exponential of order l = 1, 2, 3.

7.1.1 The possibility (B1)

For the possibility (B1), the numerical integration is accomplished with stepsize h = 1/100 over N = 1000
steps up to tN = Nh = 10. The numbers Σ1 = N |σ1| and Σ = Nmaxi=1,...,8 |σi| are listed in Table 3.

We consider the initial value y0 = (8, 7, 6, 5, 4, 3, 2, 1).
For this initial value unperturbed, in Fig. 8 we see in logarithmic scale the error γn (solid red line) along

with n
N Σ1 (dashed blu line) and n

N Σ (dash-dotted green line) for n = 0, 1, . . . , N. The same pattern of the
example of Section 6 is observed: in the long-time, the error grows as n

N Σ1 with n.
Now, suppose that the initial value y0 is perturbed with ẑ0 ∈ span(2, −5, −1, 2, −3, 4, −1, −2) and ε =

10−2. In Fig. 9, we see, for n = 0, 1, 2, . . . , N, in the left column the deviation δn − γn
 (solid red line) along

with the error δ (tn) (dashed blu line) and in the right column the deviation δn − δ (tn)
 (solid red line) along

with the error γn (dashed blue line). As in the example of Section 6, we observe exactly what is described in
points 2 and 3 of Remark 4.2.

7.1.2 The possibility (B2)

For the possibility (B2), the numerical integration is accomplished with stepsize h = 1/100 over N = 500
steps up to tN = Nh = 5. Since the rightmost eigenvalue is zero, we have σ1 = 0. The numbers Σ2 = N |σ2|
and Σ = Nmaxi=2,...,6 |σi| are listed in Table 4.

We consider the initial value y0 = (3, 2, 1, −1, −2, −3). Since the average of the components of y0 is
equal to zero, the solution y(t) of (1.1) converges to zero as t → +∞. Moreover, since y0 is orthogonal to the
equilibria, we have j∗ = 2.

For this initial value unperturbed, in Fig. 10 we see in logarithmic scale the error γn (solid red line) along
with n

N Σ2 (dashed blue line) and
n
N Σ (dash-dotted green line) for n = 0, 1, . . . , N.

Suppose that the initial value y0 is perturbed by ε = 10−2 and

ẑ0 ∈ span(2, −5, −1, 4, −1, −2).
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Fig. 8: Possibility (B1) with initial value y0 = (8, 7, 6, 5, 4, 3, 2, 1) unperturbed. The l-th row, l = 1, 2, 3, corresponds to the
approximant of order l. Logarithmic error log10(γn) (solid red line) along with log10 ( nN Σ1) (dashed blue line) and log10 (

n
N Σ)

(dash-dotted green line). The abscissas are the times tn = nh, n = 0, 1, 2, . . . , N.
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Tab. 3: Values Σ1 and Σ for possibility (B1).

l Σ1 Σ

1 2.83 ⋅ 10−2 3.85 ⋅ 10−1

2 7.07 ⋅ 10−5 3.54 ⋅ 10−3

3 1.33 ⋅ 10−7 2.44 ⋅ 10−5

Tab. 4: Values Σ2 and Σ for possibility (B2).

l Σ2 Σ

1 7.28 ⋅ 10−2 7.29 ⋅ 10−1

2 4.13 ⋅ 10−4 1.29 ⋅ 10−2

3 1.75 ⋅ 10−6 1.72 ⋅ 10−4

(B2) The 6 × 6matrix of type (7.1)–(7.2):

A =

[[[[[[[

[

−2 1 1 0 0 0
1 −4 1 1 1 0
1 1 −4 0 1 1
0 1 0 −2 1 0
0 1 1 1 −4 1
0 0 1 0 1 −2

]]]]]]]

]
whose eigenvalues are

0, −1.6972, −1.6972, −4.0000, −5.3028, −5.3028.

This possibility, taken from [17], corresponds to a graph with 6 vertices arranged as an equilateral trian-
gular array, where the vertices 1, 4, and 6 are the vertices of the triangle and the vertices 2, 3, and 5 are
the midpoints of the sides of the triangle.

As in the previous section, we consider the Taylor approximants of the exponential of order l = 1, 2, 3.

7.1.1 The possibility (B1)

For the possibility (B1), the numerical integration is accomplished with stepsize h = 1/100 over N = 1000
steps up to tN = Nh = 10. The numbers Σ1 = N |σ1| and Σ = Nmaxi=1,...,8 |σi| are listed in Table 3.

We consider the initial value y0 = (8, 7, 6, 5, 4, 3, 2, 1).
For this initial value unperturbed, in Fig. 8 we see in logarithmic scale the error γn (solid red line) along

with n
N Σ1 (dashed blu line) and n

N Σ (dash-dotted green line) for n = 0, 1, . . . , N. The same pattern of the
example of Section 6 is observed: in the long-time, the error grows as n

N Σ1 with n.
Now, suppose that the initial value y0 is perturbed with ẑ0 ∈ span(2, −5, −1, 2, −3, 4, −1, −2) and ε =

10−2. In Fig. 9, we see, for n = 0, 1, 2, . . . , N, in the left column the deviation δn − γn
 (solid red line) along

with the error δ (tn) (dashed blu line) and in the right column the deviation δn − δ (tn)
 (solid red line) along

with the error γn (dashed blue line). As in the example of Section 6, we observe exactly what is described in
points 2 and 3 of Remark 4.2.

7.1.2 The possibility (B2)

For the possibility (B2), the numerical integration is accomplished with stepsize h = 1/100 over N = 500
steps up to tN = Nh = 5. Since the rightmost eigenvalue is zero, we have σ1 = 0. The numbers Σ2 = N |σ2|
and Σ = Nmaxi=2,...,6 |σi| are listed in Table 4.

We consider the initial value y0 = (3, 2, 1, −1, −2, −3). Since the average of the components of y0 is
equal to zero, the solution y(t) of (1.1) converges to zero as t → +∞. Moreover, since y0 is orthogonal to the
equilibria, we have j∗ = 2.

For this initial value unperturbed, in Fig. 10 we see in logarithmic scale the error γn (solid red line) along
with n

N Σ2 (dashed blue line) and
n
N Σ (dash-dotted green line) for n = 0, 1, . . . , N.

Suppose that the initial value y0 is perturbed by ε = 10−2 and

ẑ0 ∈ span(2, −5, −1, 4, −1, −2).

Fig. 8: Possibility (B1) with initial value y0 = (8, 7, 6, 5, 4, 3, 2, 1) unperturbed. The l-th row, l = 1, 2, 3, corresponds to the
approximant of order l. Logarithmic error log10(γn) (solid red line) along with log10 ( nN Σ1) (dashed blue line) and log10 (

n
N Σ)

(dash-dotted green line). The abscissas are the times tn = nh, n = 0, 1, 2, . . . , N.
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Fig. 9: Possibility (B1) with y0 = (8, 7, 6, 5, 4, 3, 2, 1) perturbed with ε = 10−2 and ẑ0 ∈ span (2, −5, −1, 2, −3, 4, −1, −2). The
l-th row, l = 1, 2, 3, corresponds to the approximant of order l. Left column: deviation δn − γn

 (solid red line) along with the
error δ (tn) (dashed blue line). Right column: deviation |δn − δ (tn)| (solid red line) along with the error γn (dashed blue line).
The abscissas are the times tn = nh, n = 0, 1, 2, . . . , N.
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Fig. 10: Possibility (B2) with initial value y0 = (3, 2, 1, −1, −2, −3) unperturbed. The l-th row, l = 1, 2, 3, corresponds to the
approximant of order l. Logarithmic error log10(γn) (solid red line) along with log ( nN Σ2) (dashed blue line), and log10 (

n
N Σ)

(dashed-dot green line). The abscissas are the times tn = nh, n = 0, 1, 2, . . . , N.
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Fig. 9: Possibility (B1) with y0 = (8, 7, 6, 5, 4, 3, 2, 1) perturbed with ε = 10−2 and ẑ0 ∈ span (2, −5, −1, 2, −3, 4, −1, −2). The
l-th row, l = 1, 2, 3, corresponds to the approximant of order l. Left column: deviation δn − γn

 (solid red line) along with the
error δ (tn) (dashed blue line). Right column: deviation |δn − δ (tn)| (solid red line) along with the error γn (dashed blue line).
The abscissas are the times tn = nh, n = 0, 1, 2, . . . , N.

Fig. 10: Possibility (B2) with initial value y0 = (3, 2, 1, −1, −2, −3) unperturbed. The l-th row, l = 1, 2, 3, corresponds to the
approximant of order l. Logarithmic error log10(γn) (solid red line) along with log ( nN Σ2) (dashed blue line), and log10 (

n
N Σ)

(dashed-dot green line). The abscissas are the times tn = nh, n = 0, 1, 2, . . . , N.
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Fig. 11: Possibility (B2) with y0 = (3, 2, 1, −1, −2, −3) perturbed with ε = 10−2 and ẑ0 ∈ span (2, −5, −1, 4, −1, −2). The l-th
row, l = 1, 2, 3, corresponds to the approximant of order l. Left column: deviation δn − γn

 (solid red line) along with the error
δ (tn) (dashed blue line). Right column: deviation |δn − δ (tn)| (solid red line) along with the error γn (dashed blue line). The
abscissas are the times tn = nh, n = 0, 1, 2, . . . , N.
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In Fig. 11, we see, as in Fig. 8 for (B1), δn − γn
 along with δ(tn) in the left side and δn − δ (tn)

 along with γn
in the right side.

8 Conclusion
For the ODE (1.1) with A normal, we have presented a relative error analysis of the numerical solution, over
a mesh tn = nh, n = 1, 2, . . ., of constant stepsize h, obtained by using an analytic approximant of the
exponential at each step. A possible perturbation in the initial value is taking into account.

The two sources of error are the approximant, whose error ismeasured by the numbers σi defined in (3.2),
and the perturbation in the initial value, whose error is measured by (1.2).

Our analysis has involved three relative errors:
– the relative error γn of the unperturbed numerical solution, which is defined in (1.12);
– the relative error δ(t) of the perturbed exact solution, which is defined in (1.3);
– the relative error δn of the perturbed numerical solution, which is defined in (1.11).

We have shown that the relative error γn grows linearly in time and, in the long-time, it depends only on the
errors σi relevant to rightmost eigenvalues. Moreover, we have shown how the growth of δn is related to the
growth of γn and δ(tn).

Our relative error analysis covers the situation where

max
λi∈Λ
|σi| ≪ 1 (8.1)

with Λ the spectrum of A. We call it the non-stiff situation. However, our analysis does not cover the situation
where (8.1) does not hold, but

max
λi∈Λ1
|σi| ≪ 1 (8.2)

holds, with Λ1 the set of the rightmost eigenvalues. We call it the stiff situation.
In the stiff situation, it is fundamental to understand whether, in the long-time, the relative error γn de-

pends only on the errors σi relevant to the rightmost eigenvalues, namely the eigenvalues in Λ1. If this hap-
pens, γn is small in the long-time, although the stepsize h is tuned for having (8.2) only, not (8.1). Of course,
since (8.1) does not hold, the error γn can be not small at the beginning of the integration.

The relative error analysis of the present paper is continued in [10–12]. The paper [10] studies the long-
time behavior of the error γn in the stiff situation. The paper [11] shows how the order stars (see [8, 20]) are
involved in the relative error analysis. The paper [12] presents a relative error analysis for the numerical inte-
gration of long-time solutions to be used in the stiff situation.
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Fig. 11: Possibility (B2) with y0 = (3, 2, 1, −1, −2, −3) perturbed with ε = 10−2 and ẑ0 ∈ span (2, −5, −1, 4, −1, −2). The l-th
row, l = 1, 2, 3, corresponds to the approximant of order l. Left column: deviation δn − γn

 (solid red line) along with the error
δ (tn) (dashed blue line). Right column: deviation |δn − δ (tn)| (solid red line) along with the error γn (dashed blue line). The
abscissas are the times tn = nh, n = 0, 1, 2, . . . , N.

In Fig. 11, we see, as in Fig. 8 for (B1), δn − γn
 along with δ(tn) in the left side and δn − δ (tn)

 along with γn
in the right side.

8 Conclusion
For the ODE (1.1) with A normal, we have presented a relative error analysis of the numerical solution, over
a mesh tn = nh, n = 1, 2, . . ., of constant stepsize h, obtained by using an analytic approximant of the
exponential at each step. A possible perturbation in the initial value is taking into account.

The two sources of error are the approximant, whose error ismeasured by the numbers σi defined in (3.2),
and the perturbation in the initial value, whose error is measured by (1.2).

Our analysis has involved three relative errors:
– the relative error γn of the unperturbed numerical solution, which is defined in (1.12);
– the relative error δ(t) of the perturbed exact solution, which is defined in (1.3);
– the relative error δn of the perturbed numerical solution, which is defined in (1.11).

We have shown that the relative error γn grows linearly in time and, in the long-time, it depends only on the
errors σi relevant to rightmost eigenvalues. Moreover, we have shown how the growth of δn is related to the
growth of γn and δ(tn).

Our relative error analysis covers the situation where
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with Λ the spectrum of A. We call it the non-stiff situation. However, our analysis does not cover the situation
where (8.1) does not hold, but

max
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|σi| ≪ 1 (8.2)

holds, with Λ1 the set of the rightmost eigenvalues. We call it the stiff situation.
In the stiff situation, it is fundamental to understand whether, in the long-time, the relative error γn de-

pends only on the errors σi relevant to the rightmost eigenvalues, namely the eigenvalues in Λ1. If this hap-
pens, γn is small in the long-time, although the stepsize h is tuned for having (8.2) only, not (8.1). Of course,
since (8.1) does not hold, the error γn can be not small at the beginning of the integration.

The relative error analysis of the present paper is continued in [10–12]. The paper [10] studies the long-
time behavior of the error γn in the stiff situation. The paper [11] shows how the order stars (see [8, 20]) are
involved in the relative error analysis. The paper [12] presents a relative error analysis for the numerical inte-
gration of long-time solutions to be used in the stiff situation.
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Abstract: For nonlinear nonsmooth DC programming (difference of convex functions), we introduce a new
redistributed proximal bundle method. The subgradient information of both the DC components is gathered
from some neighbourhood of the current stability center and it is used to build separately an approximation
for each component in the DC representation. Especially we employ the nonlinear redistributed technique
to model the second component of DC function by constructing a local convexification cutting plane. The
corresponding convexification parameter is adjusted dynamically and is taken sufficiently large to make the
‘augmented’ linearization errors nonnegative. Based on above techniques we obtain a new convex cutting
plane model of the original objective function. Based on this new approximation the redistributed proximal
bundle method is designed and the convergence of the proposed algorithm to a Clarke stationary point is
proved. A simple numerical experiment is given to show the validity of the presented algorithm.

Keywords: nonlinear nonsmooth optimization, redistributed bundle method, DC programming, locally Lip-
schitz continuous

Classification: 00A71, 90C30

1 Introduction
Consider a nonlinear nonsmooth minimization problem of the form:

{
min f(x) = f1(x) − f2(x)
s.t. x ∈ Rn (1.1)

where f : Rn → R is a difference of two convex functions f1, f2 : Rn → R. The problem (1.1) is called the
unconstrained DC programming, the function

f(x) = f1(x) − f2(x) (1.2)

is called aDC function, which constitutes a large and interesting subclass of nonsmooth and nonconvex func-
tions, and f1, f2 are called convex DC components of f . Many practical problems in real world can be mod-
elled as a DC programming problem, these problems include the production–transportation planning [11],
location planning [17], engineering design [25] and supervised data classification [1] and so on. So far several
algorithms have been designed to solve DC programming globally [12, 27], while the development of local
search methods in DC programming has attracted significantly less attention. There exist also DC algorithms
designed to handle nonsmooth functions, for example, in [2] an algorithm based on quasidifferentials of DC
functions and discrete gradients is developed. Some other alternatives for nonsmooth DC programming in-
clude a codifferential method [4], a proximal linearized algorithm [24] and a proximal bundle method [13]
using nonconvex cutting planes.
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