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Abstract:Mixed-dimensional elliptic equations exhibiting a hierarchical structure are commonly used tomodel
problems with high aspect ratio inclusions, such as flow in fractured porous media. We derive general abstract
estimates based on the theory of functional a posteriori error estimates, for which guaranteed upper bounds
for the primal and dual variables and two-sided bounds for the primal–dual pair are obtained. We improve on
the abstract results obtained with the functional approach by proposing four different ways of estimating the
residual errors based on the extent the approximate solution has conservation properties, i.e., (1) no conserva-
tion, (2) subdomain conservation, (3) grid-level conservation, and (4) exact conservation. This treatment results
in sharper and fully computable estimates when mass is conserved either at the grid level or exactly, with a
comparable structure to those obtained from grid-based a posteriori techniques. We demonstrate the practical
effectiveness of our theoretical results through numerical experiments using four different discretizationmeth-
ods for synthetic problems and applications based on benchmarks of flow in fractured porous media.
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1 Introduction

Mixed-dimensional partial differential equations (mD-PDEs) arise when partial differential equations interact
on domains of different topological dimensions [43]. Prototypical examples include models of thin inclusions in
elastic materials [8, 17, 22], blood flow in human vasculature [25, 33, 37], root water uptake systems [36], and
flow in fractured porous media [3, 7, 30]. The latter example has an appealing mathematical structure, in that
the model equations allow for a hierarchical representation where each subdomain (matrix, fractures, fracture
intersections, and intersection points) only has direct interaction with subdomains of topological dimension
one higher or one lower [19]. Such hierarchical mD-PDEs are the topic of the current paper.

mD-PDEs are intrinsically linked to the underlying geometric representation, which, in a certain sense,
generalizes the usual notion of the domain. One can then define sets of suitable functions (and function spaces)
on this geometry, and these sets are then naturally interpreted asmixed-dimensional (mD) functions. Exploiting
this concept, one can generalize the standard differential operators to mappings between mD functions and
thus obtain an mD calculus. The fact that this mD calculus inherits standard properties of calculus, particularly
partial integration (relative to suitable inner products), a deRhamcomplex structure, and a Poincaré–Friedrichs
inequality, was recently established using the language of exterior calculus on differential forms [18].

The inherent geometric generality of hierarchical mD-PDEs also demand the same level of abstraction of
a posteriori error estimation techniques. This requirement makes error estimates of the functional type par-
ticularly well-suited for the task [42, 47, 55–57, 59]. The most attractive feature of this approach is that error
estimates are derived using purely functional methods [57]. The bounds are therefore agnostic to the way
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Fig. 1: Example geometries falling within the context of hierarchical mixed-dimensional geometries studied herein. Left panel corre-
sponds to a 2D benchmark problem [29] while the two remaining correspond to 3D benchmark problems [14].

approximated solutions are obtained in the energy space, and the only undetermined constants arise from
Poincaré-type inequalities [38].

However, unlike other types of error estimates [6, 46, 61, 63, 66], this generality makes standard functional
estimates of limited applicability to hierarchical elliptic mD-PDEs due to the following reasons: (1) for general
fracture networks, the mixed-dimensional Poincaré constant is not easily computable, and (2) since Poincaré
constants are proportional to the diameter of the physical domain, residual estimators cannot exhibit super-
convergent properties.

To circumvent the aforementioned issues,we exploit the fact that Poincaré-type inequalities implyweighted
norms [50, 53], and use spatially-dependent weights to control the residual norms. We show both theoretically
andnumerically that this treatment leads to sharper estimateswhenapproximations to the exact solution satisfy
mass conservation in a given partition of the domain.

In view of the preceding discussion, our aim is therefore to obtain a posteriori error estimates for the ap-
proximate solution to themD scalar elliptic equation [18, 19, 44], where themD Laplace equation for geometries
such as those illustrated in Fig. 1, is described in detail in Section 3.

We remark that while a broad range of a posteriori error techniques are available for mono-dimensional
problems, existing error bounds formDmodels are farmore scarce. Moreover, the ones available, are restricted
to specific cases (e.g., in the context of mortar methods [13, 52, 64, 65] and fractured porous media [21, 32, 40])
with far less geometric generality than what we present here. Thus, for practical problems, a posteriori error
bounds for mD geometries have until now essentially not been available.

The rest of the paper is structured as follows: Section 2 is devoted to introducing the model problem, func-
tional spaces, and variational formulations for the case of a single 1D fracture embedded in a 2D matrix. The
section is concluded by providing a first upper bound for the primal variable. In Section 3, we generalize the
results from Section 2 to the case of fracture networks and introduce the necessary tools to perform the a poste-
riori analysis in anmD setting. After reviewing necessary tools from functional analysis in Section 4, in Section 5,
we provide our main results starting from a generic abstract estimate and then considering specific cases de-
pending upon the degree of accuracy at which residual terms are approximated. In Section 6, we introduce the
approximated problem using mixed-finite element methods and thus make the estimates concrete. Section 7
deals, respectively, with numerical validations and practical applications of the derived bounds. Finally, in Sec-
tion 8, we present our concluding remarks.

2 Upper bounds for a single fracture

In this section, we introduce the model problem together with functional spaces and the variational formula-
tions for the case of a single 1D line embedded in a 2D matrix, as illustrated in Fig. 2. Furthermore, a first upper
bound for the primal variable is derived following the classical functional approach. We remark that the case
of a single fracture embedded in a matrix has been analyzed before. For example, [21] and [32] proposed error
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Fig. 2: A horizontal 1D fracture embedded in a 2D matrix. Left: Subdomains and interfaces. Right: Boundary conditions. For the fracture,
the purple square denotes a no-flux boundary condition, whereas the green square a Dirichlet boundary condition. Note that ∂1Ω2, Γ1,
Ω1, Γ2, ∂2Ω2, all coincide spatially. For illustrative purposes, however, they are placed in different locations.

estimators based on the residual approach, whereas [40] obtained guaranteed a posteriori error estimates using
the approach of Vohralík [63].

2.1 The model problem for a single fracture

Before writing the set of equations describing general fracture networks, let us first introduce the governing
equations of a simpler configuration; that is, a unit square domain Y ⊂ R2 decomposed as a 1D fracture Ω1
embedded in a 2Dmatrix Ω2, as shown in the left panel of Fig. 2. Interfaces Γ1 and Γ2, at each side of Ω1, establish
the link between Ω2 and Ω1. The model presented below is well-established for these problems, and we point
the reader to the references for further justification of this system [19, 39, 44].

The strong form of the governing equations in Ω2 reads

∇ · u2 = f2 inΩ2 (2.1a)
u2 = −K2∇ p2 inΩ2 (2.1b)

u2 · n2 = λ1 on ∂1Ω2 (2.1c)
u2 · n2 = λ2 on ∂2Ω2 (2.1d)
u2 · n2 = 0 on ∂NΩ2 (2.1e)

p2 = gD,2 on ∂DΩ2 . (2.1f)

Here, (2.1a) is the mass conservation equation, u2 is the matrix velocity, and f2 an external source. The fluid
velocity is given by the standard Darcy’s law (2.1b), whereK2 is thematrix permeability; a bounded, symmetric,
and positive-definite 2 × 2 tensor, and p2 is the fluid pressure.

Equations (2.1c) and (2.1d) require that at each side of the internal boundary of Ω2, the normal component
of u2 to match the interface (mortar) fluxes λ1 and λ2. To fix the direction of the normal vector on internal
boundaries, we require n2 pointing from the higher- to the lower-dimensional subdomain. No flux conditions
are prescribed in (2.1e), where u2 ·n2 represents the outer normal flux across ∂NΩ2. Finally, Dirichlet boundary
conditions are imposed in (2.1f), where gD,2 is a prescribed function on the Dirichlet boundary.

In the fracture Ω1, the equations are given by

∇1 · u1 −
(︀
λ1 + λ2

)︀
= f1 inΩ1 (2.2a)

u1 = −K1∇1 p1 inΩ1 (2.2b)
u1 · n1 = 0 on ∂NΩ1 (2.2c)

p1 = gD,1 on ∂DΩ1 . (2.2d)
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In (2.2a),∇1 · (·) = d
dx (·) = ∇1(·) are the divergence and gradient operators acting in the tangent space of Ω1, u1 is

the tangential fracture velocity, the term in parentheses represents the jump in normal fluxes from the adjacent
interfaces Γ1 and Γ2 onto Ω1, and f1 is an external source.

The tangential velocity u1 is again expressed via Darcy’s law (2.2b), where in a slight abuse of notation,
we use K1 to refer to the tangential component of the fracture permeability, which is again assumed to be
positive and bounded from above. Finally, (2.2c) and (2.2d) are the Neumann andDirichlet boundary conditions,
respectively. Again, we use gD,1 to denote a prescribed function on the Dirichlet part of the fracture boundary.

To close the system of equations, we must specify a constitutive relationship for the interface fluxes. Here,
we use a Darcy-type law [39], where mortar fluxes are linearly related to pressure jumps

λ1 = −κ1 (p1 − p2) on Γ1 (2.3a)
λ2 = −κ2 (p1 − p2) on Γ2 (2.3b)

with κ1 and κ2 representing the effective normal permeability on Γ1 and Γ2, respectively. We restrict our anal-
ysis to the case where κ1 and κ2 are non-degenerate. Thus, following [19], we further require the existence of
two constants γ1 and γ2 such that 0 < γ1 ⩽ κ−1

j ⩽ γ2 < ∞ for j ∈ {1, 2}.

2.2 Functional spaces and variational formulations

Let us now present the primal weak formulation of the single fracture model from the previous section. To this
aim, consider first the energy space with vanishing traces on Dirichlet boundaries

H1
0(Ωi) = {qi ∈ H1(Ωi) : tr∂DΩi qi = 0} (2.4)

and the product spaces

H1(Ω) = H1(Ω1) × H1(Ω2), H1
0(Ω) = H1

0(Ω1) × H1
0(Ω2). (2.5)

Furthermore, let ⟨·, ·⟩Ωi
and ⟨·, ·⟩Γj denote respectively the L

2–inner products onΩi and Γj , and ‖·‖Ωi
and ‖·‖Γj

the relevant L2–norms. Finally, we denote by g = [g1 , g2] ∈ H1(Ω) two functions extending the boundary data
into the domains, and thus satisfying tr∂DΩigi = gD,i . We now state the primal weak problem as the following.

Definition 2.1 (primal weak formulation for a single fracture). Let p = [p1 , p2] and g = [g1 , g2] ∈ H1(Ω). Then find
p ∈ H1

0(Ω) + g such that

2∑︁
i=1

⟨Ki ∇i pi ,∇i qi⟩Ωi
+

2∑︁
j=1

⟨
κj
(︀
p1 − tr∂jΩ2 p2

)︀
, q1 − tr∂jΩ2 q2

⟩
Γj

=
2∑︁
i=1

⟨fi , qi⟩Ωi
∀ q = [q1 , q2] ∈ H1

0(Ω). (2.6)

Refer to Appendix A.1 for the derivation of the primal weak form from the strong form in Section 2.1. We see
directly from equation (2.6) that the primal weak form has a minimization structure subject to the stated con-
ditions onKi and κj , and well-posedness follows by standard arguments.

A dual weak form for the model problem, with explicit representation of the subdomain velocities and
mortar fluxes, can also be constructed. We first define the space H(div;Ωi , ∂XΩ) as the space of L2-vector func-
tions on Ωi with weak divergence in L2(Ωi) and zero trace on the part of the boundary indicated by ∂XΩ. Then,
we denote the product spaces of H(div)-functions that are zero on Neumann, and on Neumann and internal
boundaries as:

V = H(div;Ω1 , ∂NΩ1) × H(div;Ω2 , ∂NΩ2) (2.7)
V0 = H(div;Ω1 , ∂NΩ1) × H(div;Ω2 , ∂NΩ2 ∪ ∂1Ω2 ∪ ∂2Ω2). (2.8)
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Furthermore, we define the L2-product spaces on the domains:

L2(Ω) = L2(Ω1) × L2(Ω2), L2(Γ) = L2(Γ1) × L2(Γ2). (2.9)

With these spaces in hand, we consider the standard linear extension operator from internal boundaries onto
domains denoted Rj := L2(Γj) → H(div;Ω2 , ∂NΩ2), such that Rj satisfies for all λj ∈ L2(Γj)

tr∂jΩ2 (Rj λj) · n2 =
{︃
λj on ∂jΩ2

0 on ∂Ω \ ∂jΩ2 .
(2.10)

The precise choice of the extension operator Rj is not important; however, the natural choice based on the
solution of an auxiliary elliptic equation is reasonable [19]. We naturally extend the definition of Rj to R :=
L2(Γ) → V by requiring that for [λ1 , λ2] ∈ L2(Γ), then [u1 , u2] = Rλ satisfies u1 = 0 and u2 = R1λ1 +R2λ2.

The above constructions allow us to represent subdomain fluxes as

u = u0 +Rλ (2.11)

where u0 ∈ V0 and λ ∈ L2(Γ). This motivates the construction of a compound H(div)-type spaces, as

H(div;Ω, Γ) = V0 × L2(Γ). (2.12)

This construction will become key when we generalize to more complex geometries in the next section.

Remark 2.1 (on the regularity of H(div; Ω, Γ)). It is worth remarking that the restriction of the space H(div;Ω, Γ)
to the domain Ω2 has slightly enhanced regularity relative to the standard space H(div;Ω2), as this latter space
has normal traces which do not lie in L2(Γ1) nor L2(Γ2).

Definition 2.2 (dual weak formulation for a single fracture). Let u0 = [u0,1 , u0,2], λ = [λ1 , λ2], p = [p1 , p2]. Then
find (u0 , λ, p) ∈ H(div;Ω, Γ) × L2(Ω) such that⟨

K−1
2
(︀
u0,2 +R1λ1 +R2λ2

)︀
, v0,2

⟩
Ω2
+
⟨
K−1
1 u0,1 , v0,1

⟩
Ω1

−
2∑︁
i=1

⟨︀
pi ,∇i · v0,i

⟩︀
Ωi
= −

2∑︁
i=1

⟨︀
gD,i , tr v0,i · ni

⟩︀
∂DΩi

∀ v0 = [v0,1 , v0,2] ∈ V0 (2.13a)⟨
K−1
2
(︀
u0,2 +R1λ1 +R2λ2

)︀
,R1ν1 +R2ν2

⟩
Ω2
− ⟨p2 ,∇2 · (R1ν1 +R2ν2)⟩Ω2

+
2∑︁
j=1

⟨
κ−1
j λj , νj

⟩
Γj
+ ⟨p1 , ν1 + ν2⟩Ω1

= 0 ∀ ν = [ν1 , ν2] ∈ L2(Γ) (2.13b)

⟨︀
∇2 ·

(︀
u0,2 +R1λ1 +R2λ2

)︀
, q2

⟩︀
Ω2
+
⟨︀
∇1 · u0,1 , q1

⟩︀
Ω1
− ⟨λ1 + λ2 , q1⟩Ω1

=
2∑︁
i=1

⟨fi , qi⟩Ωi
∀ q = [q1 , q2] ∈ L2(Ω). (2.13c)

Refer to Appendix A.2 for the derivation.

Remark 2.2 (well-posedness). The variational formulation fromDefinition 2.2 can be classified as a saddle point
structure, for which well-posedness results have been established for fracture networks (see, e.g., [19, Th. 2.5]).

2.3 A first a posteriori error estimate for the primal variable

Having the functional spaces and weak formulations formally introduced, in this section, we provide a first
upper bound for an approximation to the primal variable q = [q1 , q2] ∈ H1

0(Ω) + g for the case of a single
fracture in the energy norm

|||q|||2 :=
2∑︁
i=1

⃦⃦⃦
K1/2

i ∇i qi
⃦⃦⃦2
Ωi
+

2∑︁
j=1

⃦⃦⃦
κ1/2
j

(︁
q1 − tr∂jΩ2 q2

)︁⃦⃦⃦2
Γj
. (2.14)
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Theorem 2.1 (a first upper bound for the primal variable). Let p ∈ H1
0(Ω) + g be the solution to the primal weak

form (2.6) with ∂DΩ1 non-empty. Then for any q ∈ H1
0(Ω) + g, it holds that

|||p − q||| ⩽
2∑︁
i=1

ηDF,Ωi +
2∑︁
j=1

ηDF,Γj +
2∑︁
i=1

ηR,Ωi ∀ [v0 , ν] ∈ H(div;Ω, Γ) (2.15)

with

ηDF,Ω1 =
⃦⃦⃦
K−1/2
1

(︀
v0,1 +K1∇1 q1

)︀⃦⃦⃦
Ω1

(2.16a)

ηDF,Ω2 =
⃦⃦⃦
K−1/2
2

(︀
v0,2 +R1ν1 +R2ν2 +K2∇2 q2

)︀⃦⃦⃦
Ω2

(2.16b)

ηDF,Γ1 =
⃦⃦⃦
κ−1/2
1

(︀
ν1 + κ1

(︀
q1 − tr∂1Ω2 q2

)︀)︀⃦⃦⃦
Γ1

(2.16c)

ηDF,Γ2 =
⃦⃦⃦
κ−1/2
2

(︀
ν2 + κ2

(︀
q1 − tr∂2Ω2 q2

)︀)︀⃦⃦⃦
Γ2

(2.16d)

ηR,Ω1 = CΩ1

⃦⃦
f1 −∇1 · v0,1 + ν1 + ν2

⃦⃦
Ω1

(2.16e)

ηR,Ω2 = CΩ2

⃦⃦
f2 −∇2 ·

(︀
v0,2 +R1ν1 +R2ν2

)︀⃦⃦
Ω2

(2.16f)

where CΩ1 and CΩ2 are the permeability-weighted Poincaré–Friedrichs constants for Ω1 and Ω2:

CΩi
:= sup

q∈H1
0,D(Ωi)

‖q‖Ωi⃦⃦⃦
K1/2

i ∇iq
⃦⃦⃦
Ωi

. (2.17)

Proof. Refer to Appendix B for the proof.

Remark 2.3 (nature of the estimators). The upper bound (2.15) is a guaranteed upper bound for the deviation be-
tween the primal solution p ∈ H1

0(Ω)+g and an arbitrary approximation q ∈ H1
0(Ω)+g in the energy space. There

are three types of contributions to the upper bound: (i) diffusive flux estimators (2.16a) and (2.16b) measuring
the difference between the approximate fluxes v0 +Rν ∈ V and fluxes obtained from H1

0(Ω)-potentials q, (ii) do-
main coupling estimators (2.16c) and (2.16d) measuring how close the approximate normal fluxes ν ∈ L2(Γ)
are to the jump in H1

0(Ω)-potentials q, and (iii) residual estimators (2.16e) and (2.16f) measuring the difference
between the exact source term and the divergence of the approximate flux plus the jump in adjacent approxi-
mate normal fluxes. An important detail is that the approximate cross-domain fluxes ν1 and ν2 enter into the
residual estimators of both the higher- and lower-dimensional subdomain.

Remark 2.4 (sharpness of the estimates). The estimates above are in principle sharp, as can be shown by stan-
dard arguments [57]. However, in practice,wewill often have access to additional information about the approx-
imate solution (most commonly if it is derivedwith a local conservation property). This allows for improvements
in the residual estimators (2.16f) and (2.16e), as we will show in Section 5.2.

It is clear that even for this fairly simple configuration, the variational formulations (and the analysis in general)
can be quite cumbersome. The situation escalates in complexity when intersecting fractures (see Fig. 3) are part
of the geometric configuration, in particular as the proof of Theorem 2.1 relies on all subdomains having some
non-vanishing Dirichlet boundary. Indeed, when floating subdomains (e.g., fully embedded fractures or isolated
rock domains) are present in the fracture network, the standard procedure used in Theorem2.1 canno longer be
applied directly. Thus, in the remainder of the paper,wedealwith these challenges in amore general framework.

3 Extension to fracture networks

In this section, we extend the single fracture model to account for several subdomains as part of a general
fracture network. Our vocabulary is motivated by the physical case of n = 3, where the surrounding rock is
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Fig. 3:Mixed-dimensional geometric decomposition of a fracture network. Left: The domain Y is decomposed into two 2D matrices (Ω9

and Ω10), four 1D fractures (Ω5, Ω6, Ω7, and Ω8), one 0D fracture intersection point (Ω4), and three 0D fracture end-points (Ω1, Ω2, Ω3).
Note that we allow fractures and other lower-dimensional subdomains to form parts of the boundary of the domain (e.g., Ω5 with its
endpoints Ω1 and Ω2). Center: Interfaces between subdomains. Right: Subdomain boundaries. Internal boundaries are depicted in red,
whereas fracture’s boundaries touching the ambient boundary are depicted in green.

composed of simply connected 3D subdomains, fractures are simply connected planar 2D subdomains, the in-
tersection between such fractures are 1D lines, and the intersection between fracture intersections are 0Dpoints
(see Fig. 3 for an example with n = 2).

We start with the classical description and then introduce themDnotation. The rest of the section is devoted
to introducing key tools that are necessary to perform the analysis in an mD setting.

3.1 Mixed-dimensional geometric representation

The derivation of a posteriori estimates for generic fracture networks greatly benefits from an mD decompo-
sition of the domain of interest, and we therefore follow the approach of [19]. We start by considering an n–
dimensional contractible domain Y ⊂ Rn , n ∈ {2, 3}, decomposed into m planar, open and non-intersecting
subdomains Ωi of different dimensionality di = d(i), such that Y =

⋃︀m
i=1 Ωi (see left panel of Fig. 3). The partition-

ing is constrained such that any d-dimensional subdomain (for d < n) is always either the intersection of the
closure of two or more subdomains of dimension d +1, or a cut in a domain of dimension d +1. This hierarchical
structure excludes, e.g., a 1D line or a 0D point embedded directly in a 3D domain.

We adopt a structure where neighboring subdomains one dimension apart are connected via interfaces,
denoted by Γj for j ∈ {1, . . . ,M}. To be precise, let Γj be the interface between subdomains indexed by ȷ̌ and
ȷ̂ of dimension d and d + 1, respectively. Then Γj = Ω ȷ̌ (see center panel of Fig. 3), and furthermore, we denote
the adjacent boundary of Ω ȷ̂ by Γj = ∂jΩ ȷ̂ . We emphasize that while the internal boundary ∂jΩ ȷ̂ is defined to
spatially coincidewith the interface Γj , which in turn coincides with the lower-dimensional subdomain Ω ȷ̌ , their
distinction is crucial to define variables properly.

To keep track of the connections from subdomains to interfaces, we introduce the sets Ŝi and Ši , containing
the indices of the higher-dimensional (respectively lower-dimensional) neighboring interfaces of Ωi , as illus-
trated in the right panel of Fig. 3. These sets are dual to ȷ̌ and ȷ̂ defined in the previous paragraph, thus for all
j ∈ Ŝi , it holds that ȷ̌ = i, while for all j ∈ Ši , it holds that ȷ̂ = i.

We will be interested in defining functions on the above stated partition of the domain and the interfaces.
This motivates us to define the disjoint unions

Ω =
m⨆︁
i=1

Ωi , Γ =
M⨆︁
j=1

Γj . (3.1)

A complete mixed-dimensional partitioning, including both subdomains and interfaces, is given by Ω ⊔ Γ .
In order to speak of boundary conditions, we introduce the decomposition of the boundary of Ω. Let ∂Ω be

partitioned into its Neumann, Dirichlet, and internal parts. That is, we define ∂Ω = ∂NΩ ∪ ∂DΩ ∪ ∂IΩ, where
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∂NΩ =
⋃︀m

i=1 ∂NΩi , ∂DΩ =
⋃︀m

i=1 ∂DΩi , and ∂IΩ =
⋃︀m

i=1
⋃︀

j∈Ŝi
∂jΩi . Finally, to ensure the existence of a unique

solution, we require ∂DΩ /= ∅.

3.2 The model problem for a fracture network

Let us now present the model problem valid for m subdomains of dimensionality 0 to n, and M interfaces of
dimensionality 0 to n − 1. Our model summarizes the derivations given in recent literature [19, 34, 44]. For all
domains Ωi , we consider a scalar pressure pi together with a flux ui in the tangent space of the domain. On all
interfaces Γj , we consider a scalar coupling flux λj , oriented as positive for flow from the higher dimensional
domain Ω ȷ̂ . We will, in this section, assume sufficient regularity that the strong formmakes sense, and return to
the weak formulation in later sections. The governing equations from the previous section then generalize as

∇i · ui −
∑︀

j∈Ŝi
λj = fi inΩi , i ∈ {1, . . . ,m} (3.2a)

ui = −Ki∇i pi inΩi , i ∈ {1, . . . ,m}, di /= 0 (3.2b)
λj = −κj

(︀
p ȷ̌ − p ȷ̂

)︀
on Γj , j ∈ {1, . . . ,M} (3.2c)

u ȷ̂ · n ȷ̂ = λj on ∂jΩ ȷ̂ , j ∈ {1, . . . ,M} (3.2d)
ui · ni = 0 on ∂NΩi , i ∈ {1, . . . ,m} (3.2e)

pi = gD,i on ∂DΩi , i ∈ {1, . . . ,m}. (3.2f)

In (3.2a), the summation captures the contribution of fluxes from the adjacent interfaces to Ωi , and can
be seen as a generalization of the second term in (2.2a). Note that for di = n, the set Ŝi = ∅, and thus the
jump operator, evaluates to zero in the highest-dimensional domains. Conversely, in (3.2a), the differential term
∇i · ui is void whenever di = 0, as there is no tangent space to a point in all subdomains, and indeed, we will not
consider the ui defined on these domains, which justifies why equation (3.2b) are not applied to 0D domains.

We are now ready to recast the model problem in mD notation, building on the product space structures
introduced in Section 2.2. Let us start by defining the mD pressure as the ordered collection of subdomain pres-
sures p := [pi] ∈ CΩ, i.e., scalar functions on Ω. We now decompose the fluxes as in (2.11), so that

ui = u0,i +
∑︀

j∈Ši
Rjλj (3.3)

such that u0,i satisfies u0,i · ni = 0 for all j ∈ Ši , and where the reconstruction operator is generalized as Rj :
CΓj → CΩ ȷ̂ satisfying:

tr∂jΩ ȷ̂ (Rj λj) · n ȷ̂ =
{︃
λj on ∂jΩ ȷ̂

0 on ∂Ω ȷ̂ \ ∂jΩ ȷ̂ .
(3.4)

This allows us to define themD flux as the internal (tangential) domain fluxes and (normal) interface fluxes
u := [u0,i , λj] ∈ C0TΩ × CΓ , i.e., the pairing of sections of the tangent bundle TΩ together with scalar functions
on Γ . By the subscript C0TΩ, we indicate that both ui · ni = 0 on all ∂jΩi , where j ∈ Ši , and also ui · ni = 0 on
∂NΩi .

We now define a generalized divergence operator D· (·) : C0TΩ × CΓ → CΩ which acts on the mD flux in
accordance with the left-hand side of (3.2a):

D·u = D·
[︀
u0,i , λj

]︀
= q (3.5)

where q = [qi] ∈ CΩ is a scalar function for each domain Ωi , defined by

qi := ∇i ·
(︁
u0,i +

∑︀
j∈Ši

Rjλj
)︁
−
∑︀

j∈Ŝi
λj . (3.6)

Similarly,wedefine anmDgradient operatorD (·) : CΩ → CTΩ×CΓ acting on themDpressure in accordance
with the right-hand sides of equations (3.2b) and (3.2c):

D p = D [pi] = v (3.7)
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where v = [v0,i , νj] ∈ CTΩ × CΓ has the same structure as the mD flux (but without the boundary conditions),
such that for all i ∈ {1, . . . ,m} and j ∈ {1, . . . ,M}, it holds that

νj := p ȷ̌ − p ȷ̂ , v0,i := ∇i pi −
∑︀

j∈Ši
Rjνj . (3.8)

Recalling that the full flux vi is recovered from equation (3.3), we note that the second term above is simply the
gradient on each subdomain. We will, in Section 3.3, further justify the terminology ‘divergence’ and ‘gradient’
due to the fact that these operators satisfy an integration-by-parts property with respect to the suitable inner
products, and are thus adjoints (subject to appropriate boundary conditions).

Material parameters are collected into the mD permeability K : CTΩ × CΓ → CTΩ × CΓ , defined such that
for

−Kv = −K
[︀
v0,i , νj

]︀
= u (3.9)

then from the model given in equation (3.2), we recognize the desired relationships

λj = −κjνj , ui = −Kivi . (3.10)

The second term, corresponding to Darcy’s law, can be rewritten in terms of the decomposition u = [u0,i , λj]
from equation (3.3) as

u0,i = −Ki

(︁
v0,i +

∑︀
j∈Ši

Rjνj
)︁
−
∑︀

j∈Ši
Rjλj . (3.11)

The presence of the extra terms arising from the decomposition is analogous to that in (3.2).
We note that the restriction u ∈ C0TΩ × CΓ , implicitly places constraints (depending on the material con-

stants K and via the definition of D ) on the admissible pressures p. This space of admissible pressures can be
understood as the domain of the restricted operator KD : CΩ → C0TΩ × CΓ .

In view of the mD variables and operators defined above, and subject to the right-hand side data f = [fi] ∈
CΩ and the boundary data gD = [gD,i] ∈ C∂DΩ, a straightforward substitution of definitions shows that prob-
lem (3.2) is equivalent to the concisely stated mD elliptic problem

u = −KD p inΩ × Γ (3.12a)
D·u = f inΩ (3.12b)

p = gD on ∂DΩ (3.12c)

defined for u ∈ C0TΩ × CΓ and p ∈ CΩ.

Remark 3.1 (internal Neumann boundaries). For simplicity of exposition, the domain Y is taken as contractible,
and Ωi is considered a partitioning of Y . However, the reader will appreciate that these assumptions can be
relaxed. Most importantly, from the perspective of applications (as discussed in Section 2.1), some internal in-
terfaces may be modeled as impermeable, i.e., λj = 0. We refer to the remaining (permeable) interfaces as
Ξ ⊂ {0, . . . ,M}. The impermeable interfaces are then excluded from the problem, and considered as internal
Neumann interfaces. To be precise, we define a reduced disjoint union of interface domains

Γ =
⨆︁
j∈Ξ

Γj .

The internal Neumann boundaries may partition the domain into disconnected parts. We refer to a subdomain
as ‘Dirichlet-connected’, denoted i ∈ ξ if either (1) ∂DΩi /= ∅, or (2) there exists some j ∈ Ŝi such that ȷ̂ ∈ ξ, or
(3) there exists some j ∈ Ši such that ȷ̌ ∈ ξ. This allows us to construct a reduced disjoint union of subdomains

Ω =
⨆︁
i∈ξ

Ωi .

All the derivations in the continuation are equally valid for these reduced product domains.

Remark 3.2 (extensions to the model equations). The results of this paper can with minor modifications be ex-
tended to non-zero Neumann boundary conditions, and with some additional effort to the class of non-planar
geometries considered in [18]. However, as this generality is typically not needed for applications, we restrict
the presentation as indicated above.
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3.3 Variational formulations in mixed-dimensional notation

Before writing the variational formulations in mD notation, let us first define the relevant mD inner products
and norms. Consider the following inner-products

⟨q, r⟩Ω =
m∑︁
i=1

⟨qi , ri⟩Ωi
∀ q = [qi], r = [ri] ∈ L2Ω (3.13)

⟨v,w⟩Ω,Γ =
m∑︁
i=1

(︂⟨(︁
v0,i +

∑︀
j∈Ši

Rjνj
)︁
,
(︁
w0,i +

∑︀
j∈Ši

Rjμj
)︁⟩

Ωi

+
∑︁
j∈Ši

⟨︀
νj , μj

⟩︀
Γj

)︂
∀ v = [v0,i , νj], w = [w0,i , μj] ∈ L2TΩ × L2Γ (3.14)

⟨q, r⟩∂XΩ =
m∑︁
i=1

⟨qi , ri⟩∂XΩi
∀ q = [qi], r = [ri] ∈ L2∂XΩ (3.15)

and their respective induced norms

‖q‖2Ω = ⟨q, q⟩Ω , ‖v‖2Ω,Γ = ⟨v, v⟩Ω,Γ , ‖q‖2∂XΩ = ⟨q, q⟩∂XΩ . (3.16)

With these inner products, the previously definedmD divergence satisfy the following integration-by-parts
formula [18, 19] whenever v ∈ CTΩ × CΓ and q ∈ CΩ:

⟨q,D·v⟩Ω + ⟨D q, v⟩Ω,Γ = ⟨TDq,TDv⟩∂DΩ + ⟨TNq,TNv⟩∂NΩ . (3.17)

In the above, the restriction to the boundary is denoted TX (·) (for X = D, N), which depending on context acts
as the boundary values of pressure variables, TX (·) : CΩ → C∂XΩ, or the normal component of flux variables,
TX (·) : CTΩ × CΓ → C∂XΩ.

From the product structure in the definition of the C and L2 spaces, the continuous spaces inherit their den-
sity from the individual subdomains to the product spaces on Ω and Γ . We can thus follow standard procedures
to obtain weak extensions of the mD differential operators, the boundary restriction (trace) operators, and the
corresponding function spaces [2, 10, 51]. We elaborate this below.

Due to the density of C0TΩ × CΓ in L2TΩ × L2Γ , the mD divergence from Section 3.2 is a densely defined
unbounded linear operator on the latter space D· : L2Ω → L2TΩ × L2Γ . Let us now (temporarily) use the
notation (T , dom(T)) to emphasize that an operator T has domain of definition dom(T), and we denote the
adjoint operator with respect to the L2 inner product by an asterisk.

We recall that the Neumann boundary is incorporated into the definition of the continuous flux spaces
C0TΩ × CΓ , thus the last term in the integration-by-parts formula (3.17), is zero. Hence, we can define a weak
mD gradient and the corresponding space of weaklymDdifferentiable functionswith zero trace on the Dirichlet
boundary H1

0 by considering the adjoint:

(D, H1
0(Ω)) := (D·, C0TΩ × CΓ)* . (3.18)

Clearly, C0Ω ⊆ H1
0(Ω), and thus it is appropriate to consider (D, H1

0(Ω)) as aweak gradient.Moreover, the domain
of definition simply corresponds to the standardH1

0(Ωi) on each domain,where the subscript zero indicates zero
trace on all Dirichlet boundaries. Thus H1

0(Ω) =
∏︀m

i=1 H
1
0(Ωi), which generalizes (2.5).

Considering the integration-by-parts formula again, the weak mD divergence and the corresponding space
of flux functions with divergence in L2 and zero trace on the Neumann boundary H(div;Ω, Γ) can be defined as

(D·, H(div;Ω, Γ)) := (D, H1
0)* . (3.19)

Again C0TΩ × CΓ ⊆ H(div;Ω, Γ), and it is appropriate to consider (D·, H(div;Ω, Γ)) as a weak divergence. This
domain of definition of the weak divergence has the interpretation of H0(div;Ωi) on all subdomains Ωi (where
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the subscript zero indicates zero trace on all boundaries except for Dirichlet boundaries), and L2(Γj) spaces on
all interfaces Γj . Thus H(div;Ω, Γ) =

∏︀m
i=1 H0(div;Ωi) ×

∏︀M
i=1 L

2(Γj), which generalizes (2.12).
Due to the above identification of H1(Ω) and H(div;Ω, Γ) in terms of product spaces of standard function

spaces on subdomains, we extend the definition of the boundary restriction operators TX (·) to trace operators
on the weak spaces by requiring that they coincide with the standard trace operators on subdomains.

In the continuation, wewill always consider theweakmDgradient and divergence, and denote these simply
by D andD·, respectively. Similarly, we will always consider the boundary restrictions as trace operators. The
above definitions of weakmD gradient and divergence operators, and their adjoint property on the above weak
spaces, has the following statements of the primal and dual weak formulations of equations (3.12) as a direct
consequence.

Definition 3.1 (mixed-dimensional primal weak formulation). Let g ∈ H1(Ω). Then find p ∈ H1
0(Ω) + g such that

⟨KD p,D q⟩Ω,Γ = ⟨f, q⟩Ω ∀ q ∈ H1
0(Ω). (3.20)

Definition 3.2 (mixed-dimensional dual weak formulation). Find (u, p) ∈ H(div;Ω, Γ) × L2(Ω) such that⟨
K −1u, v

⟩
Ω,Γ

− ⟨p,D·v⟩Ω = ⟨gD ,TDv⟩∂DΩ ∀ v ∈ H(div;Ω, Γ) (3.21a)

⟨D·u, q⟩Ω = ⟨f, q⟩Ω ∀ q ∈ L2(Ω). (3.21b)

The above weak forms of the mixed-dimensional elliptic problem are well-posed for bounded coefficients [18],
in the sense that there exist positive constants K 0 and K ∞ such that

sup
v∈H(div;Ω,Γ)

⟨Kv, v⟩Ω,Γ
K ∞‖v‖2Ω,Γ

⩽ 1 ⩽ inf
v∈H(div;Ω,Γ)

⟨Kv, v⟩Ω,Γ
K 0‖v‖2Ω,Γ

. (3.22)

The solutions of the primal and dual weak formulations are equivalent, and define true solutions p ∈ H1
0(Ω) + g

and u ∈ H(div;Ω, Γ) against which the approximate solutions will be measured in later sections.

4 Functional analysis tools

In this section, we summarize the main functional analysis tools we will exploit for the a posteriori analysis.

4.1 Poincaré-type inequalities

We recall the following weighted Poincaré inequalities.

Lemma 4.1 (permeability-weighted Poincaré–Friedrichs inequalities). There exist constants CΩ ⩾ CΩi ⩾ CK such
that

‖q‖Ω,Γ ⩽ CΩ,Γ
⃦⃦⃦
K 1/2D q

⃦⃦⃦
Ω,Γ

∀ q ∈ H1
0(Ω) (4.1a)

‖q‖Ωi
⩽ CΩi

⃦⃦⃦
K1/2

i ∇iq
⃦⃦⃦
Ωi

∀ q ∈ H1
0(Ωi), if ∂DΩi /= ∅ (4.1b)⃦⃦

q − ̃︀qΩi

⃦⃦
Ωi

⩽ CΩi

⃦⃦⃦
K1/2

i ∇iq
⃦⃦⃦
Ωi

∀ q ∈ H1(Ωi), if ∂DΩi = ∅ (4.1c)⃦⃦
q − ̃︀qK ⃦⃦K ⩽ CK

⃦⃦⃦
K1/2

i ∇iq
⃦⃦⃦
K

∀ q ∈ H1(K), where K ⊂ Ωi . (4.1d)

Here, we denote by ̃︀qΩi and ̃︀qK the mean value of q over the subdomain Ωi and an arbitrary di-simplex K ⊂ Ωi ,
respectively.

We refer to CΩ,Γ as the mixed-dimensional permeability-weighted Poincaré–Friedrichs constant (whose exis-
tence was shown in [18]), CΩi is the standard subdomain permeability-weighted Poincaré–Friedrichs constant,
and CK is a local permeability-weighted Poincaré–Friedrichs constant.
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It is important to mention that concrete values of CΩi are available only for a limited set of geometries (see,
e.g., [20, 58, 62]). An upper bound exists for convex domains, and thus for a simplex K ⊂ Ωi we have [12, 49]:

CK ⩽
diam(K)
πcK

(4.2)

where cK is the lower bound on the permeability within K:

cK = inf
x∈K
v∈TKx

(Ki(x)v) · v2
‖v‖ . (4.3)

The importance of this is understood if K is an element of a simplicial partition ofΩi , inwhich case CK scales
with the mesh size hK = diam(K). This allows for superconvergent properties of residual estimators for some
locally mass-conservative approximations [26, 28, 63]. We analyze these cases with further details in Section 5.2
and Remark 6.6.

4.2 Conforming flux spaces

It is often possible to verify that an approximate solution v ∈ H(div;Ω, Γ) satisfies some stronger conservation
property, that is to say, that there is some space U ⊆ L2 such that

D·v − f ∈ U . (4.4)

This allows for the construction of stronger a posteriori estimates, and as such, we formalize this concept as a
generalization of H(div;Ω, Γ) to ‘U-conforming flux spaces’.

Definition 4.1 (Conforming mD flux space). Let H(div;Ω, Γ;U) ⊂ H(div;Ω, Γ) be a U-conforming flux space, in
the sense of

H(div;Ω, Γ;U) = {v ∈ H(div;Ω, Γ) : f −D·v ∈ U} . (4.5)

To exploit the conforming flux spaces, we must construct certain projected H1(Ω) spaces. Consider therefore U
as some subspace of L2(Ω) and define U⊥ to be its orthogonal complement:

U⊥ := {q ∈ L2(Ω) : ⟨q, r⟩Ω = 0 ∀ r ∈ U}. (4.6)

Moreover, let πU⊥ be the L2–projection onto U⊥, such that for any r ∈ L2(Ω), πU⊥r ∈ U⊥ satisfies the orthogo-
nality property:

⟨r − πU⊥r, q⟩Ω = 0 ∀ q ∈ U⊥ . (4.7)

Consider now the projected H1
0(Ω) space denoted W ⊂ L2(Ω), defined as the range of πW := (I − πU⊥ ) :

H1
0(Ω) → L2(Ω), and let the norm ofW be defined as a weighted L2-norm with nonnegative weights μ ∈ L∞(Ω)

‖q‖W ,μ := ‖μq‖Ω ∀ q ∈ W (4.8)

which are defined within the class CW with unit Poincaré constants:

CW =

⎧⎪⎨⎪⎩μ ∈ L∞(Ω) : sup
q∈H1

0 (Ω)

‖πWq‖W ,μ⃦⃦⃦
K 1/2D q

⃦⃦⃦
Ω,Γ

⩽ 1

⎫⎪⎬⎪⎭ . (4.9)

Indeed, such classes exist in the literature of Poincaré inequalities for weighted norms (see, e.g., [50, 53]). Note
that a trivial member ofCW is the inverse of the permeability-weightedmD Poincaré–Friedrichs constant μ(x) =
C−1Ω,Γ . As we will see in Sections 5.1 and 5.2, the concrete choice of the space U and the corresponding weights μ
will directly impact the strength of the estimates.

Remark 4.1 (on the space H(div; Ω, Γ; U)). The conforming mD flux spaces allow us to obtain sharper estimates
in Section 5. However, it is important to note that the standard case U = L2(Ω) is included in our definition, for
which the orthogonal complement is void, and the projection πW = I; thusW = H1

0(Ω). This and other cases are
elaborated in more detail in Sections 5.2.1 to 5.2.4.
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4.3 Bilinear forms and energy norms

For the a posteriori analysis, we will need the next two mD bilinear forms and their induced energy norms

B(q, r) = ⟨KD q,D r⟩Ω,Γ , |||q|||2 = B(q, q) =
⃦⃦⃦
K 1/2D q

⃦⃦⃦2
Ω,Γ

∀ q, r ∈ H1
0(Ω) (4.10)

A(v,w) =
⟨
v,K −1w

⟩
Ω,Γ

, |||v|||2* = A(v, v) =
⃦⃦⃦
K −1/2v

⃦⃦⃦2
Ω,Γ

∀ v,w ∈ L2TΩ × L2Γ (4.11)

which are related via
|||q||| = |||KD q|||* ∀ q ∈ H1

0(Ω). (4.12)

We also define the full norm for a mixed-dimensional pair of primal and dual variables as

||[q, v]|| := |||q||| + |||v|||* +
⃦⃦⃦
μ−1D·v

⃦⃦⃦
Ω

∀ (q, v) ∈ H1
0(Ω) × H(div;Ω, Γ;U). (4.13)

Note that the last norm will depend on the eventual choice of μ−1, which we emphasize must be from the class
μ ∈ CW , as defined in the preceding section.

5 A posteriori error estimates

This section is devoted to obtaining the error bounds for our model problem. First, we provide general abstract
estimates, and later we focus on the evaluation of the different bounds.

5.1 General abstract estimates

Let us nowpresent the general abstract bounds.We formalize themain results presented in Section 3 and extend
the ones presented in Theorem 2.1 in the following theorem.

Theorem 5.1 (general abstract a posteriori error bounds). Let the error majorant be defined as

M(q, v, f, μ) := ηDF(q, v) + ηR(v, f, μ) (5.1)

where
ηDF(, ) := |||v + KD q|||* , ηR(v, f, μ) :=

⃦⃦⃦
μ−1(f −D·v)

⃦⃦⃦
Ω

(5.2)

valid for all q ∈ H1
0(Ω) + g and v ∈ H(div;Ω, Γ;U). Then, the following a posteriori error estimates hold.

(1) Let p ∈ H1
0(Ω) + g be the solution to (3.20) and q ∈ H1

0(Ω) + g be arbitrary. Then

|||p − q||| ⩽ M⊕
p = M(q, v, f, μ) ∀ v ∈ H(div;Ω, Γ;U) (5.3)

whereM⊕
p is the upper bound of the error for the primal variable.

(2) Let u ∈ H(div;Ω, Γ) be the solution to (3.21) and v ∈ H(div;Ω, Γ;U) be arbitrary. Then

|||u − v|||* ⩽ M⊕
u = M(q, v, f, μ) ∀ q ∈ H1

0(Ω) + g (5.4)

whereM⊕
u is the upper bound of the error for the dual variable.

(3) Let p ∈ H1
0(Ω) + g be the solution to (3.20) and u ∈ H(div;Ω, Γ) be the solution to (3.21), and let (q, v) ∈

(H1
0(Ω) + g) × H(div;Ω, Γ;U) be arbitrary. Then,

M(q, v, f, μ) = M⊖
p,u ⩽ ||[p − q, u − v]|| ⩽ M⊕

p,u = 2M(q, v, f, μ) + ηR(v, f, μ) (5.5)

whereM⊖
p,u andM⊕

p,u are the lower and upper bounds of the error for the primal–dual variable.
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Proof. Due to the construction of mixed-dimensional product spaces and the adjoint property of the weak dif-
ferential operators, the proof from the mono-dimensional case can (to a large extent) be applied directly [59].
A notable deviation from the standard proofs is the use of conforming flux spaces, and the inclusion of the
Poincaré-constants in the weights CW . The full proof is included for completeness in Appendix C.

Remark 5.1 (non-conforming approximations). Referring again to the general setting of mD calculus, it has been
shown that the differential operators form part of a cochain complex, and that anmDHelmholtz decomposition
exists [18]. Thus, by realizing the above constructions as Hilbert complexes, the above error bounds can be
extended also to non-conforming approximations following, e.g., [47, Th. 4.7]. However, as a main objective of
our work is to obtain bounds based on conforming properties of the approximations, we will not pursue non-
conforming approximations in this work.

5.2 Evaluation of the majorant

The aim of this section is to provide concrete forms of the majorantM(q, v, f, μ) from Theorem 5.1 depending
upon the choices of the weights μ. For this purpose, consider once again the definition of the majorant

M(q, v, f, μ) = ηDF(q, v) + ηR(v, f, μ) ∀ q = [qi] ∈ H1
0(Ω) + g, v = [v0,i , νj] ∈ H(div;Ω, Γ;U). (5.6)

The estimation of the first term ηDF(q, v) is independent of the weights μ. Indeed, by applying (4.11), it is
straightforward to see that

η2DF(q, v) =
m∑︁
i=1

⎛⎜⎝ ∑︁
K∈TΩi

⃦⃦⃦⃦
⃦⃦K−1/2

i

(︂
v0,i +

∑︁
j∈Ši

Rjνj
)︂
+K1/2

i ∇iqi

⃦⃦⃦⃦
⃦⃦
2

K

+
∑︁
j∈Ši

∑︁
K∈TΓj

⃦⃦⃦
κ−1/2
j νj + κ1/2

j
(︀
q ȷ̌ − tr q ȷ̂

)︀⃦⃦⃦2
K

⎞⎟⎠
=

m∑︁
i=1

⎛⎜⎝ ∑︁
K∈TΩi

η2DF|| ,K +
∑︁
j∈Ši

∑︁
K∈TΓj

η2DF⊥ ,K

⎞⎟⎠ . (5.7)

The terms ηDF|| ,K and ηDF⊥ ,K measure the diffusive flux error in the tangential and normal directions associated
with the subdomain element K ∈ TΩi and the mortar element K ∈ TΓj , respectively.

To complete the evaluation of the majorant, we are left with the estimation of ηR(v, f, μ), which depends on
the choices of μ. Recall that this term measures the mismatch in satisfying the conservation equation in each
subdomain. To be precise, there are four main types of conforming fluxes; standard L2-conforming, subdomain
conservation, grid level (local) conservation, and point-wise. The quality of the residual balance can be verified
explicitly before applying the a posteriori estimates, and thus is not considered an assumption in the theory.
Below, we make precise the aforementioned cases.

5.2.1 Nomass-conservation

Assume nothing is known about the approximation of the residual terms beyond the L2 structure. We indicate
this case by the abbreviation ‘NC’, and set UNC = L2, and v ∈ H(div;Ω, Γ;UNC) = H(div;Ω, Γ). Then U⊥

NC = 0,
which implies that πW = I, and W = H1

0(Ω). Then, a priori, we only know the global (mixed-dimensional)
Poincaré constant (4.1a), i.e., we have no better weight than setting μ(x) = C−1Ω,Γ for x ∈ Ω.

Using (4.10) and the mD Poincaré inequality (4.1a), one obtains the following bound, which is the weakest
bound available within the class of bounds considered in this paper:

η2R ⩽ C2Ω,Γ
m∑︁
i=1

∑︁
K∈TΩi

⃦⃦⃦⃦
⃦⃦ fi −∇i ·

(︂
v0,i +

∑︁
j∈Ši

Rjνj
)︂
+
∑︁
j∈Ŝi

νj

⃦⃦⃦⃦
⃦⃦
2

K

=
m∑︁
i=1

∑︁
K∈TΩi

η2R,K;NC = η2R;NC . (5.8)
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Here, ηR,K;NC denotes the local residual error for non-conservative approximations. The majorant when mass
conservation cannot be guaranteed at any level is then given by

MNC(q, v, f) = ηDF(q, v) + ηR;NC(v, f) (5.9)

and it follows from the above that this is an upper bound,M ⩽ MNC.

5.2.2 Subdomain mass-conservation

Due to the structure of the equations, where interface fluxes are stated explicitly, many approximations will
have mass conservation satisfied in a subdomain level, which is in a sense a compatibility condition on the
floating domains Ωi . We indicate this case by the abbreviation ‘SC’. In particular, the divergence r = [ri] = D·v ∈
USC satisfies for all i ∈ {1, . . . ,m} where ∂DΩi = ∅,

⟨ri , 1⟩Ωi
= ⟨fi , 1⟩Ωi

. (5.10)

Thus, by definition U⊥
SC is the space of constants over the floating subdomains Ωi , and the spaceW is the space

of H̊1(Ωi) functions, with zero mean if ∂DΩi = ∅.
This case represents an improvement relative to the previous one, in the sense that we can now employ

the subdomain Poincaré constants instead of the mD constant. Let us make this point precise in the following
lemma.

Lemma 5.1. LetW =
∏︀m

i=1 H̊
1(Ωi), where

H̊1(Ωi) =
{︁
qi ∈ H1

0(Ωi) | ⟨qi , 1⟩Ωi
= 0 if ∂DΩi = ∅

}︁
. (5.11)

Then, μ(x) = C−1Ωi
for x ∈ Ωi belongs to the class CW , where CΩi is the permeability-weighted Poincaré–Friedrichs

constants defined in Lemma 4.1.

Proof. Using the Poincaré inequality (4.1c) and the fact that the sum of broken norms is weaker than the full
norm, the following result holds

sup
q∈H1

0 (Ω)

‖πWq‖W ,μ⃦⃦⃦
K 1/2D q

⃦⃦⃦
Ω,Γ

= sup
q∈H1

0 (Ω)
‖K 1/2D q‖Ω,Γ=1

‖πWΩq‖WΩ ,μ

= sup
q∈H1

0 (Ω)
‖K 1/2D q‖Ω,Γ=1

⎛⎜⎜⎝ m∑︁
i=1

∂DΩi /=∅

⃦⃦⃦
C−1Ωi qi

⃦⃦⃦
Ωi
+

m∑︁
i=1

∂DΩi=∅

⃦⃦⃦⃦
C−1Ωi

(︂
qi −

1
|Ωi|

⟨qi , 1⟩Ωi

)︂⃦⃦⃦⃦
Ωi

⎞⎟⎟⎠
⩽ sup

q∈H1
0 (Ω)

‖K 1/2D q‖Ω,Γ=1

m∑︁
i=1

⃦⃦⃦
K1/2∇iqi

⃦⃦⃦
Ωi

⩽ 1.

In view of Lemma 5.1, ηR can be bounded as

η2R ⩽
m∑︁
i=1

C2Ωi

∑︁
K∈TΩi

⃦⃦⃦⃦
⃦⃦ fi −∇i ·

(︂
v0,i +

∑︁
j∈Ši

Rjνj
)︂
+
∑︁
j∈Ŝi

νj

⃦⃦⃦⃦
⃦⃦
2

K

=
m∑︁
i=1

∑︁
K∈TΩi

η2R,K;SC = η2R;SC (5.12)

where ηR,K;SC are the local residual estimators for subdomainmass-conservative approximations. Themajorant
for this case is given by

MSC(q, v, f) = ηDF(q, v) + ηR;SC(v, f). (5.13)

This estimate is sharper than that in the preceding section, since CΩi ⩽ CΩ,Γ , thus whenever the assumptions
of this section are satisfied, it holds thatM ⩽ MSC ⩽ MNC.
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Note that (5.13) is identical in structure to the residual estimators (2.16e) and (2.16f) obtained inTheorem2.1.
However, they are fundamentally different in the sense that (5.13) do not require all subdomains to have a non-
empty Dirichlet part but rather mass to be conserved in each subdomain Ωi .

5.2.3 Local mass-conservation

By choice of numerical method, it is often easy to verify that mass is conserved on an element basis in a subdo-
main partition. We indicate this case by the abbreviation ‘LC’. As in the preceding section, this implies that the
divergence r = [ri] = D·v ∈ ULC then satisfies for all K ⊂ TΩi that

⟨ri , 1⟩K = ⟨fi , 1⟩K (5.14)

where TΩi denotes a finite partition of Ωi (typically a simplicial grid). In this case, ULC contain functions having
zero mean on each element K ∈ TΩi , and from (5.14) we see that U⊥

LC =
∏︀m

i=1 P0(TΩi ).
We will consider the slightly weaker case, where (5.14) is only required to hold for all ‘non-Dirichlet bound-

ary’ elements, that is for all elements where ∂K ∩ ∂DΩ = ∅. This is sufficient for the results from Lemma 5.1
to be extendable to the grid level by considering the space WΩ =

∏︀m
i=1

∏︀
K∈TΩi

H̊1(K), where H̊1(K) is defined
in (5.11).

Lemma 5.1 now applies without modification, and weights μ(x) ⩾ C−1K for x ∈ K are therefore in CW .
Moreover, thanks to convexity of simplicial grid elements, the local permeability-weighted Poincaré–Friedrichs
constants are now fully computable. This allows us to bound ηR,Ω as follows:

η2R,Ω ⩽
m∑︁
i=1

∑︁
K∈TΩi

h2K
π2c2K

⃦⃦⃦⃦
⃦⃦ fi −∇i ·

(︂
v0,i +

∑︁
j∈Ši

Rjνj
)︂
+
∑︁
j∈Ŝi

νj

⃦⃦⃦⃦
⃦⃦
2

K

=
m∑︁
i=1

∑︁
K∈TΩi

η2R,K;LC = η2R,Ω;LC (5.15)

where ηR,K;LC are the local residual estimators for locally mass-conservative approximations. Using the above
results, the majorant for locally mass-conservative approximations reads

MLC(q, v, f) = ηDF(q, v) + ηR;LC(v, f). (5.16)

The local residual estimates ηR,Ω;LC correspond to the ones previously obtained by [26, 63] formono-dimensional
problems subject to a flux equilibration step. Since CK ⩽ CΩi , then as before, whenever the assumptions of this
section are satisfied, it holds thatM ⩽ MLC ⩽ MSC ⩽ MNC.

Remark 5.2 (fully computable residual estimators). Unlike estimators obtained with residual methods (contain-
ing unknown constants [11, 35]) or a purely functional approach such as in Sections 5.2.1 and 5.2.2 (containing
constants that are generally difficult to determine [57]), estimators such as (5.15) contain only known local con-
stants depending on the mesh size and material parameters. This justifies the claim that these estimators are
fully computable.

5.2.4 Exact mass-conservation

Methods with local mass conservation, as discussed in the previous section, when applied to problems where
the RHS data f is zero or piecewise constant, can then often be verified to have an exact (pointwise) conservation
property. We indicate this case by the abbreviation ‘EC’, for which f = D·v, so that UEC = 0 and U⊥

EC = L2(Ω). Now,
πW = 0 andW = 0. Thus, any finite weights μ are admissible, yet the choice is immaterial since the residual term
‖μ−1(f−D·v)‖Ω always evaluates to zero. Consequently, only diffusive-type errors are present in the a posteriori
estimation, and the majorant takes the form

MEC(q, v) = ηDF(q, v). (5.17)

This case can also be seen as the limiting case of local mass conservation for a family of grid partitions where
hK → 0.
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5.2.5 Summary of majorants and subdomain errors

With the obtained majorants, we can define the corresponding upper bounds for the errors of the primal, dual,
and primal–dual variables.

Definition 5.1. Let α = NC, SC, LC, EC, corresponding to theflux conformity spacesUα discussed in the preceding
sections. Then, in viewof the results fromTheorem5.1 and themajorants (5.9), (5.13), (5.16), and (5.17), the upper
bounds for the error in the primal, dual, and primal–dual pair, for arbitrary approximations q ∈ H1

0(Ω) + g and
v ∈ H(div;Ω, Γ;Uα), are

M⊕
p;α := Mα , M⊕

u;α := Mα , M⊕
p,u;α := 2Mα + ηR;α (5.18)

while the lower bound for the error in the primal–dual pair is

M⊖
p,u;α := Mα . (5.19)

It is our interest not only to measure local errors, but also to distinguish between subdomain and interface
errors. This motivates the definition of the following error indicators.

Definition 5.2 (subdomain and interface error indicators). Let α = EC, LC, SC,NC. Then, we will denote by εΩi ;α
and εΓj the subdomain and interface error indicators, defined by

ε2Ωi ;α := ε
2
DF,Ωi + ε

2
R,Ωi ;α :=

∑︁
K∈TΩi

η2DF|| ,K +
∑︁
K∈TΩi

η2R,K;α

ε2Γj := ε
2
DF,Γj :=

∑︁
K∈TΓj

η2DF⊥ ,K .

We emphasize that while the majorants provide guaranteed bounds, the subdomain and interface error indica-
tors can only be expected to correlate with the error.

6 Concrete bounds for locally mass-conservative approximations

In this section,wewillmake the evaluation of the bounds concrete by providing explicit approximations to (3.21)
using the lowest-order mixed-finite element method (MFEM).

6.1 Grid partitions

Ultimately, a posteriori estimates are primarily applied to approximations that are defined on computational
grids. We therefore, in this section, summarize the relevant notation for grids.

Let us start by defining the partitions of the domains of interest. To this aim, denote by TΩi , TΓj , and T∂jΩi the
partitions of Ωi , Γj , and ∂jΩi , respectively. Moreover, let TΩ =

⋃︀m
i=1 TΩi , TΓ =

⋃︀M
j=1 TΓj , and T∂IΩ =

⋃︀m
i=1

⋃︀
j∈Ŝi

∂jΩi
represent the union of all subdomain, mortar, and internal boundary grids.

Here, we only consider simplicial partitions. In particular, we require all elements K ⊂ Ωi to be strictly non-
overlapping simplices of dimension dK = di . We use hK to denote the diameter of K, and define hΩi = maxhK TΩi ,
hΓj = maxhK TΓj , and h∂jΩi = maxhK T∂jΩi .

We will not at this point place any conditions on the grid partitions, although several aspects of this will be
advantageous from the perspective of computation.

6.2 Finite element spaces and the approximated problem

Let us introduce the finite element spaces necessary to write the approximated problem. We start by defining a
local space for the approximated pressures, mortar fluxes, and tangential fluxes. They are given, respectively,
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TΓjTΩ̂
TΩ̌

K ∈ TΩ̌
K ∈ TΩ̂

K ∈ TΓj

u0,h ∈ RTN0(K)

λh ∈ P0(K)

ph ∈ P0(K)

Fig. 4: Left: Matching coupling between the grids TΩ ȷ̂ , TΓj , and TΩ ȷ̌ . Right: Degrees of freedom involved in the coupling between a 2D
higher-dimensional cell, a 1D mortar-cell, and a 1D lower-dimensional cell. Locally, tangential fluxes are approximated using RTN0(K),
whereas mortar fluxes and pressures using P0(K).

by

Qh,i :=
{︁
qh,i ∈ L2(Ωi) : qh,i|K ∈ P0(K) ∀ K ∈ TΩi

}︁
, di ∈ {0, . . . , n}

Λh,j :=
{︁
νh,j ∈ L2(Γj) : νh,j|K ∈ P0(K) ∀ K ∈ TΓj

}︁
, dj ∈ {0, . . . , n − 1}

Vh,i :=
{︀
vh,i ∈ H(div;Ωi) : vh,i|K ∈ RTN0(K) ∀ K ∈ TΩi

}︀
, di ∈ {1, . . . , n}

where P0 andRTN0 denote the spaces of constants and lowest-order Raviart–Thomas(–Nédélec) spaces of vec-
tor functions [41, 54]. See also Fig. 4 for the degrees of freedom involved in the generic coupling between a
(higher-dimensional) triangle, a mortar line segment, and a (lower-dimensional) line segment.

The composite space for the approximated mD pressure Qh ⊂ L2 (Ω) and the approximated mD flux Xh ⊂
H(div;Ω, Γ) are defined respectively by

Qh :=
m∏︁
i=1

Qh,i , Xh :=
m∏︁
i=1

⎛⎝H0(div;Ωi) ∩ Vh,i ×
∏︁
j∈Ši

Rh,j Λh,j

⎞⎠ . (6.1)

While not strictly necessary from a theoretical perspective, in the discrete setting, it is often useful to choose
a finite-dimensional reconstruction operator based on the discrete spaces, and we allow for this through the
notation Rh,j : Λh,j → H(div;Ωi), which in practice is often further restricted to Rh,j : Λh,j → Vh, ȷ̂ . Such discrete
reconstruction operators are natural for matching grids, and can also be constructed in the more general case
of non-matching grids (see, e.g., [9, 16, 19]). Here Πh : Λh,j → ̃︀Λh,j is the L2 projection from the mortar grid on Γj
to the boundary simplicial partition of Ω ȷ̂ .

We have now all the elements necessary to write the finite-dimensional approximation to the dual mixed
problem (3.21).

Definition 6.1 (approximated mD dual mixed formulation). Find (uh , ph) ∈ Xh × Qh such that⟨
K −1uh , vh

⟩
Ω,Γ

− ⟨ph ,D·vh⟩Ω = ⟨gD ,TDvh⟩∂DΩ ∀ vh ∈ Xh (6.2a)

⟨D·uh , qh⟩Ω = ⟨f, qh⟩Ω ∀ qh ∈ Qh . (6.2b)

Due to the presence of the discrete reconstruction operator, this approximation is conforming whenever Λh,j =̃︀Λh,j , i.e., for matching grids. For non-matching grids, the approximation is still convergent, subject to normal
conditions on the mortar grids [19].

Remark 6.1 (conservation properties). Whenever equation (6.2b) is satisfied exactly, then equation (5.14) holds,
and we have local mass conservation for matching grids. Thus, the fluxes lie in the smaller space Xh ∩
H(div;Ω, Γ;Q⊥

h,i), and the results from Section 5.2.3 apply. Furthermore, if fi ∈ Qh,i and Rh,j : Λh,j → Vh, ȷ̂ ,
then the projection of the source term, and hence the residual error, onto Q⊥

h,i vanishes. Thus, the local con-
servation is verified to be pointwise, the fluxes lie in Xh ∩ H(div;Ω, Γ; 0) and the results from Section 5.2.4
apply.



J. Varela et al., A posteriori error estimates for mixed-dimensional elliptic equations  265

Remark 6.2 (well-posedness and a priori estimates). The stability and a priori approximation properties of the
finite-dimensional system given in (6.2) has been previously established [19].

6.3 Pressure reconstruction

Recall that Theorem 5.1 requires any approximation to the mD flux to be in H(div;Ω, Γ), whereas approxima-
tions to the mD pressure must lie in H1

0(Ω) + g. By the condition that uh ∈ Xh ⊂ H(div;Ω, Γ), the solution of
equations (6.2) by definition satisfy the first condition. On the other hand, the approximated mD pressure ph
is only in L2 (Ω). We therefore need to enhance the regularity of the approximated pressure and thus obtain a
reconstructed pressure.

Definition 6.2 (reconstructed pressure). Wewill call reconstructed pressurẽ︀ph to any function constructed from
the mD pair (ph , uh) ∈ L2 (Ω) × H(div;Ω, Γ) such that̃︀ph ∈ H1

0(Ω) + g. (6.3)

Remark 6.3 (on potential reconstruction). Several techniques for obtaining ̃︀ph are available in the literature. Ar-
guably, the simplest option is to perform an average of the P0(K) pressures on local patches and from there
construct local affine P1(K) functions [23]. Other techniques aim at solving first a local Neumann problem to
obtain a P2(K) post-processed pressure, and then apply interpolation techniques to get energy-conforming po-
tentials [4–6, 27, 63]. Any of these choices are compatible with the bounds derived herein.

Remark 6.4 (computable estimates). Computable versions of themajorants are now readily available by setting
(q, v) = (̃︀ph , uh) in (5.9), (5.13), (5.16), and (5.17).
Remark 6.5 (other locally mass-conservative methods). In addition to the MFEM scheme of the lowest-order
(RT0-P0), other flux-based numerical methods such as the Mixed Virtual Element Method (MVEM) [24, 31] and
Cell Centered Finite Volume Methods (CCFVM), including the Two-Point Flux Approximation (TPFA) and the
Multi-Point Flux Approximation (MPFA) [1, 45], can be analyzed with our framework provided that the fluxes
are interpolated in Xh and the pressures reconstructed as indicated above. For methods without an explicit flux
representation, an additional flux reconstruction step may be needed.

Remark 6.6 (superconvergence of the residual estimators). Due to Remark 6.1, the residual estimators ηR,K ,LC
are superconvergent for lowest-order locally mass-conservative approximations. This property is guaranteed
since: (1) local Poincaré constants decay as O(hK ) for simplicial elements and (2) the norm of the residual
‖fi −∇i · vi +

∑︀
j∈Ŝi

νj‖K also decays as O(hK ) [15]; leading to an overall rate of O(h2K ).

7 Numerical validations and applications

In this section, we apply our estimators to numerical validations and benchmarks, both in two and three dimen-
sions. To this aim, we use four different numerical methods, namely those mentioned in Remark 6.5: RT0-P0,
MVEM-P0, MPFA, and TPFA. In all cases, we only consider strictly matching grids and use a low-order pressure
reconstruction (recall Remark 6.3 for further discussion).

The numerical examples are implemented in the Python-based open-source software PorePy [34], using
the extension package mdestimates [60], which includes the scripts of all numerical examples considered in
this section.

7.1 Numerical validations

We validate the a posteriori bounds and assess their efficiency on a 1D/2D problem (Section 7.1.2) and a 2D/3D
problem (Section 7.1.3), both with manufactured solutions. The geometric configuration for both problems is
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Fig. 5: Geometric setups used for the numerical validations. Left: A 1D fracture embedded in a 2D matrix and the exact pressure solu-
tion. Right: A 2D fracture embedded in a 3D matrix.

shown in Fig. 5. Let us denote the fracture as Ω1, the matrix as Ω2, the left interface as Γ1, and the right interface
as Γ2. Further, assume the existence of an exact, smooth pressure p2(x) in Ω2. Refer to Tables 7 and 8 from
Appendix D for the analytical expressions of all variables of interest.

7.1.1 Efficiency indices

Efficiency indices are used to assess the performance of the approximations when exact solutions are avail-
able. They are defined as the ratio between the estimated and the exact errors. Here, we consider the following
efficiency indices.

Definition 7.1 (efficiency indices). Let α = NC, SC, LC, EC and let p ∈ H1
0(Ω) + g and u ∈ H(div;Ω, Γ) be the solu-

tions to (3.20) and (3.21), respectively. Then, in view of Theorem 5.1, the efficiency indices for the primal, dual,
and primal–dual pair, for arbitrary approximations q ∈ H1

0(Ω) + g and v ∈ H(div;Ω, Γ;Uα), are

Ip;α(q) :=
M⊕

p;α
|||p − q||| , Iu;α(v) :=

M⊕
u;α

|||u − v|||*
, Ip,u;α(q, v) :=

M⊕
p,u;α

||[p − q, u − v]||
. (7.1)

Remark 7.1. Optimal efficiency indices (equal to 1) are obtained when the approximations match the exact
solutions. Moreover, in general, the efficiency indices satisfy the bounds:

1 ⩽ Ip;α(q), 1 ⩽ Iu;α(v), 1 ⩽ Ip,u;α(q, v) ⩽
M⊕

p,u;α

M⊖
p,u;α

= 2 + ηR;α
Mα

. (7.2)

For the final term, we note that since ηR;α ⩽ Mα , then for α = NC, SC the total efficiency index satisfies Ip,u;α ⩽ 3,
while for local conservation Ip,u;LC ⩽ 2 + O(h2) and finally for exact conservation Ip,u;EC ⩽ 2.

7.1.2 Two-dimensional validation

For our first validation, we consider the 1D/2D case as shown in the left panel of Fig. 5. This validation has two
purposes: (1) compare the majorants and efficiency indices obtained using global (no mass-conservation) and
local (local mass-conservation) Poincaré–Friedrichs constants, and (2) show the different errors associatedwith
subdomains and interfaces.

To this aim, we consider four levels of successively refined combinations of mesh sizes, characterized by
hcoup = h∂1Ω2 = hΓ1 = hΩ1 = hΓ2 = h∂2Ω2 . The global Poincaré constant is obtained numerically by solving the
associated eigenvalue problem (see, e.g., [48]), giving a value of CΩ,Γ ≈ 0.2251.

Majorants for the primal, dual, and primal–dual variables are shown in Table 1. We can see that all ma-
jorants reflect the convergence tendency of the numerical methods, and in particular (as is well-known), we
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Tab. 1: Two-dimensional validation: Majorants and efficiency indices. The results forM⊕
u;NC andM

⊕
u;LC are omitted since they are equal

toM⊕
p;NC andM

⊕
p;LC, respectively.

hcoup M⊕
p;NC M⊕

p;LC M⊕
p,u;NC M⊕

p,u;LC Ip;NC Ip;LC Iu;NC Iu;LC Ip,u;NC Ip,u;LC

RT
0-
P0

0.05 5.86e-02 4.36e-02 1.33e-01 8.83e-02 1.46 1.08 4.09 3.04 1.89 1.59
0.025 3.01e-02 2.17e-02 6.89e-02 4.38e-02 1.49 1.07 4.18 3.02 1.91 1.58
0.0125 1.52e-02 1.08e-02 3.48e-02 2.17e-02 1.50 1.07 4.22 3.00 1.92 1.57

0.00625 7.65e-03 5.37e-03 1.76e-02 1.08e-02 1.52 1.07 4.25 2.98 1.93 1.57

M
VE
M
-P
0 0.05 6.18e-02 4.68e-02 1.40e-01 9.47e-02 1.42 1.07 4.31 3.26 1.89 1.60

0.025 3.10e-02 2.27e-02 7.08e-02 4.56e-02 1.46 1.07 4.31 3.15 1.91 1.59
0.0125 1.54e-02 1.10e-02 3.53e-02 2.22e-02 1.49 1.07 4.29 3.07 1.92 1.58

0.00625 7.72e-03 5.44e-03 1.77e-02 1.09e-02 1.51 1.06 4.28 3.02 1.92 1.57

M
PF
A

0.05 5.91e-02 4.41e-02 1.34e-01 8.93e-02 1.46 1.09 4.12 3.07 1.89 1.59
0.025 3.03e-02 2.19e-02 6.92e-02 4.41e-02 1.49 1.08 4.20 3.04 1.91 1.58
0.0125 1.52e-02 1.08e-02 3.49e-02 2.18e-02 1.50 1.07 4.23 3.01 1.92 1.57

0.00625 7.66e-03 5.38e-03 1.76e-02 1.08e-02 1.52 1.07 4.25 2.99 1.93 1.57

TP
FA

0.05 6.67e-02 5.17e-02 1.50e-01 1.04e-01 1.54 1.19 3.09 2.39 1.84 1.58
0.025 3.74e-02 2.90e-02 8.35e-02 5.83e-02 1.68 1.31 2.36 1.83 1.78 1.52
0.0125 2.64e-02 2.20e-02 5.73e-02 4.41e-02 1.82 1.52 1.64 1.36 1.63 1.44

0.00625 1.37e-02 1.15e-02 2.98e-02 2.30e-02 1.64 1.37 1.82 1.52 1.64 1.44

Tab. 2: Two-dimensional validation: Subdomain and interface errors.

hcoup εDF,Ω2 εR,Ω2 ;NC εR,Ω2 ;LC εDF,Ω1 εR,Ω1 ;NC εR,Ω1 ;LC εDF,Γ1 εDF,Γ2

RT
0-
P0

0.05 4.24e-02 1.41e-02 1.00e-03 2.26e-03 7.99e-03 5.65e-04 1.89e-04 1.89e-04
0.025 2.14e-02 7.73e-03 3.02e-04 1.14e-03 4.01e-03 1.42e-04 9.03e-05 9.15e-05
0.0125 1.07e-02 4.00e-03 7.28e-05 5.70e-04 2.01e-03 3.55e-05 4.41e-05 4.41e-05

0.00625 5.34e-03 2.07e-03 1.91e-05 2.85e-04 1.00e-03 8.87e-06 2.20e-05 2.20e-05

M
VE
M
-P
0 0.05 4.55e-02 1.41e-02 1.00e-03 3.25e-03 7.99e-03 5.65e-04 2.52e-04 2.52e-04

0.025 2.23e-02 7.73e-03 3.02e-04 1.32e-03 4.01e-03 1.42e-04 1.00e-04 1.03e-04
0.0125 1.09e-02 4.00e-03 7.28e-05 5.98e-04 2.01e-03 3.55e-05 4.50e-05 4.50e-05

0.00625 5.41e-03 2.07e-03 1.91e-05 2.89e-04 1.00e-03 8.87e-06 2.21e-05 2.21e-05

M
PF
A

0.05 4.29e-02 1.41e-02 1.00e-03 2.52e-03 7.99e-03 5.65e-04 2.05e-04 2.05e-04
0.025 2.15e-02 7.73e-03 3.02e-04 1.18e-03 4.01e-03 1.42e-04 9.24e-05 9.35e-05
0.0125 1.07e-02 4.00e-03 7.28e-05 5.77e-04 2.01e-03 3.55e-05 4.44e-05 4.44e-05

0.00625 5.36e-03 2.07e-03 1.91e-05 2.86e-04 1.00e-03 8.87e-06 2.20e-05 2.20e-05

TP
FA

0.05 5.04e-02 1.41e-02 1.00e-03 2.52e-03 7.99e-03 5.65e-04 1.87e-04 1.89e-04
0.025 2.86e-02 7.73e-03 3.02e-04 1.18e-03 4.01e-03 1.42e-04 9.42e-05 9.23e-05
0.0125 2.19e-02 4.00e-03 7.28e-05 5.77e-04 2.01e-03 3.55e-05 4.47e-05 4.46e-05

0.00625 1.14e-02 2.07e-03 1.91e-05 2.86e-04 1.00e-03 8.87e-06 2.20e-05 2.21e-05

identify that the TPFA approximation performs relatively poorly on this problem. As expected, the majorants
obtained exploiting the local conservation properties of the methods are sharper than the ones obtained using
global weights, both in absolute value and in terms of efficiency index.

Further inspection shows that efficiency indices lie within the expected bounds discussed in Remark 7.1.
In particular, efficiency indices for the primal variable using local weights are very accurate, and only a ∼7%
deviation with respect to the actual error (for the finest grid) is observed in the case of RT0-P0, MVEM-P0, and
MPFA. For TPFA, the efficiency index is worse, as a consequence of the flux approximation being worse. Effi-
ciency indices for the dual variable are in general larger than the ones obtained for the primal variable; this is
to be expected formixed-dual approximationswith the relatively simple pressure reconstruction, where the ap-
proximated fluxes have relatively good accuracy as compared to the reconstructed pressures. Finally, efficiency
indices for the primal–dual variable are less than 2 for all methods in consideration.

Considering now the local error indicators, shown in Table 2, we note that diffusive errors decrease linearly
for the matrix, fracture, and interfaces. Likewise, residual errors for the matrix and fracture decrease linearly
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Tab. 3: Three-dimensional validation: Majorants and efficiency indices. The results forM⊕
u;NC andM

⊕
u;LC are omitted since they are equal

toM⊕
p;NC andM

⊕
p;LC, respectively.

hcoup M⊕
p;NC M⊕

p;LC M⊕
p,u;NC M⊕

p,u;LC Ip;NC Ip;LC Iu;NC Iu;LC Ip,u;NC Ip,u;LC
RT
0-
P0

0.2625 2.85e-01 2.36e-01 6.21e-01 4.73e-01 1.25 1.03 4.14 3.43 1.72 1.43
0.1720 1.94e-01 1.62e-01 4.20e-01 3.24e-01 1.23 1.03 4.22 3.53 1.73 1.50
0.0827 1.07e-01 8.69e-02 2.33e-01 1.74e-01 1.28 1.04 3.61 2.94 1.70 1.48
0.0418 5.62e-02 4.58e-02 1.23e-01 9.16e-02 1.25 1.02 3.16 2.58 1.63 1.43

M
VE
M
-P
0 0.2625 2.89e-01 2.40e-01 6.28e-01 4.80e-01 1.24 1.03 4.19 3.48 1.72 1.44

0.1720 1.96e-01 1.64e-01 4.24e-01 3.28e-01 1.23 1.03 4.26 3.57 1.73 1.50
0.0827 1.08e-01 8.80e-02 2.35e-01 1.76e-01 1.27 1.04 3.65 2.98 1.70 1.48
0.0418 5.66e-02 4.62e-02 1.24e-01 9.23e-02 1.25 1.02 3.18 2.60 1.63 1.44

M
PF
A

0.2625 2.90e-01 2.40e-01 6.29e-01 4.82e-01 1.25 1.03 4.08 3.38 1.72 1.43
0.1720 1.98e-01 1.66e-01 4.28e-01 3.32e-01 1.23 1.03 4.22 3.54 1.73 1.50
0.0827 1.09e-01 8.90e-02 2.37e-01 1.78e-01 1.27 1.04 3.64 2.98 1.70 1.49
0.0418 5.69e-02 4.65e-02 1.24e-01 9.30e-02 1.25 1.02 3.18 2.60 1.63 1.44

TP
FA

0.2625 3.84e-01 3.35e-01 8.17e-01 6.70e-01 1.24 1.08 2.13 1.86 1.48 1.28
0.1720 2.95e-01 2.63e-01 6.23e-01 5.27e-01 1.38 1.23 1.66 1.48 1.44 1.30
0.0827 2.22e-01 2.02e-01 4.63e-01 4.04e-01 1.62 1.48 1.40 1.28 1.45 1.35
0.0418 2.08e-01 1.97e-01 4.26e-01 3.95e-01 1.76 1.67 1.29 1.23 1.46 1.41

Tab. 4: Three-dimensional validation: Subdomain and interface errors.

hcoup εDF,Ω2 εR,Ω2 ;NC εR,Ω2 ;LC εDF,Ω1 εR,Ω1 ;NC εR,Ω1 ;LC εDF,Γ1 εDF,Γ2

RT
0-
P0

0.2625 2.35e-01 4.73e-02 2.55e-02 4.67e-03 1.56e-02 6.70e-03 5.05e-03 5.00e-03
0.1720 1.62e-01 3.08e-02 1.10e-02 4.53e-03 9.01e-03 2.04e-03 1.37e-03 1.37e-03
0.0827 8.69e-02 1.91e-02 3.91e-03 2.72e-03 5.17e-03 6.70e-04 4.07e-04 4.09e-04
0.0418 4.58e-02 1.01e-02 1.06e-03 1.40e-03 2.64e-03 1.70e-04 1.08e-04 1.09e-04

M
VE
M
-P
0 0.2625 2.39e-01 4.73e-02 2.55e-02 5.78e-03 1.56e-02 6.70e-03 5.54e-03 5.49e-03

0.1720 1.64e-01 3.08e-02 1.10e-02 5.56e-03 9.01e-03 2.04e-03 1.50e-03 1.50e-03
0.0827 8.79e-02 1.91e-02 3.91e-03 3.05e-03 5.17e-03 6.70e-04 4.40e-04 4.41e-04
0.0418 4.61e-02 1.01e-02 1.06e-03 1.46e-03 2.64e-03 1.70e-04 1.13e-04 1.14e-04

M
PF
A

0.2625 2.40e-01 4.73e-02 2.55e-02 5.04e-03 1.56e-02 6.70e-03 5.93e-03 5.86e-03
0.1720 1.66e-01 3.08e-02 1.10e-02 4.86e-03 9.01e-03 2.04e-03 1.56e-03 1.55e-03
0.0827 8.89e-02 1.91e-02 3.91e-03 2.82e-03 5.17e-03 6.70e-04 4.61e-04 4.62e-04
0.0418 4.65e-02 1.01e-02 1.06e-03 1.41e-03 2.64e-03 1.70e-04 1.14e-04 1.16e-04

TP
FA

0.2625 3.34e-01 4.73e-02 2.55e-02 4.88e-03 1.56e-02 6.70e-03 6.04e-03 5.11e-03
0.1720 2.63e-01 3.08e-02 1.10e-02 4.86e-03 9.01e-03 2.04e-03 1.35e-03 1.29e-03
0.0827 2.02e-01 1.91e-02 3.91e-03 2.85e-03 5.17e-03 6.70e-04 4.50e-04 4.39e-04
0.0418 1.97e-01 1.01e-02 1.06e-03 1.46e-03 2.64e-03 1.70e-04 1.02e-04 1.02e-04

when the global Poincaré–Friedrichs constant is used. When the local Poincaré-Freidrich constants are used,
the residual estimators for the matrix and the fracture decrease quadratically, which goes in agreement with
the super-convergent properties discussed in Remark 6.6.

7.1.3 Three-dimensional validation

For our next numerical validation, we employ the 2D/3D configuration from the right panel of Fig. 5. We repeat
the same analysis from the previous section, and investigate four refinement levels. The mixed-dimensional
Poincaré constant for this configuration corresponds to a value of CΩ,Γ ≈ 0.1838. The results are shown in
Tables 3 and 4. As in the previous validation, we can see that the majorants capture the local and global con-
vergence tendency of all numerical methods. Again, RT0-P0, MVEM-P0, and MPFA give quite similar results,
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Tab. 5: Error estimates for the two-dimensional application. The results forM⊕
u;EC are omitted since they are equal toM

⊕
p;EC.

Mesh εΩ2 ;EC εΩ1 ;EC,C εΩ1 ;EC,B εΓ1 ,C εΓ1 ,B εΓ0 M⊕
p;EC M⊕

p,u;EC

RT
0-
P0

Coarse 7.39e-01 2.93e-01 2.98e-04 3.13e+03 1.52e-01 2.24e+01 9.94e+02 1.99e+03
Intermediate 5.95e-01 1.90e-01 2.77e-04 1.95e+03 1.00e-01 1.79e+01 6.20e+02 1.24e+03

Fine 4.30e-01 1.07e-01 2.78e-04 9.79e+02 5.15e-02 1.22e+01 3.15e+02 6.30e+02

M
VE
M
-P
0 Coarse 7.29e-01 3.51e-01 1.44e-04 3.10e+03 1.46e-01 4.41e+01 9.84e+02 1.97e+03

Intermediate 5.91e-01 2.23e-01 1.27e-04 1.94e+03 9.43e-02 3.14e+01 6.17e+02 1.23e+03
Fine 4.28e-01 1.24e-01 1.18e-04 9.78e+02 4.80e-02 2.02e+01 3.15e+02 6.29e+02

M
PF
A Coarse 7.39e-01 3.13e-01 1.72e-04 3.03e+03 1.43e-01 3.39e+01 9.63e+02 1.93e+03

Intermediate 5.98e-01 2.01e-01 1.54e-04 1.89e+03 9.18e-02 2.55e+01 6.00e+02 1.20e+03
Fine 4.33e-01 1.12e-01 1.46e-04 9.49e+02 4.71e-02 1.68e+01 3.05e+02 6.10e+02

TP
FA

Coarse 7.52e-01 3.05e-01 1.76e-04 3.19e+03 1.48e-01 3.67e+01 1.01e03 2.02e+03
Intermediate 6.08e-01 1.96e-01 1.51e-04 1.95e+03 9.41e-02 2.61e+01 6.12e+02 1.22e+03

Fine 4.45e-01 1.09e-01 1.60e-04 1.00e+03 4.84e-02 1.86e+01 3.23e+02 6.46e+02

whereas TPFA showcase larger errors. As expected, efficiency indices again lie within the stated bounds from
Remark 7.1.

7.2 Numerical applications

We now apply our estimators to numerical approximations of challenging problems solving the equations of
incompressible flow in fractured porousmedia. Importantly, since source terms are zero in both applications, by
applying matching grids the residual errors are zero, and we are in the setting of having an exact conservation
property from the numerical approximation. From Remark 7.1, we then know that the efficiency index for the
primal–dual error will be less than 2; even if the exact solution and error are both unknown.

7.2.1 Two-dimensional application

In this numerical experiment, we consider the benchmark case 3b from [29]. As shown in the left panel of Fig. 1,
the domain consists of ten (partially intersecting) fractures embedded in a unit squarematrix. The exact fracture
coordinates can be found in Appendix C of [29]. Fractures 4 and 5 represent blocking fractures (K = 10−4 and
κ = 1) whereas the others represent conductive fractures (K = 104 and κ = 108). The matrix permeability is set
to one. A linear pressure drop is imposed from left (p = 4) to right (p = 1), whereas no flux is prescribed at the
top and bottom of the domain.

The benchmark establishes three refinement levels; coarse, intermediate, and fine, with approximately
1500, 4200, and 16000 two-dimensional cells. The structure of the local contributions to the majorant (confer,
e.g., equation (5.7)) are shown in Fig. 6, based on the approximate solution obtained by the MPFA discretization.

In Table 5, we show the errors bounds for the three refinement levels. To avoid numbering domains and
interfaces, we refer to the matrix error as εΩ2 ,EC, and group the fracture and interface errors by conductive and
blocking. For example, εΩ1 ,C,EC refers to the sum of the errors of 1D conductive fractures.

An important observation is that the persistent reduction of themajorantM⊕
p,u;EC, together with the known

upper and lower bounds on the efficiency indexes established in Remark 7.1, provides a post factum verification
of the convergence of all the numerical methods considered.

The error estimates suggest that the contribution to the overall error bounds are concentrated, primarily,
on highly conductive interfaces (see the column corresponding to εΓ1 ,C). On a more qualitative note, Figure 6
suggests that subdomain diffusive errors are concentrated at the fracture tips and fracture intersections, which
is where singularities may typically be encountered [19].
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Fig. 6: Two-dimensional benchmark problem and the errors associated with the matrix and fractures for the coarse (left), intermediate
(center), and fine (right) grid resolutions. Fractures 4 and 5 are blocking, whereas the others are conductive. The local bounds were ob-
tained using MPFA. The results suggest that subdomain diffusive errors are concentrated around fracture tips and fracture intersections.

Tab. 6: Error estimates for the three-dimensional application. The results forM⊕
u;EC are omitted since they are equal toM

⊕
p;EC.

Mesh εΩ3 ;EC εΩ2 ;EC εΩ1 ;EC εΓ2 εΓ1 εΓ0 M⊕
p;EC M⊕

p,u;EC

RT
0-
P0

Coarse 6.17e-01 5.81e-04 3.16e-04 9.87e+02 3.63e-02 3.31e-02 5.03e+02 1.01e+03
Intermediate 4.55e-01 4.61e-04 1.58e-04 7.75e+01 8.86e-03 8.35e-04 3.40e+01 6.81e+01

Fine 3.86e-01 2.55e-04 9.60e-05 2.26e+01 4.63e-03 4.34e-04 1.07e+01 2.14e+01

M
VE
M
-P
0 Coarse 6.07e-01 6.99e-04 2.77e-04 9.54e+02 7.48e-02 6.38e-02 4.66e+02 9.33e+02

Intermediate 4.55e-01 4.63e-04 1.65e-04 8.19e+01 9.96e-03 4.59e-03 3.59e+01 7.18e+01
Fine 3.86e-01 2.46e-04 9.17e-05 2.33e+01 4.00e-03 1.75e-03 1.11e+01 2.22e+01

M
PF
A Coarse 6.07e-01 7.00e-04 3.15e-04 1.05e+03 4.61e-02 1.69e-02 5.24e+02 1.05e+03

Intermediate 4.46e-01 4.88e-04 1.61e-04 8.42e+01 7.72e-03 2.31e-03 3.71e+01 7.42e+01
Fine 3.77e-01 2.53e-04 9.04e-05 2.37e+01 2.82e-03 9.36e-04 1.12e+01 2.24e+01

TP
FA

Coarse 6.32e-01 4.72e-04 2.26e-04 7.92e+02 4.21e-02 1.34e-02 3.76e+02 7.52e+02
Intermediate 4.48e-01 6.27e-04 1.40e-04 1.47e+02 1.56e-02 2.32e-03 6.82e+01 1.36e+02

Fine 4.07e-01 5.82e-04 8.72e-05 4.60e+01 7.97e-03 1.05e-03 2.04e+01 4.08e+01

7.2.2 Three-dimensional application

Our last numerical application is based on amodified version of the three-dimensional benchmark 2.1 from [14].
The domain consists of nine intersecting fractures embedded in a unit cube, as shown in the middle panel of
Fig. 1. This results in an intricate network with 106 subdomains and 270 interfaces of different dimensionality.

The original benchmark imposes an inlet flux (purple lower corner u = −1) and an outlet pressure (pink
upper corner p = 1), and for the rest of the external boundaries null flux. Sincewe have only detailed our results
for zero Neumann boundary conditions, we have replaced the inlet flux by a constant pressure condition (p = 1)
andmodified the value of the outlet pressure (p = 0). The benchmark assigns heterogeneous permeability to the
matrix subdomain, whereas the fractures are assumed to be highly conductive. For the complete description of
the benchmark, we refer to [14], and for an impression on how the contributions to themajorant are distributed
(see Fig. 7). Here we show the error estimates for the whole fracture network obtained with RT0-P0, where
it becomes evident that the subdomain diffusive errors are concentrated at the inlet and outlet boundaries;
refinement efforts should therefore focus on these regions.

As in Section 7.2.1, we collect the local errors of subdomains and interfaces of equal dimensionality. The
results are summarized in Table 6. As in the previous cases, we have local and global convergence for all four
numerical methods. Again, RT0-P0, MVEM-P0, and MPFA show very similar results, while TPFA show larger
errors.

As in the 2D case discussed above, the persistent reduction of the majorantM⊕
p,u;EC, again serves as a veri-

fication of the convergence of all four numerical methods.
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Fig. 7: Subdomain diffusive error contributions to the majorant
for the fine grid resolution obtained with RT0-P0.

8 Conclusion

In this paper, we obtained a posteriori error estimates for mixed-dimensional elliptic equations. Depending
upon the level of accuracy at which residual balances can be approximated, we have derived four concrete ver-
sions of the majorant; i.e., for no mass-conservative, subdomain mass-conservative, locally mass-conservative,
and point-wisemass-conservative approximations. Furthermore, we have demonstrated both theoretically and
numerically that sharper bounds can be obtained (for locally mass-conservative methods) using local Poincaré
constants instead of the global ones.

Our bounds have been thoroughly tested with numerical approximations obtained with four locally mass-
conservativemethods of the lowest-order, namely: RT0-P0,MVEM-P0,MPFA, and TPFA.We performed a detailed
efficiency analysis comparing the use of global and local Poincaré–Friedrichs constants in two and three dimen-
sions. In both validations, our upper bounds reflected the optimal convergence rates of the numerical methods.
In addition, we applied our bounds to two- and three-dimensional community benchmark problems exhibiting
challenging fracture networks. Again, in both cases, the bounds reflected the limitations and the convergence
rates of the methods satisfactory.

To the best of our knowledge, the bounds obtained here are the first of their kind to provide a practical tool
to measure the error in numerical approximations to the equations modeling the incompressible, single-phase
flow in generic fractured porous media.
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wegian Research Council grant 250223. The authors would like to thank W.M. Boon for helpful discussions on
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A Derivation of variational formulations

Here,wepresent the derivations for the primal anddual variational formulations for the case of a single fracture
immersed in a matrix.

A.1 Derivation of the primal weak form for a single fracture

Substitute (2.1b) into (2.1a), multiply each term by q2 ∈ H1
0(Ω2), and integrate over Ω2. Similarly, substi-

tute (2.1b), (2.3a), and (2.3b) into (2.2a), multiply each term by q1 ∈ H1
0(Ω1) and integrate over Ω1. Add the

resulting equations to obtain

− ⟨∇2 ·K2∇2 p2 , q2⟩Ω2
− ⟨∇1 ·K1∇1 p1 , q1⟩Ω1

+
⟨︀
κ1

(︀
p1 − tr∂1Ω2 p2

)︀
, q1

⟩︀
Ω1

+
⟨︀
κ2

(︀
p1 − tr∂2Ω2 p2

)︀
, q1

⟩︀
Ω1

= ⟨f2 , q2⟩Ω2
+ ⟨f1 , q1⟩Ω1

. (A.1)

Using integration by parts, the first term of (A.1) can be expressed as

−⟨∇2 ·K2∇2 p2 , q2⟩Ω2
= ⟨K2∇2 p2 ,∇2 q2⟩Ω2

−
2∑︁
j=1

⟨
tr∂jΩ2 (K2∇2 p2) · n2 , tr∂jΩ2 q2

⟩
∂jΩ2

= ⟨K2∇2p2 ,∇2q2⟩Ω2
−

2∑︁
j=1

⟨
λj , tr∂jΩ2 q2

⟩
Γj

= ⟨K2∇2p2 ,∇2q2⟩Ω2
+

2∑︁
j=1

⟨
κj

(︁
p1 − tr∂jΩ2 p2

)︁
, tr∂jΩ2 q2

⟩
Γj
. (A.2)

Here, we use the internal boundary conditions (2.1c) and (2.1d) and the definition of the mortar fluxes (2.3a)
and (2.3b). Analogously, integration by parts allows us to write the second term of (A.1) as

−⟨∇1 ·K1∇1 p1 , q1⟩Ω1
= ⟨K1∇1 p1 ,∇1 q1⟩Ω1

. (A.3)

Note that the boundary terms vanish due to the choice of boundary conditions.
Finally, we note that the third and fourth terms from (A.1) can be equivalently written as⟨

κj
(︀
p1 − tr∂jΩ2 p2

)︀
, q1

⟩
Ω1

=
⟨
κj
(︀
p1 − tr∂jΩ2 p2

)︀
, q1

⟩
Γj
, j ∈ {1, 2}. (A.4)

The proof is completed by substituting (A.2), (A.3), and (A.4) into (A.1) and grouping common terms.

A.2 Derivation of the dual weak form for a single fracture

Let us start with (2.13a). Multiply respectively (2.1b) and (2.2b) by v0,2 ∈ V0,2 and v0,1 ∈ V0,1, integrate over the
subdomains Ω2 and Ω1, use integration by parts to obtain⟨

K−1
2 u2 , v0,2

⟩
Ω2

=
⟨
K−1
2
(︀
u0,2 +R1λ1 +R2λ2

)︀
, v0,2

⟩
Ω2

= −
⟨︀
∇2 p2 , v0,2

⟩︀
Ω2

=
⟨︀
p2 ,∇2 · v0,2

⟩︀
Ω2
−
⟨︀
gD,2 , tr∂DΩ2 v0,2 · n2

⟩︀
∂DΩ2

(A.5)⟨
K−1
1 u1 , v0,1

⟩
Ω1

=
⟨
K−1
1 u0,1 , v0,1

⟩
Ω1

= −
⟨︀
∇1 p1 , v0,1

⟩︀
Ω1

=
⟨︀
p1 ,∇1 · v0,1

⟩︀
Ω1
−
⟨︀
gD,1 , tr∂DΩ1 v0,1 · n1

⟩︀
∂DΩ1

. (A.6)
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Adding together (A.5) and (A.6) gives (2.13a). We now focus on (2.13b). First, we use (2.1b) and multiply by the
test functions Rjνj with νj ∈ L2(Γj) for j ∈ {1, 2}, integrate over Ω2, and apply integration by parts, to obtain⟨

K−1
2 u2 ,Rjνj

⟩
Ω2

=
⟨
K−1
2
(︀
u0,2 +R1λ1 +R2λ2

)︀
,Rjνj

⟩
Ω2

= −
⟨︀
∇2 p2 ,Rjνj

⟩︀
Ω2

=
⟨︀
p2 ,∇2 · (Rjνj)

⟩︀
Ω2
−
⟨
tr∂jΩ2 p2 , tr∂jΩ2 (Rjνj) · n2

⟩
∂jΩ2

=
⟨︀
p2 ,∇2 · (Rjνj)

⟩︀
Ω2
−
⟨
tr∂jΩ2 p2 , νj

⟩
∂jΩ2

=
⟨︀
p2 ,∇2 · (Rjνj)

⟩︀
Ω2
−
⟨
tr∂jΩ2 p2 , νj

⟩
Γj
. (A.7)

Next, we multiply the interface laws (2.3a) and (2.3b) by ν1 and ν2, respectively, to get⟨
κ−1
1 λj , νj

⟩
Γj
= −

⟨︀
p1 , νj

⟩︀
Γj
+
⟨
tr∂jΩ2 p2 , νj

⟩
Γj
= −

⟨︀
p1 , νj

⟩︀
Ω1
+
⟨
tr∂jΩ2 p2 , νj

⟩
Γj
, j ∈ {1, 2}. (A.8)

After adding (A.7) and (A.8) and canceling common terms, we obtain (2.13b). Finally, to obtain (2.13c), we mul-
tiply (2.1a) by q2 ∈ L2(Ω2) and (2.2a) by q1 ∈ L2(Ω1), and integrate over their respective subdomains, and add
the resulting equations.

B Proof of Theorem 2.1

Here, we present the proof of the upper bound of the error for the primal variable, for the case of a single
fracture immersed in a matrix.

Proof. Start by computing the difference between p = [p1 , p2] ∈ H1
0(Ω) + g and an arbitrary function q =

[q1 , q2] ∈ H1
0(Ω) + g in the energy norm (2.14):

|||p − q|||2 = ⟨K2∇2(p2 − q2),∇2(p2 − q2)⟩Ω2
+ ⟨K1∇1(p1 − q1),∇1(p1 − q1)⟩Ω1

+
2∑︁
j=1

⟨
κj

[︁
(p1 − q1) − tr∂jΩ2 (p2 − q2)

]︁
, (p1 − q1) − tr∂jΩ2 (p2 − q2)

⟩
Γj

= ⟨K2∇2p2 ,∇2(p2 − q2)⟩Ω2
+ ⟨K1∇1p1 ,∇1(p1 − q1)⟩Ω1

+
2∑︁
j=1

⟨
κj

[︁
(p1 − q1) − tr∂jΩ2 (p2 − q2)

]︁
, (p1 − q1) − tr∂jΩ2 (p2 − q2)

⟩
Γj

+ ⟨−K2∇2q2 ,∇2(p2 − q2)⟩Ω2
+ ⟨−K1∇1q1 ,∇1(p1 − q1)⟩Ω1

+
2∑︁
j=1

⟨
−κj

(︁
q1 − tr∂jΩ2 q2

)︁
, (p1 − q1) − tr∂jΩ2 (p2 − q2)

⟩
Γj
. (B.1)

By noticing that the first three terms of (B.1) add up to the right-hand side of (2.6), and adding the identity

−
⟨︀
v0,2 +R1ν1 +R2ν2 ,∇2(p2 − q2)

⟩︀
Ω2
−
⟨︀
v0,1 ,∇1(p1 − q1)

⟩︀
Ω1

+
⟨︀
∇2 ·

(︀
v0,2 +R1ν1 +R2ν2

)︀
, p2 − q2

⟩︀
Ω2
+
⟨︀
∇1 · v0,1 − ν1 − ν2 , p1 − q1

⟩︀
Ω1

+
2∑︁
j=1

⟨
νj , (p1 − q1) − tr∂jΩ2 (p2 − q2)

⟩
Γj
= 0

valid for any v0 ∈ V0 and ν ∈ L2(Γ) to (B.1), we obtain

|||p − q|||2 =
⟨︀
−
(︀
v0,2 +R1ν1 +R2ν2 +K2∇2q2

)︀
,∇2(p2 − q2)

⟩︀
Ω2
+
⟨︀
−
(︀
v0,1 +K1∇1p1

)︀
,∇1(p1 − q1)

⟩︀
Ω1

+
2∑︁
j=1

⟨
−
[︁
νj + κj

(︁
q1 − tr∂jΩ2 q2

)︁]︁
, (p1 − q1) − tr∂jΩ2 (p2 − q2)

⟩
Γj

+
⟨︀
f2 −∇2 ·

(︀
v0,2 +R1ν1 +R2ν2

)︀
, p2 − q2

⟩︀
Ω2
+
⟨︀
f1 −∇1 · v0,1 + ν1 + ν2 , p1 − q1

⟩︀
Ω1
. (B.2)
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Recognizing that since K2 is symmetric positive definite, it can be expressed as K2 =
(︀
K1/2
2

)︀2, where K1/2
2

is also symmetric positive definite, and therefore self-adjoint. The square-root of the material coefficients can
therefore bemoved to the second argument of the three first inner products in (B.2). After applying the Cauchy–
Schwarz inequality to each inner product of (B.2), one gets

|||p − q|||2 ⩽
⃦⃦⃦
K−1/2
2

(︀
v0,2 +R1ν1 +R2ν2 +K2∇2q2

)︀⃦⃦⃦
Ω2

⃦⃦⃦
K1/2
2 ∇2(p2 − q2)

⃦⃦⃦
Ω2

+
⃦⃦⃦
K−1/2
1

(︀
v0,1 +K1∇1p1

)︀⃦⃦⃦
Ω1

⃦⃦⃦
K1/2
1 ∇1(p1 − q1)

⃦⃦⃦
Ω1

+
⃦⃦⃦
κ−1/2
1

[︀
ν1 + κ1

(︀
q1 − tr∂1Ω2 q2

)︀]︀⃦⃦⃦
Γ1

⃦⃦⃦
κ1/2
1

[︀
(p1 − q1) − tr∂1Ω2 (p2 − q2)

]︀⃦⃦⃦
Γ1

+
⃦⃦⃦
κ−1/2
2

[︀
ν2 + κ2

(︀
q1 − tr∂2Ω2 q2

)︀]︀⃦⃦⃦
Γ2

⃦⃦⃦
κ1/2
2

[︀
(p1 − q1) − tr∂2Ω2 (p2 − q2)

]︀⃦⃦⃦
Γ2

+
⃦⃦
f2 −∇2 ·

(︀
v0,2 +R1ν1 +R2ν2

)︀⃦⃦
Ω2

‖p2 − q2‖Ω2

+
⃦⃦
f1 −∇1 · v0,1 + ν1 + ν2

⃦⃦
Ω1

‖p1 − q1‖Ω1
.

Finally, applying the permeability-weighted Poincaré–Friedrichs inequality (4.1b) to the terms ‖p1 − q1‖Ω1
and

‖p2 − q2‖Ω2
, the proof of the theorem is completed.

C Proof of Theorem 5.1

Here, we present the proof of our main theorem, which deals with the general abstract estimates in a mixed-
dimensional setting.

Proof. (1) The proof for the bounds for themDprimal variable follows the one presented in Appendix B,modulo
its generalization to the mD setting and the use of weighted norms on the residual terms. Start by computing
the difference between any q ∈ H1

0(Ω) + g and p ∈ H1
0(Ω) + g using (4.10), to get

|||p − q|||2 = ⟨KD (p − q),D (p − q)⟩Ω,Γ = ⟨KD p,D (p − q)⟩Ω,Γ + ⟨−KD q,D (p − q)⟩Ω,Γ
= ⟨f, p − q⟩Ω + ⟨−KD q,D (p − q)⟩Ω,Γ = ⟨f, p − q⟩Ω +

⟨
−K −1/2D q,K 1/2D (p − q)

⟩
Ω,Γ

= ⟨f −D·v, p − q⟩Ω +
⟨
−K −1/2(v + KD q),K 1/2D (p − q)

⟩
Ω,Γ

. (C.1)

Here, we used (4.10), (5.3), and added the fact thatD· and D are adjoints.
By exploiting the orthogonality property (4.7) and then introducing the weights to the second and third

terms, (C.1) can be equivalently written as:

|||p − q|||2 = ⟨f −D·v, πW (p − q)⟩Ω +
⟨
−K −1/2(v + KD q),K 1/2D (p − q))

⟩
Ω,Γ

=
⟨
μ−1(f −D·v), μπW (p − q)

⟩
Ω
+
⟨
−K −1/2(v + KD q),K 1/2D (p − q)

⟩
Ω,Γ

. (C.2)

Finally, applying the Cauchy–Schwarz inequality to the first and second terms of (C.2), and then the norm
definitions (4.10), (4.11), and (4.8), we arrive at the desired bound:

|||p − q|||2 ⩽ |||v + KD q|||*|||p − q||| +
⃦⃦⃦
μ−1(f −D·v)

⃦⃦⃦
Ω
‖πW (p − q)‖W ,μ

⩽ |||v + KD q|||*|||p − q||| +
⃦⃦⃦
μ−1(f −D·v)

⃦⃦⃦
Ω
|||p − q||| ⩽ M(q, v, f, μ)|||p − q|||. (C.3)

(2) The proof for the bounds for the dual variable is given next. We remark that an alternative proof based
on a generalized abstract estimate (see [63], Theorem 6.1) can be used to obtain equivalent upper bounds after
its generalization to the mD setting.
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We start by adding the square of the primal and dual error to obtain:

|||p − q|||2 + |||u − v|||2* = ⟨KD (p − q),D (p − q)⟩Ω,Γ +
⟨
K −1(u − v), u − v

⟩
Ω,Γ

=
⟨
u + KD q,K −1u +D q

⟩
Ω,Γ

+
⟨
K −1(u − v), u − v

⟩
Ω,Γ

=
⟨
u − v + v + KD q,K −1u − K −1v +D q + K −1v

⟩
Ω,Γ

+
⟨
K −1(u − v), u − v

⟩
Ω,Γ

=
⟨
v + KD q,K −1v +D q

⟩
Ω,Γ

+ 2⟨u − v, −D (p − q)⟩Ω,Γ

=
⟨
K −1/2v + K 1/2D q,K −1/2v + K 1/2D q

⟩
Ω,Γ

+ 2⟨u − v, −D (p − q)⟩Ω,Γ . (C.4)

Here, we used the norm definitions (4.10) and (4.11) together with the mD constitutive relationship (3.12a).
Using partial integration, mass conservation (3.12b), and the orthogonality property (4.7), the second term

of (C.4) can be equivalently written as

⟨u − v, −D (p − q)⟩Ω,Γ = ⟨D·(u − v), −(p − q)⟩Ω = ⟨f −D·v, −(p − q)⟩Ω
= ⟨f −D·v, −πW (p − q)⟩Ω =

⟨
μ−1(f −D·v), −μπW (p − q)

⟩
Ω
. (C.5)

Using the Cauchy–Schwarz inequality twice and the definition of the weighted norms (4.8), (C.5) can be
estimated as ⃒⃒

⟨u − v, −D (p − q)⟩Ω,Γ
⃒⃒
⩽

⃦⃦⃦
μ−1(f −D·v)

⃦⃦⃦
Ω
‖πW (p − q)‖W ,μ

=
⃦⃦⃦
μ−1(f −D·v)

⃦⃦⃦
Ω
|||p − q||| ⩽ 1

2

(︂⃦⃦⃦
μ−1(f −D·v)

⃦⃦⃦2
Ω
+ |||p − q|||2

)︂
. (C.6)

Substituting (C.6) into (C.4) and applying the Cauchy–Schwarz inequality to the first term, we arrive at

|||u − v|||2* ⩽ |||v + KD q|||2* +
⃦⃦⃦
μ−1(f −D·v)

⃦⃦⃦2
Ω

from which we conclude that (5.4) indeed holds.
(3) To prove the upper bound for the primal–dual pair, we choose an arbitrary pair (q, v) ∈ (H1

0(Ω) + g) ×
H(div;Ω, Γ;U), and measure its difference with the exact solution (p, u) ∈ (H1

0(Ω) + g) × H(div;Ω, Γ) in the
norm (4.13), to get⃒⃒⃒⃒ [︀

(p − q, u − v)
]︀⃒⃒
= |||p − q||| + |||u − v|||* +

⃦⃦⃦
μ−1D·(u − v)

⃦⃦⃦
Ω
⩽ 2M +

⃦⃦⃦
μ−1D·(u − v)

⃦⃦⃦
Ω

where we use the bounds (5.3) and (5.4).
For the proof of the lower bound, we start from the definition of the majorant, to get

M = |||v + KD q|||* +
⃦⃦⃦
μ−1(f −D·v)

⃦⃦⃦
Ω

⩽ |||u − v|||* + |||KD (p − q)|||* +
⃦⃦⃦
μ−1(f −D·v)

⃦⃦⃦
Ω
=
⃒⃒⃒⃒ [︀
(p − q, u − v)

]︀⃒⃒
.

This completes the proof for the two-sided bounds and the abstract theorem.

D Exact solutions to numerical validations

Herein, we provide the exact expressions for the pressure, velocities, mortar fluxes, and source terms for the
numerical validations presented in Section 7.1.

We will conveniently define the following quantities for notational compactness:

α(x) = x1 − 0.50
β1(x) = x2 − 0.25, β2(x) = x2 − 0.75
γ1(x) = x3 − 0.25, γ2(x) = x3 − 0.75

where x = [x1 , x2 , x3].
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Tab. 7: Exact solutions for the 1D/2D validation.

p2 =
dn+1 + ωd Ω2

2

dn+12 Ω2 \ Ω2
2

u2 =

−dn+1(n + 1)
[︀
α β1

]︀
Ω1
2

−d
[︀
α−1

(︀
ω + dn(n + 1)

)︀
2β21 β2 + 2β1β22

]︀
Ω2
2

−dn+1(n + 1)
[︀
α β2

]︀
Ω3
2

f2 =

−d−2(n + 1)
(︀
2dn+1 + α2dn−1(n − 1) + β21 dn−1(n − 1)

)︀
Ω1
2

−2d
(︀
β1(β1 + 2β2) + β2(2β1 + β2)

)︀
− dn−1n(n + 1) Ω2

2

−d−2(n + 1)
(︀
2dn+1 + α2dn−1(n − 1) + β22dn−1(n − 1)

)︀
Ω3
2

λ1 = ω Γ1
λ2 = ω Γ2
p2 = 0 ∂1Ω2

p2 = 0 ∂2Ω2

p1 = −ω Ω1

u1 =
[︀
0 2β21 β2 + 2β1β22

]︀
Ω1∑︀

j∈Ŝ1
λ j = 2ω Ω1

f1 = 8β1β2 + 2(β21 + β22) − 2ω Ω1

D.1 Exact solutions for the 1D/2D validation

The matrix subdomain Ω2 is decomposed into three regions, i.e., Ω2 =
⋃︀3

k=1 Ω
k
2 , given by:

Ω1
2 = {x ∈ Ω2 : 0.00 < x2 < 0.25}

Ω2
2 = {x ∈ Ω2 : 0.25 ⩽ x2 < 0.75}

Ω3
2 = {x ∈ Ω2 : 0.75 ⩽ x2 < 1.00} .

Let us now define the distance function d(x) from Ω2 to Ω1. That is,

d(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(︁
α(x)2 + β1(x)2

)︁1/2
, x ∈ Ω1

2(︁
α(x)2

)︁1/2
, x ∈ Ω2

2(︁
α(x)2 + β2(x)2

)︁1/2
, x ∈ Ω3

2

(D.1)

and the bubble function ω(x):

ω(x) =

⎧⎨⎩β1(x)2β2(x)2 , x ∈ Ω2
2

0, otherwise.
(D.2)

In Table 7, we include the exact solutions for all the variables of interest. Note that the parameter n controls
the regularity of the solution. For this particular validation, a value of n = 1.5 was adopted.
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D.2 Exact solutions for the 2D/3D validation

Analogously to the previous case, we decompose the three-dimensional matrix Ω2 into nine subdomains, i.e.,
Ω2 =

⋃︀9
k=1 Ω

k
2 , given by

Ω1
2 = {x ∈ Ω2 : 0.00 < x2 < 0.25, 0.00 < x3 < 0.25}

Ω2
2 = {x ∈ Ω2 : 0.00 < x2 < 0.25, 0.25 ⩽ x3 < 0.75}

Ω3
2 = {x ∈ Ω2 : 0.00 < x2 < 0.25, 0.75 ⩽ x3 < 1.00}

Ω4
2 = {x ∈ Ω2 : 0.25 ⩽ x2 < 0.75, 0.00 < x3 < 0.25}

Ω5
2 = {x ∈ Ω2 : 0.25 ⩽ x2 < 0.75, 0.25 ⩽ x3 < 0.75}

Ω6
2 = {x ∈ Ω2 : 0.25 ⩽ x2 < 0.75, 0.75 ⩽ x3 < 1.00}

Ω7
2 = {x ∈ Ω2 : 0.75 ⩽ x2 < 1.00, 0.00 < x3 < 0.25}

Ω8
2 = {x ∈ Ω2 : 0.75 ⩽ x2 < 1.00, 0.25 ⩽ x3 < 0.75}

Ω9
2 = {x ∈ Ω2 : 0.75 ⩽ x2 < 1.00, 0.75 ⩽ x3 < 1.00} .

The distance function d2(x) from Ω2 to Ω1 is now given by

d2(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(︁
α(x)2 + β1(x)2 + γ1(x)2

)︁1/2
, x ∈ Ω1

2(︁
α(x)2 + β1(x)2

)︁1/2
, x ∈ Ω2

2(︁
α(x)2 + β1(x)2 + γ2(x)2

)︁1/2
, x ∈ Ω3

2(︁
α(x)2 + γ1(x)2

)︁1/2
, x ∈ Ω4

2(︁
α(x)2

)︁1/2
, x ∈ Ω5

2(︁
α(x)2 + γ2(x)2

)︁1/2
, x ∈ Ω6

2(︁
α(x)2 + β2(x)2 + γ1(x)2

)︁1/2
x ∈ Ω7

2(︁
α(x)2 + β2(x)2

)︁1/2
, x ∈ Ω8

2(︁
α(x)2 + β2(x)2 + γ2(x)2

)︁1/2
, x ∈ Ω9

2

(D.3)

and the bubble function ω(x):

ω(x) =

⎧⎨⎩β1(x)2β2(x)2γ1(x)2γ2(x)2 , x ∈ Ω5
2

0, otherwise.
(D.4)

In Table 8, we show the exact solutions for all the variables of interest. Once again, a value of n = 1.5 is
adopted for this validation.
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Tab. 8: Exact solutions for the 2D/3D validation.

p2 =
dn+1 + ωd Ω2

2
dn+12 Ω2 \ Ω2

2

u2 =

−dn−1(n + 1)
[︀
α β1 γ1

]︀
Ω1
2

−dn−1(n + 1)
[︀
α β1 0

]︀
Ω2
2

−dn−1(n + 1)
[︀
α β1 γ2

]︀
Ω3
2

−dn−1(n + 1)
[︀
α 0 γ1

]︀
Ω4
2

−d
[︀
α−1(ω + dn(n + 1)) 2β21 β2γ21 γ22 + 2β1β22γ21 γ22 2β21 β22γ21 γ2 + 2β21 β22γ1γ22

]︀
Ω5
2

−dn−1(n + 1)
[︀
α 0 γ2

]︀
Ω6
2

−dn−1(n + 1)
[︀
α β2 γ1

]︀
Ω7
2

−dn−1(n + 1)
[︀
α β2 0

]︀
Ω8
2

−dn−1(n + 1)
[︀
α β2 γ2

]︀
Ω9
2

f2 =

−d−2(n + 1)
(︀
3dn+1 + α2dn−1(n − 1) + β21 dn−1(n − 1) + γ21 dn−1(n − 1)

)︀
Ω1
2

−d−2(n + 1)
(︀
2dn+1 + α2dn−1(n − 1) + β21 dn−1(n − 1)

)︀
Ω2
2

−d−2(n + 1)
(︀
3dn+1 + α2dn−1(n − 1) + β21 dn−1(n − 1) + γ22dn−1(n − 1)

)︀
Ω3
2

−d−2(n + 1)
(︀
2dn+1 + α2dn−1(n − 1) + γ21 dn−1(n − 1)

)︀
Ω4
2

−2d
(︀
β21 β22

(︀
γ1
(︀
γ1 + 2γ2

)︀
+ γ2

(︀
2γ1 + γ2

)︀)︀
+ γ21 γ22

(︀
β1
(︀
β1 + 2β2

)︀
+ β2

(︀
2β1 + β2

)︀)︀)︀
Ω5
2

−α−2ωdn+1(n + 1)2 − α−2ωdn+1(n + 1)

−d−2(n + 1)
(︀
2dn+1 + α2dn−1(n − 1) + γ22dn−1(n − 1)

)︀
Ω6
2

−d−2(n + 1)
(︀
3dn+1 + α2dn−1(n − 1) + β22dn−1(n − 1) + γ21 dn−1(n − 1)

)︀
Ω7
2

−d−2(n + 1)
(︀
2dn+1 + α2dn−1(n − 1) + β22dn−1(n − 1)

)︀
Ω8
2

−d−2(n + 1)
(︀
3dn+1 + α2dn−1(n − 1) + β22dn−1(n − 1) + γ22dn−1(n − 1)

)︀
Ω9
2

λ1 = ω Γ1
λ2 = ω Γ2
p2 = 0 ∂1Ω2

p2 = 0 ∂2Ω2

p1 = −ω Ω1

u1 =
[︀
0 2γ21 γ22(β1β22 + β21 β2) 2β21 β22(γ1γ22 + γ21 γ2)

]︀
Ω1∑︀

j∈Ŝ1
λ j = 2ω Ω1

f1 = β21 γ22 + 4β1β2γ22 + β22γ21 + 4β22γ1γ2 + 2β22γ22 − 2ω Ω1
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