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Abstract. We study the diffusion of tangential tensor-valued data on curved surfaces.
For this purpose, several finite-element-based numerical methods are collected and used
to solve a tangential surface n-tensor heat flow problem. These methods differ with
respect to the surface representation used, the geometric information required, and the
treatment of the tangentiality condition. We emphasize the importance of geometric
properties and their increasing influence as the tensorial degree changes from n = 0 to
n ≥ 1. A specific example is presented that illustrates how curvature drastically affects
the behavior of the solution.
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1 Introduction

The Isaac Newton Institute program “Computational Challenges in Partial Differential Equations”
in 2003 stimulated intensive research on surface partial differential equations (PDEs) in the math-
ematical community covering topics in modeling, numerical analysis, and applications. PDEs de-
fined on curved surfaces are inherently nonlinear and require a geometric framework. An important
breakthrough in the development of numerical methods for this type of PDEs is the avoidance of
charts and atlases. Most commonly used methods are either based on a triangulated surface and
require geometric information through knowledge of the vertices and discrete normals, or are based
on a level set technique where the geometric information is derived from the level set function.
Most of these works deal with scalar-valued surface PDEs, see [12, 30, 5] for reviews of such finite-
element-based approaches. In the scalar case, the coupling between the surface geometry and the
PDE solution is relatively weak, and numerical approaches developed for PDEs in a flat space need
only minor modifications to be applicable to surface equations, see, e.g., [12, 41]. For n-tensor-
valued surface PDEs with n ≥ 1, these approaches are not directly applicable. The tensor-fields
must be considered as elements of the tangent bundle and the surface derivatives require more
geometric information. This leads to a stronger influence of the surface geometry on the solution
of the PDE.

In this paper we investigate this change in numerical complexity when moving from PDEs in flat
domains to curved surfaces. We consider a specific class of problems, namely that of a surface heat
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equation for n-tensor fields on a smooth curved surface embedded in R3. We will focus on tensor
ranks n = 0, 1, 2. In the rest of the paper we will use for n-tensors, n = 0, 1, 2, the terminology
scalars, vectors and tensors, respectively. For n = 1, 2 the solution must be tangential. The
numerics are restricted to finite element discretizations in space combined with low order BDF
time stepping schemes, cf. [24]. When moving from PDEs in flat Euclidean domains to PDEs on
a curved surface the following additional numerical issues arise:

a) Surface representation. In flat domains, only the boundary of the computational domain
needs to be represented or approximated. For problems on curved surfaces, however, the
entire domain must be prescribed or discretized. An issue directly related to this is the
quadrature used in the finite element method.

b) Representation of the gradient operator and geometry information. For the (covariant) sur-
face gradient operator, different natural representations are available, which lead to differ-
ent numerical approaches. The discretization process requires approximations of geometric
quantities such as surface normals and curvature. We will see that the required geometric
information depends on the representation of the gradient operator used and on the tensorial
degree n.

c) Tangentiality condition. For n-tensor fields with n ≥ 1 one has to take into account the
condition that the solution must be tangential.

In recent years, several approaches have been developed to deal with these problems, leading to
different numerical discretization methods. We present, in a unified framework, four methods
known from the literature and explicitly address the different approaches these methods take with
respect to a)–c). These four methods are: A surface finite element method (SFEM) [25, 26, 17, 18],
which extends the SFEM for scalar-valued surface PDEs [12, 11] to tensor-valued surface PDEs; an
intrinsic surface finite element method (ISFEM), which so far has only been considered for scalar-
valued surface PDEs [2]; a trace finite element method (TraceFEM) [19], which extends the scalar
version [30] to vector-valued PDEs; and a diffuse interface approach (DI) [25, 27], which extends
the approach for scalar-valued PDEs [32]. We note that only very few rigorous discretization error
analyses are available for vector- or tensor-valued surface PDEs. Such analyses for SFEM and
TraceFEM applied to a vector-Laplace problem are given in [17, 19, 18].

One conclusion from this comparative study is that for all four methods there is a significant
increase in numerical complexity when moving from the scalar case to the vector- or tensor-valued
problem, which goes far beyond the increase in complexity in flat Euclidean domains. Depending
on the geometry, an approximation of geometric properties that is sufficient to achieve the desired
accuracy of the solution for the scalar case may fail for the vector or tensor case, cf. Section 3.5
for a further discussion.

We also consider the influence of the geometry on the solution of an n-tensor heat flow problem.
This is done on a surface with a rather simple geometry. We present results of numerical simulations
using the four methods, which show that curvature drastically affects the behavior of the solution.

We would like to mention other vector- and matrix-valued finite element methods that are
available in the literature: The H(div) and H(curl) conforming Brezzi–Douglas–Marini/Raviart–
Thomas and Nédélec elements for vector fields, and Hellan–Herrmann–Johnson and Regge elements
for tensor fields, see [21, 4, 28, 14]. These methods directly consider the tangent space of the surface
by using the Piola or the convariant transformations, but require more sophisticated discretization
approaches such as hybrid discontinuous Galerkin or mixed formulations. For these reasons, they
are not considered in this paper.
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The paper is structured as follows: In Section 2, we recall different surface representations. We
also discuss different ways of representing tensors and gradient operators. Furthermore, we in-
troduce the surface n-tensor-valued heat equation and summarize known analytical results. In
Section 3, we briefly describe the four numerical methods and discuss the above mentioned nu-
merical issues a)–c). In Section 4, the n-tensor-valued heat equation on a specific surface is solved
numerically. Certain influences of the geometry on the behavior of the solution are discussed in the
Sections 4.2 – 4.4.

In the following we restrict ourselves to tensorial degree n ≤ 2. This restriction is not essential
for the results presented or for the applicability of the numerical methods, but it allows a clearer
presentation. We provide reference solutions that can serve as benchmark problems.

2 Surface tensor diffusion

2.1 Surface representation

Let M be a compact, orientable, two-dimensional surface isometrically embedded in R3. We
consider two representations of this surface, namely based on a local parametrization and as the
zero level of a level set function. The tangent bundle ofM is denoted by TM and for each x ∈M
a normal vector n(x) ∈ R3 is defined as the unit vector orthogonal to all tangent vectors in TxM.

2.1.1 Parameterized surface

We assume that M can be covered by a Ck-atlas
{

(µr, Ω̂r, Ur)
}
r

of bijective mappings µr : Ω̂r →
Ur∩M, which are parametrizations of class Ck with the domain open subsets Ω̂r ⊂ R2. We further
assume that the transition maps µ−1

r ◦ µs for overlapping co-domains, µr(Ω̂r) ∩ µs(Ω̂s) 6= ∅, are
Ck-diffeomorphisms.

For a local parametrization µ = µr, we denote the surface coordinate by x = µ(x̂) ∈ M, with
x̂ = (x̂1, x̂2) ∈ Ω̂ = Ω̂r, the Jacobian of the parametrization by

[J(x)]αj :=
∂µα

∂x̂j
(x̂), α = 1, 2, 3; j = 1, 2,

and the surface metric tensor by g = JTJ , i.e., [g]ij = JαiJ
β
j δαβ. Here and in the rest of the

text we use the Ricci calculus and the summation convention with Greek indices for the Cartesian
coordinates in R3 and Latin indices for the coordinates in the parameter domain Ω̂ ⊂ R2. Bold
symbols refer to the vector or tensor object, while light symbols with indices refer to its components.

The columns of J are R3-vectors tangent to M, i.e., [tj(x)]α := J(x)αj , tj(x) ∈ TxM for
α = 1, 2, 3; j = 1, 2, with x = µ(x̂). This results in the definition of the normal direction field
m = t1 × t2 and the corresponding unit normal field n = m/‖m‖.

A regular C2-surface has an invertible metric. This allows to transform derivatives from the
parameter domain Ω̂ into surface derivatives, cf. Section 2.2.1. The Weingarten map is given by

[H(x)]αβ := −Jβi gij
∂nα

∂x̂j
(x̂) ,

where g−1 = [gij ] is the inverse of the metric tensor.
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2.1.2 Level set characterization of the surface

An implicit representation of M can be based on a Ck-mapping φ : Ω→ R, where M⊂ Ω ⊂ R3 is
a three-dimensional domain containing the surface. We assume that ∇φ 6= 0 on M and represent
the surface as the zero-level set of φ:

M =
{
x ∈ Ω | φ(x) = 0

}
.

In a sufficiently small δ-neighborhood Uδ(M) ⊂ R3 of M, we can define the normal direction
m(x) = ∇φ(x), x ∈ Uδ(M), and the normal field nφ = m/‖m‖ with nφ|M = n. Here and in the
rest of the text we use an overline notation, e.g., m, to denote quantities that are defined not only
on M, but in a (small) three-dimensional neighborhood of M.

A natural choice for φ would be the signed-distance function ρ(x) = dist(x,M) with the property
‖∇ρ‖ ≡ 1. Let δ > 0 be sufficiently small so that the closest-point projection π : Uδ(M) →M is
uniquely defined implicitly by

π(x) = x− ρ(x)n(π(x)), x ∈ Uδ(M) . (1)

Using the closest-point projection, the signed-distance function can be determined based on ρ(x) =
(x− π(x)) · n(π(x)). The normal field n(x) = ∇ρ(x), x ∈ Uδ(M), is a constant extension of the
surface normal, i.e., n(x) = n(π(x)). An alternative representation of the extended Weingarten
map is given by H(x) = −∇n(x) = −∇2ρ(x), for x ∈ Uδ(M) with H|M = H.

2.2 Representation of tensor fields and gradient operators

2.2.1 Intrinsic representation

Starting from the definition of a parameterized surface, one can represent tensor fields and define
derivatives using local coordinates in a reference domain Ω̂.

One way to choose the local coordinates is to consider the tangent vectors t1, t2, which are
naturally associated with the parametrization µ, as the reference frame for the tangent plane
TxM. We can then describe a function on M in the local coordinates and define the (intrinsic)
surface gradients. Let u(0) : M→ R be a scalar differentiable function on M, u(1) : M→ TM be
a tangent vector field given by u(1) = u1t1 + u2t2 = uiti, and u(2) : M → T 2M a tangent tensor
field given by u(2) = uijti ⊗ tj . At a point x ∈ M, the tensors of the contravariant components
are denoted by underline notation, i.e, u(0) = u ∈ R, u(1) = [ui] ∈ R2, and u(2) = [uij ] ∈ R2×2.
The intrinsic gradient of an n-tensor field is an (n+ 1)-tensor field and is defined by the following
expressions in terms of the contravariant components:[

∇Mu(0)
]i

= gil
∂u

∂x̂l
, (2)[

∇Mu(1)
]ij

= gil∇lu
j = gil

(
∂uj

∂x̂l
+ Γjlku

k

)
, (3)[

∇Mu(2)
]ijk

= gil∇lu
jk = gil

(
∂ujk

∂x̂l
+ Γjlhu

hk + Γklhu
jh

)
, (4)

where Γkij = gkltl · ∂ti∂x̂j
denote the Christoffel symbols, for i, j, k = 1, 2. Note that these contain

curvature information. Scalar products of tensors are explicitly written in terms of the metric g,
e.g., 〈

u(1) , v(1)
〉
g

:= ui vi = gij u
i vj ,

〈
u(2) , v(2)

〉
g

:= uij vij = gil gjm u
ij vlm .
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To simplify the computation and to increase numerical stability, we also consider an orthogonal
reference frame as the basis for the tangent plane TxM. For this we orthogonalize the vector t2
with respect to t1. This orthogonalization results in the orthogonal frame t̃1, t̃2 on TxM, associated
with the local coordinates ŝ = (ŝ1, ŝ2). The corresponding metric tensor is given by

g̃ :=

(
‖t̃1‖2 0

0 ‖t̃2‖2
)

=:

(
h2

(1) 0

0 h2
(2)

)
.

We can now write explicit expressions for the Christoffel symbols in the basis {t̃1, t̃2}:

Γkik = Γkki =
1

h(k)

∂h(k)

∂ŝi
i, k = 1, 2 , Γkii = −

h(i)

h2
(k)

∂h(i)

∂ŝk
i 6= k , (5)

Γkij = 0 i 6= j 6= k , (6)

which are simplified due to the orthogonality property. Also the scalar products simplify with the
metric g̃, e.g.,

〈
u(2) , v(2)

〉
g̃

= g̃il g̃jm u
ij vlm =

∑
ij h

2
(i)h

2
(j)u

ijvij .

2.2.2 Representation based on embedding

An alternative convenient representation, to be used in SFEM, TraceFEM, and DI, follows from
considering the n-tensor fields as general mappings into the embedding space, e.g.,

u(0) : M→ R, u(1) : M→ R3, u(2) : M→ L(R3,R3) , (7)

with L(R3,R3) the linear mappings between R3 and R3, which can be represented as R3×3 tensor.
If we use the standard basis in R3, then the component vector u(n), n = 1, 2, can be identified

with the corresponding fields u(n). To simplify the notation, we use this identification and delete
the underline in the notation of the tensor fields when the meaning is clear from the context.
This embedded representation leads to a natural inner product defined in the embedding, i.e., for
n-tensors u(n) := [uα1...αn ] and v(n) := [vα1...αn ], we have〈

u(n) , v(n)
〉

:= uα1...αn vα1...αn ,

where the indices can be raised and lowered using the Euclidean metric δαβ. Note that since the
tensor fields are represented in the embedding space, the indices are in the range αk ∈ {1, 2, 3}.

Corresponding to the unit normal field n we introduce the tangential projection P = I −n⊗n
and denote in the following a general tensor projection operator for n-tensors u(n) = [uα1...αn ] as
P, defined by componentwise projection,

[Pu(n)]α1...αn := Pα1
β1
· · ·Pαnβn u

β1...βn . (8)

The (total) covariant derivative of tangential tensor fields u(n) with embedded representation
u(n) can be defined as ∇Mu(n) := P∇u(n). Recall that the overline symbol denotes a (smooth)
extension of a function to a surface neighborhood, while the underline symbol emphasizes that the
Euclidean gradient ∇ is applied componentwise. Written out for n = 0, 1, 2, this definition reads:

∇Mu(0) = P∇u(0), (9)

∇Mu(1) = P∇u(1)P , (10)[
∇Mu(2)

]α1α2α3

= Pα1
β1
Pα2

β2
Pα3

β3
δβ3γ ∂u

β1β2

∂xγ
. (11)
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The definitions in eqs. (2) and (9) give the same surface gradient operator for scalar functions.
The definitions in eqs. (10) and (11) are also used for vector and tensor fields that are not in the
tangent bundle. In the case that these fields are tangential, these definitions yield the same gradient
operators as those defined in eqs. (3) and (4).

The divergence of a tangential n-tensor, n ≥ 1, is given by[
divM u

(n)
]α1...αn−1

= Pα1
β1
· · ·Pαnβn

∂uβ1...βn

∂xαn
. (12)

2.3 Problem definition

We study the following model problem: Find tangential n-tensor fields u that solve

∂tu−∆Mu = 0 on M , (13)

subject to appropriate “no-flux” boundary conditions and initial conditions. Note that for n = 0 the
tangential condition is void. For n ≥ 1, the ∆M operator is the (negative) connection-Laplacian,
the natural extension of the Laplace-Beltrami operator to n-tensor fields. It can be written as
∆Mu = divM∇Mu, where ∇M is the covariant gradient operator defined above and divM is the
tensor surface divergence as in eq. (12).

For n = 0 the PDE (13) corresponds to the scalar heat diffusion problem on a surface, which
shares several properties with the corresponding equation in flat space. For example, it holds
that 〈u〉(t) = 〈u0〉 and u(t,x) → 〈u0〉 for t → ∞, with the mean 〈u〉(t) = 1

area(M)

∫
M u(t,x) dx

of u(t,x). It also holds that if u0 ≥ 0 on M and u0 6≡ 0, then u(t) > 0 on M for t > 0,
see for example [7]. There are also results available that explain certain influences of surface
curvature on the solution of the scalar heat equation problem. We outline some of these results.
Let u0(x) = δp(x) for some p ∈ M be the Dirac delta function. In [40] it is shown that for this
initial condition the corresponding solution satisfies

lim
t→0

[
− 2t logu(t,x)

]
= d 2

M(x,p) ,

with dM(·, ·) the geodesic distance onM. This property is used to approximate geodesic distances
on curved surfaces in computer science [10]. In [13] the scalar heat equation is considered and
rewritten in terms of geodesic polar coordinates. This allows to separate the diffusion from the
geometric influence, the latter being completely determined by the Gaussian curvature K. We will
now outline a result that will be used to explain a certain phenomenon observed in the numerical
experiments in Section 4. The solution of the scalar heat equation with initial condition δp can be
expressed as

u(t,x) =

∫
M
kt(x,y)δp(y) dy (14)

with heat kernel kt(·, ·). In [39, 16] it is shown that

kt(x,x) =
1

4πt

(
1 +

1

6
K(x) t+ h.o.(t)

)
. (15)

This result motivates general statements such as “heat tends to diffuse slower at points of positive
curvature and faster at points of negative curvature”. Several analytical solutions of the heat
equation for special surfaces also have been derived [13].

For n = 1, the surface vector heat equation, some of these results can be generalized. In particu-
lar, it can be shown, again by considering the associated heat kernel, that for t→ 0 it behaves like
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parallel transport along geodesics, along with a decay in magnitude that is identical to the decay
of the scalar heat kernel [36]. This property is crucial for several applications in computer graphics
[20, 36] and data science [37], where it is also extended to tensor fields with n > 1. Since the tan-
gential tensor-valued heat equation can also be seen as the L2-gradient flow for the tensor Dirichlet
energy

∫
M‖∇Mu‖2 dx, its solution tends to the minimizer of this energy functional (“smoothest

possible” tensor-field) for t→∞.

3 Finite element discretization schemes

To be able to apply a finite element discretization method we consider the n-tensor diffusion problem
in a variational setting, using standard notation for Bochner spaces:

Problem 1. Find u ∈ C1(0, T ;H1(M,TnM)) such that

(∂tu(t) , v)M + (∇Mu(t) , ∇Mv)M = 0 , for all v ∈H1(M,TnM) , (16)

for t ∈ (0, T ], subject to u(0) = u0. Here (· , ·)M denotes the (tensor) L2-scalar product.

The ISFEM is based directly on the variational formulation given in Problem 1. The other three
methods, SFEM, TraceFEM, and DI, use the surface embedding in R3 and gradient representations
as presented in Section 2.2.2. For these methods applied to the n-tensor problem with n ≥ 1, it is
natural to allow (small) nontangential solution components. The variational formulation given in
Problem 1 is not a suitable starting point for such a finite element method, since it uses the range
space TnM. We now introduce, for n ≥ 1, an augmented variational formulation with range space
TnR3 ' R3n . It uses a term (Qu(t) , Qv)M, where Q = Id− P is the normal projection operator
that is scaled by a penalty parameter ω > 0. Note that this term vanishes for tangential functions.
The augmented variational formulation reads as follows:

Problem 2. Assume n ≥ 1. Find u ∈ C1(0, T ;H1(M,TnR3)) such that

(∂tPu(t) , Pv)M + (∇MPu(t) , ∇MPv)M + ω (Qu(t) , Qv)M = 0 (17)

for all v ∈H1(M,TnR3) and t ∈ (0, T ], with initial condition u(0) = u0.

Note that in eq. (17) first derivatives appear only for the tangential components Pu, but not for
the normal components Qu. Problem 2 is consistent with Problem 1 in the following sense. Let
u1 and u2 be two solutions of Problem 2 and w := u1 − u2. Then we have w(0) = 0 and from
eq. (17) we obtain ∂t‖Pw‖2M ≤ 0 for t ∈ [0, T ]. Hence Pw(t) = 0 for t ∈ [0, T ]. Using this in
eq. (17) it follows that Qw(t) = 0 and thus w(t) = 0 for t ∈ [0, T ]. We conclude that we have a
unique solution of Problem 2. It is easy to verify that a solution of Problem 1 is also a solution of
Problem 2. We see that by adding the consistent penalty term, with ω ≥ 0 arbitrarily, we do not
change the continuous solution. In general, this “exact” consistency property does not hold after
discretization, and one must then choose an appropriate value of the penalty parameter to control
the consistency error, see Sections 3.2 and 3.3.

In SFEM and TraceFEM, which will be introduced below, a discrete projection operator Ph is
used. This projection operator is generally discontinuous across element boundaries. Thus, for a
vector- or tensor-valued finite element function uh, the projected function Phuh has no global H1-
smoothness, and applying a discrete gradient to it is a nontrivial problem. To circumvent this issue,
we apply the product rule to the term ∇MPu in eq. (17) as follows. We have ∇MPu = ∇Mu−
∇MQu. For a vector field u = u(1) it is easy to check that ∇MQu = ∇M((n⊗n)u) = −

〈
u , n

〉
H

7



holds. So we get ∇MPu = ∇Mu +
〈
u , n

〉
H and the representation on the right-hand side is

suitable for a finite element approximation. We introduce the notation G(u) :=
〈
u , n

〉
H. Note

that G depends on the extended Weingarten map. Similar results hold for n ≥ 2. In tensor notation
we get the following identities:

[∇MQu(1)]α1α2 = [G(u)]α1α2 := −Hα1α2 uβ nβ, n = 1 , (18)

[∇MQu(2)]α1α2α3 = [G(u)]α1α2α3 := −Hα1α3 Pα2
β u

γ1β nγ1
−Hα2α3 Pα1

β u
βγ2 nγ2

, n = 2 .

Thus we have the following alternative representation of the second term in eq. (17), which will be
the one used in SFEM and TraceFEM below:

(∇MPu(t) , ∇MPv)M = (∇Mu(t) +G(u(t)) , ∇Mv +G(v))M . (19)

In the following subsections, we briefly discuss four well-known finite element discretization meth-
ods and apply them to the spatial discretization of the n-tensor heat problem. We combine these
spatial discretizations with a standard BDF-2 time discretization. We start with ISFEM, which is
the “most conforming” method in the sense that it is based on the variational formulation in Prob-
lem 1. This method uses intrinsic gradient representations. The methods SFEM, TraceFEM, and
DI are based on the formulation in Problem 2 and use gradient representations in the embedding
space. The DI method considers an additional approximation of the inner products by “extending”
the PDE in a domain Ω ⊂ R3 containing the surfaceM and numerically restricting the integrals to
M using a smeared-out Dirac-delta function. This method is not consistent in the sense that the
solution of the extended PDE, restricted to M, does not coincide with the solution of Problems
1 and 2. In this sense, the DI approach is the “least conforming” one. In the presentation of the
methods we restrict ourselves to the case of the lowest order finite elements. In remarks we will
briefly comment on extensions to higher order finite elements.

In Section 3.5 we discuss and compare the four methods and in particular address the issues
a)–c) formulated in the introduction.

3.1 Intrinsic Surface Finite Element Method (ISFEM)

The ISFEM has been introduced only for scalar-valued problems in [2]. We briefly review the
scalar ISFEM setting and extend it to the case of a vector-valued problem. An analogous extension
to tensor fields is possible, but it has not yet been addressed. The main idea of ISFEM is to
consider the formulation as given in Problem 1 and to discretize it in local coordinates with the
intrinsic differential operators, which contain all geometric information. We will consider the local
coordinates ŝ = (ŝ1, ŝ2) with respect to the orthogonal tangent vectors t̃1, t̃2, and the intrinsic
differential operators defined using eq. (5).

Let SM be a (curved) exact surface triangulation, formed by a set of non-intersecting (curved)
surface triangles with vertices on M, such that M =

⋃
S∈SM

S. We will introduce conforming

subspaces V
(n)
M , so that the relation V

(n)
M ⊂H1(M,TnM) holds, see Problem 1. These spaces are

used in an approximate Galerkin discretization of Problem 1, in the sense that the surface integrals
(· , ·)S are approximated by a quadrature rule.

We denote by (u , v)h :=
∑

q wq
〈
u(xq) , v(xq)

〉
g̃(xq)

√
|g̃(xq)| such an approximation of the sur-

face integrals (u , v)S by a quadrature rule with xq ∈ S the quadrature points and wq ∈ R the
associated quadrature weights. In terms of practical computation, the key point is the need for
geometric information only at quadrature points, in an exact or approximate way.
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Remark 1. In the benchmark problem considered, see Section 4, we apply a Gauss quadrature rule
of order three. In this case, we use the knowledge of the surface parametrization to assign geometric
information at the quadrature points.

First we consider the scalar case n = 0. The function space V
(0)
M = span({ψl}) is spanned by

continuous basis functions ψl : M → R that are obtained by formally gluing together localized
functions ψSl : S → R for S ∈ SM. For each element S ∈ SM, we consider the associated

element Ŝ = µ−1(S) in the reference domain and we define the classical linear Lagrange nodal

basis functions ψ̂Ŝl (x̂) in reference local coordinates x̂ ∈ Ŝ. If we denote by x = µ(x̂) ∈ S the
corresponding associated surface coordinates in S, then the surface basis functions are simply lifted

using this mapping, i.e., ψSl (x) := ψ̂Ŝl (x̂). In order to compute gradients in the tangential basis
representation {t̃1, t̃2} associated with coordinates ŝ instead of the natural tangential basis {t1, t2}
associated with x̂, we need to perform a coordinate transformation, i.e.,

∇MψSl (x) := g̃−1W ∇̂ψ̂Ŝl (x̂) ,

where W = J̃+J is the Jacobian of the coordinate change between x̂ and ŝ, with J̃ = [t̃1, t̃2], J̃+

its pseudoinverse, and J = [t1, t2].

Remark 2. In the case of a surface obtained by the graph of a scalar function, for example µ(x̂) =
(x̂1, x̂2, f(x̂1, x̂2))T = x ∈ M, the matrix W is obtained directly from the 2 × 2 block of J̃T

corresponding to the independent variables.

The discrete scalar functions u
(0)
h ∈ V (0)

M can be expanded in terms of the basis functions as

u
(0)
h (x) =

∑
l ulψl(x), where ul is the scalar coefficient associated with the basis function ψl. For

discrete vector-valued functions u
(1)
h we use the orthogonal covariant reference frame {t̃1, t̃2} and

represent the solution in contravariant components, i.e., u(1) =
[
ui
]
, for i = 1, 2. Each component

ui can be approximated by the discrete functions uih =
∑

l u
i
l ψl, where {ψl}l is the set of scalar

basis functions of V
(0)
M . Thus we get

u
(1)
h (t) =

∑
l

u1
l (t)ψlt̃1 + u2

l (t)ψlt̃2 ,

which gives rise to the definition of a discrete vector function space:

V
(1)
M :=

{
vh = v1

h t̃1 + v2
h t̃2 | v1

h, v
2
h ∈ V

(0)
M
}
.

The same idea can be used to define a discrete tensor function space V
(n)
M .

By applying the definition of gradients and scalar product in Section 2.2.1, with respect to the
orthogonal reference frame {t̃1, t̃2}, and the quadrature rule

(
·, ·
)
h
, we obtain the semi-discrete

ISFEM discretization of Problem 1:

Problem 3. Find uh(t) = u
(n)
h (t) ∈ V (n)

M such that

(∂tuh(t) , vh)h + (∇Muh(t) , ∇Mvh)h = 0 , for all vh ∈ V (n)
M (20)

for t ∈ (0, T ], with initial condition uh(0) = u0.

We obtain fully discrete schemes by applying a BDF-2 discretization scheme to the semi-discrete
problem in eq. (20).
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3.2 Surface Finite Element Method (SFEM)

The essence of the lowest order SFEM is the approximation ofM by a (shape regular) triangulation,
consisting of flat triangles, and the use of globally continuous piecewise linears on this triangulation
to approximate the continuous solution. This technique avoids surface parametrizations and is very
similar (for scalar problems) to a standard finite element method in a flat domain. The piecewise
triangular surface approximation is denoted by Mh. The space of globally continuous piecewise
linears on Mh is denoted by VMh

. On each triangle S of Mh we introduce the natural geometry
normal nh|S . These local normals nh|S are formally glued together to form the discrete surface
normal field nh. The discrete tangential projection is given by Ph = I − nh ⊗ nh. The SFEM
for the scalar case is well-known in the literature and reads as follows (cf. Problem 2), with
∇Mh

vh = Ph∇vh the discrete analog of the surface gradient as in eq. (9):

Problem 4 (Scalar problem). Find uh = u
(0)
h ∈ C1(0, T ;VMh

) such that

(∂tuh(t),vh)Mh
+ (∇Mh

uh(t),∇Mh
vh)Mh

= 0 , for all vh ∈ VMh
(21)

and for all t ∈ (0, T ] subject to an initial condition uh(0) = Ihu
0. Here Ih denotes the nodal

interpolation operator in the finite element space VMh
.

Using the nodal finite element basis in the space VMh
results in an ODE system for the coefficients

of uh.
We now consider n ≥ 1. The discretization is based on the formulation in Problem 2, com-

bined with a componentwise approximation using SFEM for scalar-valued problems. For a detailed
description for tensor-valued problems see [26, 17, 18].

The discrete tensor projection operator Ph is defined analogously to eq. (8). A corresponding
orthogonal projection Qh = I − Ph follows naturally. We use the surface finite element space

V
(n)
Mh

= [VMh
]N as the product space of N = 3n scalar Lagrange spaces. A discrete surface gradient

∇Mh
is defined as in eqs. (10) and (11), but with the continuous projections replaced by the discrete

analogons. Error analysis and numerical experiments show that replacing the projection operator
Q in the penalty term of the continuous variational formulation by its discrete analog Qh is not
satisfactory, since it leads to suboptimal convergence in the L2-norm, cf. [17]. Optimal convergence

is obtained by using instead a projection operator based on a normal n]h, which is a one order more
accurate approximation of n than theMh-normal nh. We denote such a modified (“higher order”)

projection by Q]h.
Thus we obtain the following SFEM discretization of eq. (17), where we use the result (19), see

also [18]:

Problem 5. Take n ≥ 1. Find uh = u
(n)
h ∈ C1(0, T ;V

(n)
Mh

) such that

(
∂tPhuh(t),Phvh

)
Mh

+
(
∇Mh

uh(t) +Gh(uh(t)),∇Mh
vh +Gh(vh)

)
Mh

+ βh−2
(
Q]huh(t),Q]hvh

)
Mh

= 0 for all vh ∈ V (n)
Mh

(22)

and for all t ∈ (0, T ] subject to an initial condition uh(0) = Ihu
0.

Here Gh(·) is a discrete analog of G(·) in eq. (19), e.g., for n = 1, Gh(vh) =
〈
vh , nh

〉
Hh, where

Hh is an approximation of the Weingarten mapping. The parameter β > 0 is a penalty parameter.
The scaling with h−2 in the penalty term follows from an error analysis, cf. [17, 18].
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Remark 3. The discrete Weingarten map Hh can be computed from the elementwise gradient
of the discrete normal field nh. Using the representation nh = mh/‖mh‖, with mh being the
cross-product of the columns of Jh and thus a discrete function, we can compute Hh = Ph∇nh =
‖mh‖−1Ph∇(Ihmh).

Remark 4. If the surfaceM is described by the coordinate mapping µ, higher order surface approx-
imations than piecewise linear can be obtained by (Lagrange) interpolation µh = Ihµ. With discrete
functions defined in the reference domain and lifted to the discrete surface using µh, a higher-order
function space VM can be constructed, cf. [11]. Similar to the piecewise flat surface and linear
function setting, geometric quantities are obtained by derivatives of the discrete parametrization
µh. This also allows for high-order convergence for the projection based scheme, cf. [17, 18].

If derivatives of the continuous parametrization µ are directly available and computable, an exact
parametrization of the surface geometry is also possible, cf. Section 3.1, and is used in the numerical
example to compute a reference solution.

The discretization in time follows standard approaches and is therefore not described in detail.
We consider a classical BDF-2 scheme.

3.3 Trace Finite Element Method (TraceFEM)

The TraceFEM is based on the same variational Problem 2 as the SFEM. The former uses a finite
element space which is defined on a background volumetric mesh that is not fitted to the surface.
The geometry approximation is based on an implicit description of the surface using a level set
approach. For an overview of TraceFEM we refer to [30].

We assume that the surfaceM is represented as the zero level of a level set function φ. We denote
by Ω a sufficiently small polygonal 3d neighborhood of the surface. The surface approximation is
based on a piecewise linear approximation φh (e.g., linear interpolation) of φ and is given by
Mh :=

{
x ∈ Ω | φh(x) = 0

}
. Let SΩ be a shape regular tetrahedral triangulation of Ω and VΩ

be the standard finite element spaces of continuous piecewise linear polynomials on SΩ. For
higher order constructions of Mh see Remark 5. We introduce the set SMh

Ω , which consists of all
tetrahedra S ∈ SΩ that have a nonzero intersection with Mh. The domain formed by all these
tetrahedra is denoted by ΩMh =

⋃
S∈S

Mh
Ω

S. On ΩMh we define by simple restriction the scalar

finite element space VMh
Ω :=

{
v|ΩMh | v ∈ VΩ

}
. A corresponding n-tensor finite element space is

given by VMh
Ω :=

[
VMh

Ω

]N
with N = 3n. To avoid instabilities due to small cuts of Mh in the

triangulation ΩMh , a so-called normal derivative volume stabilization is used [8, 15]. Again, nh
denotes the piecewise normal field on Mh, Ph = I − nh ⊗ nh, and the discrete tensor projection
operator Ph is defined as in Subsection 3.2.

We now describe the method for the scalar case n = 0. The stabilization is then given by
sh(uh,vh) :=

(
nh · ∇uh,nh · ∇vh)ΩMh . The discrete problem is as follows, see Problem 4:

Problem 6 (Scalar problem). Find uh = u
(0)
h ∈ C1(0, T ;VMh

Ω ) such that(
∂tuh(t),vh

)
Mh

+
(
∇Mh

uh(t),∇Mh
vh
)
Mh

+ β′h−1sh(uh(t),vh) = 0 (23)

for all vh ∈ VMh
Ω and all t ∈ (0, T ], subject to an initial condition uh(0) = IMh

Ω u0. Here IMh
Ω

denotes the nodal interpolation operator in the finite element space VMh
Ω .

Note that compared to Problem 4 we use a different finite element space and have added the
stabilization term sh(·, ·). This stabilization term significantly improves the conditioning of the
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resulting linear systems. In case of a smooth closed surface, the condition number of the stiffness
matrix corresponding to the Laplace-Beltrami operator has the usual h−2 growth. For smooth
surfaces with boundary, very strong ill-conditioning can still occur in certain situations. We will
not discuss this effect, which does not occur for the surface considered in Section 4.

We now consider n ≥ 1. In the same spirit as in the SFEM, cf. Problem 5, it is based on the
variational formulation in Problem 2. The normal derivative volume stabilization has the form

sh(u,v) :=

∫
ΩMh

(
∇u ·

n+1
nh

)
·
(
∇v ·

n+1
nh

)
dx ,

with [∇u ·
n+1

n]α1,...,αn = ∂ūα1,...,αn

∂xαn+1 nαn+1 and we obtain the following discretization of eq. (17):

Problem 7. Take n ≥ 1. Find uh = u
(n)
h ∈ C1(0, T ;VMh

Ω ) such that(
∂tPhuh(t),Phvh

)
Mh

+
(
∇Mh

uh(t) +Gh(uh(t)),∇Mh
vh +Gh(vh)

)
Mh

+ βh−2
(
Q]huh(t),Q]hvh

)
Mh

+ β′h−1 sh(uh(t),vh) = 0 for all vh ∈ VMh
Ω

(24)

and for all t ∈ (0, T ] subject to an initial condition uh(0) = IMh
Ω u0, with β > 0 a penalty parameter

and β′ > 0 a stabilization parameter.

As in Section 3.2 we use an “improved” projection Q]h based on a higher order normal approx-
imation. A motivation for this improved projection and a construction of an improved normal
approximation are given in [19]. As in SFEM the term Gh(·) is a discrete analog of G(·) given in
eq. (19). The semi-discrete Problem 7 is essentially the same as the SFEM Problem 5 except for
the additional stabilization term sh(·, ·).

As in Section 3.2, we use a classical BDF-2 scheme for time discretization.

Remark 5. To obtain a higher order discretization method an isoparametric mapping Θh is the
key ingredient. The main idea and construction of this mapping is explained in [22]. It is based
on a level set function approximation φh ∈ V k

Ω of order k. This function implicitly defines a
surface approximation. For k ≥ 2 numerical integration is difficult to implement. To obtain a
computationally efficient method a piecewise triangular surface approximationMlin is used, defined
as follows. Let φ̂h = I1φh be the linear nodal interpolation of the higher order level set function
approximation φh. Based on this, we define

Mh := Θh(Mlin) =
{
x | φ̂h(Θ−1

h (x)) = 0
}
.

In the same way, the parametric mapping induces (higher order) finite element spaces.

3.4 Diffuse-Interface Approach (DI)

The DI method, see [32, 23, 25], considers an approximation of eq. (17), which is a classical problem
in the embedding space R3 and thus leads to a setup where established standard volume FEM can
be applied. Similar to Section 3.3, the geometry approximation is based on an implicit description
of the surface, but instead of a level set approach a phase field description is used. We define

φε(x) :=
1

2

(
1− tanh

(
3

ε
ρ(x)

))
, δε(x) :=

36

ε
φ2
ε (x)(1− φε(x))2 ,

for x ∈ Uδ(M) with 0 < ε < δ an interface thickness parameter. The phase-field function φε is
based on the signed-distance representation ρ of M. With this definition of φε we get δε → δM
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for ε→ 0, with δM the surface delta-function to M. We define an extension of scalar-valued fields
defined onM to the neighborhood Uδ(M) by using the closest point projection, f(x) := f(π(x)) =
f(x − ρ(x)∇ρ(x)) for x ∈ Uδ(M). In the rest of the domain Ω, the function f is extended in an
approximate way, e.g., using fast-marching algorithms or a Hopf–Lax algorithm [9]. The scalar-
valued phase-field function φε and the delta-function δε are extended with a constant value. Vector
and tensor fields are extended by a componentwise extension of the embedded description.

As in Section 3.3 let SΩ be a shape regular tetrahedral triangulation of Ω and VΩ be the standard
finite element spaces of continuous piecewise linears defined on SΩ. We define the tensor finite

element space V
(n)

Ω :=
[
VΩ

]N
as the product of N = 3n scalar finite element spaces.

For scalar fields u(0), the FEM discretization of the DI approximation of eq. (16) reads:

Problem 8 (Scalar diffuse interface approach [32]). Find uh = u
(0)
h ∈ C1(0, T ;VΩ) such that∑

S∈SΩ

(δε∂tuh(t) , vh)S + (δε∇uh(t) , ∇vh)S + σ ((1− Cεδε)∇uh(t) , ∇vh)S = 0 (25)

for all vh ∈ VΩ and for all t ∈ (0, T ], subject to the initial condition uh(0) = u0. As volume
stabilization we add a small amount of “additional diffusion”, with σ = 10−8 in the numerical
examples. The domain off the interface is characterized by (1− Cεδε), with Cε = 1/max(δε) = 4/9 ε.

For vector fields u(1) we consider the componentwise reformulation of the surface problem as in
eq. (17). For such a formulation we apply the scalar DI approach for each component. This requires
geometric properties of the surface, namely the normal n and the curvatureH in the ε-neighborhood
of M. To obtain these quantities one can use a numerical approximation of the signed-distance
function ρε in Ω and define nε := ∇ρε and Hε := −∇2ρε, as well as the corresponding projections
P ε, Pε, and Qε with respect to nε.

Problem 9. Assume n ≥ 1. Find uh ∈ C1(0, T ;V
(n)

Ω ) such that∑
S∈SΩ

(δε∂tPεuh(t) , Pεvh)S + (δε∇SPεuh(t) , ∇SPεvh)S + β (δεQεuh(t) , Qεvh)S

+
∑
S∈SΩ

σ ((1− Cεδε)∇uh(t) , ∇vh)S = 0 (26)

for all vh ∈ V (n)
Ω and for all t ∈ (0, T ] subject to the initial condition uh(0) = u0, with β > 0 a

penalization factor and σ the volume stabilization prefactor.

Similar to Section 3.3 the discrete covariant derivative ∇S is described along a componentwise
description and extended to the embedding space by using the extended geometric quantities nε,
P ε, and Hε, cf. eq. (18).

Remark 6. In the considered benchmark problem, see Section 4, we use an embedding domain
Ω = [−2, 2]3 which is discretized by a hierarchical tetrahedral mesh. To be computationally efficient
and to ensure a reasonable resolution of δε, an adaptive refinement with about 7–11 grid points
across the interface, φε ∈ [0.05, 0.95], should be used, while a very coarse grid in the remaining
part of Ω is sufficient. For SΩ we define the grid size h by the shortest edge length of the smallest
elements, typically located at the interface. To approximate the benchmark surface, we refine the
mesh according to the interface thickness of ε = 0.125, resulting in a grid size of h = 0.0156.
On this grid we use the meshconv tool [38] to obtain the approximate distance function ρε. To
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obtain a numerical approximation with sufficient quality of normals and curvatures as derivatives
of ρ requires a proper resolution of the considered surface, see [27] for a detailed study of these
parameters in the vector-valued case. One requirement is that ε < δ, where δ is the smallest
curvature radius of the considered surface. In the benchmark, this implies a very small ε, which
leads to an unfeasible numerical effort. Therefore, we use the analytic descriptions of n and H and
evaluate and extend them componentwise on SΩ using the Hopf–Lax algorithm. We also consider
β = 1000.

3.5 Discussion of the methods

We discuss several issues that are important for the numerical treatment of n-tensor surface PDEs,
in particular the issues listed in the introduction.

First note that there is the following key difference between ISFEM, SFEM, TraceFEM and DI.
The first three methods are based directly on the (variational) PDEs in Problems 1 and 2, which are
consistent in the sense that they have the same solution, which also coincides with the solution of
the n-tensor heat equation in the strong formulation. The DI approach, on the other hand, is based
on a ε-dependent PDE (in a small volumetric neighborhood of the surface), the solution of which,
restricted to the surface, is in general different from that of Problems 1 and 2. The formulation
only formally converges to the n-tensor heat equation as ε→ 0.

Surface representation. The representation of the surface M is either explicit, in ISFEM and
SFEM, or implicit, in TraceFEM and DI. The explicit approach in ISFEM is based on the existence
of a parametrization of the surface by an atlas, while SFEM requires only an approximate surface
triangulation. Geometric information (exact or approximate) from the local parametrization at
the quadrature points is required for ISFEM quadrature. In SFEM, quadrature is even simpler
because only integrals over flat triangles are computed. The implicit description of the surface in
TraceFEM and DI is based on a level set description φ or a phase field description φε of M. In
TraceFEM, a surface approximationMh consisting of triangles is constructed based on a piecewise
linear approximation of φ. This requires techniques for computing intersections of tetrahedra with
zero levels of linear functions. Due to the fact that the resulting triangulation is in general not
shape-regular (“small cuts”) one needs a stabilization (the normal volume derivative stabilization
term). As in SFEM, the quadrature is very simple because only integrals over triangles (and
tetrahedra) have to be computed. While in TraceFEM an explicit reconstructionMh of the implicit
surface is determined, in the DI method the surface remains implicit. In the discrete variational
problems of DI, only integrals over tetrahedra are involved. Thus, quadrature is straightforward.
The information of the surface is (only) included via the signed-distance function ρ, which is needed
in the phase-field function φε. This distance computation requires an additional preprocessing step.

Representation of the gradient operator and geometry information. On surfaces there are different
natural representations of differential operators of gradient and divergence. In ISFEM the intrinsic
representation of the gradient based on local coordinates is used. One then needs a basis of the
tangent spaces (at discrete points on the surface). In ISFEM the orthogonal basis {t̃1, t̃2} is used.
The other three methods SFEM, TraceFEM, and DI use a representation of the surface gradient
based on the projected standard gradient in R3.

We now briefly discuss important differences in geometric information between n = 0 and n ≥ 1.
In the ISFEM, the metric tensor (at discrete points on the surface) is needed for n ≥ 0, and
additionally, for n ≥ 1, the derivatives of the metric coefficients. For SFEM and TraceFEM, the
discrete normal nh is needed for n ≥ 0, while for n ≥ 1 a more accurate normal approximation
(used in Q]h) and an approximation Hh of the Weingarten mapping (used in Gh(·)) are needed.
The DI method requires (approximate) evaluations of the signed distance functions ρ for n ≥ 0,
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and additionally (approximate) evaluations of ∇ρ for n ≥ 1.
For n ≥ 1, due to the different representations used, there is the following difference between

ISFEM and the other three methods. The methods, SFEM, TraceFEM, and DI, represent the
n-tensor fields in the embedding space as an element of R3n . For n ≥ 1, the number of tensor
components in the embedding space is larger than in the intrinsic representation used in ISFEM
and this discrepancy grows with increasing tensorial rank n.

Tangentiality condition. Another significant difference between n = 0 and n ≥ 1 comes from
the tangentiality condition, which is nontrivial only for n ≥ 1. In ISFEM this condition is auto-
matically satisfied due to the intrinsic representation used. In SFEM and TraceFEM it is treated
by discretizing the augmented variational formulation in Problem 2, which includes the consistent
penalty term with the projection Q. This introduces an additional term in the variational form. In
the discrete setting, an appropriate scaling of this term is essential. In DI, a volumetric variant Qε
of Q is introduced to approximately satisfy the tangentiality condition. Note that on the continuous
level, in Problem 2, the tangentiality condition is exactly satisfied due to the additional penalty
term, while this is not the case for the continuous formulation used in the DI method.

Finally, we will briefly comment on the parameters used in the different methods. In all four
methods we have a mesh size parameter h, which in ISFEM and SFEM refers to an (approximate)
surface triangulation, while in TraceFEM and DI this h corresponds to the mesh size of a tetrahedral
triangulation of a volumetric domain containing the surface. In all four methods we have a time
step discretization parameter ∆t. In all four methods the polynomial degree k of the finite elements
can be chosen. In the presentation above we have restricted ourselves to k = 1. In ISFEM we have
no further parameters. In SFEM and TraceFEM there is a penalty term scaled with βh−2, so in
these methods we have the penalty parameter β. In TraceFEM, we also have a stabilization term
scaled by β′h−1, so in this method we have the stabilization parameter β′. In DI there is also a
penalty term with a corresponding penalty parameter β. A key parameter in this method is ε > 0,
which quantifies the interface thickness. The DI method also has a regularization term with a
parameter σ. The specific parameter values that we use are given below in Section 4.

4 Numerical experiments

In this section we present the results of a numerical experiment. We consider an n-tensor heat
equation, n = 0, 1, 2, on a relatively simple surface consisting of a large flat part and a localized
bump. The height of this bump is varied and the resulting surfaces have small negative and
positive Gaussian curvature values in the bump region (for small bump heights) and (very) large
negative and positive Gaussian curvature values in the bump region (for larger bump heights).
The initial condition is essentially a regularized Dirac delta function with a support disjoint from
the bump support. In Section 4.1 we give a precise description of the problem setting. The four
methods described in the sections above are applied to this model problem and some numerical
results are presented. The numerical results show that curvature can drastically affect the solution
behavior. Specific curvature-related phenomena are discussed in the Sections 4.2 – 4.4, for n =
0, 1, 2, respectively.

4.1 Formulation of a tensor diffusion model problem

Let M be the graph of a function f ,

M =
{
x = (x̂1, x̂2, f(x̂1, x̂2))T | x̂ = (x̂1, x̂2)T ∈ Ω̂ ⊂ R2

}
.
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We want to study a flat surface with an isolated bump that defines a region of negative and positive
Gaussian curvature. The bump is described by f(x̂) := αη(‖x̂− p̂‖/r), where α ≥ 0 is a scaling
factor, p̂ ∈ Ω̂ is the center of the bump, and r > 0 is its radius. The function η : R→ R represents
a cut-off compressed Gaussian, i.e.,

η(d) = η(d; δ) :=

{
exp

(
− 1

1−d2

)
if d < 1− δ

0 otherwise ,

with threshold value δ = 0.025. See Figure 1 for a visualization of M.

x̂0

x̂1

x̂2

ϵr

0 2

2

p̂

α = 0
K = 0.0

α = 1
K = −157.52

K = 138.58

α = 2

K = −238.22

K = 554.33

Figure 1: (Color online) Left: Sketch of the domain with origin colored in black, the outer radius
of the bump centered at p̂ with radius r, the initial solution radius ε, and the three
evaluation points x̂0, x̂1, x̂2 highlighted in three different colors. The overall domain size
of Ω̂ in the numerical computations is chosen to be [−2, 2]2. Right: Plot of the bump
surfaces along the x̂0-axis for α ∈ {0.0, 1.0, 2.0}. Highlighted are the highest and lowest
Gaussian curvature K.

Let p ∈M be a center point and up ∈ Tn
pM be a (tangential) tensor in p, then we set as initial

condition
u0(x) = δε(dM(x,p))up , for x ∈M ,

where δε(·) is the Dirac delta function. For simplicity, we choose a point p in a flat region away
from the bump, so that dM(x,p) = ‖x− p‖. The Dirac-delta function is approximated by a single
bump of radius ε around the origin, scaled by ε, so that δε(‖x‖) = ε−2η(‖x‖/ε).

We consider p̂ = (−0.5, 0.0)T and r = 0.25 with varying α ∈ [0.0, 2.0]. For the initial condition
we set ε = 0.2 and

u(0)
p = 1, u(1)

p = (−1, 0, 0)T , u(2)
p = u(1)

p ⊗ u(1)
p

for the scalar, vector and tensor problem, respectively.
The heat equation is solved in the time interval t ∈ [0, 1] and on the surfaceM with Ω̂ = [−2, 2]2.

To illustrate the solution behavior we define three evaluation points in the parameter domain:
x̂0 = p̂, x̂1 = 0.25 (−

√
2,
√

2)T and x̂2 = (0.0, 0.5)T , all on the circle with radius 0.5 around the
origin in Ω̂, see Figure 1. For the evaluation of the (discrete) solution uh, these points have to be
lifted to the discrete surface Mh.

The discretization parameters are summarized in Table 1.
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h ∆t k β β′ ε σ

Reference (SFEM) 0.0027 10−4 2 10 — — —

ISFEM 0.011 10−3 1 — — — —

SFEM 0.011 10−3 1 10 — — —

TraceFEM 0.0156 10−3 1 0.01 1 — —

DI 0.0156 10−3 1 103 — 0.125 10−8

Table 1: Numerical parameters used in the different methods. Note that for the TraceFEM and
DI method, the grid size corresponds to the 3d element grid size. The polynomial order k
represents the Lagrange polynomial order of the discrete function spaces.

With the parameters listed in the table, all four methods find approximate solutions within
reasonable time on standard hardware.

Previous comparisons of the different methods have shown advantageous properties of SFEM
with respect to accuracy and computational effort, see [6]. In order to provide numerical reference
data, we use SFEM with a higher spacial and temporal resolution and a higher polynomial order
of the solution space. As the finest spacial resolution on the bump, we set the grid size h ≈ 0.0027,
the timestep size ∆t = 10−4, and the polynomial degree k = 2. To reduce the numerical influence
of the surface approximation, we have chosen µh ≡ µ for the SFEM reference computations.

The SFEM and ISFEM methods are implemented with the DUNE/AMDiS framework [3, 33, 31],
the TraceFEM method with Netgen/NGSolve and ngsxfem [34, 35, 29], and the DI method within
the AMDiS framework [41, 42]. The code for the numerical experiments is provided in [1].

4.2 Results for the scalar case

Starting from the initial delta peak at the origin, the scalar heat u(0) diffuses over the surface. In
flat regions this diffusion is symmetric. For bump strength α = 0 this corresponds to the entire
domain and thus the maximum heat remains at the initial position. Classical properties can be
observed as already described in Section 2.3. Not surprisingly, all four methods can represent the
flat case equally well, see Figure 2.

For α > 0, the variation of the curvature introduces non-symmetric and anisotropic diffusion into
the system. Figure 2 (top) shows that at early times, t = 0.1, when comparing the solution at the
three points, the maximum heat value is at x2, while at t = 1.0 this changes and the maximum
value is at x0 (on top of the bump). The difference between this maximum value at x0 and the
values at the other two points increases for larger α values. Plotted over time in Figure 2 (bottom),
there is a transition time point where the maximum changes. This clearly shows that the diffusion
depends not only on the geodesic distances on the surface, but also on the surface curvature. The
differences at x1 and x2, points located in the flat region and having the same distance to the
origin, also shows that nearby curved regions influence the solution in the flat part. On curved
surfaces, the simple formula involving the (geodesic) distance holds only for sufficiently short times.
An explanation of the phenomenon observed in this experiment can be given by eq. (15). At the
bottom of the bump we have negative curvature, which leads to fast diffusion around the bump,
while in a small region containing the bump center, the positive curvature slows down diffusion,
leading to an accumulation of heat in the bump region. The heat diffuses out of the bump region
when the difference between the heat values in this region and the region outside the bump is
sufficiently large. These local differences also affect nearby zero curvature regions.
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Figure 2: (Color online) Plot of scalar values
∣∣u(0)(xi)

∣∣ over α (top) and over time t (bottom).
Solid lines correspond to a reference solution. Colors correspond to x0,x1, and x2 and
α ∈ {0.0, 1.0, 2.0}.

The solution behavior is accurately resolved by all four numerical methods. The three consis-
tent methods yield results that (in the “eye norm”) are hardly distinguishable from the reference
solution, while the inconsistent DI method is less accurate (due to a too large ε value).

4.3 Results for the vector case

For the vector case not only the norm but also the direction of u(1) is of interest. Therefore, we
measure the magnitude of the solution ‖u(1)‖ and the angle between the vector and the positive
x1-axis, i.e., ∠(u(1), e1) := arccos

〈
u(1)/‖u(1)‖ , e1

〉
, at the three reference points, see Figure 3 and

Figure 4, respectively.
At early times, t = 0.1, the norm behaves qualitatively similar to the scalar case, but at later

times, t = 1.0, the behavior is very different. While scalar heat diffuses over the whole domain, in
the vector case, the norm stays close to zero in the bump center for large α, see Figure 3. It does
not increase significantly over a very long time. In the scalar case with t = 1.0 and α ∈ [1, 2] we
see that there is a distinct maximum heat value at the top of the bump, corresponding to x0, see
Figure 2 (b). In the vector case with t = 1.0 and α ∈ [1, 2] the opposite happens: the norm values
at the top of the bump are much smaller than at the other two points, cf. Figure 3 (b). It seems
that there is a strong influence of the additional tangentiality constraint and the interaction with
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Figure 3: (Color online) Plot of the vector norm ‖u(1)(xi)‖ over α (top) and over time t (bottom).
Solid lines correspond to a reference solution. Colors correspond to x0,x1, and x2 and
α ∈ {0.0, 1.0, 2.0}.

the transport of the direction.
Figure 4 shows that the initial direction u0 is instantaneously extended to the whole domain only

in the case of α = 0. For α > 0 this directional extension property holds only near the origin. This
is in agreement with the results in [36], where the limit t → 0 is considered and a vector parallel
transport is reconstructed from the vector heat flow solution. For larger times, the curvature of
the surface leads to a violation of this property. We see in Figure 4 (top) that even in the points
in the flat region, i.e., in x1 and x2 with a flat geodesic to the origin, the ideal angle π is missed
for α > 0. Due to the symmetry of the problem setup, the angle of the solution at the bump, x0,
is equal to the initial angle. Note that due to the small vector norms on the bump, the evaluation
of the angle is poorly conditioned, and thus a small deviation from the x1-axis will result in large
deviations in the evaluated angle.

Interpreted as a minimization problem of the Dirichlet energy,
∫
M‖∇Mu‖2 dx→ min, the vector

heat equation minimizes gradients in the magnitude and gradients in the angle. For strongly curved
domains, the violation of the angle (caused by the curvature) is compensated by reducing the norm
of the vector. This has consequences and leads to increased differences in the norm in the three
reference points compared to the scalar case.

All methods show qualitatively the same behavior. However, for all methods the differences
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Figure 4: (Color online) Plot of the angle between the vector u(1)(xi) and the positive x-axis e1 =
(1, 0, 0)T over α (top) and over time t (bottom). Solid lines correspond to a reference
solution. Colors correspond to x0,x1, and x2 and α ∈ {0.0, 1.0, 2.0}.

to the reference solution are (significantly) larger compared to the scalar case. These differences
increase for larger α values. This loss of accuracy compared to the scalar case is caused by the
significantly higher numerical complexity for n ≥ 1, see discussion in Section 3.5. Depending on the
method, the vector case requires the evaluation of derivatives of the projection (SFEM, TraceFEM,
DI) or derivatives of the metric coefficients (ISFEM) and is thus become more sensitive to the
approximation of the geometry. This is also seen for the vector angle with large variations. These
large variations are also due to the low accuracy of the evaluation at the point x0 and the sensitivity
of the evaluation to small perturbations.

4.4 Results for the tensor case

For the tensor case we again consider the norm ‖u(2)‖ and the angle with the positive x1-axis. The
tensor angle is defined as follows: ∠(u(2), e1) := arccos

〈
u(2)/‖u(2)‖ , e1 ⊗ e1

〉
. Again, we measure

these quantities at the three reference points. Due to the increased complexity we here only show
results for SFEM, TraceFEM, and DI. The corresponding reference solution is computed on a fine
grid, the same as for the scalar and vector case, but with timestep width ∆t = 10−3, see Figure 5
and Figure 6, respectively. The results are qualitatively similar to the vector case and can be
explained by the same reasoning.
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Figure 5: (Color online) Plot of the tensor norm ‖u(2)(xi)‖ over α (top) and over time t (bottom).
Solid lines correspond to a reference solution. Colors correspond to x0,x1, and x2 and
α ∈ {0.0, 1.0, 2.0}.

The qualitative behavior can be largely resolved by all three methods. However, the differences
between the methods continue to increase.

4.5 Summary

While some analytical results exist for the diffusion of tangential tensor fields, see Section 2.3, quan-
titative results allowing to test numerical algorithms on simple benchmark problems were missing.
We have provided such a setup here. We considered four different numerical methods, ISFEM,
SFEM, TraceFEM, and DI, all based on finite element discretizations. They are briefly described
and compared. The methods differ with respect to the surface representation, the representation
of the gradient operator and geometric information, and the tangentiality condition. The methods
are applied to a benchmark problem with a relatively simple surface geometry. We observe that
for not too small curvature values the solution behavior is strongly influenced by the geometry.
Furthermore, the results show a stronger coupling with geometric properties and an increased sen-
sitivity to the resolution of these properties as the tensor degree increases. Due to this, there is a
significant increase in numerical complexity when going from tensor degree n = 0 to n ≥ 1.

There are many applications in materials science and biology that exploit the influence of cur-
vature in thin structures. The modeling of such effects often requires tangential vector or tensor
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fields. We suggest to first test numerical methods for such applications on the provided setup to
ensure a proper resolution of the geometric influence.
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Figure 6: (Color online) Plot of the angle between the tensor u(2)(xi) and the positive x-axis
e1 = (1, 0, 0)T over α (top) and over time t (bottom). Solid lines correspond to a reference
solution. Colors correspond to x0,x1, and x2 and α ∈ {0.0, 1.0, 2.0}.

Acknowledgment The authors wish to thank the German Research Foundation (DFG) for finan-
cial support within the Research Unit “Vector- and Tensor-Valued Surface PDEs” (FOR 3013)
with project no. RE 1461/11-1 and VO 899/22-1. We further acknowledge computing resources
provided by ZIH at TU Dresden and within project PFAMDIS at FZ Jülich.
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