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1 Overview

deal.II version 9.2.0 was released May 20, 2020. This paper provides an overview of the
new features of this release and serves as a citable reference for the deal.II software library
version 9.2. deal.II is an object-oriented finite element library used around the world in the
development of finite element solvers. It is available for free under the GNU Lesser General Public
License (LGPL). Downloads are available at https://www.dealii.org/ and https://github.
com/dealii/dealii.

The major changes of this release are:

– A new, parallel, fully distributed triangulation class (see Section 2.1);

– Substantially improved performance for very large computations on tens or hundreds of
thousands of processor cores and up to trillions of unknowns (see Section 2.2);

– Better support for parallel hp-adaptive algorithms (see Section 2.3);

– Support for particle-based methods (see Section 2.4);

– Improved performance of the symbolic differentiation framework (see Section 2.5);

– Advances in SIMD capabilities and the matrix-free infrastructure (see Section 2.6);

– Advances in GPU support (see Section 2.7);

– Better use of modern C++ language features (see Section 2.8);

– Seven new tutorial programs (see Section 2.9).

These major changes are discussed in detail in Section 2. There are a number of other noteworthy
changes in the current deal.II release that we briefly outline in the remainder of this section:

– deal.II had decent support for solving complex-valued problems for a while already
(e.g., ones in quantum mechanics – like the equation used in the step-58 tutorial program
covered below – or for time-harmonic problems). However, there were two areas in which
support was missing. First, the UMFPACK direct solver packaged with deal.II did not
support solving complex-valued linear problems. This has now been addressed: UMFPACK
actually can solve such systems, we just needed to write the appropriate interfaces. Second,
the DataOut class that is responsible for converting nodal data into information that can
then be written into files for visualization did not know how to deal with vector- and tensor-
valued fields whose components are complex numbers. An example for this is to solve the
time-harmonic version of the Maxwell equations that has the electric and magnetic fields as
solution. This, too, has been addressed in this release.

– The new DiscreteTime class provides a more consistent, more readable, and less error-
prone approach to control time-stepping algorithms within time-dependent simulations.
While providing a rich read-only interface, the non-const interface of this class is designed
to be minimal to enforce a number of important programming invariants, reducing the
possibility of mistakes in the user code. For instance, DiscreteTime ensures that the final
time step ends precisely on a predefined end time, automatically lengthening or shortening
the final time step.

– A key component of deal.II are the FEValues and FEFaceValues classes that evaluate finite
element functions at quadrature points located on cells and faces of a cell, respectively [13].
This release now contains a class FEInterfaceValues that considers the restriction of the
shape functions from both sides of a face and allows evaluating jumps and averages of
shape functions along this face. These are common components of the bilinear forms of
discontinuous Galerkin schemes (as well as schemes for fourth-order equations, see the
discussion of step-47 below) and greatly simplify the implementation of these methods.
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– Previously, theparallel::distributed::ContinuousQuadratureDataTransfer class, which
transfers local quadrature point data onto the children of newly refined cells, did not allow
different cells to store quadrature data of different lengths. This release lifts this restriction,
which enables efficient quadrature data storage and data transfer within a triangulation con-
taining multiple material models, each with their own number of local state variables and
history variables. As an example, in a solid mechanics simulation, we can assign a hyper-
elastic material model to a region of the mesh with no associated history variables, while
in another part of the triangulation we incorporate an elasto-plastic constitutive model, re-
quiring the storage of local plasticity data at quadrature points. During each refinement of
the mesh, we can then use ContinuousQuadratureDataTransfer to transfer and interpolate
plasticity data from parent cells to their children, ignoring the cells with the hyper-elastic
constitutive model.

The changelog lists more than 240 other features and bugfixes.

2 Major changes to the library

This release of deal.II contains a number of large and significant changes that will be discussed in
this section. It of course also contains a vast number of smaller changes and added functionality;
the details of these can be found in the file that lists all changes for this release, see [50].

2.1 A new fully distributed triangulation class

Previously, all triangulation classes of deal.II had in common that the coarse grid is replicated by
all processes in a parallel environment, and the actual mesh used for computations is constructed
by repeated refinement. However, this has its limitations in many applications where the mesh
comes from an external mesh generator in the form of a file that frequently already contains
millions or tens of millions of cells. For such configurations, applications might exhaust available
memory already while reading the mesh on each MPI process.

The new parallel::fullydistributed::Triangulation class targets this issue by distribut-
ing also the coarse grid. Such a triangulation can be created by providing to each process a
TriangulationDescription::Description struct, containing (i) the relevant data to construct
the local part of the coarse grid, (ii) the translation of the local coarse-cell IDs to globally unique
IDs, (iii) the hierarchy of mesh refinement steps, and (iv) the owner of the cells on the active
mesh level as well as on the multigrid levels. For the current release, triangulations set up this
way cannot be adaptively refined after construction, though we plan to improve this for the next
release.

The new fully distributed triangulation class supports 1D, 2D, and 3D meshes including geometric
multigrid hierarchies, periodic boundary conditions, and hanging nodes.

2.2 Improved large-scale performance

Large-scale simulations with up to 304,128 cores have revealed bottlenecks in release 9.1 during
initialization of a number of distributed data structures, due to the usage of expensive col-
lective operations like MPI_Allgather() and MPI_Alltoall(). Typical examples are the pre-
computation of the indices of those vector entries (or other linear index ranges) owned by each
process, which were previously stored in an array on every process. This information is needed to
set up the Utilities::MPI::Partitioner class. In release 9.2, we have replaced these functions
in favor of consensus algorithms [40], which can be found in the namespace Utilities::MPI::
ConsensusAlgorithms (short: CA). Now, only the locally relevant information about the index
ranges is (re)computed when needed, which, for more than 100 MPI processes, uses point-to-point
communications and a single MPI_IBarrier().
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Figure 1: Comparison of initialization costs of various data structures in the 9.1 release (left) and the new
9.2 release (right) when run on 49,152 MPI ranks.

Users can apply the new algorithms for their own dynamic-sparse problems by providing a list
of target processes and pack/unpack routines either by implementing the interface CA::Process
or by providing std::function objects to CA::AnonymousProcess.

By replacing the collective communications during set up and removing the arrays that contain
information for each process (enabled by the application of consensus algorithms and other
modifications—a full list of modifications leading to this improvement can be found online), we
were able to significantly improve the set up time for large-scale simulations and to solve a Poisson
problem with multigrid with 2.1 × 1012 unknowns on the SuperMUC-NG supercomputer with
304,152 cores [7, 8]. Figure 1 compares timings of simulations of various problem sizes (including
set up) on 49,152 MPI ranks using a matrix-free solver [8, 47, 48]; this solver uses discontinuous
elements of degree 5 in a geometric multigrid (GMG) scheme. The comparison between the
previous release 9.1 and the current release 9.2 shows that while the scaling for the V-cycle had
been very good before, many initialization routines have been considerably improved, especially
the enumeration of unknowns on the multigrid levels and the setup of the multigrid transfer.

As part of this effort, we ran benchmarks on the TACC Frontera system, where we were able to
apply the matrix-free geometric multigrid framework to a variable viscosity Stokes system and
achieved weak and strong scaling up to 114K MPI ranks with up to 2.1 × 1011 unknowns. This
is likely the largest block system currently solved with deal.II and required various optimiza-
tions and fixes on top of the ones mentioned above: (i) Bug fixes to concurrent point to point
communications. (ii) Fixes to multigrid transfer with adaptive refinement and more than 4 × 109

unknowns. (iii) Fixes to index sets in block indices with more than 4 × 109 unknowns. (iv) Fixes to
computations with more than 4 × 109 active cells. (v) Implementation of IDR(s) solvers to reduce
memory overhead. For more details, see [19].

2.3 Better support for parallel hp-adaptive algorithms

Since the previous release, deal.II has had support for hp-adaptive finite element methods
on distributed memory systems [6]. We implemented the bare functionality for hp-adaptive
methods with the objective to offer the greatest flexibility in their application. Here, reference
finite elements still had to be assigned manually to each cell, which may not lead to an optimal
mesh and is tedious.
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With the current release, hp-adaptive finite element methods have been further expanded: New
features like decision strategies have been added and the user interface has been overhauled,
effectively making hp-methods more attractive to use. We introduced many new functions that
automatize the general workflow for applying hp-decision strategies, which run on top of the
previous low-level implementation for both serial and parallel applications.

The interface is now as simple to use as the one for h-adaptive mesh refinement. Consider the
following (incomplete) listing as an example: We estimate both error and smoothness of the finite
element approximation. Further, we flag certain fractions of cells with the highest and lowest
errors for refinement and coarsening, respectively (here: 30%/3%). From those cells listed for
adaptation, we designate a subset for h- and p-adaptation. The parameters of the corresponding
hp::Refinement function specify the fraction of cells to be p-adapted from those subsets flagged
for refinement and coarsening, respectively (here: 90%/80%), while the remaining fraction will be
h-adapted (here: 10%/20%).

C++ code

Vector<float> estimated_error_per_cell(n_active_cells);
KellyErrorEstimator::estimate(
dof_handler , ..., solution, estimated_error_per_cell , ...);

GridRefinement::refine_and_coarsen_fixed_number(
triangulation , estimated_error_per_cell , 0.3, 0.03);

Vector<float> estimated_smoothness_per_cell(n_active_cells);
SmoothnessEstimator::Legendre::coefficient_decay(
..., dof_handler , solution , estimated_smoothness_per_cell);

hp::Refinement::p_adaptivity_fixed_number(
dof_handler , estimated_smoothness_per_cell , 0.9, 0.8);

hp::Refinement::choose_p_over_h(dof_handler);

triangulation.execute_coarsening_and_refinement();

In particular, we implemented decision strategies based on refinement history and smoothness
estimation, and made sure that they work for refinement as well as coarsening in terms of h- and
p-adaptation in serial and parallel applications.

The former relies on knowing an estimate for the upper error bound [9, Thm. 3.4]. For successive
refinements, we can predict how the error will change based on current error estimates and
adaptation flags. In the next refinement cycle, these predicted error estimates allow us to decide
whether the choice of adaptation in the previous cycle was justified, and provide a criterion for
the choice in the next cycle [54].

In general, p-refinement is favorable over h-refinement in smooth regions of the finite element
approximation [9, Thm. 3.4]. Thus, estimating its smoothness provides a suitable decision in-
dicator for hp-adaptation. For this purpose, we express the finite element approximation in an
orthogonal basis of increasing frequency, and consider the decay of their expansion coefficients
as the estimation of smoothness. This has been implemented for both Fourier coefficients [14]
and Legendre coefficients [53, 41, 42, 26].

2.4 Support for particle-based methods

Support for particles was originally introduced in deal.II version 9.0. These particles can be
used as passive tracers, or as part of more complex models such as those based on Particle-In-Cells
(PIC) approaches [28].

With the current release, support for particles has been further expanded: New parallel insertion
mechanisms and a basic interface to post-process particles have been added, effectively making
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their usage more flexible and enabling a larger range of use cases (such as the immersed boundaries
in step-70, see below).

Through the addition of theParticles::ParticleHandler::insert_global_particles()mem-
ber function, particles can now be inserted in parallel from a vector of points even if these points
do not lie on the subdomain from which the insertion is called. This operation requires ex-
tensive communication between the processes to locate the MPI process that owns the cell in
which the particle is located. However, it is made significantly faster through the usage of
bounding boxes that provide a coarse description of the geometrical shape of each subdomain.
This function also takes care of transferring the properties attached to the particles to their
new owner. This new capability enables particle generators that insert particles at the location
of the support points (Particles::Generator::dof_support_points()) and at the quadrature
points (Particles::Generator::quadrature_points()) of a possibly non-matching triangula-
tion. Consequently, complex particle patterns can be inserted using unstructured grids generated
outside of deal.II.

To visualize the motion of particles, the Particles::DataOut class was added to the library.

2.5 Improved performance of the symbolic differentiation framework

In the previous release we added support for symbolic expressions, leveraging the SymEngine
library [64]. Although effective, evaluating lengthy expressions could be a bottleneck as this was
performed using dictionary-based substitution. We have improved on this by implementing a
BatchOptimizer class in the namespace Differentiation::SD that collects several Expressions
and transforms them in such a way that the equivalent result is returned through a quicker
code path. This may be done by simply using common subexpression elimination (CSE) for the
dictionary-based expressions, by transformation to a set of nested std::function objects (the
equivalent to SymPy’s “lambdify”, with or without using CSE), or by offloading these expressions
to the LLVM just-in-time (JIT) compiler. Although each of these features is implemented and tested
in the SymEngine library itself, the BatchOptimizer class provides both a uniform interface to
their classes and a convenient interface for scalar expressions, as well as tensorial expressions
formed using the deal.II tensor and symmetric tensor classes. It, like the Expression class, is
also serializable.

The way the batch optimizer may be employed within a user’s code is shown in the pseudo-
code below. As per usual, one would first define some independent variables, and subsequently
compute some symbolic expressions that are dependent on these independent variables. These
expression could be, for example, scalar expressions or tensors of expressions. Instead of evaluat-
ing these expressions directly, the user would now create an optimizer to evaluate the dependent
functions. In this example, the selected arithmetic type numerical result will be of type double,
and the LLVM JIT optimizer will be invoked. It will employ common subexpression elimination
and aggressive optimizations during compilation. The user then informs the optimizer of all of
the independent variables and the dependent expressions, and invokes the optimization process.
This is an expensive call, as it determines an equivalent code path to evaluate all of the dependent
functions at once. However, in many cases each evaluation has significantly less computational
cost than evaluating the symbolic expressions directly. Evaluation is performed when the user
constructs a substitution map, giving each independent variable a numerical representation,
and passes those to the optimizer. After this step, the numerical equivalent of the individual
dependent expressions may finally be retrieved from the optimizer.

C++ code

using namespace Differentiation::SD;

const Expression x("x");
const Expression y("y");
...
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With the current release, hp-adaptive finite element methods have been further expanded: New
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errors for refinement and coarsening, respectively (here: 30%/3%). From those cells listed for
adaptation, we designate a subset for h- and p-adaptation. The parameters of the corresponding
hp::Refinement function specify the fraction of cells to be p-adapted from those subsets flagged
for refinement and coarsening, respectively (here: 90%/80%), while the remaining fraction will be
h-adapted (here: 10%/20%).

C++ code

Vector<float> estimated_error_per_cell(n_active_cells);
KellyErrorEstimator::estimate(
dof_handler , ..., solution, estimated_error_per_cell , ...);

GridRefinement::refine_and_coarsen_fixed_number(
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SmoothnessEstimator::Legendre::coefficient_decay(
..., dof_handler , solution , estimated_smoothness_per_cell);

hp::Refinement::p_adaptivity_fixed_number(
dof_handler , estimated_smoothness_per_cell , 0.9, 0.8);

hp::Refinement::choose_p_over_h(dof_handler);

triangulation.execute_coarsening_and_refinement();

In particular, we implemented decision strategies based on refinement history and smoothness
estimation, and made sure that they work for refinement as well as coarsening in terms of h- and
p-adaptation in serial and parallel applications.

The former relies on knowing an estimate for the upper error bound [9, Thm. 3.4]. For successive
refinements, we can predict how the error will change based on current error estimates and
adaptation flags. In the next refinement cycle, these predicted error estimates allow us to decide
whether the choice of adaptation in the previous cycle was justified, and provide a criterion for
the choice in the next cycle [54].
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approximation [9, Thm. 3.4]. Thus, estimating its smoothness provides a suitable decision in-
dicator for hp-adaptation. For this purpose, we express the finite element approximation in an
orthogonal basis of increasing frequency, and consider the decay of their expansion coefficients
as the estimation of smoothness. This has been implemented for both Fourier coefficients [14]
and Legendre coefficients [53, 41, 42, 26].

2.4 Support for particle-based methods

Support for particles was originally introduced in deal.II version 9.0. These particles can be
used as passive tracers, or as part of more complex models such as those based on Particle-In-Cells
(PIC) approaches [28].

With the current release, support for particles has been further expanded: New parallel insertion
mechanisms and a basic interface to post-process particles have been added, effectively making
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their usage more flexible and enabling a larger range of use cases (such as the immersed boundaries
in step-70, see below).

Through the addition of theParticles::ParticleHandler::insert_global_particles()mem-
ber function, particles can now be inserted in parallel from a vector of points even if these points
do not lie on the subdomain from which the insertion is called. This operation requires ex-
tensive communication between the processes to locate the MPI process that owns the cell in
which the particle is located. However, it is made significantly faster through the usage of
bounding boxes that provide a coarse description of the geometrical shape of each subdomain.
This function also takes care of transferring the properties attached to the particles to their
new owner. This new capability enables particle generators that insert particles at the location
of the support points (Particles::Generator::dof_support_points()) and at the quadrature
points (Particles::Generator::quadrature_points()) of a possibly non-matching triangula-
tion. Consequently, complex particle patterns can be inserted using unstructured grids generated
outside of deal.II.

To visualize the motion of particles, the Particles::DataOut class was added to the library.

2.5 Improved performance of the symbolic differentiation framework

In the previous release we added support for symbolic expressions, leveraging the SymEngine
library [64]. Although effective, evaluating lengthy expressions could be a bottleneck as this was
performed using dictionary-based substitution. We have improved on this by implementing a
BatchOptimizer class in the namespace Differentiation::SD that collects several Expressions
and transforms them in such a way that the equivalent result is returned through a quicker
code path. This may be done by simply using common subexpression elimination (CSE) for the
dictionary-based expressions, by transformation to a set of nested std::function objects (the
equivalent to SymPy’s “lambdify”, with or without using CSE), or by offloading these expressions
to the LLVM just-in-time (JIT) compiler. Although each of these features is implemented and tested
in the SymEngine library itself, the BatchOptimizer class provides both a uniform interface to
their classes and a convenient interface for scalar expressions, as well as tensorial expressions
formed using the deal.II tensor and symmetric tensor classes. It, like the Expression class, is
also serializable.

The way the batch optimizer may be employed within a user’s code is shown in the pseudo-
code below. As per usual, one would first define some independent variables, and subsequently
compute some symbolic expressions that are dependent on these independent variables. These
expression could be, for example, scalar expressions or tensors of expressions. Instead of evaluat-
ing these expressions directly, the user would now create an optimizer to evaluate the dependent
functions. In this example, the selected arithmetic type numerical result will be of type double,
and the LLVM JIT optimizer will be invoked. It will employ common subexpression elimination
and aggressive optimizations during compilation. The user then informs the optimizer of all of
the independent variables and the dependent expressions, and invokes the optimization process.
This is an expensive call, as it determines an equivalent code path to evaluate all of the dependent
functions at once. However, in many cases each evaluation has significantly less computational
cost than evaluating the symbolic expressions directly. Evaluation is performed when the user
constructs a substitution map, giving each independent variable a numerical representation,
and passes those to the optimizer. After this step, the numerical equivalent of the individual
dependent expressions may finally be retrieved from the optimizer.

C++ code

using namespace Differentiation::SD;

const Expression x("x");
const Expression y("y");
...



7

const auto f = calculate_f(x, y, ...); // User function
const auto g = calculate_g(x, y, ...); // User function
...

BatchOptimizer<double> optimizer (OptimizerType::llvm,
OptimizationFlags::optimize_all);

optimizer.register_symbols(x, y, ...);
optimizer.register_functions(f, g, ...);
optimizer.optimize();

const auto substitution_map
= make_substitution_map({x, ...}, {y, ...}, ...);

optimizer.substitute(substitution_map);

const auto result_f = optimizer.evaluate(f);
const auto result_g = optimizer.evaluate(g);

This expense of invoking the optimizer may be offset not only by the number of evaluations
performed, but also by the amount of reuse each instance of a BatchOptimizer has. In certain
circumstances, this can be maximized by generalizing the way in which the dependent expressions
are formulated. For example, in the context of constitutive modelling the material coefficients
may be made symbolic rather than encoding these into the dependent expressions as numerical
values. The optimizer may then be used to evaluate an entire family of constitutive laws, and
not a specific one that describes the response of a single material. Thereafter, serializing the
optimizer instance and reloading the contents during subsequent simulations permits the user to
skip the optimization process entirely. Serialization also enables these complex expressions to be
compiled offline.

2.6 Advances in SIMD capabilities and the matrix-free infrastructure

The class VectorizedArray<Number> is a key component to achieve the high node-level per-
formance of the matrix-free algorithms in deal.II [46, 47]. It is a wrapper class around a
short vector of n entries of type Number and maps arithmetic operations to appropriate single-
instruction/multiple-data (SIMD) concepts by intrinsic functions. The class VectorizedArray
has been made more user-friendly in this release by making it compatible with the STL algo-
rithms found in the header <algorithm>. The length of the vector can now be queried by
VectorizedArray::size() and its underlying number type by VectorizedArray::value_type.
The VectorizedArray class now supports range-based iteration over its entries. In addition
deal.II now supports ternary operations on vectorized data, where for a given binary compari-
son operation a true or false value is selected. For example, the vectorized equivalent of (left <
right) ? true_value : false_value can be expressed as

C++ code

auto result = compare_and_apply_mask<SIMDComparison::less_than>(
left, right, true_value , false_value);

which compares every element of the vectorized array individually and selects the corresponding
value from the true_value, or false_value array.

In previous deal.II releases, the vector length was set at compile time of the library to match the
highest value supported by the given processor architecture. Now, a second optional template
argument can be specified as VectorizedArray<Number, size>, where size explicitly controls
the vector length within the capabilities of a particular instruction set. (A full list of supported
vector lengths is presented in Table 1.) This allows users to select the vector length/ISA and, as
a consequence, the number of cells to be processed at once in matrix-free operator evaluations.
For example, the deal.II-based library hyper.deal [56], which solves the 6D Vlasov–Poisson
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Table 1: Supported vector lengths of the class VectorizedArray and the corresponding instruction-set-
architecture extensions.

double float ISA

VectorizedArray<double, 1> VectorizedArray<float, 1> (auto-vectorization)
VectorizedArray<double, 2> VectorizedArray<float, 4> SSE2/AltiVec
VectorizedArray<double, 4> VectorizedArray<float, 8> AVX/AVX2
VectorizedArray<double, 8> VectorizedArray<float, 16> AVX-512

Table 2: Comparison of relevant SIMD-related classes in deal.II and C++23.

VectorizedArray (deal.II) std::simd (C++23)

VectorizedArray<Number> std::experimental::native_simd<Number>
VectorizedArray<Number, size> std::experimental::fixed_size_simd<Number, size>

equation with high-order discontinuous Galerkin methods (with more than a thousand degrees
of freedom per cell), constructs a tensor product of two MatrixFree objects of different SIMD-
vector length in the same application and benefits—in terms of performance—by the possibility
of decreasing the number of cells processed by a single SIMD instruction.

The new interface of VectorizedArray also enables replacement by any type with a matching
interface. Specifically, this prepares deal.II for the std::simd class that is slated to become part
of the C++23 standard. Table 2 compares the deal.II-specific SIMD classes and the equivalent
C++23 classes. These changes also prepare for specialized code paths exploiting vectorization
within an element, see [47].

2.7 Advances in GPU support

For this release, the most noteworthy improvements in GPU support are the simplification of the
kernel written by user, improvement of error messaging, and overlapping of computation and
communication when using CUDA-aware MPI with the matrix-free framework.

In order to simplify user code, we now recompute local degree of freedom and quadrature point
indices instead of having the user keeping track of them. A new option to overlap computation
and communication is now available when using CUDA-aware MPI and matrix-free. The un-
derlying idea is that only the degrees of freedom (DoFs) on the boundary of the local domain
require communication. Before evaluating the matrix-free operator at these degrees of freedom,
we need to communicate ghost DoFs from other processors. Similarly once the operator has
been evaluated, we need to update the resulting global vector with values from other processors.
The strategy that we are now using consists in splitting the DoFs into three groups: one group
of DoFs that are on the local boundary and two groups each owning half of the interior DoFs.
When evaluating the matrix-free operator, we start the MPI communication to get the ghosted
DoFs and evaluate the operator on one of the two interior DoFs group. When the evaluation
is done, we wait for the MPI communication to be over, and then evaluate the operator on the
boundary DoFs group. When this evaluation is completed, we start the communication to update
the global vector, we evaluate the operator on the last group of DoFs, and finally wait for the MPI
communication to finish.

2.8 Expanded use of C++11 facilities

Certain types of quantities in a simulation are constants fully known at compile time. They can be
pre-calculated and stored in the compiled executable in order to avoid unnecessary initialization
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const auto f = calculate_f(x, y, ...); // User function
const auto g = calculate_g(x, y, ...); // User function
...

BatchOptimizer<double> optimizer (OptimizerType::llvm,
OptimizationFlags::optimize_all);

optimizer.register_symbols(x, y, ...);
optimizer.register_functions(f, g, ...);
optimizer.optimize();

const auto substitution_map
= make_substitution_map({x, ...}, {y, ...}, ...);

optimizer.substitute(substitution_map);

const auto result_f = optimizer.evaluate(f);
const auto result_g = optimizer.evaluate(g);

This expense of invoking the optimizer may be offset not only by the number of evaluations
performed, but also by the amount of reuse each instance of a BatchOptimizer has. In certain
circumstances, this can be maximized by generalizing the way in which the dependent expressions
are formulated. For example, in the context of constitutive modelling the material coefficients
may be made symbolic rather than encoding these into the dependent expressions as numerical
values. The optimizer may then be used to evaluate an entire family of constitutive laws, and
not a specific one that describes the response of a single material. Thereafter, serializing the
optimizer instance and reloading the contents during subsequent simulations permits the user to
skip the optimization process entirely. Serialization also enables these complex expressions to be
compiled offline.

2.6 Advances in SIMD capabilities and the matrix-free infrastructure

The class VectorizedArray<Number> is a key component to achieve the high node-level per-
formance of the matrix-free algorithms in deal.II [46, 47]. It is a wrapper class around a
short vector of n entries of type Number and maps arithmetic operations to appropriate single-
instruction/multiple-data (SIMD) concepts by intrinsic functions. The class VectorizedArray
has been made more user-friendly in this release by making it compatible with the STL algo-
rithms found in the header <algorithm>. The length of the vector can now be queried by
VectorizedArray::size() and its underlying number type by VectorizedArray::value_type.
The VectorizedArray class now supports range-based iteration over its entries. In addition
deal.II now supports ternary operations on vectorized data, where for a given binary compari-
son operation a true or false value is selected. For example, the vectorized equivalent of (left <
right) ? true_value : false_value can be expressed as

C++ code

auto result = compare_and_apply_mask<SIMDComparison::less_than>(
left, right, true_value , false_value);

which compares every element of the vectorized array individually and selects the corresponding
value from the true_value, or false_value array.

In previous deal.II releases, the vector length was set at compile time of the library to match the
highest value supported by the given processor architecture. Now, a second optional template
argument can be specified as VectorizedArray<Number, size>, where size explicitly controls
the vector length within the capabilities of a particular instruction set. (A full list of supported
vector lengths is presented in Table 1.) This allows users to select the vector length/ISA and, as
a consequence, the number of cells to be processed at once in matrix-free operator evaluations.
For example, the deal.II-based library hyper.deal [56], which solves the 6D Vlasov–Poisson
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equation with high-order discontinuous Galerkin methods (with more than a thousand degrees
of freedom per cell), constructs a tensor product of two MatrixFree objects of different SIMD-
vector length in the same application and benefits—in terms of performance—by the possibility
of decreasing the number of cells processed by a single SIMD instruction.

The new interface of VectorizedArray also enables replacement by any type with a matching
interface. Specifically, this prepares deal.II for the std::simd class that is slated to become part
of the C++23 standard. Table 2 compares the deal.II-specific SIMD classes and the equivalent
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within an element, see [47].
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For this release, the most noteworthy improvements in GPU support are the simplification of the
kernel written by user, improvement of error messaging, and overlapping of computation and
communication when using CUDA-aware MPI with the matrix-free framework.

In order to simplify user code, we now recompute local degree of freedom and quadrature point
indices instead of having the user keeping track of them. A new option to overlap computation
and communication is now available when using CUDA-aware MPI and matrix-free. The un-
derlying idea is that only the degrees of freedom (DoFs) on the boundary of the local domain
require communication. Before evaluating the matrix-free operator at these degrees of freedom,
we need to communicate ghost DoFs from other processors. Similarly once the operator has
been evaluated, we need to update the resulting global vector with values from other processors.
The strategy that we are now using consists in splitting the DoFs into three groups: one group
of DoFs that are on the local boundary and two groups each owning half of the interior DoFs.
When evaluating the matrix-free operator, we start the MPI communication to get the ghosted
DoFs and evaluate the operator on one of the two interior DoFs group. When the evaluation
is done, we wait for the MPI communication to be over, and then evaluate the operator on the
boundary DoFs group. When this evaluation is completed, we start the communication to update
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2.8 Expanded use of C++11 facilities

Certain types of quantities in a simulation are constants fully known at compile time. They can be
pre-calculated and stored in the compiled executable in order to avoid unnecessary initialization
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during runtime. C++11 and later standards enable such computations by marking variables and
functions with the constexpr keyword.

This optimization is now enabled for the class templates Tensor and SymmetricTensor. For
instance, the linear mechanical constitutive model for isotropic elastic solids uses a constant
fourth-order elasticity tensorC = λI⊗I+2µIwhich does not depend on the current state of strain.
This tensor can now be statically initialized by defining it as constexpr SymmetricTensor<4,
dim>. As another example, the lattice vectors in a crystal plasticity model are generally constant
and known during compilation time, enabling their efficient definition as constexpr Tensor<1,
dim>.

Declaring variables, functions, and methods as constexpr is a C++11 feature that was later
expanded by the C++14 standard. Thus, parts of the constexpr support in deal.II depend on
the C++ standard supported by the compiler used to install the library.

The next release of deal.IIwill require compiler support for the C++14 standard.

2.9 New and improved tutorial and code gallery programs

Many of the deal.II tutorial programs were revised in a variety of ways as part of this release.
A particular example is that we have converted a number of programs to use range-based for
loops (a C++11 feature) for loops over a range of integer indices such as loops over all quadrature
points or all indices of degrees of freedom during assembly. This makes sense given that the
range-based way of writing loops seems to be the idiomatic approach these days, and that we
had previously already converted loops over all cells in this way.

In addition, there are a number of new tutorial programs:

– step-47 is a new program that solves the biharmonic equation ∆2u = f with “clamped”
boundary condition given by u = g, ∂u/∂n = h. This program is based on the C0 interior
penalty (C0IP) method for fourth order problems [17]. In order to overcome shortcomings of
classical approaches, this method uses C0 Lagrange finite elements and introduces “jump”
and “average” operators on interfaces of elements that penalize the jump of the gradient of
the solution in order to obtain convergence to the H2-regular solution of the equation.

The C0IP approach is a modern alternative to classical methods that use C1-conforming
elements such as the Argyris element, the Clough-Tocher element and others, all developed
in the late 1960s. From a twenty-first century perspective, they can only be described as
bizarre in their construction. They are also exceedingly cumbersome to implement if one
wants to use general meshes. As a consequence, they have largely fallen out of favor and
deal.II currently does not contain implementations of these shape functions.

– step-50 is a program that demonstrates the parallel geometric multigrid features in deal.II
as described in [20]. The problem considered is a variable viscosity Laplace equation and
it is solved with three different approaches: (i) using a matrix-based geometric multigrid
based on Trilinos or PETSc; (ii) using a matrix-free geometric multigrid; (iii) using algebraic
multigrid (Trilinos ML). The tutorial demonstrates the superiority of the matrix-free method
for the problem under consideration, and shows that, for matrix-based formulations, the
performance of algebraic and geometric multigrid methods are roughly comparable.

– step-58 is a program that solves the nonlinear Schrödinger equation, which in non-
dimensional form reads

−i
∂ψ

∂t
− 1

2
∆ψ + Vψ + κ|ψ|2ψ = 0,

augmented by appropriate initial and boundary conditions and using an appropriate form
for the potential V = V(x). The tutorial program focuses on two specific aspects for which
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this equation serves as an excellent test case: (i) Solving complex-valued problems without
splitting the equation into its real and imaginary parts (as step-29 does, for example).
(ii) Using operator splitting techniques. The equation is a particularly good test case for
this technique because the only nonlinear term, κ|ψ|2ψ, does not contain any derivatives
and consequently forms an ODE at each node point, to be solved in each time step in
an operator splitting scheme (for which, furthermore, there exists an analytic solution),
whereas the remainder of the equation is linear and easily solved using standard finite
element techniques.

– step-65 presents TransfiniteInterpolationManifold, a manifold class that can propa-
gate curved boundary information into the interior of a computational domain by transfinite
interpolation [32]. This manifold is a prototype for many other manifolds in that it is rel-
atively expensive to compute the new points, especially for higher order mappings. Since
typical programs query higher-order geometries in a large variety of contexts, the contri-
bution of the mapping to the run time can be significant. As a solution, the tutorial also
presents the class MappingQCache, which samples the information of expensive manifolds
in the points of a MappingQ and caches it. The tutorial shows that this makes all queries to
the geometry very cheap.

– step-67 is an explicit time integrator for the compressible Euler equations discretized with
a high-order discontinuous Galerkin (DG) scheme using the matrix-free infrastructure. Be-
sides the use of matrix-free evaluators for systems of equations and over-integration, it also
presents MatrixFreeOperators::CellwiseInverseMassMatrix, a fast implementation of
the action of the inverse mass matrix in the DG setting using tensor products. Furthermore,
this tutorial demonstrates the usage of new pre and post operations, which can be passed
to MatrixFree::cell_loop(), to schedule operations on sections of vectors close to the
matrix-vector product to increase data locality.

– step-69 presents a first-order scheme solving the compressible Euler equations of gas
dynamics with a graph-viscosity stabilization technique. Beside the usual conservation
properties of mass, momentum, and total energy, the method also guarantees that the
constructed solution obeys pointwise stability constraints (in particular positivity of density
and internal energy, and a local minimum principle on the specific entropy). As such step-69
is strictly speaking more a collocation-type discretization than a variational formulation,
even though it is implemented with finite elements.

The time-update at each node requires the evaluation of a right-hand side that depends
(nonlinearly) on information from the previous time-step that spans more than one cell.
Therefore, assembly loops operate directly on the sparsity graph in order to retrieve infor-
mation from the entire stencil associated with each node. From a programming perspective,
step-69 features a number of techniques that are of interest for a wider audience: It discusses
a hybrid thread and MPI parallelized scheme with efficient MPI node-local numbering of
degrees of freedom. It showcases how to perform asynchronous write-out of results using
a background thread with std::async, and discusses a simple but effective checkpointing
and restart technique.

– step-70 solves a fluid structure interaction problem on non-matching parallel distributed
triangulations, showing the usage of the particles::ParticleHandler class for two dif-
ferent tasks: (i) to track the position of quadrature points of a non-matching solid grid
immersed in a fluid grid, and (ii) to track the position of a collection of massless tracers.

The program considers a mixing problem in the laminar flow regime. Such problems occur
in a wide range of applications ranging from chemical engineering to power generation (e.g.
turbomachinery). Mixing problems are particularly hard to solve numerically, because they
often involve a container (with fixed boundaries, and possibly complex geometries such
as baffles), and one (or more) immersed and rotating impellers, making it difficult to use
Arbitrary Lagrangian Eulerian formulations, where the fluid domain – along with the mesh!
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based on Trilinos or PETSc; (ii) using a matrix-free geometric multigrid; (iii) using algebraic
multigrid (Trilinos ML). The tutorial demonstrates the superiority of the matrix-free method
for the problem under consideration, and shows that, for matrix-based formulations, the
performance of algebraic and geometric multigrid methods are roughly comparable.

– step-58 is a program that solves the nonlinear Schrödinger equation, which in non-
dimensional form reads

−i
∂ψ

∂t
− 1

2
∆ψ + Vψ + κ|ψ|2ψ = 0,

augmented by appropriate initial and boundary conditions and using an appropriate form
for the potential V = V(x). The tutorial program focuses on two specific aspects for which
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turbomachinery). Mixing problems are particularly hard to solve numerically, because they
often involve a container (with fixed boundaries, and possibly complex geometries such
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– is smoothly deformed to follow the deformations of the immersed solid. We show how
to solve such problems using a penalization technique where the flow problem is solved in
the union of the fluid and solid domain, and the movement of the solid is imposed weakly
using a Nitsche-like penalization.

The particles::ParticleHandler class is used in this context to allow integration of the
fluid basis functions on the solid domain (which is immersed and non-matching with
regard to the fluid grid). This is achieved by attaching the information required to perform
the integration on the solid grid, to the property field of the particles associated with the
quadrature points of the solid, and advecting those particles according to the solid velocity.
In this program, we externally prescribe rather than solve for the the solid velocity; however,
the program can easily be extended to allow for the solution of coupled elasticity equations
on the solid domain.

There are also new programs in the code gallery (a collection of user-contributed programs that
often solve more complicated problems than tutorial programs, and intended as starting points
for further research rather than as teaching tools):

– A program based on the XBraids library to solve time-dependent problems in a parallel-in-
time fashion. This program was contributed by Joshua Christopher.

– A program that solves the biphasic nonlinear poro-viscoelasticity equations based on Og-
den hyperelasticity, to explore the porous and viscous contributions in brain mechanics
applications. This program was contributed by Ester Comellas and Jean-Paul Pelteret.
The program also serves as a demonstration of the automatic differentiation capabilities of
deal.II.

2.10 Python interfaces

Initial support for Python has existed indeal.II since version 9.0. The present release significantly
extends the Python interface. Specifically, a large number of methods from classes such as
Triangulation, CellAccessor, TriaAccessor, Mapping, Manifold, GridTools can now be
invoked from Python. We have focused on methods and functions that are widely used when a
mesh is created and parameters related to the boundary, manifold, and material identifiers are
assigned. The following listing gives an idea of how such code looks:

Python code
import PyDealII.Release as dealii

triangulation = dealii.Triangulation(’2D’)
triangulation.generate_hyper_shell(center = dealii.Point([0, 0]),

inner_radius = 0.5, outer_radius = 1.,
n_cells = 0, colorize = True)

triangulation.refine_global(2)

for cell in triangulation.active_cells():
cell.material_id = 1 if cell.center().x > 0 else 2

for face in cell.faces():
if face.at_boundary() and face.boundary_id == 1:

cell.refine_flag = ’isotropic’

triangulation.execute_coarsening_and_refinement()

12

The mesh that results from this code is shown in Fig. 2.

All triangulations created from within Python are serial. However, once the mesh is designed,
the triangulation can be serialized along with the auxiliary information about possible re-
finement, boundaries, materials and manifolds. This object can be easily deserialized within
a C++ program for subsequent production runs. Furthermore, such a serialized triangula-
tion can also be used in the construction of parallel::shared, parallel::distributed, and
parallel::fullydistributed triangulations (see also Section 2.1).

To facilitate the illustration of the new Python bindings, tutorial

Figure 2: The mesh generated
by the Python code shown in the
main text. Cells are colored by
material id.

programs step-49 and step-53 were replicated as Jupyter note-
books.

The introspective nature of the Python language makes it easy to
infer the list of supported methods from the Python objects, for ex-
ample by typing dir(PyDealII.Release.Triangulation). The
current Python interface does not yet provide access to deal.II’s
finite element machinery, i.e., classes such as DoFHandler, FE_*,
FEValues, etc.

2.11 Incompatible changes

The 9.2 release includes around 60 incompatible changes; see [50]. The majority of these changes
should not be visible to typical user codes; some remove previously deprecated classes and func-
tions; and the majority change internal interfaces that are not usually used in external applications.
That said, the following are worth mentioning since they may have been more widely used:

– Two functions that provide information about all processes, namely

– DoFHandler::locally_owned_dofs_per_processor()

– DoFHandler::locally_owned_mg_dofs_per_processor()

have been deprecated. As discussed in Subsection 2.2, deal.II by default no longer stores
information for all processes on all processes, but only local or locally-relevant information.
On the other hand, if necessary, global information can still be computed using, for example,
calling Utilities::MPI::Allgather(locally_owned_info(), comm).

– A corresponding change has been made in parallel triangulation classes: parallel::
TriangulationBase::compute_n_locally_owned_active_cells_per_processor() can be
used to obtain information about how many cells each process owns.

3 How to cite deal.II

In order to justify the work the developers of deal.II put into this software, we ask that papers
using the library reference one of the deal.II papers. This helps us justify the effort we put into
it.

There are various ways to reference deal.II. To acknowledge the use of the current version of the
library, please reference the present document. For up to date information and a bibtex entry
see
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https://www.dealii.org/publications.html

The original deal.II paper containing an overview of its architecture is [13]. If you rely on
specific features of the library, please consider citing any of the following:

– For geometric multigrid: [44, 43, 20];

– For distributed parallel computing: [12];

– For hp adaptivity: [14];

– For partition-of-unity (PUM) and enrich-
ment methods of the finite element space:
[24];

– For matrix-free and fast assembly tech-
niques: [46, 47];

– For computations on lower-dimensional
manifolds: [25];

– For curved geometry representations and
manifolds: [34];

– For integration with CAD files and tools:
[35];

– For boundary element computations:
[31];

– ForLinearOperatorandPackagedOperation
facilities: [51, 52];

– For uses of the WorkStream interface: [66];

– For uses of the ParameterAcceptor con-
cept, the MeshWorker::ScratchData base
class, and the ParsedConvergenceTable
class: [62];

– For uses of the particle functionality in
deal.II: [28].

deal.II can interface with many other libraries:

– ADOL-C [33, 67]

– ARPACK [49]

– Assimp [63]

– BLAS and LAPACK [5]

– cuSOLVER [21]

– cuSPARSE [22]

– Gmsh [29]

– GSL [27]

– Ginkgo [30]

– HDF5 [65]

– METIS [45]

– MUMPS [2, 3, 4, 55]

– muparser [57]

– nanoflann [16]

– NetCDF [60]

– OpenCASCADE [58]

– p4est [18]

– PETSc [10, 11]

– ROL [61]

– ScaLAPACK [15]

– SLEPc [36]

– SUNDIALS [39]

– SymEngine [64]

– TBB [59]

– Trilinos [37, 38]

– UMFPACK [23]

Please consider citing the appropriate references if you use interfaces to these libraries. We note
that the nanoflann and NetCDF interfaces are now deprecated and will be removed in deal.II
version 9.3.

The two previous releases of deal.II can be cited as [1, 6].
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