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Abstract

Backward stochastic differential equations (BSDEs) belong nowadays to the most fre-
quently studied equations in stochastic analysis and computational stochastics. BSDEs
in applications are often nonlinear and high-dimensional. In nearly all cases such non-
linear high-dimensional BSDEs cannot be solved explicitly and it has been and still is
a very active topic of research to design and analyze numerical approximation methods
to approximatively solve nonlinear high-dimensional BSDEs. Although there are a large
number of research articles in the scientific literature which analyze numerical approxima-
tion methods for nonlinear BSDEs, until today there has been no numerical approximation
method in the scientific literature which has been proven to overcome the curse of dimen-
sionality in the numerical approximation of nonlinear BSDEs in the sense that the number
of computational operations of the numerical approximation method to approximatively
compute one sample path of the BSDE solution grows at most polynomially in both the
reciprocal 1/ε of the prescribed approximation accuracy ε ∈ (0,∞) and the dimension
d ∈ N = {1, 2, 3, . . .} of the BSDE. It is the key contribution of this article to overcome
this obstacle by introducing a new Monte Carlo-type numerical approximation method for
high-dimensional BSDEs and by proving that this Monte Carlo-type numerical approx-
imation method does indeed overcome the curse of dimensionality in the approximative
computation of solution paths of BSDEs.
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1 Introduction

Backward stochastic differential equations (BSDEs) have been introduced by Pardoux & Peng
in 1990 (see [93]) and belong nowadays to the most frequently studied equations in stochastic
analysis and computational stochastics. One central reason for the high interest in studying
BSDEs is their numerous occurrence in relevant real life problems. In particular, BSDEs appear
in the approximative valuation of financial products such as financial derivative contracts (see,
e.g., [33, 42, 48]), BSDEs arise in the solution of stochastic optimal control problems (see,
e.g., [97, 106, 110]), and BSDEs are strongly linked to nonlinear partial differential equations
(PDEs) which themselves arise naturally in many applications (see, e.g., [92, 94–96]).

BSDEs in applications are often nonlinear and high-dimensional where, e.g., in the approx-
imative valuation of financial products the dimension of the BSDE essentially corresponds to
the number of financial assets in the associated hedging portfolio, where, e.g., in stochastic
optimal control problems the dimension of the BSDE is determined by the dimension of the
state space of the stochastic control problem, and where, e.g., in the case of the connection of
BSDEs and PDEs the dimension of the BSDE coincides with the dimension of the associated
nonlinear PDE.

In nearly all cases nonlinear high-dimensional BSDEs cannot be solved explicitly and it has
been and still is a very active topic of research to design and analyze numerical approximation
methods to approximatively solve nonlinear high-dimensional BSDEs. Standard numerical
approximation methods for nonlinear BSDEs in the scientific literature suffer under the so-called
curse of dimensionality (cf., e.g., Bellman [13], Novak & Wozniakowski [90, Chapter 1], and
Novak & Ritter [89]) in the sense that the number of computational operations of the numerical
approximation method to approximatively compute one sample path of the BSDE solution
grows at least exponentially in the reciprocal 1/ε of the prescribed approximation accuracy
ε ∈ (0,∞) or the dimension d ∈ N = {1, 2, 3, . . .} of the BSDE and it is a key objective
in computational stochastics to design and analyze numerical approximation methods which
overcome the curse of dimensionality in the numerical approximation of BSDEs.

Since BSDEs have been introduced by Pardoux & Peng in 1990 (see [93]), a large number
of numerical approximation methods for nonlinear BSDEs have been proposed and analyzed
in the scientific literature. In particular, we refer, for example, to [20,28,34,55,82,98,107,112]
for numerical approximation methods for BSDEs based on one-step temporal discretizations
of BSDEs, we refer, for example, to [25, 26, 105, 115, 118] for numerical approximation meth-
ods for BSDEs based on multi-step temporal discretizations of BSDEs, we refer, for example,
to [18,57–61,81,102] for numerical approximation methods for BSDEs based on suitable projec-
tions on function spaces, we refer, for example, to [27, 35, 36, 39] for cubature-based numerical
approximation methods for BSDEs, we refer, for example, to [20,37,69] for numerical approxi-
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mation methods for BSDEs based on Malliavin calculus, we refer, for example, to [4, 5, 40, 41]
for numerical approximation methods for BSDEs based on quantization algorithms, we refer,
for example, to [24, 78–80] for numerical approximation methods for BSDEs based on density
representations of particle systems, we refer, for example, to [29, 76, 100, 101] for numerical
approximation methods for quadratic BSDEs, we refer, for example, to [14, 19] for numerical
approximation methods for BSDEs based on Picard iterations and the least squares Monte
Carlo method, we refer, for example, to [56, 77] for numerical approximation methods for BS-
DEs based on Picard iterations and adaptive control variates, we refer, for example, to [49,111]
for numerical approximation methods for BSDEs based on sparse grid approximations, we re-
fer, for example, to [23, 51] for numerical approximation methods for BSDEs based on Wiener
chaos expansions, we refer, for example, to [114, 116, 117] for numerical approximation meth-
ods for BSDEs based on the theta-scheme, we refer, for example, to [38] for numerical ap-
proximation methods for BSDEs based on steepest descent algorithms, we refer, for example,
to [21,22,31,52,53,83] for numerical approximation methods for BSDEs based on discrete time
approximations of Brownian motions, we refer, for example, to [70,103] for numerical approxi-
mation methods for BSDEs based on Fourier expansions, we refer, for example, to [15–17] for
numerical approximation methods for BSDEs based on the primal-dual method, we refer, for
example, to [3, 65, 67, 68, 86, 99, 104, 108, 109] for numerical approximation methods for BSDEs
based on branching diffusion representations of PDEs, we refer, for example, to [43,84,85,87,88]
for numerical approximation methods for BSDEs based on the four-step-scheme, we refer, for
example, to [1,2] for numerical approximation methods for BSDEs based on conditional Monte
Carlo learning for diffusion processes, and we refer, for example, to [30,44,50,66] and the refer-
ences mentioned in the overview articles [10,45] for deep learning-based approximation methods
for BSDEs.

Although there are a large number of research articles in the scientific literature which an-
alyze numerical approximation methods for nonlinear BSDEs, until today there has been no
numerical approximation method in the scientific literature which has been proven to overcome
the curse of dimensionality in the numerical approximation of nonlinear BSDEs in the sense
that the number of computational operations of the numerical approximation method to ap-
proximatively compute one sample path of the BSDE solution grows at most polynomially in
both the reciprocal 1/ε of the prescribed approximation accuracy ε ∈ (0,∞) and the dimension
d ∈ N = {1, 2, 3, . . .} of the BSDE. This concept is also referred to as polynomial tractability in
the scientific literature (see, e.g., Novak & Wozniakowski [90, Definition 4.44]).

It is the key contribution of this article to overcome this obstacle by introducing a new Monte
Carlo-type numerical approximation method for high-dimensional BSDEs and by proving that
this Monte Carlo-type numerical approximation method does indeed overcome the curse of
dimensionality in the approximative computation of solution paths of BSDEs. Remarkably,
this article even demonstrates that the introduced Monte Carlo-type numerical approximation
method approximates solution paths of BSDEs with essentially the same computational com-
plexity that is used by standard Monte Carlo methods for the approximative computation of
integrals. More specifically, the main result of this article, Theorem 5.1 in Section 5 below,
proves that the introduced Monte Carlo-type numerical approximation method approximates
solution paths of BSDEs with a computational effort which grows at most polynomially in the
dimension d ∈ N of the driving Brownian motion and essentially at most quadratically in the
reciprocal of the prescribed approximation accuracy.

The Monte Carlo-type numerical approximation method for BSDEs proposed in this article
(see (2) below) is based on full-history recursive multilevel Picard approximation methods
[46,47,73] (in the following we abbreviate full-history recursive multilevel Picard by MLP) and
on the multilevel approach in Heinrich [62, 63]. MLP approximations have previously been
shown to overcome the curse of dimensionality in the case of a number of semilinear PDE
problems (cf. [7, 8, 11, 12, 46, 47, 54, 71–75]) and this is also the key ingredient in this article
to overcome the curse of dimensionality in the numerical approximation of solution paths of
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BSDEs.
To briefly sketch the contribution of this article within this introductory section, we now

present in the following result, Theorem 1.1 below, a special case of Theorem 5.1, the main
result of this article. Below Theorem 1.1 we explain in words the statement of Theorem 1.1 as
well as the mathematical objects appearing in Theorem 1.1.

Theorem 1.1. Let T, δ ∈ (0,∞), Θ =
⋃

n∈NZ
n, f ∈ C2(R,R), let gd ∈ C1(Rd,R), d ∈ N,

satisfy supd∈N supx=(x1,x2,...,xd)∈Rd

(

|f(x1)|+|f ′(x1)|+|f ′′(x1)|+|gd(x)|+
∑d

i=1 |∂gd∂xi
(x)|2

)

<∞, let

(Ω,F ,P, (Ft)t∈[0,T ]) be a filtered probability space, let rθ : Ω → [0, 1], θ ∈ Θ, be i.i.d. random vari-
ables, assume for all t ∈ (0, 1) that P(r0 ≤ t) = t, letW d,θ = (W d,θ,1,W d,θ,2, . . . ,W d,θ,d) : [0, T ]×
Ω → R

d, d ∈ N, θ ∈ Θ, be independent standard (Ft)t∈[0,T ]-Brownian motions, assume that

(rθ)θ∈Θ and (W d,θ)(d,θ)∈N×Θ are independent, let Ud,θ
n,M : [0, T ] × R

d × Ω → R, d,M, n ∈ N0,

θ ∈ Θ, satisfy for all d,M ∈ N, n ∈ N0, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that

Ud,θ
n,M(t, x) = (T − t)f(0)1

N

(n) +
1

N

(n)

Mn

Mn
∑

i=1

gd
(

x+W
d,(θ,0,−i)
T−t

)

+

n−1
∑

ℓ=1

[

(T − t)

Mn−ℓ

Mn−ℓ
∑

i=1

(

f ◦ Ud,(θ,ℓ,i)
ℓ,M − f ◦ Ud,(θ,−ℓ,i)

ℓ−1,M

)(

t+ (T − t)r(θ,ℓ,i), x+W
d,(θ,ℓ,i)

(T−t)r(θ,ℓ,i)

)

]

,

(1)

let ⌊·⌋M : R → R, M ∈ N, and ⌈·⌉M : R → R, M ∈ N, satisfy for all M ∈ N, t ∈ [0, T ] that
⌊t⌋M = max(([0, t]\{T})∩{0, T

M
, 2T
M
, . . .}) and ⌈t⌉M = min(((t,∞)∪{T})∩{0, T

M
, 2T
M
, . . .}), let

Yd,n,M : [0, T ]× Ω → R, d, n,M ∈ N, satisfy for all d, n,M ∈ N, t ∈ [0, T ] that

Y
d,n,M
t =

n−1
∑

ℓ=0

[

[

⌈t⌉
Ml+1−t

(T/M l+1)

]

Ud,ℓ
n−ℓ,M(⌊t⌋M l+1,W d,0

⌊t⌋
Ml+1

) +
[

t−⌊t⌋
Ml+1

(T/M l+1)

]

Ud,ℓ
n−ℓ,M(⌈t⌉M l+1 ,W d,0

⌈t⌉
Ml+1

)

− 1
N

(ℓ)
([

⌈t⌉
Ml−t

(T/M l)

]

Ud,ℓ
n−ℓ,M(⌊t⌋M l ,W d,0

⌊t⌋
Ml
) +

[

t−⌈t⌉
Ml

(T/M l)

]

Ud,ℓ
n−ℓ,M(⌈t⌉M l ,W d,0

⌈t⌉
Ml
)
)

]

, (2)

and for every d, n,M ∈ N let Cd,n,M ∈ N0 be the number of realizations of scalar random vari-
ables, the number of function evaluations of f , and the number of function evaluations of gd
which are used to compute one realization of (Yd,n,M

kT/Mn)k∈{0,1,...,Mn} (cf. (107) for a precise defi-

nition), let Yd = (Y d, Zd,1, Z2,d, . . . , Zd,d) : [0, T ]× Ω → R

d+1, d ∈ N, be (Ft)t∈[0,T ]-predictable

stochastic processes, assume for all d ∈ N that
∫ T

0
E

[

|Y d
s |+

∑d
j=1 |Zd,j

s |2
]

ds <∞, and assume
that for all d ∈ N, t ∈ [0, T ] it holds P-a.s. that

Y d
t = gd(W

d,0
T ) +

∫ T

t

f(Y d
s ) ds−

d
∑

j=1

∫ T

t

Zd,j
s dW d,0,j

s . (3)

Then there exist c ∈ R and n : N× (0, 1] → N such that for all d ∈ N, ε ∈ (0, 1] it holds that

supt∈[0,T ](E[|Y
d,n(d,ε),n(d,ε)
t − Y d

t |2])1/2 ≤ ε and Cd,n(d,ε),n(d,ε) ≤ cdcε−(2+δ).

Theorem 1.1 is an immediate consequence from Corollary 5.3 in Section 5 below. Corol-
lary 5.3, in turn, follows from Theorem 5.1, which is the main result of this article. In the
following we add some comments on the mathematical objects appearing in Theorem 1.1 above.

In (3) in Theorem 1.1 we specify the BSDEs whose solution processes we intend to ap-
proximate in Theorem 1.1. The strictly positive real number T ∈ (0,∞) in the first line of
Theorem 1.1 describes the time horizon of the BSDEs in (3). The function f : R → R in
the first line of Theorem 1.1 specifies the driver (the nonlinearity) of the BSDEs in (3). The
quadrupel (Ω,F ,P, (Ft)t∈[0,T ]) in the third line of Theorem 1.1 is the filtered probability space
on which the BSDEs in (3) are formulated. In Theorem 1.1 we do not assume that the fil-
tererd probability space (Ω,F ,P, (Ft)t∈[0,T ]) satisfies the usual conditions in the sense that for
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all t ∈ [0, T ) it holds that {A ∈ F : P(A) = 0} ⊆ Ft = ∩s∈(t,T ]Fs. The (Ft)t∈[0,T ]-predictable
stochastic processes Y d : [0, T ] × Ω → R, d ∈ N, in the last but fifth line of Theorem 1.1 are
the solution processes of the BSDEs in (3).

In (1)–(2) in Theorem 1.1 we specify the Monte Carlo-type approximation algorithm which
we propose to approximate the solution processes of the BSDEs in (3). To formulate the
proposed Monte Carlo-type approximation algorithm in (1)–(2) we need, roughly speaking,
sufficiently many independent random quantities which are indexed over a sufficiently large
index set. This sufficiently large index set is provided through the set Θ =

⋃

n∈NZ
n in the

first line of Theorem 1.1. The i.i.d. random variables rθ : Ω → [0, 1], θ ∈ Θ, in the third line of
Theorem 1.1 and the independent standard (Ft)t∈[0,T ]-Brownian motionsW d,θ : [0, T ]×Ω → R

d,
d ∈ N, θ ∈ Θ, in the fourth line of Theorem 1.1 provide the random quantities which we employ
to formulate the BSDEs in (3) and the proposed Monte Carlo-type approximation algorithm
in (1)–(2).

More formally, observe that the independent standard Brownian motionsW d,0 : [0, T ]×Ω →
R

d, d ∈ N, in the fourth line of Theorem 1.1 are the driving standard Brownian motions in the
BSDEs in (3) and observe that the i.i.d. random variables rθ : Ω → [0, 1], θ ∈ Θ, in the third
line of Theorem 1.1 and the independent standard Brownian motions W d,θ : [0, T ] × Ω → R

d,
d ∈ N, θ ∈ (Θ\{0}), in the fourth line of Theorem 1.1 are the random quantities which we use
as random input sources to formulate the proposed Monte Carlo-type approximation algorithm
in (1)–(2). Note that the assumption in third line of Theorem 1.1 that for all t ∈ (0, 1) it holds
that P(r0 ≤ t) = t ensures that for all θ ∈ Θ it holds that rθ is an on [0, 1] continuous uniformly
distributed random variable.

The functions gd : R
d → R, d ∈ N, in the first line of Theorem 1.1 and the independent stan-

dard Brownian motions W d,0 : [0, T ]×Ω → R

d, d ∈ N, in the fourth line of Theorem 1.1 deter-
mine the terminal conditions of the BSDEs in (3). More precisely, note that (3) in Theorem 1.1
ensures that for all d ∈ N it holdsP-a.s. that Y d

T = gd(W
d,0
T ). In Theorem 1.1 we assume that the

driver f : R→ R in the first line of Theorem 1.1 and the functions gd : R
d → R, d ∈ N, in the

first line of Theorem 1.1 satisfy some regularity hypotheses. More formally, observe that the as-
sumption supd∈N supx=(x1,x2,...,xd)∈Rd

(

|f(x1)|+ |f ′(x1)|+ |f ′′(x1)|+ |gd(x)|+
∑d

i=1 |∂gd∂xi
(x)|2

)

<∞
in the second line of Theorem 1.1 assures that there exists a real number κ ∈ R such that for
all d ∈ N, v ∈ R, x = (x1, x2, . . . , xd) ∈ Rd it holds that |f(v)| ≤ κ, |f ′(v)| ≤ κ, |f ′′(v)| ≤ κ,
|gd(x)| ≤ κ, and

∑d
i=1 |∂gd∂xi

(x)|2 ≤ κ.
The numbers Cd,n,M ∈ N0, d, n,m ∈ N, in the first line below (2) in Theorem 1.1 model

the computational cost of the Monte Carlo-type approximation algorithm in (1)–(2). More
specifically, for every d, n,M ∈ N we have that Cd,n,M specifies the sum of the number of
realizations of one-dimensional random variables, of the number of function evaluations of
f : R → R, and of the number of function evaluations of gd : R

d → R which are used to
compute one realization of (Yd,n,M

kT/Mn)k∈{0,1,...,Mn} (cf. (107) for a precise definition). Observe

that (2) in Theorem 1.1 ensures that for every d, n,M ∈ N we have that (Yd,n,M
t )t∈[0,T ] is

the piecewise affine linear interpolation associated to (Yd,n,M
kT/Mn)k∈{0,1,...,Mn} in sense that for

all k ∈ {1, 2, ...,Mn}, t ∈ [ (k−1)T
Mn , kT

Mn ] it holds that Y
d,n,M
t = Mn

T

[

( kT
Mn − t)Yd,n,M

(k−1)T/Mn + (t −
(k−1)T
Mn )Yd,n,M

kT/Mn

]

.

Theorem 1.1 proves that the solution processes Y d : [0, T ]×Ω → R, d ∈ N, of the BSDEs in
(3) can be approximated by means of the Monte Carlo-type approximation algorithm in (1)–(2)
with a computational cost which grows at most polynomially in the dimension d ∈ N of the
BSDE and up to an arbitrarily small polynomial order at most quadratically in the reciprocal
1/ε of the prescribed approximation accuracy ε > 0. The arbitrarily small polynomial order is
described through the real number δ ∈ (0,∞) in the first line of Theorem 1.1.

In the following we also add some comments on shortcomings and possible generalizations
of Theorem 1.1. In particular, we observe that the driver f : R → R in the BSDEs in (3)
does only depend on the solution processes Y d : [0, T ] × Ω → R, d ∈ N, but not on the time
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variable s ∈ [0, T ], not on the driving Brownian motions W d,0 : [0, T ] × Ω → R

d, d ∈ N, and
also not on the stochastic processes Zd,j : [0, T ] × Ω → R, j ∈ {1, 2, . . . , d}, d ∈ N. However,
in the more general result in Theorem 5.1 in Section 4 below the drivers of the BSDEs under
consideration do additionally also depend on the time variable s ∈ [0, T ] and on the driving
Bronwnian motions W d,0 : [0, T ]× Ω → R

d, d ∈ N. We refer to (80) in Theorem 5.1 below for
details. The dependence of the drivers of the BSDEs under considerations on the stochastic
processes Zd,j : [0, T ]× Ω → R, j ∈ {1, 2, . . . , d}, d ∈ N, is not covered within this article and
the numerical approximation of the stochastic processes Zd,j : [0, T ]×Ω → R, j ∈ {1, 2, . . . , d},
d ∈ N, is also not covered within this article but the arguments revealed in this article together
with the arguments in the article [71] allow also to overcome the curse of dimensionality in
these more general cases of BSDEs.

In Theorem 1.1 we also use a rather restrictive regularity hypothesis on the driver f : R→ R

and the functions gd : R
d → R, d ∈ N, in the sense that there exists κ ∈ R such that for all

d ∈ N, v ∈ R, x = (x1, x2, . . . , xd) ∈ R

d it holds that |f(v)| ≤ κ, |f ′(v)| ≤ κ, |f ′′(v)| ≤ κ,
|gd(x)| ≤ κ, and

∑d
i=1 |∂gd∂xi

(x)|2 ≤ κ. In the more general result in Theorem 5.1 in Section 4
below this hypothesis is replaced by suitable more general Lipschitz-type assumptions. We refer
to (42)–(43) in Theorem 5.1 below for details.

The remainder of this article is organized as follows. In Section 2 below we establish upper
bounds for a generalized norm of the difference between a vector space valued process and
appropriate multi-grid approximations for this process. A key aspect in the derivation of the
Monte Carlo-type approximation algorithm in (1)–(2) in Theorem 1.1 is, roughly speaking, to
reformulate the solutions of the BSDEs in (3) as solutions of appropriate stochastic fixed-point
equations (SFPEs) associated to the BSDEs in (3) and in Section 3 below we establish existence,
uniqueness, and Hölder continuity properties for solutions of precisely such SFPEs. In Section 4
below we establish upper bounds for appropriate Hölder seminorms of the difference between
the solutions of such SFPEs and suitable MLP approximations for such SFPEs. In Section 5
below we combine the findings from Sections 2 and 4 to provide a computational complexity
analysis for the Monte Carlo-type approximation algorithm in (1)–(2) and, thereby, we also
prove Theorem 1.1 above.

2 Error analysis for multi-grid approximations

A central aspect in the derivation of the Monte Carlo-type approximation algorithm for BSDEs
in (1)–(2) in Theorem 1.1 in Section 1 above is, roughly speaking, to approximate the exact
solution of the BSDE under consideration by means of appropriate multi-grid approximations
on coarser and coarser time grids and, then, to exploit suitable uniform temporal regularity
properties for the employed multi-grid approximations.

In Lemma 2.3 in this section we formulate this approach in an abstract setting and in
Lemma 2.3 we also establish explicit upper bounds for a generalized error norm of the differ-
ence between a vector space valued process (which we think of as the solution process of the
considered BSDE) and appropriate multi-grid approximations for this process.

Our approach is based on the multilevel method in the articles Heinrich [62,63]. In these ref-
erences Heinrich proposed and formulated the multilevel method in the context of Monte Carlo
approximations of certain parameter-dependent integrals (see also Heinrich & Sindambiwe [64]).

Our proof of Lemma 2.3 employs the essentially well-known error estimate for piecewise
affine linear interpolation functions in Lemma 2.1 and the essentially well-known Hölder con-
tinuity result for piecewise affine linear interpolation functions in Lemma 2.2. Lemma 2.1 is,
e.g., a slight extension of Cox et al. [32, Lemma 2.2] and Lemma 2.2 is, e.g., a slight extension
of Cox et al. [32, Lemma 2.5].

Lemma 2.1. Let V be an R-vector space, let ‖·‖ : V → [0,∞] satisfy for all v, w ∈ V , v,w ∈
R with ‖v‖ + ‖w‖ < ∞ that ‖vv +ww‖ ≤ |v|‖v‖ + |w|‖w‖, let T, α ∈ (0,∞), m ∈ N,
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τ0, τ1, . . . , τm ∈ R satisfy 0 = τ0 < τ1 < . . . < τm = T , and let x = (xt)t∈[0,T ] : [0, T ] → V
and X = (Xt)t∈[0,T ] : [0, T ] → V satisfy for all k ∈ {1, 2, . . . , m}, t ∈ [τk−1, τk] that Xt =
(τk − τk−1)

−1[(τk − t)xτk−1
+ (t− τk−1)xτk ]. Then

sup
t∈[0,T ]

∥

∥Xt − xt
∥

∥ ≤ 2−min{3,α}
[

max
k∈{1,2,...,m}

|τk − τk−1|α
]

[

sup
r,s∈[0,T ], r 6=s

‖xr − xs‖
|r − s|α

]

. (4)

Proof of Lemma 2.1. Throughout this proof assume without loss of generality that for all s, t ∈
[0, T ] with s 6= t it holds that ‖xs − xt‖ <∞. Note that for all k ∈ {1, 2, . . . , m}, t ∈ (τk−1, τk)
it holds that

Xt − xt =

[

(τk − t)xτk−1
+ (t− τk−1)xτk

τk − τk−1

]

− xt

=
(τk − t)(xτk−1

− xt) + (t− τk−1)(xτk − xt)

τk − τk−1

=

[

(t− τk−1)(τk − t)α

τk − τk−1

] [

xτk − xt
(τk − t)α

]

−
[

(τk − t)(t− τk−1)
α

τk − τk−1

] [

xt − xτk−1

(t− τk−1)α

]

.

(5)

The assumption that for all v, w ∈ V , v,w ∈ R with ‖v‖+‖w‖ <∞ it holds that ‖vv +ww‖ ≤
|v|‖v‖+ |w|‖w‖ hence ensures that for all k ∈ {1, 2, . . . , m}, t ∈ [τk−1, τk] it holds that

∥

∥Xt − xt
∥

∥ ≤
([

(t− τk−1)(τk − t)α

τk − τk−1

]

+

[

(τk − t)(t− τk−1)
α

τk − τk−1

])

[

sup
r,s∈[0,T ], r 6=s

‖xr − xs‖
|r − s|α

]

=

([

t− τk−1

τk − τk−1

] [

τk − t

τk − τk−1

]α

+

[

τk − t

τk − τk−1

] [

t− τk−1

τk − τk−1

]α)

· [τk − τk−1]
α

[

sup
r,s∈[0,T ], r 6=s

‖xr − xs‖
|r − s|α

]

(6)

=

([

t− τk−1

τk − τk−1

] [

1−
(

t− τk−1

τk − τk−1

)]α

+

[

1−
(

t− τk−1

τk − τk−1

)][

t− τk−1

τk − τk−1

]α)

· [τk − τk−1]
α

[

sup
r,s∈[0,T ], r 6=s

‖xr − xs‖
|r − s|α

]

≤
[

max
l∈{1,2,...,m}

|τl − τl−1|α
]

[

sup
z∈[0,1]

(z(1− z)α + (1− z)zα)

][

sup
r,s∈[0,T ], r 6=s

‖xr − xs‖
|r − s|α

]

.

Next observe that the fact that for all z ∈ [0, 1] it holds that z(1 − z) ≤ 2−2 and Jensen’s
inequality imply that for all z ∈ [0, 1] it holds that

1(0,1](α)
(

z(1 − z)α + (1− z)zα
)

≤ 1(0,1](α)
(

z(1 − z) + (1− z)z
)α

= 1(0,1](α)2
α
(

z(1 − z)
)α ≤ 1(0,1](α)2

−α.
(7)

In addition, note the fact that for all z ∈ [0, 1] it holds that z(1 − z) ≤ 2−2 and Jensen’s
inequality imply that for all z ∈ [0, 1] it holds that

1(1,2](α)
(

z(1 − z)α + (1− z)zα
)

= 1(1,2](α)(2z(1− z))
(

(1−z)α−1

2
+ zα−1

2

)

≤ 1(1,2](α)
(

1
2

)

[

(1−z)
2

+ z
2

]α−1

= 1(1,2](α)2
−α.

(8)

Next observe that the fact that for all z ∈ [0, 1] it holds that z(1− z) ≤ 2−2, and the fact that
for all c ∈ [0, 1] it holds that [0, 1/4] ∋ y 7→ y(1 − 2y)c ∈ R is non-decreasing, and Jensen’s
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inequality imply that for all z ∈ [0, 1] it holds that

1(2,∞)(α)
(

z(1 − z)α + (1− z)zα
)

≤ 1(2,∞)(α)
(

z(1 − z)min{α,3} + (1− z)zmin{α,3}) (9)

= 1(2,∞)(α)(z(1− z))
(

(1− z)[(1 − z)min{α,3}−2] + z[zmin{α,3}−2]
)

≤ 1(2,∞)(α)(z(1− z))
(

(1− z)2 + z2
)min{α,3}−2

= 1(2,∞)(α)(z(1− z))
(

1− 2z(1 − z)
)min{α,3}−2

≤ 1(2,∞)(α) max
y∈[0,1/4]

[

y
(

1− 2y
)min{α,3}−2

]

= 1(2,∞)(α)
[

1
4

(

1− 1
2

)min{α,3}−2
]

= 1(2,∞)(α)2
−min{α,3}.

Combining this with (7) and (8) demonstrates that supz∈[0,1](z(1−z)α+(1−z)zα) ≤ 2−min{3,α}.
This and (6) show that

sup
t∈[0,T ]

∥

∥Xt − xt
∥

∥ ≤ 2−min{3,α}
[

max
k∈{1,2,...,m}

|τk − τk−1|α
]

[

sup
r,s∈[0,T ], r 6=s

‖xr − xs‖
|r − s|α

]

. (10)

The proof of Lemma 2.1 is thus complete.

Lemma 2.2. Let V be an R-vector space, let ‖·‖ : V → [0,∞] satisfy for all v, w ∈ V , v,w ∈ R
with ‖v‖ + ‖w‖ < ∞ that ‖vv +ww‖ ≤ |v|‖v‖ + |w|‖w‖, let T ∈ (0,∞), α ∈ (0, 1], m ∈ N,
τ0, τ1, . . . , τm ∈ R satisfy 0 = τ0 < τ1 < . . . < τm = T , and let x = (xt)t∈[0,T ] : [0, T ] → V
and X = (Xt)t∈[0,T ] : [0, T ] → V satisfy for all k ∈ {1, 2, . . . , m}, t ∈ [τk−1, τk] that Xt =
(τk − τk−1)

−1[(τk − t)xτk−1
+ (t− τk−1)xτk ]. Then

[

sup
s,t∈[0,T ], s 6=t

‖Xs −Xt‖
|s− t|α

]

≤
[

sup
s,t∈[0,T ], s 6=t

‖xs − xt‖
|s− t|α

]

. (11)

Proof of Lemma 2.2. Throughout this proof assume without loss of generality that for all s, t ∈
[0, T ] with s 6= t it holds that ‖xs − xt‖ <∞ and let n : [0, T ] → N and ρ : [0, T ] → [0, 1] satisfy
for all t ∈ [0, T ] that

n(t) = min{k ∈ {1, 2, . . . , m} : τk ≥ t} and ρ(t) =
t− τn(t)−1

τn(t) − τn(t)−1

. (12)

Note that (12) ensures that for all t ∈ [0, T ] it holds that

Xt = (1− ρ(t))xτn(t)−1
+ ρ(t)xτn(t)

= xτn(t)−1
+ ρ(t)(xτn(t)

− xτn(t)−1
). (13)

The fact that for all v, w ∈ V , v,w ∈ R with ‖v‖ + ‖w‖ < ∞ it holds that ‖vv +ww‖ ≤
|v|‖v‖+ |w|‖w‖ hence ensures that for all t1, t2 ∈ [0, T ] with t1 < t2 and n(t1) = n(t2) it holds
that

‖Xt1 −Xt2‖ =
∥

∥(ρ(t1)− ρ(t2))(xτn(t1)
− xτn(t1)−1

)
∥

∥

=
∥

∥(ρ(t1)− ρ(t2))(xτn(t1)
− xτn(t1)−1

) + 0(xT − x0)
∥

∥ ≤ |ρ(t1)− ρ(t2)|
∥

∥xτn(t1)
− xτn(t1)−1

∥

∥

≤ [|ρ(t1)− ρ(t2)|]
[

|τn(t1) − τn(t1)−1|α
]

[

sup
s,t∈[0,T ], s 6=t

‖xs−xt‖
|s−t|α

]

= |ρ(t1)− ρ(t2)|1−α
[

|ρ(t1)− ρ(t2)||τn(t1) − τn(t1)−1|
]α

[

sup
s,t∈[0,T ], s 6=t

‖xs−xt‖
|s−t|α

]

(14)

≤
[

|ρ(t1)− ρ(t2)||τn(t1) − τn(t1)−1|
]α

[

sup
s,t∈[0,T ], s 6=t

‖xs−xt‖
|s−t|α

]

= |t1 − t2|α
[

sup
s,t∈[0,T ], s 6=t

‖xs−xt‖
|s−t|α

]

.
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Moreover, observe that (13) and the fact that for all v, w ∈ V , v,w ∈ R with ‖v‖+ ‖w‖ <∞
it holds that ‖vv +ww‖ ≤ |v|‖v‖+ |w|‖w‖ ensure that for all t1, t2 ∈ [0, T ] with n(t1) < n(t2)
it holds that

‖Xt1 −Xt2‖ =
∥

∥

[

(1− ρ(t1))xτn(t1)−1
+ ρ(t1)xτn(t1)

]

−
[

(1− ρ(t2))xτn(t2)−1
+ ρ(t2)xτn(t2)

]
∥

∥

≤ (1− ρ(t1))(1− ρ(t2))
∥

∥xτn(t1)−1
− xτn(t2)−1

∥

∥+ ρ(t1)ρ(t2)
∥

∥xτn(t1)
− xτn(t2)

∥

∥ (15)

+ (1− ρ(t1))ρ(t2)
∥

∥xτn(t1)−1
− xτn(t2)

∥

∥+ ρ(t1)(1− ρ(t2))
∥

∥xτn(t1)
− xτn(t2)−1

∥

∥

≤
[

sup
s,t∈[0,T ], s 6=t

‖xs−xt‖
|s−t|α

]

[

(1− ρ(t1))(1− ρ(t2))|τn(t1)−1 − τn(t2)−1|α + ρ(t1)ρ(t2)|τn(t1) − τn(t2)|α

+ (1− ρ(t1))ρ(t2)|τn(t1)−1 − τn(t2)|α + ρ(t1)(1− ρ(t2))|τn(t1) − τn(t2)−1|α
]

.

The fact that the function (−∞, 0] ∋ z 7→ |z|α ∈ R is concave hence shows that for all
t1, t2 ∈ [0, T ] with n(t1) < n(t2) it holds that

‖Xt1 −Xt2‖

≤
[

sup
s,t∈[0,T ], s 6=t

‖xs−xt‖
|s−t|α

]

∣

∣(1− ρ(t1))(1− ρ(t2))(τn(t1)−1 − τn(t2)−1) + ρ(t1)ρ(t2)(τn(t1) − τn(t2))

+ (1− ρ(t1))ρ(t2)(τn(t1)−1 − τn(t2)) + ρ(t1)(1− ρ(t2))(τn(t1) − τn(t2)−1)
∣

∣

α
(16)

=

[

sup
s,t∈[0,T ], s 6=t

‖xs−xt‖
|s−t|α

]

∣

∣[τn(t1)−1 + ρ(t1)(τn(t1) − τn(t1)−1)]− [τn(t2)−1 + ρ(t2)(τn(t2) − τn(t2)−1)]
∣

∣

α

=

[

sup
s,t∈[0,T ], s 6=t

‖xs−xt‖
|s−t|α

]

|t1 − t2|α.

Combining this and (14) proves (11). The proof of Lemma 2.2 is thus complete.

Lemma 2.3. Let V be an R-vector space, let ‖·‖ : V → [0,∞] satisfy for all v, w ∈ V , v,w ∈
R with ‖v‖ + ‖w‖ < ∞ that ‖vv +ww‖ ≤ |v|‖v‖ + |w|‖w‖, let T ∈ (0,∞), α ∈ (0, 1],
n ∈ N, m1, m2, . . . , mn ∈ N, let τl,k ∈ R, k ∈ {0, 1, . . . , ml}, l ∈ {1, 2, . . . , n}, satisfy for all
l ∈ {1, 2, . . . , n} that 0 = τl,0 < τl,1 < . . . < τl,ml

= T and (∪ml
i=0{τl,i}) ⊆ (∪ml+1

i=0 {τl+1,i}), let
ℒl : V

[0,T ] → V [0,T ], l ∈ N, satisfy for all l ∈ {1, 2, . . . , n}, k ∈ {1, 2, . . . , ml}, t ∈ [τl,k−1, τl,k],
y = (yt)t∈[0,T ] : [0, T ] → V that (ℒl(y))(t) = (τl,k − τl,k−1)

−1[(τl,k − t)yτl,k−1
+ (t − τl,k−1)yτl,k ],

and let Y ℓ = (Y ℓ
t )t∈[0,T ] : [0, T ] → V , ℓ ∈ N0, and Y = (Yt)t∈[0,T ] : [0, T ] → V satisfy

Y = ℒ1(Y
n) +

n−1
∑

ℓ=1

[

ℒl+1(Y
n−l)−ℒl(Y

n−l)
]

. (17)

Then

sup
t∈[0,T ]

∥

∥Yt − Y 0
t

∥

∥ ≤ max
k∈{0,1,...m1}

∥

∥Y n
τ1,k

− Y 0
τ1,k

∥

∥+

[

max
k∈{1,2,...,mn}

|τn,k−τn,k−1|α
2α

]

[

sup
t,s∈[0,T ], t6=s

‖Y 0
t −Y 0

s ‖
|t−s|α

]

+
n−1
∑

l=1

[

max
k∈{1,2,...,ml}

|τl,k−τl,k−1|α
2α

]

[

sup
t,s∈[0,T ], t6=s

‖(Y n−l
t −Y 0

t )−(Y n−l
s −Y 0

s )‖
|t−s|α

]

. (18)

Proof of Lemma 2.3. Throughout this proof let εl ∈ R, l ∈ {1, 2, . . . , n}, satisfy for all l ∈
{1, 2, . . . , n} that εl = maxk∈{1,2,...,ml} |τl,k − τl,k−1|. Observe that for all l ∈ {0, 1, . . . , n},
y = (yt)t∈[0,T ] : [0, T ] → V it holds that

sup
t∈[0,T ]

‖(ℒl(y))(t)‖ ≤ max
k∈{0,1,...,ml}

∥

∥yτl,k
∥

∥. (19)
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Next note that (17) and the fact that ℒn(Y
0) = ℒ1(Y

0) +
∑n−1

l=1 [ℒl+1(Y
0)−ℒl(Y

0)] demon-
strate that

Y −ℒn(Y
0)

=

[

ℒ1(Y
n) +

n−1
∑

ℓ=1

[

ℒl+1(Y
n−l)−ℒl(Y

n−l)
]

]

−
[

ℒ1(Y
0) +

n−1
∑

l=1

[

ℒl+1(Y
0)−ℒl(Y

0)
]

]

= ℒ1(Y
n − Y 0) +

n−1
∑

l=1

[

ℒl+1(Y
n−l − Y 0)−ℒl(Y

n−l − Y 0)
]

. (20)

This, the fact that for all v, w ∈ V it holds that ‖v + w‖ ≤ ‖v‖+ ‖v‖, and (19) ensure that

sup
t∈[0,T ]

∥

∥Yt − (ℒn(Y
0))(t)

∥

∥ (21)

≤ sup
t∈[0,T ]

∥

∥(ℒ1(Y
n − Y 0))(t)

∥

∥+

n−1
∑

l=1

[

sup
t∈[0,T ]

∥

∥

(

ℒl+1(Y
n−l − Y 0)

)

(t)−
(

ℒl(Y
n−l − Y 0)

)

(t)
∥

∥

]

≤ max
k∈{0,1,...m1}

∥

∥Y n
τ1,k

− Y 0
τ1,k

∥

∥+

n−1
∑

l=1

[

sup
t∈[0,T ]

∥

∥

(

ℒl+1(Y
n−l − Y 0)

)

(t)−
(

ℒl(Y
n−l − Y 0)

)

(t)
∥

∥

]

.

Moreover, note that for all l ∈ {1, 2, . . . , n− 1}, y = (yt)t∈[0,T ] : [0, T ] → V , i ∈ {0, 1, . . . , ml+1}
it holds that (ℒl+1(y))(τl+1,i) = yτl+1,i

. The assumption that for all l ∈ {1, 2, . . . , n − 1} it
holds that (∪ml

i=0{τl,i}) ⊆ (∪ml+1

i=0 {τl+1,i}) therefore implies that for all l ∈ {1, 2, . . . , n − 1},
y = (yt)t∈[0,T ] : [0, T ] → V , i ∈ {0, 1, . . . , ml} it holds that (ℒl+1(y))(τl,i) = yτl,i . This proves
that for all l ∈ {1, 2, . . . , n− 1}, y = (yt)t∈[0,T ] : [0, T ] → V it holds that ℒl(y) = ℒl(ℒl+1(y)).
This and (21) ensure that

sup
t∈[0,T ]

∥

∥Yt − (ℒn(Y
0))(t)

∥

∥ ≤ max
k∈{0,1,...m1}

∥

∥Y n
τ1,k

− Y 0
τ1,k

∥

∥

+
n−1
∑

l=1

[

sup
t∈[0,T ]

∥

∥

(

ℒl+1(Y
n−l − Y 0)

)

(t)−
(

ℒl(ℒl+1(Y
n−l − Y 0))

)

(t)
∥

∥

]

.
(22)

Lemma 2.1 hence proves that

sup
t∈[0,T ]

∥

∥Yt − (ℒn(Y
0))(t)

∥

∥ ≤ max
k∈{0,1,...m1}

∥

∥Y n
τ1,k

− Y 0
τ1,k

∥

∥

+

n−1
∑

l=1

|εl|α
2α

[

sup
r,s∈[0,T ], r 6=s

∥

∥

(

ℒl+1(Y
n−l − Y 0)

)

(r)−
(

ℒl+1(Y
n−l − Y 0)

)

(s)
∥

∥

|r − s|α

]

.
(23)

Lemma 2.2 hence ensures that

sup
t∈[0,T ]

∥

∥Yt − (ℒn(Y
0))(t)

∥

∥ ≤ max
k∈{0,1,...m1}

∥

∥Y n
τ1,k

− Y 0
τ1,k

∥

∥

+

n−1
∑

l=1

|εl|α
2α

[

sup
r,s∈[0,T ], r 6=s

∥

∥(Y n−l
s − Y 0

s )− (Y n−l
r − Y 0

r )
∥

∥

|r − s|α

]

.
(24)

Moreover, observe that Lemma 2.1 ensures that

sup
t∈[0,T ]

∥

∥(ℒn(Y
0))(t)− Y 0

t

∥

∥ ≤ |εn|α
2α

[

sup
t,s∈[0,T ], t6=s

‖Y 0
t − Y 0

s ‖
|t− s|α

]

. (25)
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The fact that for all v, w ∈ V it holds that ‖v + w‖ ≤ ‖v‖ + ‖v‖ and (24) hence demonstrate
that

sup
t∈[0,T ]

∥

∥Yt − Y 0
t

∥

∥ ≤ sup
t∈[0,T ]

[

∥

∥Yt − (ℒn(Y
0))(t)

∥

∥+
∥

∥(ℒn(Y
0)(t)− Y 0

t

∥

∥

]

≤ max
k∈{0,1,...m1}

∥

∥Y n
τ1,k

− Y 0
τ1,k

∥

∥+
|εn|α
2α

[

sup
t,s∈[0,T ], t6=s

‖Y 0
t − Y 0

s ‖
|t− s|α

]

+

n−1
∑

l=1

|εl|α
2α

[

sup
r,s∈[0,T ], r 6=s

∥

∥(Y n−l
s − Y 0

s )− (Y n−l
r − Y 0

r )
∥

∥

|r − s|α

]

.

(26)

The proof of Lemma 2.3 is thus complete.

3 Existence, uniqueness, and Hölder continuity proper-

ties for solutions of stochastic fixed-point equations

An important aspect in the derivation of the Monte Carlo-type approximation algorithm for
BSDEs in (1)–(2) in Theorem 1.1 in Section 1 above is, loosely speaking, to reformulate the
solutions of the BSDEs in (3) as solutions of appropriate SFPEs associated to the BSDEs in
(3) and in this section we establish in Lemma 3.1 below existence, uniqueness, and Hölder
continuity properties for solutions of such SFPEs.

In particular, under suitable assumptions, item (i) in Lemma 3.1 proves that the SFPE in
(32) below has a unique solution within the set of functions which grow at most like a certain
Lyapunov-type function (see the function V : [0, T ] × Rd → [1,∞) above (32) in Lemma 3.1
for details), item (ii) in Lemma 3.1 establishes a suitable explicit a priori growth bound for
the unique solution of the SFPE in (32), and item (iii) in Lemma 3.1 proves that the unique
solution of the SFPE in (32) is 1/2-Hölder-continuous in the time variable t ∈ [0, T ] and locally
1-Hölder continous (locally Lipschitz continuous) in the space variable x ∈ Rd.

Further existence, uniqueness, and regularity results for SFPEs can, e.g., be found in [71,
Section 4], [9, Section 2 and Section 3], [6, Section 2 and Section 3], and [72, Section 2].

Lemma 3.1. Let d ∈ N, L ∈ [0,∞), T ∈ (0,∞), p1, p2, p3 ∈ [1,∞] satisfy 1
p1
+ 1

p2
+ 1

p3
≤ 1, let

‖·‖ : Rd → [0,∞) be a norm, let f : [0, T ]×Rd×R→ R, g : Rd → R, φ : [0, T ]×Rd → [1,∞),
V : [0, T ]×Rd → [1,∞), and ψ : [0, T ]×Rd → [1,∞) be measurable, let (Ω,F ,P) be a probability
space, for every random variable X : Ω → R let ‖X‖p ∈ [0,∞], p ∈ [1,∞], satisfy for all
p ∈ [1,∞) that ‖X‖p = (E[|X|p])1/p and ‖X‖∞ = inf({r ∈ [0,∞) : P(|X| > r) = 0} ∪ {∞}),
for every s ∈ [0, T ], x ∈ Rd let Xx

s,(·) = (Xx
s,t(ω))(t,ω)∈[s,T ]×Ω : [s, T ] × Ω → R

d be measurable,

assume for all measurable h : [0, T ]×Rd×Rd → [0,∞) that {(s, t) ∈ [0, T ]2 : s ≤ t}×Rd×Rd ∋
(s, t, x, y) 7→ E

[

h
(

t, Xx
s,t, X

y
s,t

)]

∈ [0,∞] is measurable, and assume for all s ∈ [0, T ], t ∈ [s, T ],
r ∈ [t, T ], x, y ∈ Rd, v, w ∈ R and all measurable h : [0, T ]×Rd ×Rd → [0,∞) that

‖φ(t, Xx
s,t)‖p3 ≤ φ(s, x), max

{

|g(x)|1{T}(s), |Tf(s, x, 0)|, ‖V (t, Xx
s,t)‖p1

}

≤ V (s, x) (27)

|g(x)− g(y)| ≤ 1
2
√
T
(V (T, x) + V (T, y))‖x− y‖, (28)

|f(t, x, v)− f(t, y, w)| ≤ L|v − w|+ 1
2T 3/2 (V (t, x) + V (t, y))‖x− y‖, (29)

‖‖Xx
s,t − x‖‖p2 ≤ ψ(s, x)|s− t|1/2, ‖‖Xx

s,t −Xy
s,t‖‖p2 ≤ 1

2
(φ(s, x) + φ(s, y))‖x− y‖, (30)

and E

[

E

[

h
(

r,Xa
t,r, X

b
t,r

)]
∣

∣

(a,b)=(Xx
s,t ,X

y
s,t)

]

= E
[

h
(

r,Xx
s,r, X

y
s,r

)]

, (31)

Then
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(i) there exists a unique measurable u : [0, T ] × R

d → R which satisfies for all t ∈ [0, T ],

x ∈ R

d that E
[

|g(Xx
t,T )|

]

+
∫ T

t
E

[

|f(r,Xx
t,r, u(r,X

x
t,r))|

]

dr + supr∈[0,T ],ξ∈Rd

( |u(r,ξ)|
V (r,ξ)

)

< ∞
and

u(t, x) = E
[

g(Xx
t,T )
]

+

∫ T

t

E

[

f(r,Xx
t,r, u(r,X

x
t,r))

]

dr, (32)

(ii) it holds for all t ∈ [0, T ], x ∈ Rd that |u(t, x)| ≤ 2eL(T−t)V (t, x), and

(iii) it holds for all s ∈ [0, T ], t ∈ [s, T ], x, y ∈ Rd that |u(s, x)−u(t, y)| ≤ T−1/2e2LT (V (s, x)+
V (t, y))(φ(s, x) + φ(t, y))

[

ψ(s, x)|s− t|1/2 + ‖x− y‖
]

.

Proof of Lemma 3.1. Observe that [72, Proposition 2.2] (applied with O x R

d in the notation
of [72, Proposition 2.2]) and (27) prove items (i) and (ii). Next note that (32), the triangle
inequality, and (31) show that for all s ∈ [0, T ], t ∈ [s, T ], x, y ∈ Rd it holds that

E

[

|u(t, Xx
s,t)− u(t, Xy

s,t)|
]

= E
[

|u(t, a)− u(t, b)||(a,b)=(Xx
s,t,X

y
s,t)

]

= E

[

∣

∣

∣

∣

E

[

g(Xa
t,T )− g(Xb

t,T )
]

+

∫ T

t

E

[

f(r,Xa
t,r, u(r,X

a
t,r))− f(r,Xb

t,r, u(r,X
b
t,r))

]

dr

∣

∣

∣

∣

∣

∣

∣

∣

(a,b)=(Xx
s,t,X

y
s,t)

]

≤ E

[

E

[

|g(Xa
t,T )− g(Xb

t,T )|
]
∣

∣

(a,b)=(Xx
s,t,X

y
s,t)

]

+

∫ T

t

E

[

E

[

|f(r,Xa
t,r, u(r,X

a
t,r))− f(r,Xb

t,r, u(r,X
b
t,r))|

]
∣

∣

(a,b)=(Xx
s,t,X

y
s,t)

]

dr

= E
[

∣

∣g(Xx
s,T )− g(Xy

s,T )
∣

∣

]

+

∫ T

t

E

[

∣

∣f(r,Xx
s,r, u(r,X

x
s,r))− f(r,Xy

s,r, u(r,X
y
s,r))

∣

∣

]

dr. (33)

Hölder’s inequality, (28), (29), the fact that 1
p1
+ 1

p2
≤ 1, (30), and (27) hence demonstrate that

for all s ∈ [0, T ], t ∈ [s, T ], x, y ∈ Rd it holds that

E

[

|u(t, Xx
s,t)− u(t, Xy

s,t)|
]

≤ 1
2
√
T
E

[

(V (T,Xx
s,T ) + V (T,Xy

s,T ))‖Xx
s,T −Xy

s,T‖
]

+

∫ T

t

LE
[

|u(r,Xx
s,r)− u(r,Xy

s,r)|
]

dr

+ 1
2T

√
T

∫ T

t

E

[

(V (r,Xx
s,r) + V (r,Xy

s,r))‖Xx
s,r −Xy

s,r‖
]

dr

≤ sup
r∈[t,T ]

[

1√
T
‖V (r,Xx

s,r) + V (r,Xy
s,r)‖p1‖‖Xx

s,r −Xy
s,r‖‖p2

]

+

∫ T

t

LE
[

|u(r,Xx
s,r)− u(r,Xy

s,r)|
]

dr

≤
[

V (s,x)+V (s,y)√
T

][

φ(s,x)+φ(s,y)
2

]

‖x− y‖+
∫ T

t

LE
[

|u(r,Xx
s,r)− u(r,Xy

s,r)|
]

dr. (34)

This, item (ii), (27), and Gronwall’s lemma (see, e.g., [74, Lemma 3.2]) show that for all
s ∈ [0, T ], t ∈ [s, T ], x, y ∈ Rd it holds that

E

[

|u(t, Xx
s,t)− u(t, Xy

s,t)|
]

≤ 1
2
√
T
(V (s, x) + V (s, y))(φ(s, x) + φ(s, y))‖x− y‖eL(T−t). (35)

Moreover, observe that (30) ensures that for all t ∈ [0, T ], x ∈ Rd it holds that P(‖Xx
t,t − x‖ =

0) = 1. Hence, we obtain that for all t ∈ [0, T ], x ∈ R

d it holds that P(Xx
t,t = x) = 1.

Combining this with (35) establishes that for all t ∈ [0, T ], x, y ∈ Rd it holds that

|u(t, x)− u(t, y)| ≤ 1
2
√
T
(V (t, x) + V (t, y))(φ(t, x) + φ(t, y))‖x− y‖eL(T−t). (36)
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Next note that (32), Fubini’s theorem, and (31) show that for all s ∈ [0, T ], t ∈ [s, T ], x ∈ Rd

it holds that

u(s, x)−E
[

u(t, Xx
s,t)
]

= E
[

g(Xx
s,T )
]

+

∫ T

s

E

[

f(r,Xx
s,r, u(r,X

x
s,r))

]

dr

−E
[

[

E

[

g(X x̃
t,T )
]

+

∫ T

t

E

[

f(r,Xa
t,r, u(r,X

x̃
t,r))

]

dr

]
∣

∣

∣

∣

a=Xx
s,t

]

=

∫ t

s

E

[

f(r,Xx
s,r, u(r,X

x
s,r))

]

dr. (37)

This, the triangle inequality, (29), (27), and item (ii) demonstrate that for all s ∈ [0, T ],
t ∈ [s, T ], x ∈ Rd it holds that

∣

∣u(s, x)−E
[

u(t, Xx
s,t)
]
∣

∣ ≤ |t− s|
[

sup
r∈[s,t]

(

E

[

|f(r,Xx
s,r, 0)|

]

+ LE
[

|u(r,Xx
s,r)|
])

]

≤ |t− s|
[

sup
r∈[s,t]

(

( 1
T
+ 2LeLT )E

[

V (r,Xx
s,r)
])

]

≤
[

1+2TLeLT

T

]

|t− s|V (s, x)

≤ 1√
T
(2 + 4LTeLT )1

2
(V (s, x) + V (t, y))|t− s|1/2.

(38)

Next observe that (36), Hölder’s inequality, the fact that 1
p1
+ 1

p2
+ 1

p3
≤ 1, the triangle inequality,

(27), and (30) prove that for all s ∈ [0, T ], t ∈ [s, T ], x, y ∈ Rd it holds that

∣

∣

E

[

u(t, Xx
s,t)
]

− u(t, y)
∣

∣ ≤ E

[

|u(t, Xx
s,t)− u(t, y)|

]

≤ E

[

2√
T

1
2
(V (t, Xx

s,t) + V (t, y))1
2
(φ(t, Xx

s,t) + φ(t, y))‖Xx
s,t − y‖

]

eL(T−t)

≤ 2eLT
√
T

1
2

(

‖V (t, Xx
s,t)‖p1 + V (t, y)

)

1
2

(

‖φ(t, Xx
s,t)‖p3 + φ(t, y)

)

‖‖Xx
s,t − y‖‖p2

≤ 1√
T
2eLT 1

2
(V (s, x) + V (t, y))1

2
(φ(s, x) + φ(t, y))

[

ψ(s, x)|s− t|1/2 + ‖x− y‖
]

. (39)

This, the triangle inequality, (38), the fact that φ ≥ 1, the fact that ψ ≥ 1, and the fact that
2 + 4LTeLT + 2eLT ≤ 4eLT (1 + LT ) ≤ 4e2LT show that for all s ∈ [0, T ], t ∈ [s, T ], x, y ∈ Rd it
holds that

|u(s, x)− u(t, y)| ≤
∣

∣u(s, x)−E
[

u(t, Xx
s,t)
]
∣

∣+
∣

∣

E

[

u(t, Xx
s,t)
]

− u(t, y)
∣

∣

≤ 1√
T
4e2LT 1

2
(V (s, x) + V (t, y))1

2
(φ(s, x) + φ(t, y))

[

ψ(s, x)|s− t|1/2 + ‖x− y‖
]

.
(40)

This proves item (iii). The proof of Lemma 3.1 is thus complete.

4 Error analysis in Hölder seminorms for full-history re-

cursive multilevel Picard (MLP) approximations

In Theorem 5.1 in Section 5 below we supply a computational complexity analysis for the Monte
Carlo-type approximation algorithm for BSDEs in (1)–(2) in Theorem 1.1 in Section 1 above.
Our proof of Theorem 5.1 exploits the multi-grid approximation result in Lemma 2.3 in Section 2
above as well as the error analysis for appropriate MLP approximations in Proposition 4.2 in this
section. Specifically, in Proposition 4.2 below we establish upper bounds for appropriate Hölder
seminorms of the difference between solutions of SFPEs and suitable MLP approximations for
such SFPEs.

Setting 4.1. Let T ∈ (0,∞), L, ρ ∈ [0,∞), β ∈ (0, 1/12], d ∈ N, f ∈ C([0, T ] × Rd × R,R),
g ∈ C(Rd,R), let V : Rd → [1,∞) be measurable, let ‖·‖ : Rd → [0,∞) be a norm, let Θ =
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⋃

n∈NZ
n, let (Ω,F ,P, (Ft)t∈[0,T ]) be a filtered probability space, let rθ : Ω → [0, 1], θ ∈ Θ, be

i.i.d. random variables, assume for all t ∈ (0, 1) that P(r0 ≤ t) = t, let zθ : Ω → R

d, θ ∈ Θ,
be i.i.d. standard normal random vectors, let W = (W 1,W 2, . . . ,W d) : [0, T ] × Ω → R

d be a
standard (Ft)t∈[0,T ]-Brownian motion, assume that (rθ)θ∈Θ, (zθ)θ∈Θ, and W are independent,
let Xθ

s,t : R
d × Ω → R

d, s, t ∈ [0, T ], θ ∈ Θ, satisfy for all s, t ∈ [0, T ], x ∈ R

d, θ ∈ Θ that

Xθ
s,t(x) = x + |t − s|1/2zθ, let F : R[0,T ]×Rd → R

[0,T ]×Rd
satisfy for all t ∈ [0, T ], x ∈ R

d,

v ∈ R

[0,T ]×Rd
that (F (v))(t, x) = f(t, x, v(t, x)), let Uθ

n,M : [0, T ] × R

d × Ω → R, n,M ∈ Z,
θ ∈ Θ, satisfy for all M ∈ N, n ∈ N0, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that

Uθ
n,M(t, x) =

1

N

(n)

Mn

Mn
∑

i=1

g
(

X
(θ,0,−i)
t,T (x)

)

(41)

+
n−1
∑

ℓ=0





(T − t)

Mn−ℓ

Mn−ℓ
∑

i=1

(

F
(

U
(θ,ℓ,i)
ℓ,M

)

− 1
N

(ℓ)F
(

U
(θ,−ℓ,i)
ℓ−1,M

))(

t + (T − t)r(θ,ℓ,i), X
(θ,ℓ,i)

t,t+(T−t)r(θ,ℓ,i)
(x)
)



 ,

and assume for all s, t ∈ [0, T ], x, y ∈ Rd, v1, v2, w1, w2 ∈ R that

max{|f(s, x, v1)− f(t, y, v2)|, T−1|g(x)− g(y)|}
≤ T−3/2|V (x) + V (y)|β

(

|s− t|1/2 + ‖x− y‖
)

+ L|v1 − v2|,
(42)

|[f(s, x, v1)− f(s, x, w1)]− [f(t, y, v2)− f(t, y, w2)]| ≤ L |(v1 − w1)− (v2 − w2)|
+ T−3/2|V (x) + V (y)|β

[(

max
{

E

[

‖z0‖4
]

, 1
})1/4 |s− t|1/2 + ‖x− y‖

]

|v1 − w1|
+ T−1|V (x) + V (y)|β (|v1 − w1|+ |v2 − w2|) |w1 − w2| ,

(43)

and max{|Tf(t, x, 0)|1/β, |g(x)|1/β,E[V (X0
s,t(x))]} ≤ eρ|t−s|V (x).

Proposition 4.2. Assume Setting 4.1, let c ∈ R satisfy c = (max{E[‖z0‖4], 1})1/4, and let
V : [0, T ]×Rd → R satisfy for all t ∈ [0, T ], x ∈ Rd that V(t, x) = eρ(T−t)V (x). Then

(i) there exists a unique measurable u : [0, T ] × R

d → R which satisfies for all t ∈ [0, T ],

x ∈ Rd that E
[

|g(X0
t,T (x))|

]

+
∫ T

t
E

[

|(F (u))(s,X0
t,s(x))|

]

ds+ supr∈[0,T ],y∈Rd

( |u(r,y)|
|V (y)|β

)

<∞
and

u(t, x) = E
[

g(X0
t,T (x))

]

+

∫ T

t

E

[

(F (u))
(

s,X0
t,s(x)

)]

ds, (44)

(ii) it holds for all θ ∈ Θ, n ∈ N0, M ∈ N that Uθ
n,M is measurable,

(iii) it holds for all M ∈ N, N ∈ N0 that

sup
s∈[0,T ]

sup
x∈Rd

[

(

E

[

|U0
N,M(s, x)− u(s, x)|2

])1/2

(V(s, x))β

]

≤ eM/2M−N/2
(

50e2LT
)N+1

, (45)

and

(iv) it holds for all M ∈ N, N ∈ N0 that

sup
s,t∈[0,T ],

s 6=t

sup
x,y∈Rd,
x 6=y

[

T 1/2
(

E

[

|[U0
N,M(s, x)− u(s, x)]− [U0

N,M(t, y)− u(t, y)]|2
])1/2

[

c|s− t|1/2 + ‖x− y‖
](

V(s, x) + V(t, y)
)1/4

]

≤ eM/2M−N/2
(

50e2LT
)N+1

. (46)
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Proof of Proposition 4.2. Throughout this proof let Λ: [0, 1] × [0, T ] → [0, T ] satisfy for all
t ∈ [0, T ], λ ∈ [0, 1] that Λ(λ, t) = t+ λ(T − t), for every q ∈ [1,∞) and every random variable
X : Ω → R let ‖X‖q ∈ [0,∞] satisfy that ‖X‖q = (E[|X|q])1/q, and for every r ∈ [0, T ] and every
random field H : [0, T ]×Rd × Ω → R let |||H|||k,r ∈ [0,∞], k ∈ {0, 1, 2}, satisfy

|||H|||0,r = max
j∈{1,2}

|||H|||j,r, |||H|||1,r = sup
x∈Rd,s∈[r,T ]

[

(E[|H(s, x)|2])1/2

(V(s, x))β

]

,

and |||H|||2,r = sup
s,t∈[r,T ],x,y∈Rd

(s,x)6=(t,y)

[

T 1/2 (E[|H(s, x)−H(t, y)|2])1/2
[

c|s− t|1/2 + ‖x− y‖
](

V(s, x) + V(t, y)
)1/4

]

.

(47)

Observe that (47) ensures that for all j ∈ {0, 1, 2}, r ∈ [0, T ], λ, µ ∈ R and all random fields
Hk : [0, T ]×Rd × Ω → R, k ∈ {1, 2}, it holds that

|||λH1 + µH2|||j,r ≤ |λ||||H1|||j,r + |µ||||H2|||j,r. (48)

Moreover, note that (47) assures that for all j ∈ {0, 1, 2} and all random fields H : [0, T ]×Rd×
Ω → R it holds that [0, T ] ∋ r 7→ |||H|||j,r ∈ [0,∞] is non-increasing. This shows that for all

j ∈ {0, 1, 2} and all random fields H : [0, T ]×Rd ×Ω → R it holds that [0, T ] ∋ r 7→ |||H|||j,r ∈
[0,∞] is measurable. Next observe that Jensen’s inequality and the fact that for all t ∈ [0, T ],
x ∈ R

d it holds that V(t, x) = eρ(T−t)V (x) show that for all γ ∈ [0, 1], s ∈ [0, T ], t ∈ [s, T ],
x ∈ Rd it holds that

E

[

(V(t, X0
s,t(x)))

γ
]

≤
(

E

[

V(t, X0
s,t(x))

])γ ≤
(

eρ(T−t)eρ(t−s)V (x)
)γ ≤ (V(s, x))γ. (49)

Combining this, the fact that 0 < β ≤ 3/4, the fact that c ≥ 1, (42), and Lemma 3.1 (applied
with p1 x 1/β, p2 x 4, p3 x ∞, φ x (Rd ∋ x 7→ 1 ∈ [1,∞)), V x 2Vβ, ψ x (Rd ∋ x 7→
c ∈ [1,∞)), (Xx

s,t(ω))(s,t,x,ω)∈{(s,t)∈[0,T ]2 : s≤t}×Rd×Ω x (X0
s,t(x, ω))(s,t,x,ω)∈{(s,t)∈[0,T ]2 : s≤t}×Rd×Ω in

the notation of Lemma 3.1) implies that

(a) there exists a unique measurable u : [0, T ]×Rd → R which satisfies for all s ∈ [0, T ], x ∈ Rd

that E
[

|g(X0
s,T (x))|

]

+
∫ T

s
E

[

|(F (u))(t, X0
s,t(x))|

]

dt+ supr∈[0,T ],y∈Rd

( |u(r,y)|
|V(r,y)|β

)

<∞ and

u(s, x) = E
[

g(X0
s,T (x))

]

+

∫ T

s

E

[

(F (u))
(

t, X0
s,t(x)

)]

ds, (50)

(b) it holds for all t ∈ [0, T ], x ∈ Rd that

|u(t, x)| ≤ 2eLT2(V(t, x))β = 4eLT (V(t, x))β , (51)

and

(c) it holds for all s, t ∈ [0, T ], x, y ∈ Rd that

|u(s, x)− u(t, y)| ≤ 1√
T
4e2LT 1

2

(

2(V(s, x))β + 2(V(t, y))β
) [

c|s− t|1/2 + ‖x− y‖
]

≤ 1√
T
8e2LT (V(s, x) + V(t, y))β

[

c|s− t|1/2 + ‖x− y‖
]

.
(52)

This establishes item (i). Next observe that, e.g., [72, Lemmas 3.2–3.4], the fact that zθ, θ ∈ Θ,
are independent, and item (i) show that

(A) it holds for all n ∈ N0, M ∈ N, θ ∈ Θ that Uθ
n,M and F (Uθ

n,M) are measurable,

(B) it holds for all n,m ∈ N0, M ∈ N, i, j, k, ℓ ∈ Z, θ ∈ Θ with (i, j) 6= (k, l) that U
(θ,i,j)
n,M ,

U
(θ,k,ℓ)
m,M , r(θ,i,j), and X(θ,i,j) are independent,
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(C) it holds for all M,n ∈ N, t ∈ [0, T ], x ∈ R

d that Uθ
n,M(t, x), θ ∈ Θ, are identically

distributed,

(D) it holds for all t ∈ [0, T ], x ∈ Rd that g(Xθ
t,T (x)), θ ∈ Θ, are i.i.d.,

(E) it holds for all M,n ∈ N, t ∈ [0, T ], x ∈ Rd that E[|U0
n,M(t, x)|+ |g(X0

t,T (x))|] <∞,

(F) it holds for all ℓ ∈ N0, M ∈ N that
(

(T − t)(F (U
(0,ℓ,i)
ℓ,M ) − 1

N

(ℓ)F (U
(0,−ℓ,i)
ℓ−1,M ))(t + (T −

t)r(0,ℓ,i), X
(0,ℓ,i)

t,t+(T−t)r(0,ℓ,i)
(x))

)

(t,x)∈[0,T ]×Rd, i ∈ N, are i.i.d.,

(G) it holds for all ℓ ∈ N0, M ∈ N, t ∈ [0, T ], x ∈ Rd that

E

[

∣

∣(F (U
(0,ℓ,1)
ℓ,M )− 1

N

(ℓ)F (U
(0,−ℓ,1)
ℓ−1,M ))(t+ (T − t)r(0,ℓ,1), X

(0,ℓ,1)

t,t+(T−t)r(0,ℓ,1)
(x))

∣

∣

]

<∞, (53)

(H) it holds for all M,n ∈ N, t ∈ [0, T ], x ∈ Rd that

E

[

∣

∣(T − t)(F (U0
n−1.M − F (u))(t+ r0(T − t), X0

t,t+r0(T−t)(x))
∣

∣

]

<∞ (54)

(I) it holds for all M,n ∈ N, t ∈ [0, T ], x ∈ Rd that

E

[

U0
n,M(t, x)

]

− u(t, x)

= E
[

(T − t)(F (U0
n−1.M)− F (u))(t+ r0(T − t), X0

t,t+r0(T−t)(x))
]

,
(55)

and

(J) it holds for all M ∈ N, n ∈ N0 that U0
n,M , X0, and r0 are independent.

This establishes (ii). Next note that (47), (51), (52), and the fact that for all M ∈ N it holds
that U0

0,M = 0 show that for all r ∈ [0, T ], M ∈ N it holds that

∣

∣

∣

∣

∣

∣U0
0,M − u

∣

∣

∣

∣

∣

∣

0,r
= |||u|||0,r = max

j∈{1,2}
|||u|||j,r ≤ max

{

4eLT , 8e2LT
}

= 8e2LT . (56)

Furthermore, observe that (42), Hölder’s inequality, the triangle inequality, (49), the fact that
0 ≤ 4β ≤ 1, and the fact that V ≥ 1 imply that for all r ∈ [0, T ], s, t ∈ [r, T ], x, y ∈ Rd it holds
that

‖g(X0
s,T (x))− g(X0

t,T (y))‖2 ≤ 1√
T

∥

∥

(

V(T,X0
s,T (x)) + V(T,X0

t,T (y))
)β ∥
∥X0

s,T (x)−X0
t,T (y)

∥

∥

∥

∥

2

≤ 1√
T

(

E

[

∣

∣V(T,X0
s,T (x)) + V(T,X0

t,T (y))
∣

∣

4β
])1/4

∥

∥

∥

∥X0
s,T (x)−X0

t,T (y)
∥

∥

∥

∥

4

≤ 1√
T
(V(s, x) + V(t, y))

1/4
[

c|t− s|1/2 + ‖x− y‖
]

. (57)

This and (47) assure that for all r ∈ [0, T ] it holds that

∣

∣

∣

∣

∣

∣[0, T ]×Rd × Ω ∋ (s, x, ω) 7→ g(X0
s,T (x, ω)) ∈ R

∣

∣

∣

∣

∣

∣

2,r
≤ 1. (58)

Next note that (42) and (47) show that for all r ∈ [0, T ], n ∈ N0, M ∈ N it holds that

∣

∣

∣

∣

∣

∣F (U0
n,M)− F (u)

∣

∣

∣

∣

∣

∣

1,r
≤ L

∣

∣

∣

∣

∣

∣U0
n,M − u

∣

∣

∣

∣

∣

∣

1,r
. (59)

In addition, observe that (43), the triangle inequality, (47), (52), the fact that V ≥ 1, and the
fact that 0 ≤ 3β ≤ 1/4 imply that for all r ∈ [0, T ], s, t ∈ [r, T ], x, y ∈ Rd, n ∈ N0, M ∈ N it
holds that

∥

∥[F (U0
n,M)− F (u)](s, x)− [F (U0

n,M)− F (u)](t, y)
∥

∥

2
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=
∥

∥

[

f(s, x, U0
n,M(s, x))− f(s, x, u(s, x))

]

−
[

f(t, y, U0
n,M(t, y))− f(t, y, u(t, y))

]
∥

∥

2

≤ L
∥

∥(U0
n,M(s, x)− u(s, x))− (U0

n,M(t, y)− u(t, y))
∥

∥

2

+ 1
T
√
T
(V(s, x) + V(t, y))β

[

c|t− s|1/2 + ‖x− y‖
]

‖U0
n,M(s, x)− u(s, x)‖2

+ 1
T
(V(s, x) + V(t, y))β

[

‖U0
n,M(s, x)− u(s, x)‖2 + ‖U0

n,M(t, y)− u(t, y)‖2
]

|u(s, x)− u(t, y)|
≤ L

∣

∣

∣

∣

∣

∣U0
n,M − u

∣

∣

∣

∣

∣

∣

2,r
1√
T

[

c|t− s|1/2 + ‖x− y‖
]

(V(s, x) + V(t, y))
1/4

+ 1
T
√
T
(V(s, x) + V(t, y))β

[

c|t− s|1/2 + ‖x− y‖
]
∣

∣

∣

∣

∣

∣U0
n,M − u

∣

∣

∣

∣

∣

∣

1,r
(V(s, x))β

+ 1
T
(V(s, x) + V(t, y))β

∣

∣

∣

∣

∣

∣U0
n,M − u

∣

∣

∣

∣

∣

∣

1,r

[

(V(s, x))β + (V(t, y))β
]

· 8e2LT
√
T

[

c|t− s|1/2 + ‖x− y‖
]

(V(s, x) + V(t, y))β

≤
[

1√
T
L
∣

∣

∣

∣

∣

∣U0
n,M − u

∣

∣

∣

∣

∣

∣

2,r
+ 1

T
√
T
(1 + 16e2LT )

∣

∣

∣

∣

∣

∣U0
n,M − u

∣

∣

∣

∣

∣

∣

1,r

]

·
[

c|t− s|1/2 + ‖x− y‖
]

(V(s, x) + V(t, y))
1/4. (60)

Combining this and (47) shows for all r ∈ [0, T ], n ∈ N0, M ∈ N that

∣

∣

∣

∣

∣

∣F (U0
n,M)− F (u)

∣

∣

∣

∣

∣

∣

2,r
≤ L

∣

∣

∣

∣

∣

∣U0
n,M − u

∣

∣

∣

∣

∣

∣

2,r
+ 1

T
(1 + 16e2LT )

∣

∣

∣

∣

∣

∣U0
n,M − u

∣

∣

∣

∣

∣

∣

1,r
. (61)

Next observe that the fact that ∀ t ∈ [0, T ], λ ∈ [0, 1] : Λ(λ, t) = t + λ(T − t), the fact that
∀ a, b ∈ [0,∞) :

∣

∣a1/2 − b1/2
∣

∣ ≤ |a − b|1/2, and the fact that ∀λ ∈ [0, 1] : |1 − λ|1/2 + |λ|1/2 ≤
√
2

demonstrate that for all λ ∈ [0, 1], r ∈ [0, T ], s, t ∈ [r, T ] it holds that

|Λ(λ, s)− Λ(λ, t)|1/2 +
∣

∣

∣
|Λ(λ, s)− s|1/2 − |Λ(λ, t)− t|1/2

∣

∣

∣

= |(1− λ)(s− t)|1/2 +
∣

∣

∣
|λ(T − t)|1/2 − |λ(T − s)|1/2

∣

∣

∣

≤ |(1− λ)(s− t)|1/2 + |λ(s− t)|1/2 ≤ |2(s− t)|1/2 .

(62)

This, (47), Hölder’s inequality, the triangle inequality, and (49) show that for all λ ∈ [0, 1], r ∈
[0, T ], s, t ∈ [r, T ], x, y ∈ Rd, n ∈ N0,M ∈ N, H ∈ {λ1F (U0

n,M)+λ2F (u)+λ3F (0) : λ1, λ2, λ3 ∈
R} it holds that

√
T
∥

∥

∥
‖H
(

Λ(λ, s), a
)

−H
(

Λ(λ, t), b
)

‖2
∣

∣

(a,b)=(X0
s,Λ(λ,s)

(x),X0
t,Λ(λ,t)

(y))

∥

∥

∥

2

≤ |||H|||2,Λ(λ,r)
(

c |Λ(λ, s)− Λ(λ, t)|1/2 +
∥

∥

∥

∥X0
s,Λ(λ,s)(x)−X0

t,Λ(λ,t)(y)
∥

∥

∥

∥

4

)

· ‖
(

V(Λ(λ, s), X0
s,Λ(λ,s)(x)) + V(Λ(λ, t), X0

t,Λ(λ,t)(y))
)1/4‖4

≤ |||H|||2,Λ(λ,r)
[

c |Λ(λ, s)− Λ(λ, t)|1/2 + c
∣

∣

∣
|Λ(λ, s)− s|1/2 − |Λ(λ, t)− t|1/2

∣

∣

∣
+ ‖x− y‖

]

·
(

E

[

V(Λ(λ, s), X0
s,Λ(λ,s)(x)) + V(Λ(λ, t), X0

t,Λ(λ,t)(y))
]

)1/4

≤ |||H|||2,Λ(λ,r)
(

c |2(s− t)|1/2 + ‖x− y‖
)

(

V(s, x) + V(t, y)
)1/4

. (63)

This, e.g., the disintegration-type result in [73, Lemma 2.2], and the independence property
in item (J) imply that for all r ∈ [0, T ], s, t ∈ [r, T ], x, y ∈ R

d, n ∈ N0, M ∈ N, H ∈
{λ1F (U0

n,M) + λ2F (u) + λ3F (0) : λ1, λ2, λ3 ∈ R} it holds that

√
T‖H

(

Λ(r0, s), X0
s,Λ(r0,s)(x)

)

−H
(

Λ(r0, t), X0
t,Λ(r0,t)(y)

)

‖2
= ‖

√
T‖‖H

(

Λ(λ, s), a
)

−H
(

Λ(λ, t), b
)

‖2
∣

∣

(a,b)=(X0
s,Λ(λ,s)

(x),X0
t,Λ(λ,t)

(y))‖2
∣

∣

∣

λ=r0
‖2

≤ ‖|||H|||2,Λ(r0,r)‖2
(

c |2(s− t)|1/2 + ‖x− y‖
)

(V(s, x) + V(t, y))
1/4. (64)
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Next note that, e.g., the disintegration-type result in [73, Lemma 2.2], the independence prop-
erty in item (J), and (47) imply that for all r ∈ [0, T ], t ∈ [r, T ], y ∈ R

d, n ∈ N0, M ∈ N,
H ∈ {λ1F (U0

n,M) + λ2F (u) + λ3F (0) : λ1, λ2, λ3 ∈ R} it holds that

∥

∥H
(

Λ(r0, t), X0
t,Λ(r0,t)(y)

)∥

∥

2
=
∥

∥

∥

∥

∥‖H
(

Λ(λ, t), b
)

‖2
∣

∣

b=X0
t,Λ(λ,t)

(y)

∥

∥

2

∣

∣

∣

λ=r0

∥

∥

∥

2

≤
∥

∥

∥

∥

∥

∥

∥

[

|||H|||1,Λ(λ,r)(V(Λ(λ, t), b))β
]
∣

∣

∣

b=X0
t,Λ(λ,t)

(y)

∥

∥

∥

2

∣

∣

∣

∣

λ=r0

∥

∥

∥

∥

2

=
∥

∥

∥

∥

∥‖|||H|||1,Λ(λ,r)
(

V(Λ(λ, t), X0
t,Λ(λ,t)(y))

)β∥
∥

2

∣

∣

∣

λ=r0

∥

∥

∥

2
≤
∥

∥|||H|||1,Λ(r0,r)
∥

∥

2
(V(t, y))β. (65)

This, the triangle inequality, (64), the fact that c ≥ 1 the fact that V ≥ 1, and the fact that
0 ≤ β ≤ 1/4 imply that for all λ ∈ [0, 1], r ∈ [0, T ], s, t ∈ [r, T ], x, y ∈ Rd, n ∈ N0, M ∈ N,
H ∈ {λ1F (U0

n,M) + λ2F (u) + λ3F (0) : λ1, λ2, λ3 ∈ R} it holds that

√
T
∥

∥(T − s)H
(

Λ(r0, s), X0
s,Λ(r0,s)(x)

)

− (T − t)H
(

Λ(r0, t), X0
t,Λ(r0,t)(y)

)
∥

∥

2

≤
√
T (T − s)

∥

∥H
(

Λ(r0, s), X0
s,Λ(r0,s)(x)

)

−H
(

Λ(r0, t), X0
t,Λ(r0,t)(y)

)
∥

∥

2

+
√
T |s− t|

∥

∥H
(

Λ(r0, t), X0
t,Λ(r0,t)(y)

)
∥

∥

2

≤ (T − s)
∥

∥|||H|||2,Λ(r0,r)
∥

∥

2

(

c |2(s− t)|1/2 + ‖x− y‖
)

(V(s, x) + V(t, y))
1/4

+
√
T |s− t|‖|||H|||1,Λ(r0,r)‖2(V(t, y))β

≤ |T (T − r)|1/2
[

∥

∥|||H|||1,Λ(r0,r)
∥

∥

2
+
√
2
∥

∥|||H|||2,Λ(r0,r)
∥

∥

2

]

·
[

c |s− t|1/2 + ‖x− y‖
]

(V(s, x) + V(t, y))
1/4. (66)

Next observe that (47), (42), the fact that ∀ x ∈ R

d, t ∈ [0, T ] : |Tf(t, x, 0)| ≤ (V (x))β, the
fact that V ≥ 1, and the fact that 0 ≤ β ≤ 1/4 imply that for all r ∈ [0, T ] it holds that
maxj∈{1,2} |||TF (0)|||j,r ≤ 1. This, (47), (66), and the fact that P(0 ≤ r0 ≤ 1) = 1 show that for
all r ∈ [0, T ] it holds that

∣

∣

∣

∣

∣

∣

∣

∣

∣
[0, T ]×Rd × Ω ∋ (s, x, ω) 7→

[

(T − s)(F (0))
(

s+ r0(T − s), X0
s,s+r0(T−s)(x)

)

]

(ω) ∈ R
∣

∣

∣

∣

∣

∣

∣

∣

∣

2,r

≤ |(T − r)T |1/2 max
ζ∈[r,T ]

[

|||F (0)|||1,ζ +
√
2|||F (0)|||2,ζ

]

≤ 3. (67)

Moreover, note that the integral transformation theorem and the fact that r0 is continuous
uniformly distributed on [0, 1] imply that for all r ∈ [0, T ] and all measurable h : [0, T ] → R it
holds that

|T − r|1/2‖h(Λ(r0, r))‖2 =
[

∫ 1

0
(T − r)|h(r + (T − r)λ)|2 dλ

]1/2

=
[

∫ T

r
|h(ζ)|2 dζ

]1/2

. (68)

This, (66), (47), (59), (61), and the fact that TL +
√
2(16e2LT + 1) +

√
2TL ≤ 16

√
2e2LT +√

2(1 + 2TL) ≤ 17
√
2e2LT ≤ 24.5e2LT show for all r ∈ [0, T ], n ∈ N0, M ∈ N that

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[0, T ]×Rd × Ω ∋ (s, x, ω)

7→ (T − s)
[

(F (U0
n,M)− F (u))

(

s+ r0(T − s), X0
s,s+r0(T−s)(x)

)

]

(ω) ∈ R

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2,r

≤ |T (T − r)|1/2
[

‖
∣

∣

∣

∣

∣

∣F (U0
n,M)− F (u)

∣

∣

∣

∣

∣

∣

1,Λ(r0,r)
‖2 +

√
2‖
∣

∣

∣

∣

∣

∣F (U0
n,M)− F (u)

∣

∣

∣

∣

∣

∣

2,Λ(r0,r)
‖2
]

≤ |T (T − r)|1/2
[

(

L+
√
216e2LT+1

T

)

‖
∣

∣

∣

∣

∣

∣U0
n,M − u

∣

∣

∣

∣

∣

∣

1,Λ(r0,r)
‖2 +

√
2L‖

∣

∣

∣

∣

∣

∣U0
n,M − u

∣

∣

∣

∣

∣

∣

2,Λ(r0,r)
‖2
]
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≤ 1√
T
T
[(

L+
√
216e2LT+1

T

)

+
√
2L
]

max
j∈{1,2}

[

|T − r|1/2‖
∣

∣

∣

∣

∣

∣U0
n,M − u

∣

∣

∣

∣

∣

∣

j,Λ(r0,r)
‖2
]

≤ 24.5√
T
e2LT

[
∫ T

r

∣

∣

∣

∣

∣

∣U0
n,M − u

∣

∣

∣

∣

∣

∣

2

0,ζ
dζ

]1/2

. (69)

This, (41), (48), (47), items (A)–(J), Bienaymé’s identity, (58), and (67) imply for all n,M ∈ N,
r ∈ [0, T ] that

∣

∣

∣

∣

∣

∣U0
n,M −E[U0

n,M ]
∣

∣

∣

∣

∣

∣

2,r
≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[0, T ]×Rd × Ω ∋ (t, x, ω) 7→ 1

Mn

Mn
∑

i=1

[

g(X
(0,0,−i)
t,T (x))

]

(ω) ∈ R
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2,r

+

n−1
∑

ℓ=0











∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[0, T ]×Rd × Ω ∋ (t, x, ω) 7→ T − t

Mn−ℓ

Mn−ℓ
∑

i=1

[(

F
(

U
(0,ℓ,i)
ℓ,M

)

− 1
N

(ℓ)F
(

U
(0,−ℓ,i)
ℓ−1,M

))

(

t + (T − t)r(0,ℓ,i), X
(0,ℓ,i)

t,t+(T−t)r(0,ℓ,i)
(x)
)]

(ω) ∈ R

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2,r











=
1√
Mn

∣

∣

∣

∣

∣

∣[0, T ]×Rd × Ω ∋ (t, x, ω) 7→
[

g(X0
t,T (x))

]

(ω) ∈ R
∣

∣

∣

∣

∣

∣

2,r

+
n−1
∑

ℓ=0











1√
Mn−ℓ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[0, T ]×Rd × Ω ∋ (t, x, ω) 7→
(T − t)

[(

F
(

U
(0,ℓ,1)
ℓ,M

)

− 1
N

(ℓ)F
(

U
(0,−ℓ,1)
ℓ−1,M

))

(

t+ (T − t)r(0,ℓ,1), X
(0,ℓ,1)

t,t+(T−t)r(0,ℓ,1)
(x)
)]

(ω) ∈ R

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2,r











≤ 1√
Mn

∣

∣

∣

∣

∣

∣[0, T ]×Rd × Ω ∋ (t, x, ω) 7→
[

g(X0
t,T (x))

]

(ω) ∈ R
∣

∣

∣

∣

∣

∣

2,r

+
1√
Mn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[0, T ]×Rd × Ω ∋ (t, x, ω) 7→
(T − t)

[

(F (0))(t+ r0(T − t), X0
t,t+r0(T−t)(x))

]

(ω) ∈ R

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2,r

+
n−1
∑

ℓ=1





1√
Mn−ℓ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[0, T ]×Rd × Ω ∋ (t, x, ω) 7→ (T − t)
[(

F
(

U0
ℓ,M

)

− F (u)
)

(

t+ (T − t)r0, X0
t,t+(T−t)r0(x)

)]

(ω) ∈ R

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2,r





+
n−1
∑

ℓ=1





1√
Mn−ℓ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[0, T ]×Rd × Ω ∋ (t, x, ω) 7→ (T − t)
[(

F
(

U0
ℓ−1,M

)

− F (u)
)

(

t+ (T − t)r0, X0
t,t+(T−t)r0(x)

)]

(ω) ∈ R

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2,r





≤ 4√
Mn

+

n−1
∑

ℓ=0

[

(2− 1{n−1}(ℓ))24.5T
−1/2e2LT√

Mn−ℓ−1

[
∫ T

r

∣

∣

∣

∣

∣

∣U0
ℓ,M − u

∣

∣

∣

∣

∣

∣

2

0,ζ
dζ

]1/2
]

. (70)

Next observe that (55), (47), Jensen’s inequality, and (69) assure that for all n,M ∈ N,
r ∈ [0, T ] it holds that

∣

∣

∣

∣

∣

∣

E[U0
n,M ]− u

∣

∣

∣

∣

∣

∣

2,r
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[0, T ]×Rd × Ω ∋ (t, x, ω) 7→
E

[

(T − t)(F (U0
n−1.M)− F (u))(t+ r0(T − t), X0

t,t+r0(T−t)(x))
]

∈ R

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2,r

≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[0, T ]×Rd × Ω ∋ (t, x, ω) 7→
(T − t)

[

(F (U0
n−1.M − F (u))(t+ r0(T − t), X0

t,t+r0(T−t)(x))
]

(ω) ∈ R

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2,r

≤ 24.5T−1/2e2LT
[
∫ T

r

∣

∣

∣

∣

∣

∣U0
ℓ,M − u

∣

∣

∣

∣

∣

∣

2

0,ζ
dζ

]1/2

. (71)

This, (70), and the triangle inequality show for all n,M ∈ N, r ∈ [0, T ] that

∣

∣

∣

∣

∣

∣U0
n,M − u

∣

∣

∣

∣

∣

∣

2,r
≤ 4√

Mn
+

n−1
∑

ℓ=0

[

49T−1/2e2LT√
Mn−ℓ−1

[
∫ T

r

∣

∣

∣

∣

∣

∣U0
ℓ,M − u

∣

∣

∣

∣

∣

∣

2

0,ζ
dζ

]1/2
]

. (72)
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Moreover, note that [72, Lemma 3.5] (applied for every s ∈ [0, T ] with ρ x 2βρ, ϕ x V 2β,
Y x X , t x s in the notation of [72, Lemma 3.5]), (42), the fact that ∀M ∈ N : U0

0,M = 0,
(41), (50), (51), and (49) prove that for all s ∈ [0, T ], M,n ∈ N it holds that

sup
x∈Rd

[

eβρs‖U0
n,M(s, x)− u(s, x)‖2

(V (x))β

]

≤ 2eβρT√
Mn

+

n−1
∑

ℓ=0





2L(T − s)1/2√
Mn−ℓ−1

(

∫ T

s

sup
η∈[ζ,T ]

sup
x∈Rd

[

e2βρη‖U0
ℓ,M(η, x)− u(η, x)‖22
(V (x))2β

]

dζ

)1/2


 .

(73)

Combining this, the fact that ∀ t ∈ [0, T ], x ∈ Rd : V(t, x) = eρ(T−t)V (x), and (47) ensures that
for all r ∈ [0, T ], M,n ∈ N it holds that

∣

∣

∣

∣

∣

∣U0
n,M − u

∣

∣

∣

∣

∣

∣

1,r
= sup

s∈[r,T ]

sup
x∈Rd

‖U0
n,M(s, x)− u(s, x)‖2

(V(s, x))β
= sup

s∈[r,T ]

sup
x∈Rd

‖U0
n,M(s, x)− u(s, x)‖2
eβρ(T−s)(V (x))β

≤ 2√
Mn

+ sup
s∈[r,T ]

n−1
∑

ℓ=0





T−1/2e2LT√
Mn−ℓ−1

(

∫ T

s

sup
η∈[ζ,T ]

sup
x∈Rd

[‖U0
ℓ,M(η, x)− u(η, x)‖2
eβρ(T−η)(V (x))β

]2

dζ

)1/2




=
2√
Mn

+

n−1
∑

ℓ=0





T−1/2e2LT√
Mn−ℓ−1

(

∫ T

r

sup
η∈[ζ,T ]

sup
x∈Rd

[‖U0
ℓ,M(η, x)− u(η, x)‖2

(V(η, x))β

]2

dζ

)1/2




=
2√
Mn

+

n−1
∑

ℓ=0

[

T−1/2e2LT√
Mn−ℓ−1

(
∫ T

r

∣

∣

∣

∣

∣

∣U0
ℓ,M − u

∣

∣

∣

∣

∣

∣

2

1,ζ
dζ

)1/2
]

. (74)

This, (47), and (72) demonstrate that for all r ∈ [0, T ], M,n ∈ N it holds that

∣

∣

∣

∣

∣

∣U0
n,M − u

∣

∣

∣

∣

∣

∣

r
≤ 4√

Mn
+

n−1
∑

ℓ=0

[

49T−1/2e2LT√
Mn−ℓ−1

[
∫ T

r

∣

∣

∣

∣

∣

∣U0
ℓ,M − u

∣

∣

∣

∣

∣

∣

2

0,ζ
dζ

]1/2
]

. (75)

Combining [72, Lemma 3.10] (applied for every M,N ∈ N, r ∈ [0, T ] with a x 4, b x

49T−1/2e2LT , c x 1/
√
M , α x 0, β x T , (fn)n∈[0,N ]∩N0

x ([0, T ] ∋ s 7→
∣

∣

∣

∣

∣

∣U0
n,M − u

∣

∣

∣

∣

∣

∣

s
∈

[0,∞])n∈[0,N ]∩N0 in the notation of [72, Lemma 3.10]), the fact that ∀ k ∈ N0 : M
k/k! ≤ eM ,

and (56) hence assures that for all r ∈ [0, T ], M,N ∈ N it holds that
∣

∣

∣

∣

∣

∣U0
N,M − u

∣

∣

∣

∣

∣

∣

0,r

≤
[

4 + 49T−1/2e2LTT
1/2 sup

s∈[r,T ]

∣

∣

∣

∣

∣

∣U0
0,M − u

∣

∣

∣

∣

∣

∣

0,s

][

sup
k∈[0,N ]∩Z

M−(N−k)/2

√
k!

]

(

1 + 49T−1/2e2LTT
1/2
)N−1

≤
(

4 + 49e2LT8e2LT
)

eM/2M−N/2
(

1 + 49e2LT
)N−1 ≤ eM/2M−N/2

(

50e2LT
)N+1

. (76)

The fact that ∀M ∈ N : U0
0,M = 0 and (56) therefore show that for all r ∈ [0, T ], M ∈ N,

N ∈ N0 it holds that
∣

∣

∣

∣

∣

∣Us,0
N,M − u

∣

∣

∣

∣

∣

∣

r
≤ eM/2M−N/2

(

50e2LT
)N+1

. (77)

This establishes item (iii) and item (iv). The proof of Proposition 4.2 is thus complete.

5 Computational complexity analysis for MLP approxi-

mations for backward stochastic differential equations

(BSDEs)

In this section we combine the findings from Sections 2 and 4 to supply in Theorem 5.1 and
Corollary 5.3 computational complexity analyses for the Monte Carlo-type approximation al-
gorithm for BSDEs in (1)–(2) in Theorem 1.1 in Section 1 above. Corollary 5.3 specializes
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Theorem 5.1 to the specific situation where the driver of the BSDEs is twice continuously dif-
ferentiable with bounded derivatives and does neither depend on the time variable t ∈ [0, T ]
nor on the space variable x ∈ Rd but only on the solution processes Y d : [0, T ]×Ω → R, d ∈ N,
of the BSDEs under consideration.

Our proof of Corollary 5.3 uses beside Theorem 5.1 also the elementary Lipschitz-type
estimate for twice continuously differentiable functions in Lemma 5.2 below. For completeness
we also include in this section a detailed proof for Lemma 5.2. Our proof of Theorem 5.1, in
turn, employs Lemma 2.3 from Section 2 and Proposition 4.2 from Section 4. Theorem 1.1 in
the introduction is a direct consequence of Corollary 5.3.

Theorem 5.1. Assume Setting 4.1, let α ∈ N, (θn)n∈N0 ⊆ Θ, let ⌊·⌋M : R → R, M ∈ N,
and ⌈·⌉M : R → R, M ∈ N, satisfy for all M ∈ N, t ∈ [0, T ] that ⌊t⌋M = max(([0, t]\{T}) ∩
{0, T

M
, 2T
M
, . . .}) and ⌈t⌉M = min(((t,∞) ∪ {T}) ∩ {0, T

M
, 2T
M
, . . .}), let Yn,M : [0, T ] × Ω → R,

n,M ∈ N, satisfy for all n,M ∈ N, t ∈ [0, T ] that

Y
n,M
t =

n−1
∑

ℓ=0

[

[

⌈t⌉
Ml+1−t

(T/M l+1)

]

Uθℓ
n−ℓ,M(⌊t⌋M l+1 ,W⌊t⌋

Ml+1
) +

[

t−⌊t⌋
Ml+1

(T/M l+1)

]

Uθℓ
n−ℓ,M(⌈t⌉M l+1 ,W⌈t⌉

Ml+1
)

− 1
N

(ℓ)
([

⌈t⌉
Ml−t

(T/M l)

]

Uθℓ
n−ℓ,M(⌊t⌋M l ,W⌊t⌋

Ml
) +

[

t−⌈t⌉
Ml

(T/M l)

]

Uθℓ
n−ℓ,M(⌈t⌉M l ,W⌈t⌉

Ml
)
)

]

, (78)

and let Cn,M ∈ N0, n,M ∈ Z, and Cn,M ∈ N0, n,M ∈ Z, satisfy for all n,M ∈ N0 that

Cn,M ≤ αMn
1

N

(n) +

n−1
∑

ℓ=0

[

Mn−ℓ (1 + α + Cℓ,M + Cℓ−1,M1N(ℓ))
]

(79)

and Cn,M ≤ α(Mn + 1) +
∑n−1

ℓ=0

[

(M ℓ+1 + 1)Cn−ℓ,M

]

. Then

(i) there exists an (Ft)t∈[0,T ]-predictable stochastic process Y = (Y, Z) = (Y, Z1, Z2, . . . , Zd) :

[0, T ]× Ω → R×Rd with
∫ T

0
E[|Yt|+ ‖Zt‖2] dt <∞ which satisfies that for all t ∈ [0, T ]

it holds P-a.s. that

Yt = g(WT ) +

∫ T

t

f(s,Ws, Ys) ds−
d
∑

j=1

∫ T

t

Zj
s dW

j
s , (80)

(ii) it holds for all M,n ∈ N, t ∈ [0, T ] that Yn,M
t is measurable,

(iii) it holds for all M,n ∈ N, t ∈ [0, T ] that

(

E

[

|Yn,M
t − Yt|2

])1/2 ≤ 8neM/2+4nLT+ρT/2M−n/2502n
∣

∣V (0)max
{

E

[

‖z0‖4
]

, 1
}
∣

∣

1/4
, (81)

and

(iv) there exists n : (0,∞) → N such that for all ε, δ ∈ (0, 1] it holds that supt∈[0,T ](E[|Yt −
Y

n(ε),n(ε)
t |2])1/2 ≤ ε and

Cn(ε),n(ε) (82)

≤ α

(

sup
n∈N

[

10n+3n3[8nen/2+4nLT 502n]
2+δ

nδn/2

])

[

e2ρTV (0)max{E
[

‖z0‖4
]

, 1}
]

2+δ
4 ε−(2+δ) <∞.

Proof of Theorem 5.1. Throughout this proof let c ∈ [1,∞) satisfy c = (max{E[‖z0‖4], 1})1/4,
let V : [0, T ] × R

d → [1,∞) satisfy for all t ∈ [0, T ], x ∈ R

d that V(t, x) = eρ(T−t)V (x),
for every q ∈ [1,∞) and every random variable X : Ω → R let ‖X‖q ∈ [0,∞] satisfy that

21



‖X‖q = (E[|X|q])1/q, for every r ∈ [0, T ] and for every random field H : [0, T ]×Rd×Ω → R let
|||H|||j,r,∈ [0,∞], j ∈ {0, 1, 2}, satisfy that

|||H|||0,r = max
j∈{1,2}

|||H|||j,r, |||H|||1,r = sup
x∈Rd,s∈[r,T ]

[

(E[|H(s, x)|2])1/2

(V(s, x))β

]

, and

|||H|||2,r = sup
s,t∈[r,T ],x,y∈Rd

(s,x)6=(t,y)

[

T 1/2 (E[|H(s, x)−H(t, y)|2])1/2
[

c|s− t|1/2 + ‖x− y‖
](

V(s, x) + V(t, y)
)1/4

] (83)

and let R : Ω → R and Y : [0, T ]× Ω → R satisfy for all s ∈ [0, T ] that

Ys = u(s,Ws) and R = g(WT ) +

∫ T

0

f(t,Wt,Yt) dt. (84)

Note that it is well-known that (42) and (43) imply item (i) (cf., e.g., [113, Theorem 4.3.1]).
Next observe that Proposition 4.2 proves that

(a) there exists a unique measurable u : [0, T ]×Rd → R which satisfies for all t ∈ [0, T ], x ∈ Rd

that E
[

|g(X0
t,T (x))|

]

+
∫ T

t
E

[

|(F (u))(s,X0
t,s(x))|

]

ds+ supr∈[0,T ],y∈Rd

( |u(r,y)|
|V (y)|β

)

<∞ and

u(t, x) = E
[

g(X0
t,T (x))

]

+

∫ T

t

E

[

(F (u))
(

s,X0
t,s(x)

)]

ds, (85)

(b) it holds that Uθ
n,M , θ ∈ Θ, n ∈ N0, M ∈ N, are measurable, and

(c) it holds for all r ∈ [0, T ], M ∈ N, N ∈ N0 that

∣

∣

∣

∣

∣

∣U0
N,M − u

∣

∣

∣

∣

∣

∣

0,r
≤ eM/2M−N/2

(

50e2LT
)N+1

. (86)

This and the fact that W is measurable establish item (ii). Moreover, observe that (84), the
triangle inequality, and (42) prove that

|R| ≤ |g(WT )|+
∫ T

0

|f(t,Wt, 0)|+ L|u(t,Wt)| dt. (87)

This, the fact that supx∈Rd,t∈[0,T ]

( |Tf(t,x,0)|+|g(x)|+|u(t,x)|
|V (x)|β

)

< ∞, the fact that 0 ≤ β ≤ 1/2, the

fact that ∀ x ∈ Rd, s ∈ [0, T ], t ∈ [s, T ] : E[V (x+Wt−s)] ≤ eρ(t−s)V (x), and Jensen’s inequality
imply that E[|R|2] < ∞. This, the fact that for all A ∈ B(R) it holds that R−1(A) ∈ FT and
the martingale representation theorem (see, e.g., [91, Theorem 4.3.4]) imply that there exists an
(Fs)s∈[0,T ]-progressively measurable stochastic process Z = (Z1,Z2, . . . ,Zd) : [0, T ]×Ω → R

d

which satisfies that for all s ∈ [0, T ] it holds P-a.s. that E[R|Fs] = E[R] +
∑d

j=1

∫ s

0
Zj

r dW
j
r .

The fact that for all A ∈ B(R) it holds that R−1(A) ∈ FT hence shows that for all s ∈ [0, T ] it
holds P-a.s. that

R−E[R|Fs] = E[R|FT ]−E[R|Fs] =
d
∑

j=1

∫ T

s

Zj
r dW

j
r . (88)

Next note that (85) and the fact that ∀ t ∈ [0, T ], B ∈ B(Rd) : P(Wt ∈ B) = P(z0
√
t ∈ B)

show that for all s ∈ [0, T ], z ∈ Rd it holds that

u(s, z) = E

[

g(z +WT−s) +

∫ T

s

f(t, z +Wt−s, u(t, z +Wt−s)) dt

]

. (89)
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The Markov property of Brownian motions, (84), the fact that for all s ∈ [0, T ], z ∈ R

d,
A ∈ B(R) it holds that {ω ∈ Ω:

∫ s

0
f(t, z +Wt(ω), u(t, z +Wt(ω))) dt ∈ A} ∈ Fs, and (88)

hence show that for all s ∈ [0, T ], x ∈ Rd it holds P-a.s. that

Ys = u(s,Ws) = E

[

g(z +WT−s) +

∫ T

s

f(t, z +Wt−s, u(t, z +Wt−s)) dt

]
∣

∣

∣

∣

z=Ws

= E

[

g(WT ) +

∫ T

s

f(t,Wt, u(t,Wt)) dt

∣

∣

∣

∣

Fs

]

= g(WT ) +

∫ T

s

f(t,Wt,Yt) dt

−
(

g(WT ) +

∫ T

s

f(t,Wt,Yt) dt−E
[

g(WT ) +

∫ T

s

f(t,Wt,Yt) dt

∣

∣

∣

∣

Fs

])

= g(WT ) +

∫ T

s

f(t,Wt,Yt) dt− (R−E[R|Fs])

= g(WT ) +

∫ T

s

f(t,Wt,Yt) dt−
d
∑

j=1

∫ T

s

Zj
r dW

j
r . (90)

Combining item (i) and the fact that [0, T ] × Ω ∋ (t, ω) 7→ (Yt(ω),Zt(ω)) ∈ R × R

d is
(Ft)t∈[0,T ]-progressively measurable hence implies that for all t ∈ [0, T ] it holds P-a.s. that
(Yt, Zt) = (Yt,Zt). This, (84) and the fact that Y and Y have continuous sample paths (see
(84) and item (i)) prove that P-a.s. it holds for all t ∈ [0, T ] that

Yt = u(t,Wt). (91)

Next note that the assumption that (rθ)θ∈Θ, (z
θ)θ∈Θ, and W are independent, the fact that

∀M ∈ N, θ ∈ Θ: Uθ
0,M = 0, and (41) imply that (Uθ

n,M)n∈N0,M∈N,θ∈Θ and W are independent.

Combining (83), the fact that ∀ t ∈ [0, T ], x ∈ R

d : V(t, x) = eρ(T−t)V (x), Hölder’s inequal-
ity, the fact that 0 ≤ β ≤ 1/4, the fact that V ≥ 1, the triangle inequality, the fact that
for all n,M ∈ N it holds that Uθ

n,M , θ ∈ Θ, are identically distributed, (86), and, e.g., the
disintegration-type result in [73, Lemma 2.2] hence implies that for all s ∈ [0, T ], t ∈ [s, T ],
x ∈ Rd, M ∈ N, n ∈ N0, θ ∈ Θ it holds that

∥

∥(Uθ
n,M − u)(t, x+Wt)

∥

∥

2
=
∥

∥‖(Uθ
n,M − u)(t, y)‖2

∣

∣

y=x+Wt

∥

∥

2

≤
∥

∥

∣

∣

∣

∣

∣

∣Uθ
n,M − u

∣

∣

∣

∣

∣

∣

1,t
(V(t, X0

0,t(x)))
β
∥

∥

2
=
∥

∥

∣

∣

∣

∣

∣

∣Uθ
n,M − u

∣

∣

∣

∣

∣

∣

1,t
eβρ(T−t)(V (X0

0,t(x)))
β
∥

∥

2

≤
∣

∣

∣

∣

∣

∣U0
n,M − u

∣

∣

∣

∣

∣

∣

0,t
eβρT (V (x))β ≤

∣

∣

∣

∣

∣

∣U0
n,M − u

∣

∣

∣

∣

∣

∣

0,t
eρT/4(V (x))

1/4

≤ eM/2M−n/2
[

50e2LT
]n+1

(V (x))
1/4eρT/4

(92)

and

∥

∥(Uθ
n,M − u)(s, x+Ws)− (Uθ

n,M − u)(t, x+Wt)
∥

∥

2

=
∥

∥‖(Uθ
n,M − u)(s, a)− (Uθ

n,M − u)(t, b)‖2
∣

∣

(a,b)=(x+Ws,x+Wt)

∥

∥

2

≤
∥

∥

∥

∣

∣

∣

∣

∣

∣Uθ
n,M − u

∣

∣

∣

∣

∣

∣

2,s
T−1/2

[

c |s− t|1/2 + ‖a− b‖
]

(V(s, a) + V(t, b))
1/4
∣

∣

∣

(a,b)=(x+Ws,x+Wt)

∥

∥

∥

2

≤
∥

∥

∥

∣

∣

∣

∣

∣

∣Uθ
n,M − u

∣

∣

∣

∣

∣

∣

2,s
T−1/2eρT/4

[

c |s− t|1/2 + ‖a− b‖
]

(V (a) + V (b))
1/4
∣

∣

∣

(a,b)=(x+Ws,x+Wt)

∥

∥

∥

2

≤
∣

∣

∣

∣

∣

∣Uθ
n,M − u

∣

∣

∣

∣

∣

∣

0,s
T−1/2eρT/4

[

c |s− t|1/2 + ‖‖Ws −Wt‖‖4
]

(

E[V (x+Ws) + V (x+Wt)]
)1/4

≤ 4eM/2M−n/2
(

50e2LT
)n+1

T−1/2eρT/2c |s− t|1/2 (V (x))
1/4. (93)
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The fact that ∀M ∈ N : U0
0,M = 0 therefore assures for all s ∈ [0, T ], t ∈ [s, T ], x ∈ Rd that

‖u(t, x+Wt)− u(s, x+Ws)‖2 ≤ 4eM/2
(

50e2LT
)

T−1/2eρT/2c |t− s|1/2 (V (x))
1/4. (94)

Combining (91), Lemma 2.3 (applied for every n,M ∈ N with V x {Z : Ω →
R : Z is measurable}, ‖·‖ x ‖·‖2, α x 1/2, (ml)l∈{1,2,...,n} x (M l)l∈{1,2,...,n},
(τl,k)k∈{0,1,...,ml},l∈{1,2,...,n} x ( kT

M l )k∈{0,1,...,M l},l∈{1,2,...,n}, (Y 0
t )t∈[0,T ] x (u(t,Wt))t∈[0,T ],

((Y ℓ
t )t∈[0,T ])ℓ∈[1,n]∩N x ((Uθℓ

ℓ,M(t,Wt))t∈[0,T ])ℓ∈[1,n]∩N, Y x Yn,M in the notation of Lemma 2.3),
(92), and (93) hence demonstrates that for all n,M ∈ N it holds that

sup
t∈[0,T ]

‖Yn,M
t − Yt‖2 = sup

t∈[0,T ]

‖Yn,M
t − u(t,Wt)‖2 ≤ sup

t∈[0,T ]

‖Uθn
n,M(t,Wt)− u(t,Wt)‖2

+ 2−1/2T 1/2M−n/2

[

sup
t,s∈[0,T ],t6=s

‖u(t,Wt)− u(s,Ws)‖2
|t− s|1/2

]

+

n−1
∑

ℓ=1

[

2−1/2T 1/2M−l/2

[

sup
t,s∈[0,T ],t6=s

‖(Uθn−ℓ

n−ℓ,M − u)(t,Wt)− (U
θn−ℓ

n−ℓ,M − u)(s,Ws)‖2
|t− s|1/2

]]

≤ eM/2M−n/2
[

50e2LT
]n+1

(V (0))
1/4eρT/2 + 2−1/2T 1/2M−n/24eM/2

(

50e2LT
)

T−1/2eρT/2c(V (0))
1/4

+

n−1
∑

ℓ=1

[

2−1/2T 1/2M−ℓ/24eM/2M−(n−ℓ)/2
(

50e2LT
)n−ℓ+1

T−1/2eρT/2c(V (0))
1/4
]

. (95)

The fact that c ≥ 1 therefore proves that for all n,M ∈ N it holds that

sup
t∈[0,T ]

‖Yn,M
t − Yt‖2 ≤ eM/2M−n/2(V (0))

1/4eρT/2

·
[

(

50e2LT
)n+1

+ 2−1/24c
(

50e2LT
)

+ 2−1/24c

n−1
∑

ℓ=1

(

50e2LT
)n−ℓ+1

]

≤ ceM/2M−n/2(V (0))
1/4eρT/2

[

(

50e2LT
)n+1

+ 2−1/24
(

50e2LT
)

+ 2−1/24n
(

50e2LT
)n
]

= ceM/2M−n/2(V (0))
1/4eρT/2502ne4nLT

·
[

(

50e2LT
)−n+1

+ 2−1/24
(

50e2LT
)1−2n

+ 2−1/24n
(

50e2LT
)−n
]

≤ ceM/2M−n/2(V (0))
1/4eρT/2502ne4nLT

[

1 + 2−1/24
(

50e2LT
)−1

+ 2−1/24n
(

50e2LT
)−1
]

≤ nceM/2M−n/2(V (0))
1/4eρT/2502ne4nLT

[

1 + 4
50

√
2
+ 4

50
√
2

]

≤ 2neM/2M−n/2502ne4nLT eρT/2c(V (0))
1/4.

(96)

This establishes item (iii). Next note that [73, Lemma 3.6] (applied with d x α,
(RVn,M)n,M∈Z x (Cn,M)n,M∈Z in the notation of [73, Lemma 3.6]) and (79) show that for
all n,M ∈ N it holds that Cn,M ≤ α(5M)n and

α−1Cn,M ≤ Mn + 1 +

n−1
∑

ℓ=0

[

(M ℓ+1 + 1)α−1Cn−ℓ,M

]

≤Mn + 1 +

n−1
∑

ℓ=0

[

(M ℓ+1 + 1)(5M)n−ℓ
]

≤Mn + 1 + n(5M)n+1 +

[

n−1
∑

ℓ=0

(5M)n−ℓ

]

=Mn + 1 + n(5M)n+1 +
(5M)n+1 − 5M

5M − 1

≤ (n+ 2)(5M)n+1. (97)
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Hence, we obtain that for all n ∈ N it holds that Cn+1,n+1 ≤ α(n+ 3)(5n+5)n+2 ≤ α(10n)n+3.
This and (96) demonstrate that for all t ∈ [0, T ], δ ∈ (0,∞), n ∈ N it holds that

Cn+1,n+1‖Yn,n
t − Yt‖2+δ

2 ≤
[

α(10n)n+3[8nen/2502ne4nLT ]
2+δ

n(2+δ)n/2

]

[

eρT/2c(V (0))
1/4
]2+δ

≤
[

10n+3n3[8nen/2502ne4nLT ]
2+δ

nδn/2

]

α
[

eρT/2c(V (0))
1/4
]2+δ

<∞.

(98)

Next observe that (96) and the fact that lim supn→∞
[

nen/2n−n/2502ne4nLT
]

= 0 prove that

lim sup
n→∞

sup
t∈[0,T ]

‖Yn,n
t − Yt‖2 = 0. (99)

In the next step let n : (0,∞) → [0,∞] satisfy for all ε ∈ (0,∞) that

n(ε) = inf
({

n ∈ N : supt∈[0,T ]E
[

|Yn,n
t − Yt|2

]

< ε2
}

∪ {∞}
)

. (100)

Note that (99) and (100) imply that for all ε ∈ (0,∞) it holds that n(ε) ∈ N and

supt∈[0,T ]‖Y
n(ε),n(ε)
t − Yt‖2 < ε ≤ 1{1}(n(ε))ε+ 1(1,∞)(n(ε)) supt∈[0,T ]‖Y

n(ε)−1,n(ε)−1
t − Yt‖2. Com-

bining (97) and (98) hence ensures that for all δ, ε ∈ (0, 1] it holds that

Cn(ε),n(ε)ε
2+δ ≤ 1{1}(n(ε))Cn(ε),n(ε)ε

2+δ + 1(1,∞)(n(ε))

[

Cn(ε),n(ε) sup
t∈[0,T ]

‖Yn(ε)−1,n(ε)−1
t − Yt‖2+δ

2

]

≤
(

sup
n∈N

[

10n+3n3[8nen/2502ne4nLT ]
2+δ

nδn/2

])

α
[

eρT/2c(V (0))
1/4
]2+δ

<∞.

(101)

This, (100), the fact that for all ε ∈ (0,∞) it holds that n(ε) < ∞, and the fact that c =
(max{E[‖z0‖4], 1})1/4 establish item (iv). The proof of Theorem 5.1 is thus complete.

Lemma 5.2. Let f ∈ C2(R,R). Then it holds for all v1, v2, w1, w2 ∈ R that

|(f(v1)− f(w1))− (f(v2)− f(w2))| ≤ (supx∈R |f ′(x)|) |(v1 − w1)− (v2 − w2)|
+ 1

2
(supx∈R |f ′′(x)|)

[

|v1 − w1|+ |v2 − w2|
]

min{|v1 − v2|, |w1 − w2|}. (102)

Proof of Lemma 5.2. Observe that the fundamental theorem of calculus and the triangle in-
equality show that for all v1, v2, w1, w2 ∈ R it holds that

|(f(v1)− f(w1))− (f(v2)− f(w2))| = |(f(v1)− f(v2))− (f(w1)− f(w2))|

=

∣

∣

∣

∣

∫ 1

0

f ′(λv1 + (1− λ)v2)(v1 − v2)− f ′(λw1 + (1− λ)w2)(w1 − w2) dλ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

0

f ′(λv1 + (1− λ)v2)
[

(v1 − v2)− (w1 − w2)
]

dλ

+

∫ 1

0

[

f ′(λv1 + (1− λ)v2)− f ′(λw1 + (1− λ)w2)
]

(w1 − w2) dλ

∣

∣

∣

∣

≤ (supx∈R |f ′(x)|) |(v1 − w1)− (v2 − w2)|

+ (supx∈R |f ′′(x)|)
[
∫ 1

0

(

λ|v1 − w1|+ (1− λ)|v2 − w2|
)

dλ

]

|w1 − w2|.

(103)

This and the fact that
∫ 1

0
λ dλ =

∫ 1

0
(1− λ) dλ = 1/2 establish (102). The proof of Lemma 5.2 is

thus complete.
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Corollary 5.3. Let T, δ ∈ (0,∞), Θ =
⋃

n∈NZ
n, f ∈ C2(R,R), let gd ∈ C1(Rd,R), d ∈ N,

satisfy supd∈N supx=(x1,x2,...,xd)∈Rd

(

|f(x1)|+ |f ′(x1)|+ |f ′′(x1)|+ |gd(x)|+
∑d

i=1 |∂gd∂xi
(x)|2

)

<∞,

let (Ω,F ,P, (Ft)t∈[0,T ]) be a filtered probability space, let rθ : Ω → [0, 1], θ ∈ Θ, be i.i.d. random
variables, assume for all t ∈ (0, 1) that P(r0 ≤ t) = t, let zd,θ : Ω → R

d, θ ∈ Θ, d ∈ N, be
i.i.d. standard normal vectors, let W d = (W d,1,W d,2, . . . ,W d,d) : [0, T ] × Ω → R

d, d ∈ N, be
standard (Ft)t∈[0,T ]-Brownian motions, assume that (rθ)θ∈Θ, (z

d,θ)(d,θ)∈N×Θ, and (W d)d∈N are

independent, let Ud,θ
n,M : [0, T ] × Rd × Ω → R, d,M, n ∈ N0, θ ∈ Θ, satisfy for all d,M ∈ N,

n ∈ N0, θ ∈ Θ, t ∈ [0, T ], x ∈ Rd that

Ud,θ
n,M (t, x) = (T − t)f(0)1

N

(n) +
1

N

(n)

Mn

Mn
∑

i=1

gd
(

x+ [T − t]1/2zd,(θ,0,−i)
)

+
n−1
∑

ℓ=1

[

(T − t)

Mn−ℓ

Mn−ℓ
∑

i=1

(

f ◦ Ud,(θ,ℓ,i)
ℓ,M − f ◦ Ud,(θ,−ℓ,i)

ℓ−1,M

)(

t+ (T − t)r(θ,ℓ,i), x+ [(T − t)r(θ,ℓ,i)]1/2zd,(θ,ℓ,i)
)

]

,

(104)

let ⌊·⌋M : R → R, M ∈ N, and ⌈·⌉M : R → R, M ∈ N, satisfy for all M ∈ N, t ∈ [0, T ] that
⌊t⌋M = max(([0, t]\{T})∩{0, T

M
, 2T
M
, . . .}) and ⌈t⌉M = min(((t,∞)∪{T})∩{0, T

M
, 2T
M
, . . .}), let

Yd,n,M : [0, T ]× Ω → R, d, n,M ∈ N, satisfy for all d, n,M ∈ N, t ∈ [0, T ] that

Y
d,n,M
t =

n−1
∑

ℓ=0

[

[

⌈t⌉
Ml+1−t

(T/M l+1)

]

Ud,ℓ
n−ℓ,M(⌊t⌋M l+1 ,W d

⌊t⌋
Ml+1

) +
[

t−⌊t⌋
Ml+1

(T/M l+1)

]

Ud,ℓ
n−ℓ,M(⌈t⌉M l+1 ,W d

⌈t⌉
Ml+1

)

− 1
N

(ℓ)
([

⌈t⌉
Ml−t

(T/M l)

]

Ud,ℓ
n−ℓ,M(⌊t⌋M l ,W d

⌊t⌋
Ml
) +

[

t−⌈t⌉
Ml

(T/M l)

]

Ud,ℓ
n−ℓ,M(⌈t⌉M l ,W d

⌈t⌉
Ml
)
)

]

, (105)

let Yd = (Y d, Zd,1, Z2,d, . . . , Zd,d) : [0, T ]×Ω → R

d+1, d ∈ N, be (Ft)t∈[0,T ]-predictable stochastic

processes, assume for all d ∈ N that
∫ T

0
E

[

|Y d
s | +

∑d
j=1 |Zd,j

s |2
]

ds < ∞, assume that for all
d ∈ N, t ∈ [0, T ] it holds P-a.s. that

Y d
t = gd(W

d
T ) +

∫ T

t

f(Y d
s ) ds−

d
∑

j=1

∫ T

t

Zd,j
s dW d,j

s , (106)

and let Cd,n,M ∈ N0, d, n,M ∈ Z, and Cn,M ∈ N0, d, n,M ∈ Z, satisfy for all d ∈ N, n,M ∈ N0

that

Cd,n,M ≤ (d+ 1)Mn
1

N

(n) +
n−1
∑

ℓ=0

[

Mn−ℓ (2 + d+ Cd,ℓ,M + Cd,ℓ−1,M1N(ℓ))
]

, (107)

and Cd,n,M ≤ (d + 1)(Mn + 1) +
∑n−1

ℓ=0

[

(M ℓ+1 + 1)Cd,n−ℓ,M

]

. Then there exist c ∈ R and

n : N× (0, 1] → N such that for all d ∈ N, ε ∈ (0, 1] it holds that supt∈[0,T ](E[|Y
d,n(d,ε),n(d,ε)
t −

Y d
t |2])1/2 ≤ ε and Cd,n(d,ε),n(d,ε) ≤ cdcε−(2+δ).

Proof of Corollary 5.3. Note that Lemma 5.2 ensures that for v1, v2, w1, w2 ∈ R it holds that

|(f(v1)− f(w1))− (f(v2)− f(w2))| ≤ (supx∈R |f ′(x)|) |(v1 − w1)− (v2 − w2)|
+ 1

2
(supx∈R |f ′′(x)|)

[

|v1 − w1|+ |v2 − w2|
]

min{|v1 − v2|, |w1 − w2|}. (108)

This and Theorem 5.1 prove that there exist c ∈ R and n : N×(0, 1] → N such that for all d ∈ N,

ε ∈ (0, 1] it holds that supt∈[0,T ](E[|Y
d,n(d,ε),n(d,ε)
t − Y d

t |2])1/2 ≤ ε and Cd,n(d,ε),n(d,ε) ≤ cdcε−(2+δ).
The proof of Corollary 5.3 is thus complete.
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