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Relative error analysis of matrix exponential
approximations for numerical integration

Abstract: In this paper, we study the relative error in the numerical solution of a linear ordinary differential
equation y'(t) = Ay(t), t = 0, where A is a normal matrix. The numerical solution is obtained by using at
any step an approximation of the matrix exponential, e.g., a polynomial or a rational approximation. The
error of the numerical solution with respect to the exact solution is due to this approximation as well as to
a possible perturbation in the initial value. For an unperturbed initial value, we have found: (1) unlike the
absolute error, the relative error always grows linearly in time; (2) in the long-time, the contributions to the
relative error relevant to non-rightmost eigenvalues of A disappear.
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1 Introduction

The paper [9] considered the Ordinary Differential Equation (ODE):

{y’(t):Ay(t), t=0 1)
y(0) =yo ’

where A € R™9 and y (f) € RY, and studied the propagation along the solution y of a perturbation in the
initial value yq, by considering relative errors rather than absolute errors. Whereas the propagation of the
absolute error of such a perturbation is a well-known subject (the absolute error is propagated at the time ¢
by the matrix exponential e4 and bounds for it can be found, e.g., in [4]), the propagation of the relative error
has not been considered and [9] tried to fill this gap. It is important to consider relative errors since they are
scale-independent indicators of the quality of an approximation: unlike absolute errors, relative errors are
dimensionless.

By assuming that in (1.1) the initial value yy # O is perturbed to ¥y and then the solution y is perturbed
to ¥, the paper [9] studied the relation between the relative error

= ||70 B yonZ (12)

Iyoll,
of the perturbed initial value ¥y and the relative error
Iy -y ®l,
ly@®l,

of the perturbed solution y, in case of a normal matrix A.
In [9], the following theorem was stated.

6(t) = t>0 (1.3)

Theorem 1.1. Let A be a normal matrix. Partition the spectrum

A:{Al’A29~-~,Ap}
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Fig. 1: Spectrum of A partitioned by decreasing real part.
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of matrix A, where A1, A;, ..., A, are the distinct eigenvalues of A, by decreasing real part in the subsets

Ay, Ay, ..., Ag: we have

A] = {/\l']',1+11 Aij,1+21 ey Ai}'}

Re (/11-,._1+1) = Re (/1,-}._1+2) =...=Re (Ai}.) =r, j=1,2,...,¢q

WithO = ig <iy <---<ig=p (i1, ..., ig are the final indices i; in the sets A;) and

r>r>- >0y

(see Fig. 1).
Suppose that the initial value yq + 0 of (1.1) is perturbed to yo. We have

J (e [0z, )’

6(t) = g, t=0

R

-

q __ . 2
V& € tagol)
where _
= _ Yo—Yo
[0 B T T
1¥0 - voll,
is the direction of the perturbation,
s _ Yo
Y= 1ol

and
Qj:ZPiy j:1)-"9q

Ai EA]'

with P; the orthogonal projection on the eigenspace of A;.

(1.4)

(1.5)

In(1.5),A; € Ajmeansi =ij_1+1,ij-1+2,...,ij.Observe that there is a one-to-one correspondence between

indicesin {1, ..., p} and eigenvaluesin A = {A4, ..., Ap}.
Throughout the paper we use the notations introduced in Theorem 1.1.

Remark 1.1. In practical situations of uncertainty, we do not know the direction Z; of the perturbation but

only the order of magnitude of €. In this case, we can only say that

8(t)<K(t,A,y0)-€, t=0

(1.6)



where

\] 3 (et Qizo],)°
j

K(t, A, yo) = ax - -
Ioll,=1 J (e Qy5ol,) J.Zl (et |Qszoll,)
] )=

with ‘<’ replaced by ‘=" for all t > 0if Q1Z¢ = Zo (see [9]). The number K(t, A, yq) is the normwise condition
number (in the euclidean norm) for the problem y — e4y, (see [1]).
If the initial value yq is also not known, we can only say

Ine

1

[

6(t)<K(t,A)-g, t=0 1.7)

where
K(t,A) = max K(t,A,yp) = el Tt
Yo€R™\{0}

with ‘<’ replaced by ‘="forall t > 0if Q120 = Zo and Q4yo = yo. The number K(t, A) is the condition number
(in the spectral norm) of the matrix exponential ef4,

The bound (1.7) is too pessimistic, since it holds with equality in a non-generic situation for yq. For this
reason, the bound (1.6) involving yo should be preferred.

In our relative error analysis presented below, the direction Z; of the perturbation will be always involved.
In situation of uncertainty about z, one can consider the worst case, or the average case, for 2j.

Theorem 1.1 describes the propagation of the relative error when the initial value of (1.1) is perturbed and (1.1)
is exactly solved. Aim of this paper is to study the propagation of the relative error when the initial value of
(1.1) is perturbed and (1.1) is numerically solved rather than exactly solved.

So, we suppose that the initial value yq # 0 of (1.1) is perturbed to ¥, and the relevant perturbed solution
y is numerically computed over the mesh

t,=nh, n=0,1,2,... (1.8)
of constant stepsize h > 0, with numerical solution yq, y1, y2, . . . given by
yn+1:R(hA))~/n, n:O’ 112"-' (1-9)

and then
yn=R(hA)"yo, n=0,1,2,...

where R(z), z € D < C, is an analytic approximant of the exponential e, z € C, e.g., a polynomial or
a rational approximant. Here, D is the domain of R. When a Runge—Kutta (RK) method is applied over the
mesh (1.8), we obtain a numerical solution (1.9) with R the stability function of the RK method (see [7]), which
is a polynomial or a rational function. We assume that the approximant R has order [, where [ is a positive
integer, i.e., we have

R(z)-e* = CZ" + 0(z?), z—0 (1.10)

for some constant C # 0. Moreover, we assume hA; € D,i=1,...,p.
In this paper, we study the relative error

_ ||Yn —)’(tn)llz
" Iy (t)ll,

of the perturbed numerical solution ¥, with respect to the exact solution y(t,). This error is due to the per-
turbed initial value and to the approximant. Let

n=0,1,2,... (111)

_lyn =y @),

= , n=0,1,2,... (1.12)
Tyl



where
yn=R (hA)" Yo
be the relative error §, for an unperturbed initial value.

As in [9], we suppose A normal. The assumption that A is normal is not too much restrictive, since the
family of normal matrices includes important types of matrices as symmetric, skew-symmetric, shifted skew-
symmetric, and orthogonal matrices. Moreover, the test problem (1.1) with A normal is worthwhile to be in-
vestigated in this context of the relative error analysis, since it shows new and unexplored situations about
the numerical integration of ODEs. Finally, it seems adequate to consider normal matrices in a first paper on
the subject, as the present paper is.

The linear ODE (1.1) with A normal can be seen as d uncoupled linear scalar ODEs, once we consider
components in the orthonormal base of eigenvectors. So, we could assume from the beginning that A is diag-
onal, but we do not do this because it does not simplify the exposition: for example, a formula like (1.4) is not
simplified by knowing that A is diagonal. However, it is clear that the net and simple form that this formula
has is due to the decoupling of the ODE.

We remark that a relative error analysis of numerical solutions of ODEs is not yet accomplished in liter-
ature. Indeed, it is tradition in numerical ODEs to measure errors by absolute errors, not by relative errors,
perhaps because one assumes that the solution does not become neither small nor large and so absolute and
relative errors have the same order of magnitude. Clearly, absolute error and relative error have the same order
of convergence to zero with respect to h, but the fundamental point is that the two errors behave differently
with respect to time.

The only situation (however important) where relative errors are considered is in the error control for
variable stepsize integrators. Such integrators produce a sequence {y,} of approximations for the values y(t,)
of the solution y of a d-dimensional ODE by selecting stepsizes hy+1 = the1 — th, 1 =0, 1, 2, ..., such that

|Yr1+1,i - Zn+1,i(tn+1)| < ATOL; + RTOL; - |Yn,i|

holds for each component yn41,5, i = 1,...,d, of the numerical solution yn,;. Here, z,,1 of components
Zns1,is 1 = 1,...,d, is the solution exiting from (t,, y,) and ATOL; and RTOL;, i = 1, ..., d, are fixed toler-
ances on absolute and relative errors, respectively, see [15]. In this context, the relative errors are considered
componentwise, not normwise as in the present paper.

We recall that in literature both componentwise and normwise approaches are considered in studying
relative errors (see [1]). Moreover, it is worthwhile to remark that normwise relative error and componentwise
relative errors are strictly related (see the introduction in [9]): we have

[¥0,i = Yo,i
£ < max ————
i=1,...d  |Yo,i|
Vi — Vi (t
6y < max DmiVil o
i=1,..d  |yi(tn)]
|yni—)’i(tn)| ly(t)l, .
- < 6n, n=0,1,2,..., i=1,...,d
lyi (tn)] lyi(ta)l "
where yo.i, Yo,i, Vn,i> and yi(tn), i = 1, ..., d, are the components of yo, Yo, ¥n, and y(t,), respectively. So, if

all the components of y, are perturbed with relative errors within a tolerance TOL, then ¢ < TOL and if §,, is
known to be large, then some component of y(t) has a large relative error.

The plan of the paper is as follows: In Section 2, we give a formula for the relative error 6, defined in (1.11),
on which our relative error analysis of the numerical solution is based on. In Section 3, we define the errors
introduced by the approximant. The relative error analysis is presented in Section 4: the main finding of this
section is that the relative error y, defined in (1.12) and relevant to an unperturbed initial value grows linearly
in time. A long-time relative error analysis is given in Section 5: the main finding of this section is that, in the
long-time, the contributions to the error y, coming from non-rightmost eigenvalues of A vanish. Examples
with numerical experiments are considered in Section 6 and Section 7 and conclusions are draft in Section 8.



Observe that the classical ‘scaling and squaring method’ (see [5]) for computing the matrix exponential
is related to our study. In fact, this method computes e# as R(hA)", where h = 1/2°% and n = 2° for a suit-
able positive integer s, with R a polynomial or rational approximant of the exponential. In literature several
relative error analyses of the ‘scaling and squaring method’ can be found (see [2, 5, 6, 13, 21]), but they are
different from the analysis presented here. In fact, in these analyses the interest is on the computation of
the matrix exponential, not on the computation of the matrix exponential times a vector: in other words, the
interest is on the relative error

[Rehay" -],

let1;

|(RrAY" - e*) yol

letyol,

not on the relative error

n=

considered in the present paper.

We conclude this introduction by precising the meaning of the relations a ~ b and a £ b, which are used
throughout the paper. Fora, b € Cor a, b € R, a ~ b means

a=b(1+e)

with |e| <« 1.Fora, b € R, a £ b means a < c for some ¢ € Rsuchthatc~ b.Fora, b € R4, a ~ b means

la - b2

— < 1.
b2

In the present paper, for a > 0, ‘a small’ is the same as ‘a « 1’ and ‘a large’ is the same as ‘a > 1°.

2 A formula for the error g,

We introduce the relative approximant S : D — C given by
S(z)=e*R(2), zeD.

The following theorem provides an useful formula for the relative error 6, defined in (1.11), in case of a
normal matrix A.

Theorem 2.1. Let A be a normal matrix. For the relative error §,, we have

\j q (e(r]«—rl)tngnyj)Z
j=1

8y = — , n=0,1,2,... Q.1)

q
\j'=1 (e(ff—rl)tn Qj)70||2)2

J

where

Y ((S(hA)" - 1) Piyo + &S (hA)" PiZo)
/L‘GA]'

gn’]' = (2.2)

2

Proof. Fixn=0,1,2,...Wehave
P = etnAa—tiAR (hA)" o = et,,A’Yn

i.e., yn is the perturbed exact solution of (1.1) at t,,, when the initial value y, is perturbed to
Y, = e "R (hA)" ¥ = S(hA)"Vo.

This is backward error analysis.



Theorem 1.1 says that

\jé (e(rf—fl)t" szn"Z)z \/:11 (e(ri_rl)tn QjEnZ,uz)2
6y = I_q Ep = )= -
\/Z (e(rf"l)t" Qj?o"z)z \j (e(fi—rl)tn Q}.yO"Z)Z
j=1 j=1
where B N
5 _ Yn-yo_ _[¥a-yol,
v, " ol

By writing the perturbed initial value ¥, as

Yo = Yo + £|yoll; Zo

we have
Yn -0 =S(hA)" Yo -yo = (S(hA)" - 1) yo + £ yol, S (hA)" Zo.

So

EnZy = (S(hA)" = 1)7o + €S (hA)" Zo

M=

((S(hA)™ - 1) Piyo + &S (hA)" PiZo)

i=1

and then, forj=1,2,...,q,

QiEnZn = ) ((S(hA)" - 1) Piyo + &S (hA)" PiZo) .
AiEA,'

This completes the proof. O

The errors €,,j in (2.1) are defined in (2.2) in terms of two sources of error: the number ¢, which takes into
account the fact that the initial data is perturbed, and the function S, which takes into account the fact that
we are numerically integrating (1.1) and not solving it exactly.

When ¢ = 0 the initial data is not perturbed and when

S(z)=1, zeD=C (2.3)

the ODE (1.1) is exactly solved.
Of course, (2.3) never holds when we are numerically integrating (1.1) and it holds when R(z) = €%, z €
D = C, i.e., when we use
VYn+1 = ehAY,,, n=0,1,2,...

instead of (1.9), namely we use the matrix exponential e"4 instead of an its approximation. We can think that
this is implemented in MATLAB by the matrix exponential function expm. In the numerical tests of Section 6
we compute exact solutions in this manner.

The situation € = 0, where the initial value is not perturbed and the sole source of error is the approximant
of the exponential, is of particular interest: we have already observed above that a systematic analysis of the
relative error of numerical solutions of ODEs has not been developed in literature. In this situation, the error
&n becomes the error y, defined in (1.12).

The situation (2.3), where the ODE (1.1) is exactly solved and the sole source of error is the perturbation in
the initial data, has been already studied in [9]. In this situation, the error 6, becomes the error §(t,) defined
in (1.3).



3 The errors of the approximant

We can rewrite the error €5, j in (2.2) as

Enji= z (¢ (noy) Piyo + & (1 + ¢ (noy)) PiZo) (€3))
AiGA]' 2
where
@ (noj) :=e" -1
and
o; = log S(hA). (3.2

Here, we are considering the principal value of the complex logarithm log, which is the branch defined by
the Mercator series )
logz = y D 1)t 1<1
OgZ_Zi_!(Z_ )Y, Jz-1| < 1.
i=1
The complex numbers o, i = 1,...,p, defined in (3.2) are considered as the errors introduced by the
approximant R: observe that in (2.2) we have S(hA;) = 1 if and only if g; = 0.

The next proposition says how small is the error g; when hA; is small.

Proposition 3.1. Fori=1,..., p, we have
oi = C(hApM (1 + 0 (hAy), hA; -0 (3.3)

where [ is the order of the approximant and C is the constant in (1.10).

Proof. By (1.10) we obtain
S(z) = 1+Czl+1+0(zl+2), z—0

and then
log S(z) =log (1 + Cz"' + 0 (2'2)) = c2* + 0 (21*2), z—o.
This completes the proof. O

Next remark contains important observations or consequences of Proposition 3.1. In the following, a similar
remark is presented for each proposition or theorem.

Remark 3.1.

1. IfA; =0, theno; =0.

2. If the approximant R has real coefficients, then, for a pair A;, Ay of complex conjugate eigenvalues of A,
o; and oy are complex conjugate and so |o;| = |o/.

3. Let I be anonempty subset of the spectrum A of A and let

r := max|A;
p Aierl il

Mr = I}l;rrl il .
We have
max [oj] = |C| (hpr)™** (1 + 0 (hpr))
min o] = |C] (hur)™ (1 + 0 (hpr))
as hpr — 0.



Let I' and A nonempty subsets of A and let

KFA = . . (34)

We have
pr 1+1
Kra = (;TA> (1+0(hproa)), hpros — O,
In the previous point 3, we prefer to write hpr — 0 and hprya — O rather than h — 0. We use the

dimensionless stepsizes hpr and hprys rather than the stepsize h, because hpr and hprys are small or
large independently of the particular unit used for the time ¢.

The errors o; appear in the errors €,,; by means of ¢ (no;) (see (3.1)). Next proposition says something about
this.

Proposition 3.2. Leti=1,...,pandletc > 0.Ifn|o;| < c, then

p(no;) = no; (1 +w;)

where ¢_1
wil <g(c) = ————€.
Proof. Let z € C. For
pz)=€e"-1
we have
P)=z(1+w)
where

e-1-c¢
W ——

whenever |z| < c. In fact, we have

2

3
go(z)=z(1+£+z—+z—+-~>

20 31 4]

with

z z2 ef-1-c¢

—+ —+ — < .

20 31 4l c
This completes the proof. O
Remark 3.2.
1. The function e_q

go)=""5 ¢>o0

is increasing and we have
c
glo)=5+ 0(c*), c—o.

Since the function g is often used throughout the paper, some reference values of g are collected in Table 1.
If n|oj| < 1, then @(no;) = no;.
Remind point 3 in Remark 3.1. Let I' be a nonempty subset of A. We can write

nmax |oi| = tnprEr
/\iEF

nmin |o;| = thworFr
}l,-el"l il npP



¢ g(c) Tab. 1: Reference values of g. Value g(c) = 1is for c = 1.2564.

0.5 0.29744
1 0.71828
1.5  1.3211
2 2.1945
where
1}13;(|0i|
i€
Er := = —— =|Cl(hpr)' (1 + O (hpr))
pr
min |o;| 11
Aiel 1 Hr) 1
F = :_E = —_— C h 1+O h
P o = Er= (L) ieither) (4 0 (hor)
as hpr — 0.

4. Remind point 4 in Remark 3.1. In the previous point 3, we use the dimensionless times t,pr rather than
the time t,, because t,pr is small or large independently of the particular unit used for the time.

4 Analysis of the error g,

In the present section, we study how the relative error &, in (1.11) grows with the index n. We consider sepa-
rately the situation of an unperturbed initial value, i.e., € = 0, and of a perturbed initial value.
The following notation is introduced. Let

A* = {Aj e A: Pyyo # 0}
A*F = {/\l €A : Pizg # 0}

and, forj=1,...,q,

A;‘ = {Ai € Aj: Piyo # 0}
A;* = {/\i € Aj: Pizo # 0} .

Moreover, let

j*=min{je{l,...,q}: A7 # &}
s min{je{l,...,q}: A}’.“*qeg}.

The generic situationis A* = A** =A,A]f‘ =A]f‘* =Ajforj=1,...,qandj* =j** = 1.

4.1 Unperturbed initial value

Next theorem gives lower and upper bounds for the relative error y, given in (1.12) and relevant to an unper-
turbed initial value.

Theorem 4.1. Fix ¢ > 0. For an index n such that

nmax|oi| < ¢ (4.1)
AieA*

we have
n min |o;| (1 - g(c)) < yp < nmax|oj| (1 + g(c)). (4.2)
AieN* AieN*



Proof. Inthesituatione =0,forn=0,1,2,...andj=1,..., g, we have

enj=| X @moNPFo| = | ¥ |o (oo’ [Piyol;. (4.3)
A€ 2 A€l
By (2.1), (4.3), (4.1) and Proposition 3.2, we easily obtain (4.2). O

The theorem says that the error y, grows linearly with the index n, i.e., it grows linearly in time: see point 3 in
Remark 4.1 below.

Remark 4.1.

1.

For an index n such that
nmax|oj| < 1
AieN*

Wehave
n]lli]l Oj < SnlllaX oij| .
i6*|1|~Yn~ /\ie*lll

Recall point 3 in Remark 3.2. In (4.1) and (4.2) we have
g =t +E g«
n }TEEXE |0i| = tnpa+En

n min |oj| = thpa~Fa+
A,-eA*l il npP

where
Ep- = |Cl (hpa+) (1 + O (hps-))
Ua I+1 :
Fpe = (—) Il (hpa-)! (1 + O (hpa-))
pa
as hpy» — 0.

Fix ¢ > 0. The Theorem 4.1 and point 2 above say that for a dimensionless time t,0,- such that

thpar £ T
where c 1
o _ I
T:= T 00, == O((hpA*) ) as hpp- — 0 (4.4)
we have
btnpa < Yn < atppa- (4.5)

with a and b independent of n and
a=0((hpa)'), b=0((hpas)'), hpae — 0.

Hence, the relative error y, grows linearly in time and this linear growth holds for any normal matrix A, for
any approximant R and for any stepsize h (such that hA; € D,i=1,..., p). Of course, the absolute error

1yn =y )ll2 = yn lly (t2)ll2

has a completely different behavior, due to the exponential growth or decrease in time of ||y (tx)|,.
Observe that the linear growth of y, is not a true linear growth, since (4.5) is not guaranteed to be valid
for all dimensionless times t,p .-, but only for t,p1+- < 7. However, asymptotically as hp,« — 0, itis valid
for all dimensionless times t,p,-: we have T — +co as hp,- — 0.
When A* = {0}, we have

Yn=0, n=0,1,2,...

10



5. When A* # {0}, Theorem 4.1 can be improved as follows. Fix ¢ > 0. For an index n such that

nmax|oj| < ¢
AieN*

we have
i (1= Bn <yn < il (1 B
”Ai?ﬂr\l{m'o"( 8(c))Bn < Yn ngl&)glazl( +8(c)) Bn
where
2
q
y | el y ”piyo"g
=i AieA7\{0)
B, =
q N 2
\j Y. (et Qjvol, )
=
and
el |5 pigol < Ba< 1
AieA? \{0}
holds with

ji=min{j e %, ..., q): A7\ {0} # o). (4.6)

This result, unlike Theorem 4.1, gives a nonzero lower bound for y, in the case 0 € A* and A* # {0}.
6. The bounds (4.2) are valid for indices n satisfying (4.1). Bounds valid for all indices n are
min noj)| € Yn < max noj)|.
AieA* |(P( l)l ¥n AjeA* Iq)( I)I
However, it is not interesting consider bounds valid for all indices n because, for a sufficiently large n,

the error y, becomes not small (although it could become again small or even zero for a very large n if all
the complex numbers o, A; € A*, are imaginary).

4.2 Perturbed initial value

Recall that y, (see (1.12) and the previous subsection) is the relative error due to the sole approximant and that
6 (t) (see (1.3) and (1.4)) is the relative error due to the sole perturbation in the initial value. For a perturbed
initial value, next theorem describes the growth of the relative error 6, (see (1.11)) due to the approximant
and the perturbation in the initial value, in terms of the two relative errors y, and 6 (t).

Theorem 4.2. Forn=0,1, 2,..., we have

|6n _Ynl < 6 (tn) + Bnd (tn) (4.7)
and
|6n -6 (tn)l < Yn + Bn6 (tn) (4.8)
where
q 2
\] (e(fi—'l)fn Y @ (no;) Pizo )
j=1 Aied; 2

Bn = (4.9)

Qzo],)”

q
(ri-r1)ta
\Ee

is the error y, when the initial value y, of (1.1) is such that yo = Zo.

11



Proof. Forn=0,1,2,..., we have

J

Y ¢ (noi) Pyo
AiEAi

)

q q q
[ =Vl JZ(e(” o |Qol,)” = JZ (erm)tng,, ;)” - Z(em—rlm
=t j=1

j=1

IN

-1 > ¢ oy Piyo
Aie;

2
e(ri=r)tn z £(1+ ¢ (noy)) Pizo )
/1,*6/1]' 2
p 2
<Y e(n—n)tn( Y. €PiZo| +| ) ep(noy)PiZo ))
j=1 A€ 2 A€ 2

e(r,-—rl)t,,

N

N
_ = = =
T

Z €Pi20

/\iGAj

3y (e(r,-—n)rn

j=1

J

Y &9 (noy) Pizo
AiGA}-

2
)
The bound (4.7) now easily follows.
For the other bound (4.8), the proof proceeds similarly: forn = 0, 1, 2, .. ., we have

-0 (tn)l \]i (e(r;‘—rl)tn \j (e(rj_rl)t"gn,j)z 3 \ji (e(rf_”)t"
=1 j

j=1
q
Z e(rl ’1)t"

2
(

N2
£QjZo|,)

M=

Qvoll,)’ =

1

IN

(<P (noy) Piyo + £ (noy) PiZo)

)

Y ep (noy) Pizo
AiGAj

J

e(r, r1)tn

N
e

Y ¢ (noi) Pijo
Aied;

j=1

J

This completes the proof. O

q
y (e(r,-—n)tn

j=1

The bound (4.7) shows how a perturbation in the initial value affects the error y, and the bound (4.8) shows
how the numerical integration affects the error 6(t,,).

Remark 4.2.
1. Fix ¢ > 0. For an index n such that
n max |oj| < ¢
AjeN**

we have
n min 0] (1 -g(c)) < Bn < n max |oi| (1 +g(c)).
AjeN** AjeN**

Moreover, for an index n such that
n max |oj| <« 1
AjeN**

12



Wellave
n min Oj SB < n max |oj|.
Ae **l l|~ n= e H| 1|

This follows by Theorem 4.1.

For an index n such that
Brnx1

we have
|5n —Ynl < 6 (tn)

by (4.7). The condition (4.10) holds when

n max |o;j| < 1.
AjeA**

Assume A* # {0}. For an index n such that

q . 2
;1 (e(r;—rl)tn Alev @ (no;) Pizo )
ﬁnf](tn) _ )= =4 2 : ce<1
Jf (e(’f‘“)f" Y ¢ (noy) Pijo )
j=1 /\iEAj 2

we have
|6n -6 (tn)| £ Yn
by (4.8). The condition (4.11) holds when

|PiZoll,

A** gA*, -
Pi)’0||2

ex1

AjeN**

or

0¢ AL, nmaxyen:, loil « 1, nmaxpea|0i] <1

e(r]-** —r}-* )tn

Kpenp. Tjgegon, €1
where K -+ A is defined in (3.4).
Assume A** # {0}. For an index n such that
P 2
Z (e(ri_rl)tn Z (P(nUi)Piyo )
yn j=1 /1,'6/11' 2
= 1
ﬁn5(tn) q 2 <
) (e(’f‘“)“ Y @ (noy)Pizo ) e
j=1 /\iGAj 2
we have
|60 — 8 (ta)| < B,
6 (tn)

by (4.8). The condition (4.12) holds when

0¢ AL, nmaxpes|0i <1, nmaxyes-|0i <1

Kpsnzz,
! < 1.

el 1)t || Q- Zo 2

Recall point 4. For an index n such that (4.10) and (4.12) hold we have 6, = §(ty).

13
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6. By (4.7) or (4.8), we have
On<Yn+6(ty)+Bnb(ty), n=0,1,2,...

For an index n such that (4.10) holds we have
OnSyn+6(tn).
7. Recall point 6. If A* = {A;}, ¢(nao;) = 0, and 2y = o, then
On=Yn+0(tn) +Bnb(ty), n=0,1,2,...

5 Long-time behavior

In the present section, we are interested in the behavior of the error 6, for large indices n. As in the previous
section, we consider separately the situations of an unperturbed initial value and of a perturbed initial value.

5.1 Unperturbed initial value

5.1.1 The long-time solution y'°"s

Let ylong be the solution of (1.1) with initial value Qj-y rather than y,. This solution is a long-time solution as
stated in the following theorem.

Theorem 5.1. For a timet > O such that

q = 2
\j Z <e(r]‘—rj*)t||||Q]y0l|2 ) <1 (5.1)

j=i*+1 Qj-¥ol,

we have
y(t) = y'r8(t).

Proof. Fort > 0, we have

q
y() =Y Y elPyg

Jj=i* Ai€d;
and
Yo =y eMPiyo.
A,’GA;*
Then
2
2 Y Y Py, > (@ ]ayol,)?
|y @ -yers @) = aen, 2 e o ~ Zq: (e(’f‘rf*)’ 1Qjyoll, )2
1 2 - 2 <t 2 s N )
Iy o 5 eithiyo @ aryol,) 195-vol,
AiGA}'* 2
This completes the proof. O
Remark 5.1.

1. Theorem 5.1 says that
Iy &)= yne 0]
ly'ers ],
In addition, by looking at the proof of Theorem 5.1, we see that

Iy &)= y'me 0]
———<= >0, t— +o00.
Iytens )],

<« 1 for asufficiently large ¢.

14



2. ForA* \A]i + @, the condition (5.1) holds when

.*A 2
e(rm"iri*)t"M < 1
195 Yol ,
where
m* :=min{je{j*+1,...,q}:A;‘#@}. (5.2)

5.1.2 The error y:,°"g

Let y'°"® be the error y, relevant to the long-time solution y'°". By considering the formula (2.1) with initial

value Qj-yo rather than yo, we obtain

long En,j*
Y =, n=0,1,2,...
" ]Qvol,
with
enj=| Y (o) Py
/\ié/l;* 2

Observe that €, ;- /[1Qj- Vol is also obtained by considering, in the formula (2.1) with initial value yo, only the
leading exponential terms ei* "ing, ;. at the numerator and e "t Q;. Jo ||, at the denominator.

Next theorem gives lower and upper bounds for the error y."8.

Theorem 5.2. Fix ¢ > 0. For an index n such that

n max |oj| < ¢ (5.3)
€A

we have

n min |07l (1 - g(c)) < yn"™ < n max |a7] (1 + g(c)) . (5.4)
AiEAi* A,'GA;*

Theorem 5.2 is identical to Theorem 4.1 excepts for A* replaced with its subset A ]’i constituted by the rightmost

eigenvalue in A*. The proof proceeds similarly to the proof of Theorem 4.1.

Remark 5.2.
1. For an index n such that
n max |oj| < 1

i ik

]
we have
. long
n min |o;| £ < n max |oj] .
i A}**l il SYn = P ;*| il
2. Recall point 2 in Remark 3.1. If A ]‘.'; is constituted by a single real eigenvalue A; or by a single pair A;, A; of
complex conjugate eigenvalues and the approximant R has real coefficients, then

long

n|oil(1-g(c)) S yn ~ <ol (1+g(c))

whenever
nloj| <c
and
long
Yn = = n|aj
whenever
nlojl « 1.

15



3. Recall point 3 in Remark 3.2. In (5.3) and (5.4) we can write

n max |oj| = tppar, Exx,
AieA?, o

i

n min |0y| = tnpa;, F;,
iS4

where

£z =161} (10 ()

y/l;l I+1 ,
Fi = (52) et ) (10 ()

ji*

as hpA;* - 0.
4. If A = {0}, then

V.0, n=0,1,2,...

5. When A]i # {0}, Theorem 5.2 can be improved as follows. Fix ¢ > 0. For an index n such that

n max |oj| < ¢
A,-eA?;
]
we have

n_ min }|oi|<1—g(c))Bl°“gsy%"“gsnmazf |0l (1 + g(c)) B"

NeAr {0

j i€

. / > [Piol
A€l \{0}
plong _ / <1

1Qj-¥ol,,
long

This result, unlike Theorem 5.2, gives a nonzero lower bound for y,; ° in the case 0 € A;‘* and A ]* + {0}.

where

5.1.3 Long-time behavior of the error y,

Since y(t) ~ y'°"¢(t) holds in the long-time and the error y, for y'°8 is y:*"%, an important question is:

Does Yy = Y™ hold in the long-time? (5.5)

Regarding the meaning of ‘long-time’, observe that it is not of interest to consider what happens asymptot-
ically as n — oo, since y, becomes not small for a sufficiently large n: we are interested to have y, = yl,,Ong
when vy, is small. See also point 6 in Remark 4.1.

About the question (5.5), we have the following result.

Theorem 5.3. Assume A* \ A}, # @ and 0 ¢ A.. Fix c; > O with cj- such that g () < 1, i.e., ¢jo < 1.2564
(remind point 1in Remark 3.2). Fix ¢; > O forj = j* + 1, ..., q such thatA]?‘ + Q.
For an index n such that

n max |oj| < ¢j-

nmax|oi|<¢, j=j"+1,...,q9, Aj#02
AiEA;

q o 2
z (e(r;—r,»*)t,, ||QJ)’A0||2 ) «1 (5.6)
j=j+1 "Qi*yO”z
q . 5 2
Z <e(r,-rj»«)t,, 1 +g(c]) I(A*A** NQ]):OHZ ) <1
j=i+1 1-glej)) 7 |Qjyol,
+o

J

16



where K An, is defined in (3.4) and

pa 1+1
Kpzpr, = (]JAi ) (1+0(hpa+)), hpa-—0

holds, we have
long
Yn=Yn .
Proof. Forn=0,1,2,..., we write

q 2
(rj=1j* )tn Enj )
\/1+. Z (e = "_En,j*
long

J=i*+1 lon;

YnZYn 7 = Zzyn g(1+en)
1+ ) (e(ff—ff*)tn 1957l )
j=j*+1 "Qi"YOHZ
where
q 2
1+ Y (e(’i"i")tn;Li)
j=j*+1 "
len| = -1
q o 2
1+ Y <e(r;—r;*)t,, ||Qlyf||z )
j=jr+1 Q- 3oll,
q SN2 q = 2
< lmax Z (e(r}’_?’j*)tni) , z (e(r,»—r,-*)t,, Q})’AOHZ ) .
z joim+1 Enj /g 1Qs¥ol,,

Now, forj =j* +1,...,gsuch thatA]f‘ + @, we have

Y. @ (noi)Piyo

max | (nov| | Qo

enj e 2 1+g(c)) 1Q;%0ll,
Eni S min |¢ (noy)| QYo s 1—§(C-*)KA;A’1 1Qj Vo,
n,j Y @ (no) Pijo Aen P i i* Yol j i*Yoll>
ieA;* 2
This completes the proof. O
In the case c¢j- = ¢j = ¢, where ¢ > 0is such that g(c) < 1, the condition (5.6) becomes
nmaxjea- |0i| < ¢
q Ky 2
Z (e(rj—r,-*)t,, "Q])‘/\ONZ ) < 1
j=it+1 ||Q;‘*J’0||z
2 q 5 2
(1 + g(c)> Z (e(rj_ri*)t”KAf‘Af; ||Q]):0"2 ) < 1. (5.7)
1-g00) &, Qg voll,
A +2

Theorem 5.3 says that y, = yl,,ong holds in the long-time: see points 3 and 4 in Remark 5.3 below. In other

words, the contributions to the error y, coming from non-rightmost eigenvalues in A* vanish in the long-time.

Remark 5.3.
1. For an index n such that

nmax |0j| < 1
Ajen*

q T 2
Z (e(r;—r,»*)t,, ||Q}):0"2 ) <1 (5.8)
j=je+1 I Qi*yonz

= 2
i (e(rfr,-*)t,,l(mm* IlQJ):0||2 ) «1
j=it+1 n ”Qi*yollz

0

17



we have y, ~ y.".

For an index n such that (5.7) holds, we have y, ~ yi" and

n min |oi| (1 - g(0) < yn"
/liEA/-*

¢ < n max |oj| (1 +g(c)).
heAr

i i

J

Hence
n min |0;] (1 -g(c)) S yn Snmax |o;| (1 +g(c
i A}?;I il ( g(C)fyns A;eA]f;' il ( g(c)
and the lower and upper bounds here are tighter than the lower and upper bounds in (4.2): A* is replaced
with its subset A ]* constituted by the rightmost eigenvalues in A*.
For an index n such that (5.8) holds, we have y, ~ y. "% and

n min |0 < y;"* < n max |0

1 /* 1 i*
Hence
n min |oj| £ < n max |oj| .
hen, [0i] £ Yn A |0l

In (5.7) the index n should be sufficiently small in order to have the first condition satisfied but sufficiently
large in order to have the second and third conditions satisfied. For indices n such that

kc < nmax|oj| < ¢
AieN*

where 0 < k < 1, the exponentials terms e("i~7i*)» in the second and third conditions satisfy

e (=1t < gke h(rj=rj+)/ maxyea |0l

and for the exponent in the right-hand side, we have

h(rj - )’j*) _ rj —Ijx Kt
max |oj| A
AieN* ! p

where 7 is given in (4.4). Hence, if

kc < nmax|oj| < ¢
AieA*

=~ 2
i (e(fjr,-t)/(p/l*)kr ||Qiy0"2 ) <1

je1 1Qj- ol
~ 2
<1 +8(c) )2 i (e(rj—r;*)/(PA*)ermAi NQJ'YAO”z ) <1
1-g0)) &, 1@l
A}f¢g

then y, = ylrfmg. By assuming k7 > 1 (remind 7 — +o00, as hps+ — 0), it is expected to have in (5.7) the
second and the third conditions satisfied for large indices satisfying the first condition.
In the next point 4, we provide an interval I such that y, ~ Y\ for tpp- € I.

Suppose hp,- sufficiently small so that

pa: I+1
KA;A;*<2< ’) » j=j"+1,...,q suchthatA ¢+ o

Ha,

holds. Fix ¢ > 0 such that g(c) < 1. Theorem 5.3 says that for

To S thpa- < T

18



where 7 is given in (4.4) and 7 > 0 is such that

- 2
i (e(r,»—rj*)/(pA*)ro "ij0"2 ) «1

=i +1 ||Qi*370“2
I+1 ~ 2
(21 +g<c))2 3 (et ( Pa;. ) 19vol, \ _ |
1-g(@)/) ;474 Ha;, 1Qj-yol,
A+

we have y, ~ y.°"¢. Observe that T — +00, as hpa- — 0, and To can be chosen independently of hp - .
We conclude that, for a dimensionless time t,p - in the interval [1¢, T], the contributions to the relative
error Yy given by errors o; with A; € A* \ A}i, i.e., the contributions given by non-rightmost eigenvalues
in A*, vanish. Of course, this is coherent with the fact that, in the long-time, the solution y becomes the
long-time solution y'°"8, which depends only on the rightmost eigenvalues of A*, namely the eigenvalues
inA ]’.'1 .

The second and third conditions in (5.7) hold when

/ =~ 112
e(rm* —r]-*)[n 1- "Q]* yOllZ

2

— <1
1Qj+ ol
3 2
2 1-1Q;-y
<1+g(c>> N RPN 1930l )
1-5(0) " 1@yl

where m* is given in (5.2) and K -\ AV is defined in (3.4) and

pa\a;,
Ha,

J

1+1
LORVEVEIES ( > (1+0(hpa+)), hpa-—0

holds.
Theorem 5.3 assumes A* \A]t +@and 0 ¢ A]i. IfA* \A]i = @, then

Y=Y n=0,1,2,...

IfA* \A]’.‘i, + @ and Ali = {0}, then

Yo _o, n=0,1,2,...

In this case, by considering in the formula (2.1) only the leading exponential terms e ~rtn

numerator (j; defined in (4.6)) and e "tx . |Qj+ o, at the denominator, we obtain

&n,j: at the

e(rji_rj*)t"c?n,ii
1Q;-¥ol ,

which is exponentially decreasing in time.
For A*\ A ]* + @ and A;l # {0}, an improved version of theorem holds with the fourth condition in (5.6)

replaced by
>\ 2
q 3l
e, 1+8(c) i€
Y (17 )t"T(C.])KA;‘A;*\{O} -
= ’ Y |Pol
j#0 Az \(0)

, n=0,1,2,...
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where K A: % \(0} is defined in (3.4) and

1+1
KA;A;; \{0} = ( ) (1+0(hpa<)), hpp —0

KAz o)
holds. This result can be used for the case 0 € A ]* and A;l + {0}.

5.2 Perturbed initial value

In the previous subsection we have described the long-time behavior of the relative error y, due to the sole
approximant. Now, we describe the long-time behavior of the relative error 6 (¢) due to the sole perturbation
in the initial value.

5.2.1 Long-time behavior of the error ()

By considering in the formula (1.4) only the leading exponential terms el "0t ||Q;.- Zo|, at the numerator
and e 7t |Q;- o |, at the denominator, we define

81008 (¢ 1= e(ri**”’i*)tMé‘, t=0.
19 yol,,

The error 6§'°"8 (¢) is exponentially decreasing in ¢t when j* < j**, exponentially increasing when j* > j**
and constant

510ng (t) = 610ng — ||Q]*§0l|2 g, t>0
1Qj-¥ol,
when j* = j**. In the generic situation j* = j** = 1, we have
§long (t) = §long _ an%ONZ e, t>0.
1Q1¥ol,

Next theorem describe the long-time behavior of the relative error 6 (t).

Theorem 5.4. Fort > O such that

i (e(r,-—r,-*)t 1970l )2 -1
1)+ Yol ,

=T+l

q = 2

Z <e(r,v—r/~**)t "lei)nz ) « 1 (5.9)
j=j 41 Qj++Zol,

we have
5(t) ~ 678 (¢).

Proof. Fort > 0, we have

q = 2
1+ Z (e(r,-—r,-**)t""Q)ZO"z )

8(t) = 6" (1) \j

j=i+1 Qi**zouz
q N 2
(rj=rj )t 1o, >
vz (e s
= 6" (1) (1 + e(t))
with
q = 2 g o 2
|e(t)| < 1 max Z e(r;—ri*)t ||Q]ZO||2 Z e(r)-—r,-*)t ”QJYOHZ .
"2 1Q2ol, /) ° 1Qj- ol
j=f e i Zolly /gt iYollz
This completes the proof. O
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Remark 5.4.
1. Theorem 5.4 says that
8(t) ~ 6°"8 (¢) for a sufficiently large t.

In addition, by looking at the proof of the theorem, we see that

(1)

&Tg(t)%l, t — +oo.

On the other hand, Theorem 5.3 about the error y, says neither
Yn

long
n

-1, n->oo

nor

Yn = Y™ for a sufficiently large index n.

In fact, Theorem 5.3 cannot give asymptotic results as n — co because of the first and second conditions
in (5.6), which require to take n sufficiently small.
2. ForA*\ A]f‘* + @ and A**\ A;l’i + @, the condition (5.9) holds when

2
.*A 2
el VLNVl )

19s-¥ol,

2
= 12
ot )t V1~ 19j-+Zol3 -1

1920,

where m* is defined in (5.2) and similarly we have

m* =min{je{j"" +1,...,q}: A;" #0}.

5.2.2 Long-time behavior of the error ,

Theorem 4.2 and the consequent points 2, 3, 4, and 6 in Remark 4.2 describe the growth of the error §,, in terms
of the errors yy, fn, and 6(ty). The long-time behaviors of the errors y, and 3, are described in Theorem 5.3
(remind that B, in (4.9) is the error y, for yo = Zo) and the long-time behavior of the error 6(t,) is described
in Theorem 5.4.

In sight of this, we can have information about the long-time behavior of §,,. Below, in the next remark,
we show what can be said by means of points 2, 3, and 4 in Remark 4.2.

Remark 5.5. Assume A* \A;; +3,0¢ AL, A" \A]i* +@,and 0 ¢ A;-ii. Consider an index n such that

nmax|oj| <1, nmax|oj <1
AieN* AjeN**

=~ 2
i <e(l’j—7j*)tn ”QIyONZ ) <1

j=i*+1 "Qi*?ouz
q 7 2
z (e(ri_ri*)t"KAf‘Af* M) <1
j=+1 7 Qj*y()"Z
A+

= 2
i (e(r,-—r]-**)tn ||QIZE"2 ) < 1
195+ 2ol

i

= 2
e(rifri”)t”1< P M <1
gy B,
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By point 1in Remark 5.3 and Theorem 5.4, we have
1 1
O (tp) = slons (tn), Yn = ynong’ Bn = ﬁ:ng.

The following points A, B, and C can be stated.
A. Recall point 2 in Remark 4.2. We have

|6n - Yn| s glons (tn) -
B. Recall point 3 in Remark 4.2. If
Knze, 1, 878 (ta) < 1

then
1
|6n -0 (tn)l S ynong.
C. Recall point 4 in Remark 4.2. If
Kar . )
— L«
5long ( tn)

then
|6n — 8 (tn)]

6 (tn)

A more detailed analysis of the long-time behavior of the error §, is presented in [11].

1
SBnt

6 A first example

As an example, we consider an ODE (1.1) with A € R**? symmetric and non-singular. Let A; and A, be the
non-zero eigenvalues of A with A; > A;.
Regarding the errors 01 and o, of the approximant, we have
|o1] = C (R 1A )™ (1 + 0 (hp))
|02] = C (R 12" (1 + 0 (hp))
max {01, 02} = (hp)"** (1 + O (hp))
min {01, 02} = ()" (1 + 0 (hp))
as hp — 0, where [ is the order of the approximant, p := max {|A1], |A2|} and y := min {|A1], |A2]}.

All information given in the next Subsections 6.2, 6.3, and 6.4 derives from the theory developed in the
previous sections. We consider indices n such that

nmax{|01|,|02|} S
Moreover, we set
o A
K - | 2| <| 2|

+1
= = == 1+ 0 (hp)), hp—O0.
lo1] |/11|> (1+0hp)) P

6.1 Numerical experiments

We accomplish numerical experiments with the particular 2 x 2 symmetric and non-singular matrix

1{a+b a-b
A_E[a—b a+b]

where the eigenvalues are A; = a with relevant eigenvector (1, 1) and A, = b with relevant eigenvector (1, -1).
We consider two possibilities:
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5 z K=2,/% = |02] ] |04 Tab. 2: Two possibilities for matrix A.

-~

(A1) 1 2.21e-01 2.48e-02 0.113
2 2.20e-03 8.27e-05 0.0376
3  1.65e-05 2.07e-07 0.0126

(A2) 1 2.52e-02 2.21e-01 8.77
2 8.40e-05 2.20e-03 26.2
3  2.10e-07 1.65e-05 78.4

(Al)a=3and b =1;
(A2)a=-1and b = -3.

We use the Taylor approximants of the exponential

2 ZZ ZB

z
z—1+2z, z»—>1+z+?, Zi—>1+Z+?+€, zeC

of orders | = 1, 2, 3, respectively, for the numerical integration. This numerical integration is accomplished
with stepsize h = 1/100 over N = 500 steps up to ty = Nh = 5. The numbers ¥, = N|o;| and X, = N|o;| in
possibilities (A1) and (A2) are listed in Table 5.2.

Observe that
max {X1, 2} « 1

holds (but weakly for the order one approximant) and then we have

nmax {|o1],|02]} < 1

for all indicesn =0, 1, ..., N. Moreover, observe that
ko2 _lol (Iﬂ)’“
21 ol la|

6.2 Unperturbed initial value

Assume the generic situation A* = {11, 1,}.

Solutions y and y'°"¢, We have

\Y
o

y(t) = NPy + ebiP,y,, ¢
yiong(t) = eMipiy,,  t>0.

Long-time behavior: y(t) = y'°"8(¢) for t such that

a1t NPZ?ONz
1P1¥0l,

Errors Yy and y<®. We have

nmin {|o1], |02} £ Yn £ nmax{|oy|, |02]}

long
Yn =~ =nloi].

Long-time behavior: y, ~ y»"¢ for n such that

=~ 2
(e(/lz—/h)tn maX{l, K} "P2y0"2 ) < 1.
1P1yol,,
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6.2.1 Numerical experiments

We numerically test the possibilities (A1) and (A2) with the initial value yo = (2, —1), for which

1 3
P1y0=z(1, 1)7 P2y0=5(1,—1)

d
an 3

1
Piyol, = ——, [P:yol, = ——.
P17, 7o P23, T

Solutions y and y'°™¢, We have
y(t) = %e‘”(l, 1) + %ebf(l, -1), t=0
yong(t) = %e‘“(l, 1), t=o0.
Long-time behavior: y(t) ~ y°"8(¢) for t such that 3e~2f « 1.
Errors yy and y'°"%. We have
%min 51,5} Syn < %max (51,55}

long N
~—X
" N !

foralln=0,1,..., N.Long-time behavior: y, ~ ylnOng forn=0,1,..., N such that
(3 max{l,K}e‘Zt")2 <1

In Figs. 2 and 3, for possibilities (A1) and (A2), respectively, we see the error y, (solid red line) along with
%21 (dashed blue line) and X (dash-dotted green line) forn =0, 1,...,N.

6.3 Perturbed initial value, |

Assume the generic situation A* = A** = {14, A3}.
Solutions y and y'°™8: as in Subsection 6.2.
Errors 6(t) and 6'°"8(t). We have

VIPi2ol} + (e [Pazol,)*

§(t) = =, > 0
VIP15o|2 + (€At | P23 )
810ng(t) _ §long _ ||P120|l £>0.
[P13ol,

Long-time behavior: § (t) ~ §'°"8 for ¢ such that

- 2
(e(/\z—lll)t |P2¥ol, > <1
IP1oll,

~ 2
(e(/lz}ll)t |P2Zo] > <1
IP1Zo],

Errors yn and y'°"%: as in Subsection 6.2.

Error 6,. We have
|8 = Yn| < 8 (tn)
and
|5n -6 (tn)l < Yn

Pz P,z
(e ),
[Pi3ol,” [P0l

when
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Fig. 2: Possibility (A1) with initial value yo = (2, —1) unperturbed. The [-throw, [ = 1,2, 3, corresponds to the approximant
of order [. Error y, (solid red line) along with § 21 (dashed blue line) and ; 2, (dash-dotted green line). The abscissas are the
timest, =nh,n=0,1,2,...,N.
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Fig. 3: Possibility (A2) with initial value yo = (2, —1) unperturbed. The [-th row, [ = 1, 2, 3, corresponds to the approximant
of order [. Error y, (solid red line) along with § 21 (dashed blue line) and f; 2, (dash-dotted green line). The abscissas are the
timest, =nh,n=0,1,2,...,N.
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6.3.1 Numerical experiments

For the numerical tests we consider the same initial value yo = (2, —1) as in Subsubsection 6.2.1, but now it
is perturbed with Zy € span (1, 2), for which

- 3 _ 1
|P1Zo], = NGk I1P2Zo], = V1o
Solutions y and y'"8: as in Subsubsection 6.2.1.
Errors 8(t) and 8'°"8(t). We have
32 4 (e 2t)?
()= ——— "¢, t20
1+(3e2t)?

8118 (f) = 6" =3¢, t>0.
Long-time behavior: & (f) ~ 6°7 for ¢ such that (3e72)* « 1.
long

Errors y, andy, °: asin Subsubsection 6.2.1.

Error §,. We have
|8 = Yn| < 8(¢n)
for all indicesn=0,1,...,Nand
|60 — 8(tn)| S Yn

for all indicesn =0, 1, ..., N when
3ex 1.

In Figs. 4 and 5, for possibilities (A1) and (A2), respectively, and € = 102, we see, forn =0, 1,2, ..., N,
in the left column the deviation |6n - yn| (solid red line) along with the error 6 (t,) (dashed blue line) and in
the right column the deviation |8, — 6 (t,)| (solid red line) along with the error y, (dashed blue line).

6.4 Perturbed initial value, Il

Assume the non-generic situation A* = {A;} and A** = {11, A5}.
Solutions y and y'°"¢, We have
y(6) = y"8(0) = eMlyo, > 0.

Errors 8(t) and 8'°"8(t). We have

VIP12ol + (et |Pazo] )2
ea-Ap)t &
§long () = ehi=Aa)t ”PIEOH g, t=0.

5(t) =

Long-time behavior: § (t) ~ §'°"8 (¢) for ¢ such that

~ 2
(e(}tz—/h)t "PZZO”z) <1,
IP1Zo],

Errors B and Bi"8: as the errors y, and y.™® in Subsection 6.2.

Error 6,. We have

16— 6 (t2)]
5y =P

for n such that
K

o <
et [P1Zo||2¢
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Fig. 4: Possibility (A1) with yo = (2, —1) perturbed with £ = 1072 and Zo € span (1, 2). The I-th row, [ = 1, 2, 3, corresponds to
the approximant of order /. Left column: deviation |8, — y,| (solid red line) along with the error & (t,) (dashed blue line). Right
column: deviation |8, — J (tn)| (solid red line) along with the error y, (dashed blue line). The abscissas are the times t, = nh,
n=0,1,2,...,N.
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Fig. 5: Possibility (A2) with yo = (2, —1) perturbed with € = 1072 and Zp € span (1, 2). The I-throw, [ = 1, 2, 3, corresponds to
the approximant of order I. Left column: deviation |6, — ys| (solid red line) along with the error & (t,) (dashed blue line). Right
column: deviation |0, — 0 (t,)| (solid red line) along with the error y, (dashed blue line). The abscissas are the times t, = nh,

n=0,1,2,...,N.
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6.4.1 Numerical experiments

In the numerical tests, we consider the initial value yo = (1, —1), for which A* = {A,}, perturbed with zy €
span (1, 2) (as in Subsubsection 6.3.1).

Solutions y and y'°"s. We have
y(t) = y'"8(t) = eP’(1,1), t=0.
Errors 6(t) and 6°"8(t). We have

1 32 4 (e72t)?

6(t) = 1o =T g t=0
3
som8 () = —_e2te, t>0.
(t) I

Long-time behavior: & (t) ~ 678 (¢) for t such that (%e‘” )2 < 1.

Errors By and BI°™: as the errors y, and Y\ in Subsubsection 6.2.1.

Error 6,. We have

16— 6 (t)|
5 <P

forn=0,1,..., Nsuchthat
V1o K
T3 ehg
In Figs. 6 and 7, for possibilities (A1) and (A2), respectively, and £ = 1072, we see the relative deviation
|6n — 8 (tn)| /8 (tn) (solid red line) along with the error B, (dashed blue line) forn =0, 1, ..., N.
In Fig. 6, it is surprising to have, at the beginning of the integration where §(¢,,) < 1, relative deviations

not much larger than f8,,. This can be explained by observing that

|5n—6(tn)l Yn _
P <P (U ) o

and, whenever
0¢ AL, nmax|oj <1, n max |oj <1
J Ai€eN* i€ ]****
we have It
Yn A*A}f;*,‘

<
.Bn5(tn) = e(ri”—rj*)tn"QjHE()”zg

(this bound has been used at point 4 in Remark 4.2 for concluding that (4.12) holds whenever (4.13) holds).

Then
Yn  _ KA*AF***

Bnb(tn) = 11Qj=Zol2€’
for j* > j**. In the possibility (A1) of Fig. 6,

=0,1,2,...

Kasae:. V10 K

1Qj+Zoll2€ 3 ¢

is not large.
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Fig. 6: Possibility (A1) with yo = (1, 1) perturbed with € = 1072 and Zy € span(1, 2). The I-throw, | = 1, 2, 3, corresponds

to the approximant of order L. Relative deviations |3, — 0 (t;)| /0 (tn) (solid red line) along with the error B, (dashed blue line).
The abscissas are the times t, =nh,n=0,1,2,...,N.
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Fig. 7: Possibility (A2) with yo = (1, —1) perturbed with ¢ = 1072 and Z, € span (1, 2). The I-throw, [ = 1, 2, 3, corresponds
to the approximant of order [. Relative deviations |3, — & (t;)| /0 (t) (solid red line) along with the error B, (dashed blue line).
The abscissas are the times t, = nh,n=0,1,2,...,N.
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7 A second example

As a second example, we consider ODEs (1.1) with A symmetric arising in consensus problems on networks
modelled by graphs (see [3, 17-19]). Such ODEs also appear in describing diffusion signals on graphs (see [16]).
Given an undirected graph with d vertices, the d x d symmetric matrix A in (1.1) has off-diagonal elements

1 if there is an edge between vertices i and j o)
ajj = .
v 0 otherwise
iL,j=1,...,d, i#j
and diagonal elements
d
ai,-:—Za,-,-, i=1,...,d. (7.2)
j=1

j#i
The matrix A is negative semi-definite and it has zero as rightmost eigenvalue. The solution y(t) of (1.1) con-
verges to (4, ..., M) as t — +oo, u being the average of the components of y,. The eigenvectors relevant to
the zero eigenvalue are the equilibria (y, ..., u), p € R.
In the deformed consensus protocol (see [14]), the matrix A depends on a parameter s € R regarded as
an input control and it has elements

g = s if there is an edge between nodes i and j (73)
Y710 otherwise ’
iL,j=1,...,d, i#j
and diagonal elements
d
aii:sz—l—sZai,-, i=1,...,d. (7.4)
j=1
j#i

When s = 1, we have the matrix given in (7.1)-(7.2).

7.1 Numerical experiments

We accomplish numerical experiments in the two possibilities:
(B1) The 8 x 8 matrix of type (7.3)-(7.4):

[ -1.75 0.5 0.5 |
0.5 -1.75 0.5
0.5 -1.75 0.5
Ao 0.5 -1.75 0.5
0.5 -1.75 0.5
0.5 -1.75 0.5
0.5 -1.75 0.5
| 0.5 0.5 -1.75 |

whose eigenvalues are

-0.75, -1.0429, -1.0429, -1.75, -1.75, -2.4571, -2.4571, -2.75.

This possibility, taken from [14], corresponds to a cycle graph with 8 vertices with input control parameter

s = 0.5 in the deformed consensus protocol.
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Tab. 3: Values Z; and Z for possibility (B1). Tab. 4: Values 2, and Z for possibility (B2).

| 5 5 l ) 5

1 2.83-102 3.85-107! 1 7.28-102 7.29-107!
7.07-1075  3.54.1073 2 4.13-10% 1.29-1072

3 1.33-1077  2.44-107° 3 1.75-10% 1.72-107%

(B2) The 6 x 6 matrix of type (7.1)-(7.2):

-21 1 0 0 O
1 -41 110
A= 1 1 -40 11
01 0-210
01 1 1-41
0 01 0 1 -2

whose eigenvalues are
0, -1.6972, -1.6972, —4.0000, -5.3028, -5.3028.

This possibility, taken from [17], corresponds to a graph with 6 vertices arranged as an equilateral trian-
gular array, where the vertices 1, 4, and 6 are the vertices of the triangle and the vertices 2, 3, and 5 are
the midpoints of the sides of the triangle.

As in the previous section, we consider the Taylor approximants of the exponential of order I = 1, 2, 3.

7.1.1 The possibility (B1)

For the possibility (B1), the numerical integration is accomplished with stepsize h = 1/100 over N = 1000
steps up to ty = Nh = 10. The numbers X1 = N |01| and ¥ = N max;-1 g |0;| are listed in Table 3.

We consider the initial value yo = (8,7, 6,5, 4, 3, 2, 1).

For this initial value unperturbed, in Fig. 8 we see in logarithmic scale the error y, (solid red line) along
with 21 (dashed blu line) and {2 (dash-dotted green line) for n = 0,1, ..., N. The same pattern of the
example of Section 6 is observed: in the long-time, the error grows as § X1 with n.

Now, suppose that the initial value y, is perturbed with z, € span(2,-5,-1,2,-3,4,-1,-2)and € =
1072. In Fig.9, we see, forn = 0,1, 2, ..., N, in the left column the deviation |6, — yn| (solid red line) along
with the error 6 (t,) (dashed blu line) and in the right column the deviation |5n -6 (tn)l (solid red line) along
with the error y, (dashed blue line). As in the example of Section 6, we observe exactly what is described in
points 2 and 3 of Remark 4.2.

.....

7.1.2 The possibility (B2)

For the possibility (B2), the numerical integration is accomplished with stepsize h = 1/100 over N = 500
steps up to ty = Nh = 5. Since the rightmost eigenvalue is zero, we have 07, = 0. The numbers X, = N |o;|
and X = N max;-y,... ¢ |0;| are listed in Table 4.

We consider the initial value yo = (3,2, 1,-1, -2, -3). Since the average of the components of yy is
equal to zero, the solution y(t) of (1.1) converges to zero as t — +co. Moreover, since yj is orthogonal to the
equilibria, we have j* = 2.

For this initial value unperturbed, in Fig. 10 we see in logarithmic scale the error y, (solid red line) along
with § X, (dashed blue line) and § 2 (dash-dotted green line) forn =0, 1, ..., N.

Suppose that the initial value y, is perturbed by € = 1072 and

Zp € span(2,-5,-1,4,-1,-2).
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Fig. 8: Possibility (B1) with initial value yo = (8,7,6, 5, 4, 3, 2, 1) unperturbed. The [-th row, [ = 1, 2, 3, corresponds to the
approximant of order [. Logarithmic error logy,(y,) (solid red line) along with logy, (4 21) (dashed blue line) and logq (§2)
(dash-dotted green line). The abscissas are the times t, = nh,n=0,1,2,...,N.
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Fig. 9: Possibility (B1) with yo = (8,7, 6, 5, 4, 3, 2, 1) perturbed with £ = 1072 and Zy € span (2, -5, -1, 2, -3, 4, -1, -2). The
l-throw, [ = 1,2, 3, corresponds to the approximant of order [. Left column: deviation |, — y,| (solid red line) along with the
error 0 (tp) (dashed blue line). Right column: deviation |3, — 0 (t,)| (solid red line) along with the error y, (dashed blue line).
The abscissas are the times t, =nh,n=0,1,2,...,N.
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Fig. 10: Possibility (B2) with initial value yo = (3,2, 1, -1, -2, -3) unperturbed. The [-th row, [ = 1, 2, 3, corresponds to the
approximant of order [. Logarithmic error log;4(yn) (solid red line) along with log (§ 22) (dashed blue line), and log;, (%Z)
(dashed-dot green line). The abscissas are the times t, = nh,n=0,1,2,...,N.

37



1 0.08
8 I /I’

0.06 | S
Bt

0.04
4+ S

Ifl

0.02 »

2 B /.r
’r/’://_\

0 0 - : -

0 1 2 3 4 5 0 1 2 3 4 5
4
10+ gt
8 4t
6 3t -
4 2' 'zt
2 1 "‘h"f’
!
]
™S
0 - 0 :
0 1 2 3 4 5 0 1 2 3 4 5
-6
10 ¢ i
,f
8' ,f
15} -
6
r\\ I
1 &y -
1 ' 5
4 : \\ ’/
] 4 Pl
0.5 | Yope”
2 "
O , L " 0{\,'—\
0 1 2 3 4 5 0 1 2 3 4 5
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abscissas are the times t, =nh,n=0,1,2,...,N.
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In Fig. 11, we see, as in Fig. 8 for (B1), |6, — y»| along with &(ty,) in the left side and |6, — 6 (t,)| along with y,
in the right side.

8 Conclusion

For the ODE (1.1) with A normal, we have presented a relative error analysis of the numerical solution, over
amesht, = nh,n = 1,2,..., of constant stepsize h, obtained by using an analytic approximant of the
exponential at each step. A possible perturbation in the initial value is taking into account.

The two sources of error are the approximant, whose error is measured by the numbers o; defined in (3.2),
and the perturbation in the initial value, whose error is measured by (1.2).

Our analysis has involved three relative errors:
- therelative error y, of the unperturbed numerical solution, which is defined in (1.12);
— the relative error §(t) of the perturbed exact solution, which is defined in (1.3);
— the relative error 6, of the perturbed numerical solution, which is defined in (1.11).

We have shown that the relative error y, grows linearly in time and, in the long-time, it depends only on the
errors o; relevant to rightmost eigenvalues. Moreover, we have shown how the growth of §, is related to the
growth of y, and 8(t,,).

Our relative error analysis covers the situation where

max |0j] < 1 (8.1)
AiGA

with A the spectrum of A. We call it the non-stiff situation. However, our analysis does not cover the situation
where (8.1) does not hold, but

max |oj| < 1 (8.2
AiEAl

holds, with A4 the set of the rightmost eigenvalues. We call it the stiff situation.

In the stiff situation, it is fundamental to understand whether, in the long-time, the relative error y, de-
pends only on the errors g; relevant to the rightmost eigenvalues, namely the eigenvalues in A;. If this hap-
pens, Y, is small in the long-time, although the stepsize h is tuned for having (8.2) only, not (8.1). Of course,
since (8.1) does not hold, the error y, can be not small at the beginning of the integration.

The relative error analysis of the present paper is continued in [10-12]. The paper [10] studies the long-
time behavior of the error y, in the stiff situation. The paper [11] shows how the order stars (see [8, 20]) are
involved in the relative error analysis. The paper [12] presents a relative error analysis for the numerical inte-
gration of long-time solutions to be used in the stiff situation.

Funding: The author thanks INAAM-GNCS and the University of Trieste for the financial support.
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