
ar
X

iv
:2

20
3.

05
99

8v
2

 [
m

at
h.

N
A

]
 1

7
M

ar
 2

02
2

Adaptive POD-DEIM correction for Turing pattern

approximation in reaction-diffusion PDE systems

Alessandro Alla1, Angela Monti2, Ivonne Sgura2

1 Università Ca’ Foscari Venezia, Dipartimento di Scienze Molecolari e Nanosistemi, Venezia, Italy,

e-mail: alessandro.alla@unive.it
2 Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, Lecce, Italy,

e-mail: {angela.monti, ivonne.sgura}@unisalento.it

March 18, 2022

Abstract

We investigate a suitable application of Model Order Reduction (MOR) techniques for the
numerical approximation of Turing patterns, that are stationary solutions of reaction-diffusion
PDE (RD-PDE) systems. We show that solutions of surrogate models built by classical Proper
Orthogonal Decomposition (POD) exhibit an unstable error behaviour over the dimension of the
reduced space. To overcome this drawback, first of all, we propose a POD-DEIM technique
with a correction term that includes missing information in the reduced models. To improve the
computational efficiency, we propose an adaptive version of this algorithm in time that accounts for
the peculiar dynamics of the RD-PDE in presence of Turing instability. We show the effectiveness of
the proposed methods in terms of accuracy and computational cost for a selection of RD systems,
i.e. FitzHugh-Nagumo, Schnackenberg and the morphochemical DIB models, with increasing
degree of nonlinearity and more structured patterns.

Keywords: Reaction-Diffusion PDEs, Turing patterns, Model Order Reduction, Proper Orthogonal
Decomposition, Adaptivity, Discrete Empirical Interpolation Method.
MSC: 65M06, 35K57, 65F99, 65M22

1 Introduction

In different fields of application, mathematical models can be expressed in the form of Reaction-
Diffusion Partial Differential Equations (RD-PDEs). These evolutionary PDE systems are defined in
one or more space dimensions, on stationary or evolving domains and surfaces. The nonlinear kinetics
of the coupled reaction terms account for physical, biological and other kind of phenomena. In the
wide literature on these topics, we cite only a selection of works like [6, 33, 34, 38] for applications in
bio-mathematics, [22, 35, 48] in ecology, [14, 21, 31] in biomedicine, and other applications like [13, 15]
for tumor growth, [41] for chemotaxis and [11, 29, 30, 46] for metal electrodeposition.

In this paper, we are interested in RD-PDE systems where the interplay between diffusion and
reaction is responsible of the so-called Turing pattern formation. For simplicity, we focus on RD-PDE
systems of two equations that are defined on a stationary 2D spatial domain given by

ut = du∆u+ f(u, v), (x, y) ∈ Ω ⊂ R
2, t ∈ (0, T],

vt = dv∆v + g(u, v),

(n∇u)|∂Ω = (n∇v)|∂Ω = 0,

u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y)

(1)

with Ω = [0, Lx] × [0, Ly], nonlinear reaction terms f and g and zero Neumann boundary conditions.
The diffusion coefficients are du, dv > 0 and there exists at least a spatially homogeneous equilibrium
Pe = (ue, ve), such that f(ue, ve) = 0 and g(ue, ve) = 0. It is well known (see e.g. [38]) that the
coupling between diffusion and nonlinear reaction terms can lead to the so-called diffusion-driven or
Turing instability, when Pe is stable in absence of diffusion (du = dv = 0) and becomes unstable when

1

http://arxiv.org/abs/2203.05998v2

the diffusion is present, giving rise to inhomogeneous spatial patterns as stationary solutions of (1),
called Turing patterns. To study pattern formation, the initial condition of (1) is typically a small
(random) spatially distributed perturbation of Pe that destabilizes such that the dynamics can attain at
the steady state different kind of Turing patterns, like labyrinths, spots, stripes, etc., in correspondence
of different choices of the parameters involved in the model kinetics.

It is worth emphasizing that the above classical theory of spatial pattern formation is an asymptotic
theory, concerned with the long term behaviour of perturbations, but more recently, in [39, 40] the
authors proved that also the transient dynamics is important for pattern formation. They introduced
two quantitative indicators called resilience and reactivity, to describe the asymptotic and short-term
time regimes, respectively, and proved that the concept of reactivity is a a necessary condition for
Turing instabilities. In [17], it has been proposed a quantitative way to identify these two time regimes
I1 = [0, τ] and I2 = (τ, T] such that the value of τ can be obtained a-posteriori looking at the
qualitative behaviour of the numerical solution of (1) (see Section 4). In I1 the reactivity holds: the
solution departs oscillating from the spatially homogeneous pattern due to the superimposed (small
random) perturbations and becomes unstable, in I2 the solution starts to stabilize towards the steady
Turing pattern.

Only for some choices of the kinetics it is possible, by means of weakly nonlinear analysis, to
identify analytically the spatial modes of the Turing patterns for special values of the parameters (see
e.g. [10, 20]). Usually, for a given parameter choice, a numerical approximation of (1) is required
to simulate Turing patterns until the steady state and by reproducing the reactivity features during
the initial transient dynamics. Therefore, the numerical approximation of Turing pattern solutions
is challenging for the following reasons: (i) long time integration is needed to attain the stationary
pattern; (ii) a large domain Ω is needed to carefully see its spatial structures; (iii) an accurate spatial
discretization is required to identify the pattern class (labyrinths, spots, etc..); (iv) the time solver
should capture also the reactivity regime.

The main goal of this paper is the application of Model Order Reduction (MOR) techniques to
reduce the computational costs of a standard numerical method for (1) while preserving the main
features of the Turing dynamics as discussed above. Hence, we apply the Proper Orthogonal Decom-
position (POD, see e.g. [49]) with an hyper reduction of the nonlinear terms by the Discrete Empirical
Interpolation Method (DEIM, [16, 18]). We mention that model reduction for coupled PDEs has been
investigated in [43, 44] for linear time invariant coupled systems and in [7] a survey on the topic has
been presented. The study of model reduction for reaction-diffusion PDEs with pattern formation
has been first investigated in [25], where the authors have applied POD and DEIM for the FitzHugh-
Nagumo model. More recently, in [26] it has been proposed a partitioned POD technique to deal with
asymptotic patterns in a nonlinear cross-diffusion system in population ecology. A first study of MOR
for Turing type dynamics based on POD and Dynamic Mode Decomposition (DMD, [28]) applied to
the Schnackenberg model ([33]) and to the DIB kinetics (see e.g. [11]) for battery modeling, has been
proposed recently in [12].

Here, we show that a straightforward application of POD and DEIM in usual forms presents non
monotone, often oscillating, or unstable approximations for increasing sizes of the reduced space. The
main motivation of this paper is to devise a suitable strategy to overcome this bad behaviour.

Stabilization of model reduction is an active research topic especially for fluid dynamics models.
We refer to e.g. [4] where the use of supremizers solutions stabilizes the reduced problem, to e.g. [2]
for linear models, to e.g. [9, 50] for the use of machine learning techniques and to e.g. [4] for the use
of a minimal rotation of the projection subspace.

In this paper, we follow the stabilization approach proposed in [51] where a “correction term” is
added to the reduced model to provide the missing information, possible cause of the instability. This
correction is built upon a surrogate model which dimension is close to the rank of the snapshot matrix,
whose colums are the numerical solution of the full model at a selection of time steps. We will show
that the new reduced problem results to be very accurate, even if it can be very expensive in the
offline stage. To speed up the method, we employ DEIM to this corrected version. The corrected
POD-DEIM here proposed turns out to be one of the novelty of the current work. This leads to
a stabilization of the DEIM technique that further improves the results in [18]. In [37, 51], the
authors have approximated the correction terms building a quadratic model based on a least square
optimization problem. Moreover they have focused on a single equation, whereas we deal with coupled
problems.

2

Furthermore, to lower the computational cost required by the construction of the correction term
in the offline stage and to better capture the main features of the dynamics in the reduced spaces, we
have introduced an adaptive strategy for the corrected POD-DEIM that operates in the time intervals
I1 (reactivity zone) and I2 (stationary zone) discussed above. This partition allows to compute SVD
for smaller snapshot matrices and also the correction term is built upon a smaller reduced space. We
mention that an adaptive approach for DEIM has been introduced in e.g. [42] for steady parametrized
PDEs.

To summarize the novelties in this work are: (1) the corrected POD-DEIM algorithm and (2)
adaptive MOR driven by the time dynamics in the reactive and asymptotic regimes. This leads
to the following results: (i) POD stabilization for coupled PDEs with Turing pattern solutions; (ii)
stabilization of the POD-DEIM algorithm; (iii) computational efficiency for both online and offline
stage. In particular, in the section dedicated to numerical examples, we will show that the corrected
POD provides a stable and accurate method and the corrected POD-DEIM provides a fast but less
accurate algorithm. The effectiveness of our method will be shown for three choices of kinetics, i.e.
FitzHugh-Nagumo, Schnackenberg and DIB models, corresponding to reaction terms of increasing
order of nonlinearity. In all these cases, we provide also a comparison of computational execution
times between the different techniques proposed and the full model approximation.

The paper is organized as follows. Section 2 presents a general form of the model we are interested
in and presents its time discretization by an IMEX approach. In Section 3, we present the POD
method and one example that motivates our work. Then, Section 4 explains the novelty of this paper:
POD and POD-DEIM with correction for the coupled nonlinear terms and the adaptive method for
both techniques. A complete algorithm is presented at the end of the section. Finally, in Section 5,
we present our numerical results.

2 The full model and its numerical approximation

In this section, we first introduce the kinetics that we will consider along the current work. Hence,
we briefly recall how to approximate the system (1) by the Implicit-Explicit (IMEX) Euler method
and, to highlight the computational challenges, we present a numerical simulation of Turing pattern
obtained by solving the full model in a typical case.

2.1 Model kinetics

In this study we consider three different choices of kinetics, listed below in nondimensional form, with
different coupling properties, starting from the simplest linear case. In all these models the Turing
instability holds for peculiar parameter choices, as we will describe in details in Section 5.

FitzHugh-Nagumo (FHN) model. The FitzHugh-Nagumo model [20, 26] describes the flow of an
electric current through the surface membrane of a nerve fiber and it is given by

f(u, v) = γ
(
−u(u2 − 1) − v

)

g(u, v) = γ (β(u− αv)) ,
(2)

where u represents the electric potential, v a recovery variable and α, β, γ > 0, γ parameter scale. The
FHN system has been proposed also in population dynamics for modeling of predator-prey interaction
[36]. In (2), the two RD equations are coupled in linear way: the second equation has a linear kinetics
and the first one is cubic only in the first variable.

Schnackenberg model. As second example, we consider the reaction-diffusion system with activator-
depleted kinetics, known also as Schnackenberg model ([33]), where the simplest nonlinear coupling is
present, that is quadratic in the first unknown:

f(u, v) = γ
(
a− u+ u2v

)
,

g(u, v) = γ
(
b− u2v

)
.

(3)

In this model, u and v represent two chemical concentrations in autocatalytic reactions and a, b, γ > 0.
In the biological interpretation the term u2v represents nonlinear activation of u and nonlinear con-
sumption of v. This model is well known in the literature as a prototype of RD-PDE system with

3

Turing patterns of cosine-like spot type, see for example [33].

DIB model. As third example, we consider the morpho-chemical model for metal growth in electrode-
position, also known as DIB model [11, 29, 30, 47], to model phenomena arising in recharge processes
in batteries with metal electrodes. The nonlinear kinetics are given by

f(u, v) = ρ
(
A1(1 − v)u −A2u

3 −B(v − α)
)
,

g(u, v) = ρ
(
C(1 + k2u)(1 − v)[1 − γ(1 − v)] −Dv(1 + k3u)(1 + γv)

)
,

(4)

where u describes the morphology of the electrodeposit, v its chemical composition; here the scaling
parameter is ρ > 0. The electrochemical meaning of the parameters can be found, for example, in [29]
and references therein.

For all the above models, more details about the homogeneous equilibria, which instability leads
to Turing patterns, will be provided in the next sections.

2.2 Numerical approximation of the RD-PDE system

Here we present the numerical approximation of (1) in space and time that will be used in the sequel
of the paper. Towards our aim, first of all, we define the so called full model, that is the ODE system
arising from the space semi-discretization that will be projected on the reduced space.

For the space discretization of (1) on the rectangular domain Ω we consider classical finite differ-
ences. Given nx, ny interior mesh points along the x and y directions, respectively, the Method of

Lines (MOL) with step sizes hx = Lx

nx+1 , hy =
Ly

ny+1 yields to the following ODE system






u̇ = duAu + f(u,v), t ∈ (0, T],

v̇ = dvAv + g(u,v),

u(0) = u0, v(0) = v0,

(5)

where the unknowns are organized in the usual vector form as u = u(t) = (u1(t), . . . ,unx
(t))T ∈

R
n,ui(t) = (ui1, . . . , ui,ny

)T such that uij(t) ≈ u(xi, yj , t) on the given spatial meshgrid of n = nxny

interior points. Similarly for the unknown v. The discrete operator A ∈ R
n×n accounts for the

approximation of the Laplace operator ∆ = ∂xx + ∂yy, as follows. Let T1 ∈ R
nx×nx and T2 ∈ R

ny×ny

be matrices for the classical second order finite difference discretization of the second order derivatives
along x and y, respectively, that also include a contribution due to the approximation of the zero
Neumann boundary conditions (see e.g. [17]). Therefore, the discrete Laplace operator on a rectangular
domain can be written in Kronecker form as A = 1

h2
x

(Iny
⊗ T1) + 1

h2
y
(T2 ⊗ Inx

) ∈ R
n×n, with Inx

, Iny

being the identity matrices of dimension nx × nx and ny × ny, respectively.
In the literature on pattern formation, several time integrators have been used to solve (1), see e.g. [17,
32, 33], for example the class of implicit-explicit (IMEX) schemes have been considered to approximate
each equation in the ODE system (5) as a sequence of large sparse linear systems of n equations. Here,
to show the features of the MOR techniques in exam, we consider the simplest IMEX scheme, that is
the IMEX Euler method. Given the time meshgrid tk = kht of time step ht = T/nt, IMEX Euler in
vector form applied to (5) yields:

{
(In − htduA)uk+1 = uk + htf(uk,vk), k = 0, . . . , nt − 1,

(In − htdvA)vk+1 = vk + htg(uk,vk)
(6)

where the diffusion part of (5) is treated implicitly, while the reaction (in general nonlinear) parts are
treated explicitly [3, 45], u0,v0 are given by the initial conditions in (5).

To recover the pattern structure we need a meshgrid with a sufficiently large number of meshpoints,
e.g. nx, ny ≥ 50 (see [17]) and final integration time T sufficiently large to attain the steady state
solution. Moreover, due to the explicit component of the method, it is well known (see e.g. [17]) that
a stability bound for the choice of ht can be present. Therefore, the IMEX approach in many cases
can be too expensive because the coefficient matrices in (6) can have dimension n ≥ 2500 and a very
large number nt of discrete problems must be solved in time.

4

For this reason, recently in [17] the authors introduced matrix-oriented methods to build the time
solver as a sequence of Sylvester matrix equations of dimension nx ×ny that can be solved in the spec-
tral space yielding a significant saving of computational execution time. Briefly, the matrix-oriented
approach can be resumed as follows. If vec(Z) = u, vec(W) = v, the differential matrix system
equivalent to (5) is given by:





Ż = du(T1Z + ZT2) + F (Z,W), t ∈ (0, T]

Ẇ = dv(T1W +WT2) +G(Z,W),

Z(0) = Z0, W (0) = W0

(7)

where T1 and T2 are described before, F (Z,W), G(Z,W) are the kinetics evaluated componentwise
in each spatial (interior) grid point (xi, yj), i = 1, . . . , nx, j = 1, . . . , ny and (Z0)i,j = u0(xi, yj),
(W0)i,j = v0(xi, yj). Then the IMEX Euler method in matrix form applied to (7) corresponds to

{
Mu

1 Zk+1 + Zk+1M
u
2 = Ck, k = 0, . . . , nt − 1

Mv
1Wk+1 +Wk+1M

v
2 = Dk,

(8)

where Ck = Zk + htF (Zk,Wk), Dk = Wk + htG(Zk,Wk), while the coefficient matrices do not change
during time evolution and are given by

Mu
1 = Inx

− htduT1, M
v
1 = Iny

− htdvT1 ∈ R
nx×nx Mu

2 = −htduT2, M
v
2 = −htdvT2 ∈ R

ny×ny .

The solutions of the Sylvester equations in (8) are the matrices Zk, Wk ∈ R
nx×ny which entries

approximate the solutions of (1), i.e. (Zk)ij ≈ u(xi, yj , tk), (Wk)ij ≈ v(xi, yj, tk) in each point (xi, yj)
at the time tk. In this paper, we calculate the solutions of (8) (and then of the full model (5)) by
the rEuler method described in [17] that solves the Sylvester equations in the spectral space in a very
efficient, fast and accurate way.

To highlight the computational challenges required by the approximation of Turing patterns, we
present here a typical simulation for the DIB morpho-chemical model, whose kinetics are given in

(4). For all the parameter choices, with D = C(1−α)(1−γ+γα)
α(1+γα) , there is the homogeneous equilibrium

(ue, ve) = (0, α) that can undergo Turing instability [11]. For this example, in (1)-(4), we consider the
parameter values

A1 = 10, A2 = 1, α = 0.5, B = 66, C = 3, γ = 0.2, du = 1, dv = 20, k2 = 2.5, k3 = 1.5, ρ =
25

4
.

The initial conditions are spatially random perturbation of the homogeneous equilibrium, i.e. u0(x, y) =
ue+10−5

rand(x, y), v0(x, y) = ve+10−5
rand(x, y), where rand indicates the default Matlab function

to generate random values with uniform distribution.
We discretize the spatial domain Ω = [0, 20] × [0, 20] with nx = ny = 100 spatial meshpoints, such

that n = nxny = 10000 and, for stability reasons, we consider the time step ht = 10−3 until the final
time T = 100, such that nt = 105 discrete problems must be solved. We solve the full model (5) by
using the IMEX-Euler method both in vector (6) and matrix form (8) which lead to the same final
labyrinth pattern shown in the Figure 1(a). The CPU time needed to solve the full model is about 326
seconds for the matrix form and 583 seconds for the vector one.

Moreover, we compute two indicators that will be useful also in the rest of the paper, to track and
check the time dynamics until the steady state. They are given by the spatial mean 〈u(t)〉 and by the
time increment of u, defined as follows

〈u(t)〉 :=
1

|Ω|

∫

Ω

u(x, y, t)dxdy ≈ mean(uk) = mean(Zk), k = 0, . . . , nt. (9)

δk = ‖uk+1 − uk‖F , k = 0, . . . , nt − 1. (10)

In Figure 1(b)-(c), we report the dynamics of the spatial mean and of the increment for both the
unknows u and v. These behaviours are very similar for u and v; for this reason, in the following we
will consider only u as reference solution. Since a Turing pattern is an asymptotic solution of (1), the
spatial mean must attain a constant value and the increment must go to zero (see also e.g. [29]).

In conclusion of this section, we focus on the meaning of the two time regimes discussed in the
Introduction, also in view of the adaptive algorithm proposed in Section 4. If τ is the time value where
the maximum of the increment δk is attained (see Figure 1(c)), along the dynamics we can identify:

5

(a)

0 20 40 60 80 100
t

-0.1

0

0.1

0.2

0.3

0.4

0.5

Spatial mean

<u(t)>
<v(t)>

0 1 2
-1

0

1
10-3

0 1 2

0.5

0.50002

0.50004

(b)

0 20 40 60 80 100
t

10-8

10-6

10-4

10-2

100
Increment

u
v

X 2.123
Y 0.18165

(c)

Figure 1: DIB model: (a) full model solution u at the final time T = 100; (b) time dynamics of the
spatial mean and (c) of the increment δk for the full model solutions u and v. The value τ , where the
increment has its maximum, is indicated with a red ’o’ symbol and also with a data tip in (c). The
zoom insets in (b) show that in the reactivity regime the solutions depart from the initial condition
with an oscillating behaviour.

• the reactivity zone I1 = [0, τ]: the solution departs from the initial condition showing an initial
phase of oscillations and becomes unstable;

• the stabilizing zone I2 = (τ, T]: the solution starts to stabilize towards the asymptotic pattern.

3 Model Order Reduction and POD instability

In this section, we briefly recall a method which reduces the dimension of the problem (5) by means of
orthogonal projections. In particular, we discuss the Proper Orthogonal Decomposition (POD). The
interested reader may refer to e.g. [8, 24] for a more detailed description for both continuous and
discrete problems.

A numerical method to approximate a PDE already reduces the dimension of the problem: we
switch from an infinite dimensional problem to a finite dimensional problem of the form (5). However,
the dimension n of the semi-discretized problem is usually very large, as in the case of Turing pattern
approximation presented in the previous section. The main goal of MOR is to approximate accurately
the solution of (5), that will be called full model, by reducing its dimension. In this work, r ≪ n will
be the dimension of the reduced problem.

For a given r ≥ 1, a general MOR technique starts by considering two fixed matrices Ψu,Ψv ∈ R
n×r

such that their columns {(ψu)i}
r
i=1 are orthonormal vectors, that is ΨT

u Ψu = I ∈ R
r×r, and they form

a basis for a r−dimensional subspace V r
u = span{(ψu)1, . . . , (ψu)r} ⊂ R

n. The matrix Ψv has the
same properties of Ψu and V r

v will be the corresponding space. Whenever we want to stress the rank r
of the bases we will use the notation Ψr

u,Ψ
r
v. An appropriate choice of V r

u and V r
v would require that

6

the solutions {u(t),v(t)} of (5) can be approximated by a linear combination of {Ψu,Ψv}, that is:

u(t) ≈ Ψuũr(t), v(t) ≈ Ψvṽr(t), (11)

where {ũr(t), ṽr(t)} are unknown functions from [0, T] to R
r. To simplify the notations, in the sequel

we will use {u,v} instead of {u(t),v(t)}. The choice Ψu = Ψv is also possible and corresponds to a
unique subspace onto which the full model (5) can be projected. In this work, we will focus on the use
of two different subspaces as discussed below.

If we plug the assumption (11) into our reference problem (5) and employ the orthogonality of the
bases, we obtain the following reduced system:

{
˙̃ur = duArũr + fr(ũr, ṽr), ũr(0) = ΨT

u u0,
˙̃vr = dvBrṽr + gr(ũr, ṽr), ṽr(0) = ΨT

v v0,
(12)

where Ar = ΨT
uAΨu, Br = ΨT

vAΨv ∈ R
r×r and

fr(ũr, ṽr) = ΨT
u f(Ψuũr,Ψvṽr) ∈ R

r, gr(ũr, ṽr) = ΨT
v g(Ψuũr,Ψvṽr) ∈ R

r. (13)

We note that the Kronecker structure of the matrix A in the full model is not preserved after
projection, moreover A is large and sparse, while Ar and Br will be small but dense. In the next
simulations, the reduced system (12) will be solved always by the IMEX Euler method, but in vector
form like in (6), because the matrix form and the Sylvester formulation in (8) are not still possible.
We mention that recently a two-sided POD approach based on the matrix form has been proposed in
[19, 27].

Proper Orthogonal Decomposition. To obtain appropriate matrices Ψu,Ψv in (11), we recall
POD introduced by in [49]. We first need to collect data from (5), say the analytical (if known) or
approximate solution {uk,vk}, k = 0, . . . , nt for some time instances {t0, . . . , tnt

}. These data are
usually called snapshots. We build two snapshot matrices for the variables u and v as:

Su =




| | . . . |
u0 u1 . . . unt

| | . . . |


 , Sv =




| | . . . |
v0 v1 . . . vnt

| | . . . |


 ∈ R

n×(nt+1) (14)

where uk ≈ u(tk), vk ≈ v(tk). It turns out that the left singular vectors of the (truncated) Singular
Value Decomposition (SVD) [23] of Su are the POD basis of rank r we are looking for. In fact, if
Su ≈ ΨuΣuV

T
u , where Ψu ∈ R

n×r, Vu ∈ R
(nt+1)×r and Σu ∈ R

r×r the diagonal matrix with the
singular values σi, i = 1, . . . , r, the POD basis is formed by the r columns {(ψu)1, . . . , (ψu)r} of the
matrix Ψu. Equivalently, Ψv is obtained from the snapshot matrix Sv. In this work, we prefer to use
two different subspaces for u and v to compute the SVD of matrices of dimension n× (nt + 1) rather
than one subspace where the SVD would be for the matrix S = [Su, Sv] ∈ R

n×2(nt+1). Thus, when
dealing with two subspaces we obtain smaller snapshot matrices (in our simulations we will consider
nt > 103). It is worth recalling that the error due to the SVD based projection is related to the
neglected singular values σi, i = r + 1, . . . , nt + 1 as explained in [24].

As usually done in MOR there are some quantities computed offline; here we compute once and
store the following objects: (i) the snapshot matrices (14), (ii) the POD bases Ψu,Ψv and (iii) the
projected quantities Ar, Br in (12). It is allowed (see e.g. [8]) an expensive offline stage to generate a
fast (or real time) approximation of (12) which usually represents the online stage.

Discrete Empirical Interpolation Method. The nonlinear functions fr,gr in (13) require to
evaluate the full, high-dimensional model reactions in the terms Ψuũr,Ψvṽr ∈ R

n, thus the reduced
model still depends on the full dimension n. To circumvent this inconvenience, the Empirical Inter-
polation Method (EIM, [5]) and its discrete counterpart, the Discrete Empirical Interpolation Method
(DEIM, [16]), were introduced. The idea is to interpolate the nonlinear functions using only ℓ points.
Typically, the dimension ℓ is much smaller than the dimension of the original problem n. For this goal
we need to compute the interpolation basis and an operator which selects the interpolation points. To
set the algorithm for coupled problems we calculate the empirical bases Φf = {(φf)1, . . . , (φf)ℓ} and

7

Φg = {(φg)1, . . . , (φg)ℓ} for the functions f and g respectively. Thus, we need to build the snapshot
matrices for the nonlinear kinetics terms as:

Sf =




| | . . . |
f(u0,v0) f(u1,v1) . . . f(unt

,vnt
)

| | . . . |


 , Sg =




| | . . . |
g(u0,v0) g(u1,v1) . . . g(unt

,vnt
)

| | . . . |




(15)
with Sf , Sg ∈ R

n×(nt+1) and then we compute Φf and Φg ∈ R
n×ℓ as the POD bases of Sf and Sg,

respectively.
Let us define two matrices Pf , Pg ∈ R

n×ℓ by taking ℓ columns of a n × n permutation matrix.
Following the approach suggested in [18], we compute these matrices by a QR decomposition with
pivoting of ΦT

f and ΦT
g . Then the DEIM approximation for the nonlinear terms is given by

f(Ψuũr,Ψvṽr) ≈ Φf (PT
f Φf)−1f(PT

f Ψuũr, P
T
f Ψvṽr),

g(Ψuũr,Ψvṽr) ≈ Φg(PT
g Φg)−1g(PT

g Ψuũr, P
T
g Ψvṽr).

The matrices here involved

PT
f Ψu, P

T
g Ψu, P

T
f Ψv, P

T
g Ψv ∈ R

ℓ×r, (PT
f Φf)−1, (PT

g Φg)−1 ∈ R
ℓ×ℓ (16)

can be pre-computed independently of the full dimension n. We recall that our kinetics f ,g are
nonlinear functions evaluated at {u(t),v(t)} component-wise.

For given r and ℓ, the reduced ODE system for the DEIM approximation can be written as follows
{

˙̃ur = duArũr + ΨT
u ΦD

f f(PT
f Ψuũr, P

T
f Ψvṽr), ũr(0) = ΨT

u u0,
˙̃vr = dvBrṽr + ΨT

v ΦD
g g(PT

g Ψuũr, P
T
g Ψvṽr), ṽr(0) = ΨT

v v0,
(17)

where
ΦD

f := Φf (PT
f Φf)−1, ΦD

g := Φg(PT
g Φg)−1 ∈ R

n×ℓ (18)

and the quantities ΨT
u ΦD

f , ΨT
v ΦD

g ∈ R
r×ℓ are also precomputed in the offline stage. This approach

implies that the functions f ,g are evaluated only on ℓ ≪ n selected points.

3.1 POD instability: a numerical example

In this section, we present a straightforward application of POD and POD-DEIM for the DIB model
with kinetics in (4) and parameters described in Section 2.2. For given values of r and ℓ, we calculate
the reduced numerical solutions of the POD (12) and POD-DEIM (17) models by the IMEX Euler
method described in Section 2 by using ht = 10−3. The snapshot matrices are computed by saving
uk, vk every four time steps for memory reasons. We denote by u, v the obtained solutions at the
final time T of integration reconstructed by (11), we calculate the relative errors E(u, r), E(v, r) in the
Frobenius norm with respect to the reference solutions u∗,v∗ of the full model, defined by:

E(u, r) :=
‖u − u∗‖F

‖u∗‖F

, E(v, r) :=
‖v − v∗‖F

‖v∗‖F

. (19)

In Figure 2(a)-(b) we show the behaviour of E(u, r) and E(v, r) for r = 1, . . . , 200. The reference
Turing pattern u∗ is reported in Fig. 1(a). The number of DEIM points ℓ = 363 is chosen as the
maximum between the ranks of the matrices Sf and Sg defined in (15). The error behaviour for both
POD and POD-DEIM is very erratic. Moreover, in Figure 2, the missing information for some values
of r in the case of DEIM means that the corresponding reduced solutions are unstable. One usually
expects a decreasing decay of the errors when the dimension of the reduced space increases. Here, we
clearly show that this property does not hold also for POD, and, even worse, there are big jumps of
several orders of magnitude. To give an idea of the meaning of this instability with respect to the
Turing dynamics, in Figure 3(a), we show the pattern at the final time T = 100 obtained by POD with
r = 175. In Figure 3(b), we show also the corresponding spatial mean 〈u(t)〉 with respect to that of
the full model solution: the POD approximation completely fails because the dynamics tends towards
another spatial structure, as the relative error E(u, 175) = 1.24 confirms. The goal of this example is
to justify that a stabilization approach is needed for the POD and POD-DEIM methods in order to
guarantee a monotone error decay and to assure that a Turing pattern is attained also in the reduced
spaces. This is, in fact, the main motivation of this paper.

8

0 50 100 150 200
r

10-7

10-5

10-3

10-1

101

POD
POD-DEIM

(a)

0 50 100 150 200
r

10-7

10-5

10-3

10-1

101

POD
POD-DEIM

(b)

Figure 2: DIB model. POD and POD-DEIM relative errors in (19) for the variables u (a) and v (b) in
the Frobenius norm with respect to the final pattern (reported in Fig 1(a)). Both techniques exhibit
an erratic and sometimes unstable behaviour for increasing values of the dimension r of the reduced
space.

(a)

0 20 40 60 80 100
t

-0.05

0

0.05

0.1

0.15

0.2

0.25
<u(t)>

Full model
POD r = 175

(b)

Figure 3: POD instability example 3.1 for the DIB model: (a) approximation of the pattern for u
at the final time T = 100 obtained by POD with r = 175 and relative error E(u, 175) = 1.24; (b)
comparison of the spatial mean with respect to that of the full model (see Fig 1(b)).

9

4 Stabilization and adaptivity for the POD-DEIM approach

In Section 3.1, we have shown that both POD and POD-DEIM exhibit an irregular trend of the error
for several values of r to approximate the final pattern of (1) with kinetics given by (4) (see Figures
2 and 3). We have actually found a similar behaviour for the FHN (2) and for the Schnackenberg
models (3) (see Section 5). For this reason, our purpose here is threefold: (i) first of all to propose an
algorithm to stabilize the POD behaviour of the surrogate model, (ii) to extend this algorithm to the
DEIM approach and (iii) to improve the efficiency by applying these algorithms in adaptive way.

4.1 Correction and stabilization

For the first goal listed above, following the approach in [37], we propose to construct a newR−dimensional
surrogate model, R > r, and add a suitable correction term to the r-dimensional reduced system (12)
obtained by the POD-Galerkin projection.

We consider R such that r < R ≪ n and {ũR, ṽR} solutions of the reduced model (12) of dimension
R. Let F(u,v) = duAu + f(u,v) and G(u,v) = dvAv + g(u,v) be the right-hand sides (RHS) of
the full model (5). Its solution u can be approximated as in (11) by choosing both r and R. This
approximation also holds true for v and for the derivatives u̇, v̇. If we project the full model (5) onto
a subspace of dimension r, we obtain (Ψr

u)T u̇ = (Ψr
u)T F(u,v) and the same holds for v. If we plug in

the different approximations for u and v, we obtain two r-dimensional systems. In particular, for the
unknown u it holds

(Ψr
u)T (Ψr

u
˙̃ur) = (Ψr

u)T F(Ψr
uũr,Ψ

r
vṽr) + R(r)

(Ψr
u)T (ΨR

u
˙̃uR) = (Ψr

u)T F(ΨR
u ũR,Ψ

R
v ṽR) + R(R),

(20)

where R(·) is the residual that vanishes whenever r or R go to infinity and it is a consequence of the
error generated by (11). Since the POD bases are orthonormal, that is (Ψr

u)T (Ψr
uũr) = ũr, it follows

that
(Ψr

u)T (ΨR
u

˙̃uR) = (Ψr
u)T ΨR

u
˙̃uR = [Ir 0] ˙̃uR = ˙̃ur, (21)

because the first r components of ũR correspond to ũr. Therefore, by subtracting the second equation
in (20) from the first one, we obtain

(Ψr
u)T F(ΨR

u ũR,Ψ
R
v ṽR) − (Ψr

u)T F(Ψr
uũr,Ψ

r
vṽr) := R̃u

where R̃u = R(r) − R(R). Our idea is to use this residual R̃u to correct the original reduced model
(12) by adding the correction terms defined as follows

fc(ũr, ṽr, ũR, ṽR) := (Ψr
u)T

(
F(ΨR

u ũR,Ψ
R
v ṽR) − F(Ψr

uũr,Ψ
r
vṽr)

)
,

gc(ũr, ṽr, ũR, ṽR) := (Ψr
v)T

(
G(ΨR

u ũR,Ψ
R
v ṽR) − G(Ψr

uũr,Ψ
r
vṽr)

)
.

(22)

Hence, we consider the corrected reduced system as the r-dimensional model using information from
the R−dimensional solution as follows

{
˙̃ur = duArũr + fr(ũr, ṽr) + fc(ũr, ṽr, ũR, ṽR), ũr(0) = (Ψr

u)T u0,
˙̃vr = dvBrṽr + gr(ũr, ṽr) + gc(ũr, ṽr, ũR, ṽR), ṽr(0) = (Ψr

v)T v0,
(23)

where fr,gr are defined in (13) whereas fc,gc in (22).
Here, thanks to (21), it is easy to show that the surrogate model (23)-(22) is still a r− dimensional

model, but built upon an R− dimensional one and given by:

{
˙̃ur = du(Ψr

u)TAΨR
u ũR + (Ψr

u)T f(ΨR
u ũR,Ψ

R
v ṽR), ũr(0) = (Ψr

u)T u0,
˙̃vr = dv(Ψr

v)TAΨR
v ṽR + (Ψr

v)T g(ΨR
u ũR,Ψ

R
v ṽR), ṽr(0) = (Ψr

v)T v0,
(24)

where the quantities (Ψr
u)TAΨR

u , (Ψ
r
v)TAΨR

v ∈ R
r×R can be precomputed in the offline stage. For-

mally, the new ODE system (24) is obtained by cancelling out the terms in (23)-(22). The correction
approach has been introduced for POD in [51] where the method requires the solution of a least square

10

optimization problem at each time instance to approximate fc and gc. The authors in [37, 51] have
not focused on coupled problems, but on a single equation.

It is worth noting that the new information provided in (24) by the correction is indeed effective if
a (high) value for R, typically related to the rank of the snapshot matrices, is chosen. In fact, we must
provide sufficiently accurate additional information. On the other hand, although this correction can
stabilize the original POD technique and can yield a very accurate reduced solution, as we will show
in Section 5, it could make the offline stage more expensive due to the computation of {ũR, ṽR}.

Remark 1 In principle, for the correction, one could use the solution of the full model that is R = n
but that would make hard to store and manage all the original data. Indeed, to construct the snapshot
matrices and then the POD bases Ψk

u,Ψ
k
v, for k = r,R only a subsampling in time of the numerical

solution is stored for memory reasons. To conclude it is important to choose R ≪ n. In the rest of the
paper we will refer to the surrogate model for the corrected POD technique by the acronym PODc.

In line with the objectives of a DEIM approach, as explained in Section 3, to make the PODc
computationally more efficient, we propose a POD-DEIM approach also for the correction model (24).
The corresponding reduced system can be written as follows:

{
˙̃ur = du(Ψr

u)TAΨR
u ũR + (Ψr

u)T ΦD
f f(PT

f ΨR
u ũR, P

T
f ΨR

v ṽR), ũr(0) = (Ψr
u)T u0,

˙̃vr = dv(Ψr
v)TAΨR

v ṽR + (Ψr
v)T ΦD

g g(PT
g ΨR

u ũR, P
T
g ΨR

v ṽR), ṽr(0) = (Ψr
v)T v0,

(25)

where ΦD
f ,Φ

D
g are defined in (18). As far as we know, the POD-DEIM correction is a novelty and

it might also be interpreted as a new way to stabilize the original POD-DEIM. In the sequel, for
brevity, we will use the acronym POD-DEIMc to indicate the surrogate system (25) and the solution
of the corrected POD-DEIM. In Section 5, we will discuss the accuracy and stabilization properties
of both PODc and POD-DEIMc when applied to all three RD-PDE models introduced in Section
2.1. Moreover, if the computation of {ũR, ṽR} is considered offline as in [51], the presented numerical
results will show that both PODc and POD-DEIMc are faster than the full model also for large choices
of r.

4.2 Adaptivity

To lower the computational cost when integrating (24) and (25), and in particular the offline costs to
compute {ũR, ṽR}, we propose an adaptive strategy where the size of the bases for POD and PODc
are updated according to the qualitative behaviour of the time dynamics. As already discussed at the
end of Section 2, in presence of Turing instability the time dynamics exhibits essentially two regimes
[17], the so-called reactivity for small times in the transient regime and the asymptotic steady state
for long times. To capture the entire dynamics in [0, T], a large size of the POD basis even for the
correction could be required, that is very large values of R. For this reason, our idea is to split the
integration of (23) on the two time intervals I1 := [0, τ] and I2 := [τ, T], described in Section 2, where
τ is calculated by the increment (10), as follows:

τ = argmaxk∈{0,...,nt−1} δk. (26)

Note that the increment can be easily computed by using the original snapshot data. In [17], it has
also been shown that τ can be related to the inflection point of the curve 〈u(t)〉 (see Figure 1).

To apply the adaptive strategy, first of all, the original snapshot matrices are splitted in new ones
with lower number of columns reflecting the snapshots present in I1 and I2, respectively. We can expect
that the dimensions R1 and R2 needed for the corrections in I1 and I2, respectively, will be much
lower than R required on the whole interval [0, T] and, in addition, the two corresponding surrogate
models will be solved on smaller time intervals. Furthermore, for the above considerations, to find all
the required projection spaces in the offline stage, the SVD of smaller matrices must be computed,
thus reducing the computational costs. Randomized approaches as done in [1] could be used to speed
up the computation of the SVD algorithm, but in this work we prefer to keep our algorithm completely
deterministic.

In Section 5, we will show that the adaptive approach can provide a speed up of PODc and POD-
DEIMc, for both offline and online stages. In fact, to sum up, in the offline stage we benefit from
cheaper computations of the SVD and of the approximations of {ũRi

, ṽRi
}, i = 1, 2.

11

Let us use the notation Ψ
(i),ri

u , i = 1, 2 for the adaptive POD basis where ri is the number of bases

in the interval Ii. The initial conditions ũ
(2)
r2

(τ), and ṽ
(2)
r2

(τ) in I2, are given by

ũ(2)
r2

(τ) = (Ψ(2),r2

u)T Ψ(1),r1

u ũ(1)
r1

(τ), ṽ(2)
r2

(τ) = (Ψ(2),r2

v)T Ψ(1),r1

v ṽ(1)
r1

(τ), (27)

such that ũ
(1)
r1

(τ), ṽ
(1)
r1

(τ) are first projected back to the original space and then projected into the
reduced space of the second region.

4.3 Our algorithm

We summarize our adaptive POD-DEIMc procedure in Algorithm 1. We comment below our algorithm
step by step distinguishing between the offline and the online stages. The adaptive PODc can be
obtained neglecting the steps related to the DEIM approach.

Require: h̃t, ht, A, f ,g
1: Computation of the snapshots {(u0,v0), . . . , (unt

,vnt
)} with time step ht from (8) and stored

every h̃t time steps,
2: Compute the increment δk, k = 0, . . . , nt − 1, and τ := argmaxk δk,
3: Set ht ≤ h̃t

4: for i = 1,2 do
5: if i = 1 then
6: S

(i)
u = [u0, . . . ,unτ

], S
(i)
v = [v0, . . . ,vnτ

]

7: S
(i)
f = [f(u0,v0), . . . , f(unτ

,vnτ
)], S

(i)
g = [g(u0,v0), . . . ,g(unτ

,vnτ
)],

8: else
9: S

(i)
u = [unτ

, . . . ,unt
], S

(i)
v = [vnτ

, . . . ,vnt
]

10: S
(i)
f = [f(unτ

,vnτ
), . . . , f(unt

,vnt
)], S

(i)
g = [g(unτ

,vnτ
), . . . ,g(unt

,vnt
)],

11: end if
12: Fix Ri ≈ max{rank(S

(i)
u), rank(S

(i)
v)},

13: Compute POD bases Ψ
(i),Ri

u ,Ψ
(i),Ri

v

14: Fix ℓi ≈ max{rank(S
(i)
f), rank(S

(i)
g)},

15: Set ri < Ri,

16: Integrate problem (12), with r = Ri to obtain {ũ
(i)
Ri
, ṽ

(i)
Ri

}

17: Compute DEIM bases Φ
(i)
f ,Φ

(i)
g

18: Compute DEIM points P
(i)
f , P

(i)
g

19: if i = 1 then
20: Set {ũ

(1)
r1

(0), ṽ
(1)
r1

(0)} = {(Ψ
(1),r1

u)T u0, (Ψ
(1),r1

v)T v0},
21: else
22: Set {ũ

(2)
r2

(τ), ṽ
(2)
r2

(τ)} as (27)
23: end if
24: Integrate the model (25) with temporal step size ht

25: end for

Algorithm 1: Adaptive POD-DEIM correction

Offline Stage

Inputs. The inputs of the algorithm are the kinetics f, g for the RD-PDE models in Section 2.1,
together with the time step size h̃t and the matrix A for the discrete Laplace operator in (5).
Snapshots and splitting value τ . We build the snapshot matrices using the matrix method recalled
in Section 2.2. The computation of the snapshots allows us to obtain the increment δk in (10) and the
time value τ to split our problem into subdomains.
Set the surrogate models. Since we split our problem, we possess (also in parallel) the different

snapshot matrices S
(i)
u , S

(i)
v , S

(i)
f , S

(i)
g both for I1 and I2. We then compute in each region the POD

bases Ψ
(i),Ri

u ,Ψ
(i),Ri

v of rank Ri and the DEIM ingredients Φ
(i)
f , Φ

(i)
g , P

(i)
f , P

(i)
g as explained in Section

3. Hence in each region we compute, by applying classical POD, the solution {ũ
(i)
Ri
, ṽ

(i)
Ri

}, i = 1, 2 to

12

build the correction terms and the corrected surrogate models. Note that the POD bases of rank

ri < Ri corresponds to the first ri columns of Ψ
(i),Ri

u ,Ψ
(i),Ri

v . The choices of Ri, ℓi are described in
step 12 and 14, respectively, of Algorithm 1.
Projected quantities. Once the bases are computed, we can store all the projected quantities,
Ari

, Bri
, i = 1, 2, the terms in (16) and (18). The initial condition for the reduced problem in I1 can

also be stored at this stage.

Online Stage

Integration of the reduced model. Integrate the reduced model (25) in I1. Set the initial conditions
in I2 as (27). Finally, we can integrate the reduced problem in I2. The reduced-corrected models (25)
will be integrated using the IMEX-Euler scheme in vector form as in (6).

5 Numerical results

In this section, we apply the algorithms proposed for PODc and POD-DEIMc in simple and adaptive
versions to the RD-PDE models (1) with the kinetics described in Section 2.2. Then we present three
tests for the approximation of Turing patterns where the reactions are coupled with an increasing level
of nonlinearity and the expected patterns have even more spatial structures. The numerical simulations
have been performed in MATLAB (ver. 2019a) on a computer DELL, i7 Intel Core processor 2.8 GHz
and 16Gb RAM. In each case the ODE systems has been solved by the IMEX Euler method, in matrix
form for the full models, in vector form for all typologies of reduced models occuring. In what follows
we will consider the maximum rank of the snapshot matrices (14) and (15), defined as

ρsol = max{rank(Su), rank(Sv)}, ρkin = max{rank(Sf), rank(Sg)}.

For each test, for POD and POD-DEIM with and without correction, we present the following results:

• the errors E(u, r) defined in (19), obtained for all the surrogate models proposed and for r ≤ rmax

where rmax ≤ ρsol;

• the same errors for the adaptive algorithms in each interval I1, I2 for the variable u;

• comparisons of the CPU execution times with and without adaptive strategy;

• a table reporting the CPU execution times needed to achieve a certain level tol of accuracy by
PODc and POD-DEIMc both in adaptive and non adaptive versions.

5.1 Test 1: FitzHugh-Nagumo model

We consider the FHN reaction-diffusion model with kinetics (2) where the expected asymptotic pattern
is known thanks to the weakly nonlinear analysis in [20, Fig.2(b)]. There is a unique homogeneous
equilibrium (ue, ve) = (0, 0) that will undergo Turing instability. Hence, in (1)-(2), we consider the
parameter values from [20]

du = 1, dv = 42.1887, α = 0.1, β = 11, γ = 65.731

and as initial conditions the spatially random perturbation of the homogeneous equilibrium u0(x, y) =
ue+10−3

rand(x, y), v0(x, y) = ve+10−3
rand(x, y). We discretize the spatial domain Ω = [0, π]×[0, π]

with nx = ny = 100 meshpoints, such that n = nxny = 10000. For stability reasons, the full model is
integrated with time step ht = 10−4 until the final time T = 50 such that nt = 5 ·105 discrete problems
must be solved.

The starting point of Algorithm 1 is the construction of the snapshot matrices (14). For memory
reasons, we obtain them by saving the full model solutions uk, vk every four time steps, such that Su,
Sv ∈ R

10000×125001. In Figure 4(a)-(b), we show the full model solution u at the final time T = 50 and
the singular values decay for the snapshot matrices for the solutions u, v in (14) and for the kinetics
f, g in (15), respectively. It is easy to see that a fast decay is present, such that the machine precision is
almost attained at r = 200 ≪ 104. Here and in what follows we calculate the rank by using the Matlab

13

(a)

0 50 100 150 200
r

10-15

10-10

10-5

100

105

1010
Singular values

u
v
f
g

(b)

0 10 20 30 40
r

10-5

100 POD
POD-DEIM
PODc
POD-DEIMc

(c)

Figure 4: Test 1: FHN model. (a) Full model solution u at the final time T = 50. (b) Singular values
decay of the snapshot matrices in (14) and (15). The maximum rank is 48. (c) Relative errors E(u, r)
at the final time T = 50 for all MOR techniques. The correction terms for PODc and POD-DEIMc
are computed for R = 45, while the DEIM interpolation is applied with ℓ = 48, both values near to
the rank of the snapshot matrices. The non-monotone behaviour of POD and POD-DEIM errors is
overcome by the corresponding corrected techniques.

0 10 20 30 40 50
t

-1

-0.5

0

0.5

1
10-5 <u(t)>

(a)

0 10 20 30 40 50
t

10-8

10-6

10-4

10-2
k

X 27.6185
Y 5.7375e-05

(b) (c)

Figure 5: Test 1: FHN model. Time dynamics of the spatial mean 〈u(t)〉 (a) and of the increment
δk = ||uk+1 − uk||F (b) for the full model solution u. (c) Full model solution u at t̄ = 20 : the pattern
structure is already formed, but its amplitude is not the right one (see colorbar in Fig. 4(a)).

default function rank
1. In this case we find that the maximum rank among all snapshot matrices is

48. This behaviour further confirms that the FHN model is the simplest one we are dealing with, due
to the linear coupling of the kinetics.

Stabilization. We begin by solving each reduced model (12) and (17) in the time interval [0, T]
with time step ht = 10−4. The number of DEIM points ℓ = 48 is chosen equal to ρkin. The corrected
systems (24) and (25) are integrated by choosing R = 45 ≈ ρsol.

For increasing values of r until rmax = R = 45, we calculate the relative errors (19) for POD and
POD-DEIM in the classical and corrected versions here introduced. The results are shown in Figure
4(c) for the variable u. The non-monotone behaviour of POD and POD-DEIM is overcome by the
corresponding corrected techniques. In particular, the PODc error decreases and for r ≥ 20 is almost
constant around 10−7, while the error of the POD-DEIMc decreases until r = 10 and after is slightly
increasing but less than 10−5. This behaviour of the DEIM technique is well known, see e.g. [16]. It is
worth saying that, here and for the other RD-PDE models, the errors E(u, r) and E(v, r) have almost
the same trends for all techniques, for this reason we report only the results concerning the variable u.

Adaptivity. In Figure 5(a)-(b), we report the dynamics of the spatial mean 〈u(t)〉 in (9) and of
the increment δk in (10) for the unknown u. In particular, this example shows that it is important to
check information from both indicators. (For example, in [26] only the mean is analysed.)

In fact, if we look in Figure 5(a) at the spatial mean 〈u(t)〉 for 9 ≤ t ≤ 20, the stationary pattern

1We note that the built-in Matlab function rank(M) is implemented with a default tolerance that depends on the
norm and size of the matrix M . This can justify why, in some cases, a subsampling of a given snapshot matrix might
have larger rank than the original snapshot matrix.

14

Time interval ℓ (DEIM) R (correction) CPU time for {ũR, ṽR}
[0, T] 48 45 2112.5s

I1 50 45 1234.5s
I2 13 12 188.1s

Table 1: Test 1: FHN model. MOR parameter values used to solve each reduced system (24) and (25)
in the whole interval [0, T] or by the adaptive strategy. In the last column is reported the cost of the
offline stage for the computation of {ũR, ṽR}. It is evident the advantage of the adaptive strategy.

0 10 20 30 40
r

10-4

10-2

100

102

POD
POD-DEIM
PODc
POD-DEIMc

(a)

0 2 4 6 8 10 12
r

10-8

10-6

10-4

10-2

POD
POD-DEIM
PODc
POD-DEIMc

(b)

Figure 6: Test 1: FHN model adaptivity. (a) Zone I1: relative error E(u, r) at τ = 27.6185 for the
unknown u. (b) Zone I2: relative error E(u, r) at the final time T = 50. In Table 1 are reported more
details for the application of POD-DEIM and its correction. In I1 POD-DEIM instability is clearly
overcome by its corrected counterpart, that has a similar behaviour of the PODc. In I2 the PODc
reaches the same accuracy as for the POD without correction, whereas the POD-DEIMc is also stable
but less accurate for larger r.

seems to be reached. Nevertheless, it is evident that on the same interval an increasing behaviour of
the increment is present; therefore the solution u is not stabilized for example at t̄ ≈ 20. In Figure
5(c), we show the solution u at t̄ = 20. It is evident that the pattern structure is already formed, but
its amplitude is not the right one (see the colorbar and compare it with Figure 4(a)). Looking at the
increment in Figure 5(b), it is evident that for t < 20 the Turing dynamics is still in the reactivity zone
and that it attains a maximum value at τ ≈ 27.6185 (see red ‘o’ symbol). Only for t > τ the increment
starts to decrease towards zero and the asymptotic regime begins; in the meantime the spatial mean
〈u(t)〉 moves towards another constant value that truly indicates that the solution is stabilized.

Therefore we can apply our adaptive PODc and POD-DEIMc on the integration time intervals
I1 = [0, τ] and I2 = [τ, T]. In Table 1 we summarize the values ℓ for DEIM and R for the correction
chosen to solve each reduced subsystem (24) and (25) in I1 and I2. The initial conditions in I2 are

those defined in (27) where u
(1)
r1

(τ) and v
(1)
r1

(τ) are the solutions of the POD-DEIMc system in I1 with
R1 = 45 ≈ ρsol and r1 = 10 ≪ R1. In Table 1, we show also that the adaptive strategy is able to
reduce the computational cost in the offline stage.

In Figure 6 we show the error behaviours. In I1 (see Figure 6(a)) the instability of POD-DEIM is
more evident than in the whole interval [0, T], as shown in Fig 4(c). Indeed in I1 the time dynamics
has its major variability. PODc and POD-DEIMc stabilize this bad behaviour and both tend to a
constant error of order 10−4 for r ≥ 10. In I2 (see Figure 6(b)) POD is not unstable with respect to
r, while POD-DEIM is slightly oscillating for r ≥ 6. POD and PODc have almost the same trend and
both achieve an error of order 10−8 for rmax = 12 = R2 ≈ ρsol. While POD-DEIMc has an error of
order 10−6 and does not improve its performance obtained on [0, T]. Hence, in terms of accuracy, the
adaptive strategy improves only the accuracy of PODc that moves from an order of 10−7 to 10−8.

Computational cost: online stage. To conclude we compare the results in terms of computa-
tional cost in the online stage. For increasing values of r, in Figure 7(a) we show the CPU time (in
seconds) needed to solve the reduced models in the time interval [0, T], while in Figure 7(b) the cost
of the adaptive algorithms including the cost for solving the subsystems in Ii, i = 1, 2. As a reference,

15

0 10 20 30 40
r

100

101

102

103

104

C
P

U
 ti

m
e

(s
)

[0,T]

POD
POD-DEIM
PODc
POD-DEIMc
Full matrix
Full vector

(a)

0 2 4 6 8 10 12
r

100

101

102

103

104

C
P

U
 ti

m
e

(s
)

Adaptivity

POD
POD-DEIM
PODc
POD-DEIMc
Full matrix
Full vector

(b)

Figure 7: Test 1: FHN model. Computational costs of all the techniques proposed. (a) CPU time (s) for
solving each reduced model in the whole time interval [0, T]; (b) total cost of the adaptive algorithms
solving the reduced systems in zone I1 and I2 with R1 = 45 and R2 = 12. The computation of
{ũR, ṽR} for the corrected systems is not included because is considered offline. It is clear that POD
benefits from the adaptivity and results to be very competitive with respect to the full model, for any
choices of r. In this case, its corrected version is slightly cheaper.

the black continuous line represents the cost of the full model solution when solved by the IMEX-Euler
in matrix form, whereas the cost of the vector form is drawn by the black dashed line. It is easy to
see that each reduced and corrected technique, not only stabilizes the classical POD and POD-DEIM,
but turns out to be faster than them and than the full model also for larger values of r. Moreover, in
the adaptive case the classical POD and PODc have a almost the same cost (see Figure 7 (b)). We
remind that in Figure 7 the computation of {ũR, ṽR} is not included because it is considered offline.
Table 1 reports the choices of R in each time interval and the computational cost of {ũR, ṽR}. The
adaptive algorithm results to be competitive also in the offline stage, with a speed-up factor of 1.48.

In Table 2 we report the CPU time needed in the online stage to achieve a desired accuracy tol
by the corrected algorithms. We also report for each tol the values r0 such that E(u, r) ≤ tol for
r ≥ r0. We can deduce that PODc clearly benefits from the adaptive approach. In fact, the CPU time
has a speed-up factor of about 3× for any desired tol and PODc achieves higher accuracy (see last
column). Concerning the POD-DEIMc, for all tolerances we have almost the same cost and there is
no difference if we apply or not the adaptivity. On the other hand, we have already discussed that the
main difference in the computational cost lies in the offline stage, because of the different choices of
R in each time interval (see Table 1). Not surprisingly, the POD-DEIMc in both form is faster than
PODc. Finally, it is worth recalling (see Fig. 7) that the CPU time to solve the full model is 943
seconds in matrix form and 2948 seconds in vector form. This further stresses the efficiency of the
surrogate models and of the stabilizing algorithms here proposed.
To conclude, by considering the cost in both offline and online stage, in this test the adaptive POD-
DEIMc results to be the best method presenting an error E(u, r) ≤ 10−5 for r ≥ 4. However, if a
higher accuracy is desired, we can use both POD and PODc with an adaptive strategy and r ≥ 5, with
an increased computational cost in the online stage, but in any case competitive with respect to the
full model.

tol 10−3 r0 10−4 r0 10−5 r0 10−6 r0 10−7 r0

PODc 375.30s 2 371.68s 5 378.02s 8 385.89s 13 - -
PODc adaptive 126.89s 2 127.68s 3 127.77s 4 129.19s 5 130.56s 6
POD-DEIMc 3.89s 2 3.97s 5 3.95s 8 - - - -

POD-DEIMc adaptive 3.21s 2 3.21s 3 3.19s 4 - - - -

Table 2: Test 1: FHN model. CPU time needed by the PODc and POD-DEIMc to achieve a desidered
tolerance for the relative error of the unknown u. The best gain is obtained by the PODc in adaptive
version for r = 6, while the POD-DEIMc in adaptive and global versions is cheaper than PODc.

16

0.2 0.4 0.6 0.8

x

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

y

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

(a)

0 50 100 150 200 250 300 350
r

10-15

10-10

10-5

100

105

1010
Singular values

u
v
f
g

(b)

0 20 40 60 80
r

10-15

10-10

10-5

100

POD
POD-DEIM
PODc
POD-DEIMc

(c)

Figure 8: Test 2: Schnakenberg model. (a) Full model solution u at the final time T = 2. (b) Singular
values decay of the snapshot matrices. (c) Relative error E(u, r) at the final time T = 2 for all MOR
techniques. The correction terms are computed by choosing R = ρsol = 80. DEIM is always applied
with ℓ = ρkin = 90. The POD error seems to decay, but exhibits big jumps for several values of r,
whereas POD-DEIM is completely unstable. PODc and POD-DEIMc are able to stabilize these bad
behaviours. As for the FHN model, POD-DEIMc shows for r ≥ 10 a stagnation of the error around
10−3.

5.2 Test 2: Schnakenberg model

We consider the Schnakenberg RD-PDE model with kinetics in (3), which unique homogeneous equi-
librium ue = a+ b and ve = b

(a+b)2 undergoes Turing instability. In (1)-(3) we choose the parameter

values (see [12, 33]):
du = 1, dv = 10, a = 0.1, b = 0.9, γ = 1000

and as initial conditions a small random perturbations of (ue, ve), u0(x, y) = ue+10−5
rand(x, y), v0(x, y) =

ve + 10−5
rand(x, y). The spatial domain Ω = [0, 1] × [0, 1] is discretized with nx = ny = 50 interior

points (n = nxny = 2500). The full model is integrated in time by applying the IMEX-Euler scheme
in matrix-oriented form (see Section 2.2) on the time interval [0, T] = [0, 2] with time step ht = 10−4

such that nt = 20000 solution maps are calculated for u and v. For memory reasons, we construct
the snapshot matrices by saving the solutions uk and vk only every four time steps, such that Su,
Sv ∈ R

2500×5001. The obtained Turing pattern for u at the final time T = 2 is shown in Figure 8(a)
and the singular values decay of the snapshot matrices (14) and (15) in Figure 8(b). The maximum
rank of the snapshot matrices Su, Sv is ρsol = 80, whereas for the kinetics Sf , Sg is ρkin = 90, in fact
the singular values decay is slower than in the FitzHugh-Nagumo model.

Stabilization. We first integrate the reduced models (12) and (17) on the full time interval [0, T]
with time step ht = 10−4 and for the projection dimension 1 ≤ r ≤ 80 = ρsol. We apply DEIM with
the parameter ℓ = 90 = ρkin (see Section 3). To build the corrected form PODc (24) and POD-DEIMc
(25) we choose R = 80 ≈ ρsol. In Figure 8(c) we show the relative error E(u, r) for the unknown u in
(19) for increasing values of the dimension of the reduced space r. Similar behaviour has been obtained
for the variable v (not reported).

It is clear that POD exhibits big jumps of high order of magnitudes for several values of r and
that POD-DEIM is completely unstable. These drawbacks are overcome if we consider the correspond-
ing corrected approaches (drawn in dash-dot lines) that imply for both PODc and POD-DEIMc a
decreasing error decay. Neverthless the error of the POD-DEIMc tends to be constant around 10−3

for r ≥ 10.
Adaptivity. In the above corrected algorithms the cost to obtain {ũR, ṽR} for R = 80 in the offline

stage is 33.12 seconds. Also for the Schnackenberg model our purpose is to reduce this cost by applying
an adaptive strategy. Hence, to identify the two subintervals I1 = [0, τ], I2 = [τ, T], from the snapshot
matrix Su we extract the spatial mean 〈u(t)〉 and the increment δk = ‖uk+1 − uk‖F , k = 0, . . . , nt − 1,
that are reported in Figure 9(a)-(b) respectively.

The maximum of the increment allows to identify τ = 0.2431 to split the main interval (see red

’o’ symbol). The initial conditions in I2 are those defined in (27) where u
(1)
r1

(τ) and v
(1)
r1

(τ) are the
solutions of the PODc system in I1 with R1 = 35 < ρsol and r1 = 10 < R1.

17

0 0.5 1 1.5 2
t

0.996

0.997

0.998

0.999

1

1.001

1.002

<u(t)>

(a)

0 0.5 1 1.5 2
t

10-10

10-5

100
||uk+1-uk||F

X 0.2431
Y 0.026071

(b)

Figure 9: Test 2: Schnakenberg model. Time dynamics of the spatial mean 〈u(t)〉 (a) and of the
increment δk = ‖uk+1 −uk‖F (b) for the full model solution u. The time value τ to split the integration
interval in I1 = [0, τ] and I2 = [τ, T] is indicated with a red ’o’ symbol and also with a data tip in the
right plot.

0 5 10 15 20 25 30 35
r

10-4

10-3

10-2

10-1

100

POD
POD-DEIM
PODc
POD-DEIMc

(a)

0 5 10 15
r

10-6

10-4

10-2

100
POD
POD-DEIM
PODc
POD-DEIMc

(b)

Figure 10: Test 2: Schnakenberg model adaptivity. (a) Zone I1: relative error E(u, r) at τ . (b) Zone I2:
relative error E(u, r) at the final time T = 2. In Table 3 are reported the values of ℓ, Ri, i = 1, 2 used
for the computation of DEIM and correction terms. In I1 PODc and POD-DEIMc show the same
decreasing error decay, they stabilizes the uncorrected algorithms and tends to 10−3 for r ≥ 5. In
I2: POD and its corrected counterpart have very similar decreasing behaviour; POD-DEIM is totally
unstable, but POD-DEIMc stabilizes it showing a monotone decay that tends to 10−4 for r ≥ 6.

We compare the adaptive and non adaptive correction techniques in terms of computational cost
in the offline stage and in terms of the generated relative errors for increasing value r of the reduced
space. In Table 3 we report the values ℓ used for DEIM, Ri, i = 1, 2 for the correction sizes and the
CPU time in the offline stage to approximate {ũRi

, ṽRi
}. Also in this case, the computational load in

the offline stage due to the correction is improved by the adaptive approach (the speed up factor is
about 8).

ℓ (DEIM) R (correction) CPU time for {ũR, ṽR}
[0, T] 90 80 33.12s

I1 50 35 0.88s
I2 14 15 2.98s

Table 3: Test 2: Schnakenberg model. Values used to solve the reduced systems (24) and (25) in
each time interval. The computational load in the offline stage for the correction is improved by the
adaptive approach (the speed up factor is about 8).

The errors E(u, r) on I1 and I2 are shown in Figure 10, (a) and (b) respectively. In I1: POD is

18

0 20 40 60 80
r

10-2

10-1

100

101

102

C
P

U
 ti

m
e

(s
)

[0,T]
POD

POD-DEIM

PODc

POD-DEIMc

Full matrix

Full vector

(a)

0 5 10 15
r

10-2

10-1

100

101

102

C
P

U
 ti

m
e

(s
)

Adaptivity
POD
POD-DEIM
PODc

POD-DEIMc
Full matrix
Full vector

(b)

Figure 11: Test 2: Schnakenberg model. Comparison in terms of computational cost in the online
stage. (a) CPU time (s) for solving the reduced models on [0, T] and (b) with adaptivity on I1 and I2.
(The computation of {ũR, ṽR} for the corrected systems is considered offline.) Even if POD and PODc
are stable with the same error behaviour, also in adaptive way (see Fig. 10) POD is too expensive. The
best performance in terms of cost and errors is obtained by PODc: it is stable in both adaptive and non
adaptive implementation, with sligthly lower cost in the adaptive way. Its total cost (considering also
the offline contribution) improves if used in adaptive way. We also note that POD-DEIM, although
very fast, is completely unstable.

tol 10−2 r0 10−3 r0 10−4 r0 10−5 r0 10−6 r0

PODc 0.40s 3 0.57s 6 0.61s 10 0.58s 16 0.65s 21
PODc adaptive 0.38s 2 0.60s 6 0.61s 9 0.62s 14 - -
POD-DEIMc 0.07s 3 0.08s 6 - - - - - -

POD-DEIMc adaptive 0.06s 2 0.07s 6 - - - - - -

Table 4: Test 2: Schnakenberg model. CPU time needed by the corrected techniques to achieve a
desired accuracy tol for the relative error of the unknown u such that E(u, r) ≤ tol for r ≥ r0. The
costs are very similar by applying or not an adaptive approach.

unstable for r ≤ 20; POD-DEIM exhibits an oscillating behaviour; their corrected counterparts have
the same decreasing monotone decay and for r ≥ 5 tend to be constant with an order of 10−3 (see
Figure 10(a)). In I2: both POD and PODc have a similar monotone decreasing error that attains an
order of 10−6 for r = 15; POD-DEIM is completely unstable, while the POD-DEIMc error decreases
and for r ≥ 6 tends to stagnate around 10−4 (see Figure 10(b)).

Computational cost: online stage. As for the FHN model, we compare all the techniques
proposed in terms of computational cost in the online stage with respect to the full model approximation
by IMEX-Euler in matrix (black continuous line, 2.6 seconds) and vector form (black dashed line, 8.4
seconds). In Figure 11(a) we report the CPU time (seconds) for solving the reduced models in [0, T]
for r ≤ 80 = R, while in the right panel the results in the case of adaptivity for r ≤ 15 = R2 ≈ ρsol,
where the CPU times to solve the two subsystems on I1 and I2 have been additioned. (Note that
POD-DEIM, although very fast, is completely inaccurate, see Figures 8(c) and 10(b)). We find that,
in all cases, the corrected methods are faster than the full model.

As final study, in Table 4 we report the CPU time needed to achieve a desired accuracy tol by
the corrected techniques. We also report for each tol the values r0 such that E(u, r) ≤ tol for r ≥ r0.
The computational costs are very low and there is a further speed up by applying the POD-DEIMc.
Nevertheless it results to be less accurate.

In conclusion, we can say that for the Schnackebenrg model the best performance in terms of cost
and errors is obtained by PODc. It is stable in both adaptive and non adaptive implementation, can
attain high accuracy for moderate values of r and its total cost (considering also the offline contribution
for the correction) improves if used in adaptive way.

19

0 200 400 600 800 1000
r

10-15

10-10

10-5

100

105
Singular values

u
v
f
g

(a)

0 50 100 150 200
r

10-7

10-5

10-3

10-1

101

POD
POD-DEIM
PODc
POD-DEIMc

(b)

Figure 12: Test 3: DIB model. (a) Singular values decay of the snapshot matrices defined in (14) and
(15). (b) Relative error E(u, r) at the final time T = 100. The correction algorithms are applied by
choosing R = 200, the DEIM techniques are applied with ℓ = 363. The standard POD technique shows
a very irregular error behaviour; POD-DEIM is completely unstable. The instability is overcome by
using the corrected models. As for the other models, POD-DEIMc exhibits for r ≥ 10 a stagnation of
the error around 10−2.

5.3 Test 3: DIB model

As a final applicative example (see [12]), we consider again the DIB morpho-chemical model for elec-
trodepostion with kinetics (4) with parameter choice given in Sections 2.2 and 3.1.

The snapshot matrices (14) are Su, Sv ∈ R
10000×25001. In Figure 12(a), we report the singular

values decay for both snapshot matrices (14) and (15) for r = 1, . . . , 1000. The decay is very slow with
respect to the RD-PDE models studied in the previous cases and the ranks of the snapshot matrices are
ρsol = 342 and ρkin = 363. We argue that these high values can depend from the more rich labyrinth
structure of the Turing pattern expected for this parameter choice (see Figure 1(a)) .

Stabilization. First of all we begin by solving each reduced model (12) and (17) in the time
interval [0, T] with time step ht = 10−3. We remind that DEIM is applied with ℓ = 363 = ρkin (see
Section 3.1). The corrected systems (24) and (25) are integrated by choosing R = 200 < ρsol. In
Figure 12(b) the relative errors for increasing values of r ≤ rmax = R = 200 for POD and POD-DEIM
are those reported in Figure 2 for the unknown u. As already discussed, POD exhibits a highly erratic
and somehow oscillating error behaviour for several values of r, whereas POD-DEIM results to be
completely unstable (no line is shown).

From Figure 12, it is evident that a stabilization occurs by using PODc and POD-DEIMc that
avoid the previous drawbacks and present monotone error decays. PODc (for r ≥ 100) tend to
stagnate around 10−5, similarly POD-DEIMc around 10−2 but earlier for r ≥ 10. We will show that
the bad trend of POD-DEIMc will be improved by using the adaptive strategy.

Adaptivity. We show that also for the DIB model the adaptivity reduces the computational cost
needed by correction in the offline stage. This cost on the whole time interval is about 2240 seconds.
The goal is again to adapt the value of the correction and DEIM parameters R and ℓ to the time
regimes of the Turing dynamics. The spatial mean 〈u(t)〉 and the increment of the numerical solution
u are reported in Figure 1(b)-(c), where the maximum of the increment at τ = 2.123 allows to identify
the two subintervals I1 = [0, τ] and I2 = [τ, T] where the adaptive MOR strategies can be applied.
The snapshot matrices in I1 are constructed by taking the full model solutions uk, vk every two time
steps. This is motivated by the very small size of the reactivity zone and by the need to give enough

information in this time interval. The initial conditions in I2 are those defined in (27) where u
(1)
r1

(τ)

and v
(1)
r1

(τ) are the solutions of the PODc system in I1 with R1 = 41 ≈ ρsol and r1 = 10 ≪ R1.
Also for the DIB model, we compare the correction techniques in adaptive and non adaptive

implementation in terms of computational cost in the offline stage and in terms of the relative errors
E(u, r). In Table 5 we list the choices of ℓ for DEIM, of Ri, i = 1, 2 for the correction spaces and the
CPU time in the offline stage to approximate {ũRi

, ṽRi
}. We can deduce that also for the DIB model

the cost in the offline stage due to the correction is reduced by the adaptive approach, in fact there is

20

ℓ (DEIM) R (correction) CPU time for {ũR, ṽR}
[0, T] 363 200 2239.9s

I1 60 41 5.8s
I2 324 150 1523.4s

Table 5: Test 3: DIB model. MOR parameters used to solve the reduced systems (24) and (25)
in each time interval. The advantage of the adaptive strategy becomes evident by comparing the
computational times in the last column.

0 10 20 30 40
r

10-7

10-5

10-3

10-1

101

POD
POD-DEIM
PODc
POD-DEIMc

(a)

0 50 100 150
r

10-7

10-5

10-3

10-1

101

POD
POD-DEIM
PODc
POD-DEIMc

(b)

Figure 13: Test 3: DIB model adaptive algorithms. (a) Zone I1: relative error E(u, r) at the final time
τ for u. (b) Zone I2: relative error at the final time T = 100 for the unknown u. MOR parameter
values for the application of POD-DEIM and correction are reported in Table 5. The classical POD
and POD-DEIM are very unstable in both zones. PODc and POD-DEIMc stabilize this trend in I1

both with low accuracy, then in I2 they exhibit a decreasing error decay, even if POD-DEIMc for
r ≥ 40 tends to a constant error of order 10−3.

a speed up factor of 1.5.
The errors E(u, r) by all algorithms are shown in Figure 13(a) for the simulations on I1 and in

Figure 13(b) for I2. The classical POD and POD-DEIM are unstable or completely erratic (POD)
in both zones. The application of PODc and POD-DEIMc stabilizes these bad behaviours in both
subdomains. In particular, in I1 the errors of PODc and POD-DEIMc are slightly increasing for r ≥ 8
but bounded around 10−3. In I2 the POD-DEIMc has a similar trend with a constant error of order
10−3 for r ≥ 40. Instead, PODc exhibits a monotone decay and reaches an error of order 10−6 for
r ≥ 100. It is worth noting that in the first region I1 we do not pretend a very low error, because there

the main goal is to obtain u
(1)
r1

(τ) and v
(1)
r1

(τ) as “acceptable” initial conditions for the subsystem in
I2.

Computational cost: online stage. To decide which is the best MOR approach among those
we proposed, we compare all techniques in terms of computational costs. It is worth noting that DIB
is more demanding than the other RD-PDE models considered due to the well structured labyrinth
pattern solution and the nonlinearity of the kinetics. In fact, to solve the full model the IMEX-Euler
scheme in matrix form employed 326.3 seconds and 582.7 seconds in vector form (see Section 2) (see
the black continuous and dashed lines reported in Figure 14). The computational costs of the corrected
and classical POD and POD-DEIM algorithms are also reported in Figure 14. The left panel concerns
the simulations on the entire interval [0, T] for r ≤ rmax = R = 200, while the right one those for the
adaptive strategy on both I1 and I2 until r ≤ rmax = R2 = 150. It is easy to see that the PODc and
POD-DEIMc result to be faster than the full model for all choices of r. We also note that although
POD-DEIM is faster than the full model, it is very inaccurate and unstable (see Figures 12(b) and
13).

In Table 6 we compare the performances of the corrected methods with and without adaptivity in
terms of the CPU time needed to reach a desired accuracy tol. We also report for each tol the value r0

such that E(u, r) ≤ tol for r ≥ r0. By using the adaptive approach we can achieve a better accuracy
up to two orders of magnitude (for the POD-DEIMc), even though we have almost the same cost by

21

0 50 100 150 200
r

10-2

100

102

104

C
P

U
 ti

m
e

(s
)

[0,T]

POD
POD DEIM
PODc

POD-DEIMc
Full matrix
Full vector

(a)

0 50 100 150
r

10-2

100

102

104

C
P

U
 ti

m
e

(s
)

Adaptivity

POD
POD-DEIM
PODc

POD-DEIMc
Full matrix
Full vector

(b)

Figure 14: Test 3: DIB model. Online computational costs in CPU time (s). (a) Solving the reduced
models in the time interval [0, T]; (b) same algorithms with adaptivity. The computation of {ũR, ṽR}
for the corrected systems is considered offline and is reported in Table 5.

tol 10−1 r0 10−2 r0 10−3 r0 10−4 r0 10−5 r0

PODc 36.74s 2 34.87s 11 64.10s 35 53.48s 65 - -
PODc adaptive 36.32s 2 55.78s 11 54.34s 35 65.30s 64 97.06s 100
POD-DEIMc 5.76s 2 - - - - - - - -

POD-DEIMc adaptive 5.54s 2 6.80s 12 6.69s 38 - - - -

Table 6: Test 3: DIB model. CPU time needed to achieve a desired accuracy tol for the corrected
systems. The best gain is obtained by PODc adaptive for r = 100.

applying or not an adaptive approach. As reported in Table 5, the adaptivity shows its advantages in
the offline stage.

In terms of speed up factor we want to emphasize that PODc, for tol ≤ 10−4 is about 8 times
faster than the full problem in the matrix form. Even though POD-DEIMc is more economic, it is
less accurate achieving an error of order 10−3 with the adaptive algorithm. To conclude, the best
performance in terms of accuracy and efficiency is obtained by the adaptive PODc.

6 Conclusions and future works

In this paper, we have presented a new algorithm that stabilizes the well-known POD-DEIM algorithm
and we have applied the new approach to coupled PDE systems with Turing type solutions. The idea is
to add a correction term based on high-ranked POD solution and to introduce an adaptive version based
on the time dynamics of the RD-PDEs that further improves the computational efficiency. We have
found that both PODc and adaptive PODc improve the accuracy of the surrogate model with respect
to the classical POD. Furthermore, the adaptive POD-DEIMc allows to obtain faster computations
but less accurate approximations.

The present research has been motivated by the initial results proposed in [12] for Turing pattern
approximation. In particular, for the DIB electrochemical model and for a limited range of parameters,
POD has been applied to recover patterns of different morphology by using the same POD bases and
a fixed reasonable r. The stabilization and computational efficiency shown in Section 5, encourage
the application of our corrected and adaptive MOR techniques in this direction. For example, some
applications in this sense aims to: (i) obtain a many-query scenario of the possible patterns in the
Turing region as in [47]; (ii) devise smart parameter identification techniques to compare numerical
solutions of the DIB model with experimental data of battery life decay; (iii) construct in economic
way model-based training sets in machine learning techniques for energetic applications.

Acknowledgemens. AA, AM and IS are members of the InDAM-GNCS activity group. IS
acknowledges the PRIN 2017 research Project (No. 2017KL4EF3) “Mathematics of active materials:
from mechanobiology to smart devices.”

22

References

[1] A. Alla and J. N. Kutz. Randomized Model Order Reduction. Advances in Computational
Mathematics, 45, 2019.

[2] D. Amsallem and C. Farhat. Stabilization of projection-based reduced-order models. International
Journal for Numerical Methods in Engineering, 91(4):358–377, 2012.

[3] U.M. Ascher, S.J. Ruuth, and B.T.R. Wetton. Implicit-explicit methods for time dependent PDE’s.
SIAM J. Numerical Analysis, 32(3):797–823, 1995.

[4] F. Ballarin, A. Manzoni, A. Quarteroni, and G. Rozza. Supremizer stabilization of POD–Galerkin
approximation of parametrized steady incompressible Navier–Stokes equations. International
Journal for Numerical Methods in Engineering, 102(5):1136–1161, 2015.

[5] M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera. An empirical interpolation method: ap-
plication to efficient reduced-basis discretization of partial differential equations. Comptes Rendus
Mathematique, 339:667–672, 2004.

[6] R. Barreira, C. M. Elliott, and A. Madzvamuse. The surface finite element method for pattern
formation on evolving biological surfaces. Journal of Mathematical Biology, 63(6):1095–1119, 2011.

[7] P. Benner and L. Feng. Model order reduction for coupled problems (survey). Applied and
Computational Mathematics, 14.

[8] P. Benner, S. Gugercin, and K. Willcox. A survey of projection-based model reduction methods
for parametric dynamical systems. SIAM Rev., 57:483–531, 2015.

[9] M. Benosman, J. Borggaard, O. San, and B. Kramer. Learning-based robust stabilization for
reduced-order models of 2D and 3D Boussinesq equations. Applied Mathematical Modelling,
49:162–181, 2017.

[10] B. Bozzini, G. Gambino, D. Lacitignola, S. Lupo, M. Sammartino, and I. Sgura. Weakly non-
linear analysis of Turing patterns in a morphochemical model for metal growth. Computers &
Mathematics with Applications, 70(8):1948 – 1969, 2015.

[11] B. Bozzini, D. Lacitignola, and I. Sgura. Spatio-temporal organization in alloy electrodeposition:
a morphochemical mathematical model and its experimental validation. Journal of Solid State
Electrochemistry, 17(2):467–479, 2013.

[12] B. Bozzini, A. Monti, and I. Sgura. Model-reduction techniques for PDE models with Turing type
electrochemical phase formation dynamics. Applications in Engineering Science, 8:1–10, 2021.

[13] M.A.J. Chaplain, M. Ganesh, and I.G. Graham. Spatio-temporal pattern formation on spherical
surfaces: numerical simulation and application to solid tumour growth. Journal of Mathematical
Biology, 42(5):387–423, 2001.

[14] M.A.J. Chaplain and A. Gerisch. Robust numerical methods for taxis–diffusion–reaction systems:
applications to biomedical problems. Math. Comp. Mod., 43:49–75, 2006.

[15] M.A.J. Chaplain and J.A. Sherratt. A new mathematical model for avascular tumour growth. J.
Math. Biol., 43:291–312, 2001.

[16] S. Chatarantabut and D. Sorensen. Nonlinear model reduction via discrete empirical interpolation.
SIAM J. Sci. Comput, 32:2737–2764, 2010.

[17] M.C. D’Autilia, I. Sgura, and V. Simoncini. Matrix-oriented discretization methods for reaction-
diffusion PDEs: Comparisons and applications. Comput. Math. Appl., 79:2067–2085, 2020.

[18] Z. Drmac and S. Gugercin. A new selection operator for the discrete empirical interpolation
method - improved a priori error bound and extensions. SIAM J. Sci. Comput., 38:A631–A648,
2016.

23

[19] Kirsten G. Multilinear POD-DEIM model reduction for 2D and 3D semilinear systems of differ-
ential equations. Journal of Computational Dynamics, pages 1–25, 2021.

[20] G. Gambino, M.C. Lombardo, G. Rubino, and M. Sammartino. Pattern selection in the 2D
FitzHugh-Nagumo model. Ricerche di Matematica volume 68, 68:535–549, 2019.

[21] D.A. Garzon-Alvarado, A.M.R. Martinez, and D.L.L. Segrera. A model of cerebral cortex for-
mation during fetal development using reaction-diffusion-convection equations with Turing space
parameters, 2011.

[22] E. Gilad, J. von Hardenberg, A. Provenzale, M. Shachak, and E. Meron. Ecosystem engineers:
From pattern formation to habitat creation. Phys. Rev. Lett., 93:098105, Aug 2004.

[23] G. H. Golub and C. F. Van Loan. Matrix computations. The Johns Hopkins University Press,
1996.

[24] C. Gräßle, M. Hinze, and S. Volkwein. Snapshot-Based Methods and Algorithms, Volume 2 of
Model Order Reduction. De Gruyter, 2020.

[25] B. Karasözen, M. Uzunca, and Tugba Küçükseyhan. Model order reduction for pattern formation
in fitzhugh-nagumo equations. In Bülent Karasözen, Murat Manguouglu, Münevver Tezer-Sezgin,
Serdar Göktepe, and Ömür Uugur, editors, Numerical Mathematics and Advanced Applications
ENUMATH 2015, pages 369–377, Cham, 2016. Springer International Publishing.

[26] B. Karasözen, G. Mülayim, M. Uzunca, and S. Yıldız. Reduced order modelling of nonlinear
cross-diffusion systems. Applied Mathematics and Computation, 401:126058, 2021.

[27] G. Kirsten and V. Simoncini. A matrix-oriented POD-DEIM algorithm applied to nonlinear
differential matrix equations. 2020.

[28] J.N. Kutz, S.L. Brunton, B.W. Brunton, and J.L. Proctor. Dynamic Mode Decomposition: Data-
Driven Modeling of Complex Systems. SIAM book, 2016.

[29] D. Lacitignola, B. Bozzini, M. Frittelli, and I. Sgura. Turing pattern formation on the sphere for
a morphochemical reaction-diffusion model for electrodeposition. Communications in Nonlinear
Science and Numerical Simulation, 48:484–508, 2017.

[30] D. Lacitignola, B. Bozzini, and I. Sgura. Spatio-temporal organization in a morphochemical
electrodeposition model: Hopf and Turing instabilities and their interplay. European Journal of
Applied Mathematics, 26(2):143–173, 2015.

[31] J. Lefèvre and J.-F. Mangin. A reaction-diffusion model of human brain development. PLoS
Computational Biology, 6(4):e1000749, 2010.

[32] A. Madzvamuse. Time-stepping schemes for moving grid finite elements applied to reaction-
diffusion systems on fixed and growing domains. J. Comput. Phys., 214(2):239–263, 2006.

[33] A. Madzvamuse, A. J. Wathen, and P. K. Maini. A moving grid finite element method applied to
a model biological pattern generator. Journal of Computational Physics, 190(2):478–500, 2003.

[34] P. Maini and H. Othmer. Mathematical Models for Biological Pattern Formation. {The IMA
Volumes in Mathematics and its Applications - Frontiers in application of Mathematics}. Springer-
Verlag, New York, 2001.

[35] H. Malchow, S. Petrowski, and E. Venturino. Spatio temporal Patterns in Ecology and Epidemi-
ology. Chapman & Hall, UK, 2008.

[36] T.T. Marquez-Lago and P. Padilla. A selection criterion for patterns in reaction–diffusion systems.
Theor Biol Med Model, 11(7):1093–1121, 2014.

[37] C. Mou, H. Liu, D.R. Wells, and T. Iliescu. Data-driven correction reduced order models for the
quasi-geostrophic equations: a numerical investigation. Int. J. Comut. Fluid Dyn., 34:147–159,
2020.

24

[38] J.D. Murray. Mathematical Biology II - Spatial Models and Biomedical Applications
{Interdisciplinary Applied Mathematics V. 18}. Springer-Verlag, Berlin Heidelberg, 2003.

[39] M.G. Neubert and H. Caswell. Alternatives to resilience for measuring the responses of ecological
systems to perturbations. Ecology, The Ecological Society of America, 78:653–665, 1997.

[40] M.G. Neubert, H. Caswell, and J.D. Murray. Transient dynamics and pattern formation: reactivity
is necessary for Turing instabilities. Math. Biosciences, 175:1–11, 2002.

[41] K.J. Painter. Mathematical models for chemotaxis and their applications in self-organisation
phenomena. Journal of Theoretical Biology, 481:162–182, 2019.

[42] B. Peherstorfer, D. Butnaru, K. Willcox, and H. Bungartz. Localized discrete empirical interpo-
lation method. SIAM Journal on Scientific Computing, 36, 2014.

[43] T. Reis and T. Stykel. Stability analysis and model order reduction of coupled systems. Mathe-
matical and Computer Modelling of Dynamical Systems, 13(5):413–436, 2007.

[44] Timo Reis and Tatjana Stykel. A survey on model reduction of coupled systems. In Model Order
Reduction: Theory, Research Aspects and Applications, pages 133–155, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg.

[45] S.J. Ruuth. Implicit-explicit methods for reaction-diffusion problems in pattern formation. Journal
of Mathematical Biology, 34(2):148–176, 1995.

[46] I. Sgura, B. Bozzini, and D. Lacitignola. Numerical approximation of Turing patterns in electrode-
position by ADI methods. Journal of Computational and Applied Mathematics, 236(16):4132–4147,
2012.

[47] I. Sgura, A. Lawless, and B. Bozzini. Parameter estimation for a morphochemical reaction-
diffusion model of electrochemical pattern formation. Inverse Probl. Sci. Eng., 27:618–647, 2019.

[48] J. Sherratt. Turing pattern in desert. In How the World Computes, in S.B. Cooper, A. Dawar
(Eds.), volume Lecture Notes in Computer Science, 7318, 2012.

[49] L. Sirovich. Turbulence and the dynamics of coherent structures. Parts I-II. Quarterly of Applied
Mathematics, pages 561–59, 1987.

[50] D. Wells, Z. Wang, X. Xie, and T. Iliescu. An evolve-then-filter regularized reduced order model for
convection-dominated flows. International Journal for Numerical Methods in Fluids, 84(10):598–
615, 2017.

[51] X. Xie, M. Mohebujjaman, L.G. Rebholz, and T. Iliescu. Data-driven filtered reduced order
modeling of fluid flows. SIAM J. Sci. Comput., 40:B834–B857, 2018.

25

	1 Introduction
	2 The full model and its numerical approximation
	2.1 Model kinetics
	2.2 Numerical approximation of the RD-PDE system

	3 Model Order Reduction and POD instability
	3.1 POD instability: a numerical example

	4 Stabilization and adaptivity for the POD-DEIM approach
	4.1 Correction and stabilization
	4.2 Adaptivity
	4.3 Our algorithm

	5 Numerical results
	5.1 Test 1: FitzHugh-Nagumo model
	5.2 Test 2: Schnakenberg model
	5.3 Test 3: DIB model

	6 Conclusions and future works

