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SOLUTION OF 2D BOUSSINESQ SYSTEMS WITH FREEFEM++:
THE FLAT BOTTOM CASE

GEORGES SADAKA∗

Abstract - We consider here different family of Boussinesq systems in two
space dimensions. These systems approximate the three-dimensional Euler equations
and consist of three coupled nonlinear dispersive wave equations that describe
propagation of long surface waves of small amplitude in ideal fluids over a horizontal
bottom and which was studied in [7,9,10]. We present here a FreeFem++ code aimed
at solving numerically these systems where a discretization using P1 finite element
for these systems was taken in space and a second order Runge-Kutta scheme in
time. We give the detail of our code where we use a mesh adaptation technique.
An optimization of the used algorithm is done and a comparison of the solution for
different Boussinesq family is done too. The results we obtained agree with those of
the literature.

Keywords: Boussinesq systems, KdV-KdV, BBM-BBM, Bona-Smith, adaptmesh,
finite element method, FreeFem++.

1. Introduction

It has often been observed that variations of the bottom could influence the damping
of the waves including extreme ones as Tsunamis: the coral reef or the underwater
forests in the first shoreline, mangroves; these underwater reefs are also used to
prevent corrosion effects of coastal (see P. Azerad et al. [1] and [2]). In these cases,
the underwater relief damped the wave energy, in contrast, in other situations we
seek to harness this energy: some companies even offer projects underwater reefs for
erectile produce energy from waves (see
http://www.aquamarinepower.com/).
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In a continuum approximation, waves on the surface of an ideal fluid under the force
of gravity are governed by the Euler equations. These are expected to provide a good
model of irrotational waves on the surface of water, say, in situations where
dissipative and surface tension effects may be safely ignored, see [16].

In this paper, the attention is given to a multi-dimensional Boussinesq systems which
describes approximately the propagation of small amplitude and long wave-length
surface waves in a three-dimensional wave tank filled with an irrotational,
incompressible and inviscid liquid under the influence of gravity, moving and/or
variable bottom and surface pressure. The full Boussinesq systems in 2D has been
derived in [18].

Chen, Goubet, Dougalis, Mitsotakis and Saut have considered 2D models of
Boussinesq systems with flat bottom [7,9] then with variable bottom [6,12,17], on
the other hand Dutykh, Katsaounis and Mitsotakis have developed a code in finite
volumes for the Boussinesq systems with variable bottom in 1D ([13]) and
Mitsotakis et al. in Galerkin finite elements (using B-splines [9]).

In order to solve numerically the Boussinesq system, we will use FreeFem++ which
is an open source platform to solve partial differential equations numerically, based
on finite element methods. The FreeFem++ platform has been developed to facilitate
teaching and basic research through prototyping. For the moment this platform is
restricted to the numerical simulations of problems which admit a variational
formulation.

Thus, we develop a FreeFem++ code for the simulation of Boussinesq equations
with flat bottom, we first check that the simulations provided by our numerical code
are consistent with the results of the recent literature, including the work of
Dougalis, Mitsotakis et Saut [9,10,11]. This establishes the adequacy of the chosen
finite element discretization.

The article is organized as follows: first we discretize the problem in space by using
finite element method and in time by using an explicit second order Runge-Kutta
scheme, then we develop all the steps of the FreeFem++ code to solve the problem
by using the technique of mesh adaptation and at the end we present some numerical
results where an optimization of the used algorithm is done and a comparison of the
solution for different Boussinesq family is done too.

2. The Problem

2.1. Problem settings

The 2D Boussineq system describe the surface wave propagation of small amplitude
and large wave length. When considering an incompressible fluid flows in Ω⊂ R2,
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they are expressed as (see [16]):

ηt +∇ ·V+∇ · (ηV)+a∆∇ ·V−b∆ηt = 0;

Vt +∇η + 1
2 ∇|V|2 + c∆∇η−d∆Vt = 0,

(2.1)

The variables in (2.1) are non-dimensional and unscaled: X = (x,y) ∈Ω and t > 0
are proportional to position along the channel and time, respectively, η = η(X, t) is
proportional to the deviation of the free surface from its rest position, V = V(X, t) =(

u(X, t)
v(X, t)

)
= (u,v)T = (u;v) is proportional to the horizontal velocity of the fluid at

some height, ∇* =

(
∂x*
∂y*

)
is the gradient, ∇ ·

(
?
*

)
= ∂x ?+∂y* is the divergence

and ∆* = ∂xx*+∂yy* is the laplacian. The coefficients a,b,c and d are given by the
following formulas:

a=
1
2

(
ϑ

2− 1
3

)
ν ,b=

1
2

(
ϑ

2− 1
3

)
(1−ν),c=

1
2
(
1−ϑ

2)
µ,d =

1
2
(
1−ϑ

2)(1−µ)

(2.2)
where ν ,µ are real constants and 0 6 ϑ 6 1.
We note that the dispersive constants a,b,c and d satisfy the physical constraints (see
[3] for detail):

a+b+ c+d =
1
3

and c+d > 0 (2.3)

We now list some of the different family of Boussinesq systems 2D in Table 1 of the
form (2.1):

System ϑ 2 ν µ References

BBM-BBM 2/3 0 0 [6,7,9,10,11].

Bona-Smith 2/3 6 ϑ 2 6 1 0
4−6ϑ 2

3(1−ϑ 2)
[7,9,10,11].

“ General ” Boussinesq 0 6 ϑ 2 6 1 any any [7,9,11].

KdV-KdV 2/3 1 1 [14]

Table 1: Examples of Boussinesq systems in 2D.

In [9], V. Dougalis, D. Mitsotakis and J-C. Saut have studied the Well-Posedness of
the Boussinesq systems (2.1) (where b 6= 0 and d 6= 0) and have shown that this
system is at least nonlinearly well-posed locally; and in the case of KdV-KdV
system (where b = d = 0,a = c = 1/6), F. Linares, D. Pilod and J-C. Saut proved
recently in [14] the Well-Posedness of this system.
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Following [19], we can write (2.1) as:

ϒ−∆V = 0;

ηt +∇ ·V+∇ · (ηV)+a∇ ·ϒ−b∆ηt = 0;

Θ−∆η = 0;

Vt +∇η + 1
2 ∇|V|2 + c∇Θ−d∆Vt = 0,

(2.4)

where ϒ =
(
ϒ1,ϒ2

)T
=
(
ϒ1;ϒ2

)
.

3. Numerical Scheme

In this section, we present the spatial discretization using finite element method with
P1 continuous piecewise linear functions as shown in [19] and for the time marching
scheme an explicit second order Runge-Kutta [8] scheme as used in [9].
We will use in our code a mesh adaptation technic that we can use solving the
problem by using the method based on the declaration of the problem obtained by
the weak formulation of the system (2.4); or by using the second method that consist
to build matrices and vectors to solve the direct system AX = B, where the matrix A
and the vectors X,B will be defined in the sequel.

3.1. Spatial discretization

We let Ω be a convex, plane domain, let Th denote a regular, quasi uniform
triangulation of Ω with triangles of maximum size h < 1 [5], let Vh = {vh ∈
C0(Ω̄);vh|T ∈ P1(T ),∀T ∈ Th} denote a finite-dimensional subspace of H1(Ω) =

{u ∈ L2(Ω) s.t. ∂u
∂x ,

∂u
∂y ∈ L2(Ω)} where P1 is the set of polynomials of R of degrees

6 1 and let 〈·; ·〉 denote the L2 inner product on Ω.
Consider the weak formulation of the system (2.4), find ηh,uh,vh ∈ Vh such that
∀ϕh ∈Vh we have:

〈
ϒ1

h;ϕh
〉
−〈∆uh;ϕh〉= 0;

〈
ϒ2

h;ϕh
〉
−〈∆vh;ϕh〉= 0; 〈Θh;ϕh〉−〈∆ηh;ϕh〉 = 0;〈

(Id−b∆)ηht +∇ · (uh;vh)+ηhxuh +ηhuhx +ηhyuh +ηhuhy +a∇ ·
(
ϒ1

h;ϒ2
h

)
;ϕh

〉
= 0;〈

(Id−d∆)uht +ηhx +uhuhx + vhvhx + cΘhx;ϕh

〉
= 0;〈

(Id−d∆)vht +ηhy +uhuhy + vhvhy + cΘhy;ϕh

〉
= 0.

(3.1)
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To simplify, we denote Φ = ϕh,E = ηh,U = uh,V = vh,T = Θh,P = ϒ1
h and Q = ϒ2

h,
so the system (3.1) is equivalent to the following system:

〈P;Φ〉 = 〈∆U;Φ〉 ; 〈Q;Φ〉 = 〈∆V;Φ〉 ; 〈T;Φ〉 = 〈∆E;Φ〉 ;〈
(Id−b∆)∂tE;Φ

〉
= −〈∇ · (U;V)+ExU+EUx +EyV+EVy +a∇ · (P;Q) ;Φ〉
= −F(E,U,V,P,Q) ;〈

(Id−d∆)∂tU;Φ

〉
= −〈Ex +UUx +VVx + cTx;Φ〉=−G(E,U,V,T) ;〈

(Id−d∆)∂tV;Φ

〉
= −〈Ey +UUy +VVy + cTy;Φ〉=−H(E,U,V,T) .

(3.2)

3.2. Time marching scheme

Our method is based on an explicit second order Runge-Kutta scheme. To this end, let
us denote by (En+1,Un+1,Vn+1) and (En,Un,Vn,Pn,Qn,Tn) the approximate value
at time t = tn+1 and t = tn, respectively and by δ t the time step size. Then, by using
(3.2), the unknown fields at time t = tn+1 are defined as the solution of the system

〈Pn;Φ〉= 〈∆Un;Φ〉 ; 〈Qn;Φ〉= 〈∆Vn;Φ〉 ; 〈Tn;Φ〉= 〈∆En;Φ〉 ;

〈En+1;Φ〉= 〈En +
Ek1 +Ek2

2
;Φ〉;〈Un+1;Φ〉= 〈Un +

Uk1 +Uk2

2
;Φ〉;

〈Vn+1;Φ〉= 〈Vn +
Vk1 +Vk2

2
;Φ〉.

(3.3)
where:
〈
(Id−b∆)Ek1;Φ

〉
=−δ t ·F(En,Un,Vn,Pn,Qn) ;〈

(Id−d∆)Uk1;Φ
〉
=−δ t ·G(En,Un,Vn,Tn) ;〈

(Id−d∆)Vk1;Φ
〉
=−δ t ·H(En,Un,Vn,Tn) ;〈

Pk1;Φ
〉
=
〈
Uk1

xx +Uk1
yy ;Φ

〉
;
〈
Qk1;Φ

〉
=
〈
Vk1

xx +Vk1
yy ;Φ

〉
;
〈
Tk1;Φ

〉
=
〈
Ek1

xx +Ek1
yy ;Φ

〉
.

(3.4)
and
〈
(Id−b∆)Ek2;Φ

〉
= −δ t ·F

(
En +Ek1,Un +Uk1,Vn +Vk1,Pn +Pk1,Qn +Qk1

)
;〈

(Id−d∆)Uk2;Φ
〉
= −δ t ·G

(
En +Ek1,Un +Uk1,Vn +Vk1,Tn +Tk1

)
;〈

(Id−d∆)Vk2;Φ
〉
= −δ t ·H

(
En +Ek1,Un +Uk1,Vn +Vk1,Tn +Tk1

)
.

(3.5)
By integrating by parts where we have second order derivative and by developing all
the terms of the first order derivative in (3.3), (3.4) and (3.5), we deduce:

〈Pn;Φ〉=−〈∇Un;∇Φ〉+
〈

∂Un

∂n
;Φ

〉
∂Ω

;〈Qn;Φ〉=−〈∇Vn;∇Φ〉+
〈

∂Vn

∂n
;Φ

〉
∂Ω

;

〈Tn;Φ〉=−〈∇En;∇Φ〉+
〈

∂En

∂n
;Φ

〉
∂Ω

;

(3.6)
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

〈
Ek1;Φ

〉
+b
〈
∇Ek1;∇Φ

〉
−b
〈

∂Ek1

∂n
;Φ

〉
∂Ω

= −δ t ·F(En,Un,Vn,Pn,Qn) ;〈
Uk1;Φ

〉
+d
〈
∇Uk1;∇Φ

〉
−d
〈

∂Uk1

∂n
;Φ

〉
∂Ω

= −δ t ·G(En,Un,Vn,Tn) ;〈
Vk1;Φ

〉
+d
〈
∇Vk1;∇Φ

〉
−d
〈

∂Vk1

∂n
;Φ

〉
∂Ω

= −δ t ·H(En,Un,Vn,Tn) ;〈
Pk1;Φ

〉
=−

〈
∇Uk1;∇Φ

〉
+

〈
∂Uk1

∂n
;Φ

〉
∂Ω

;〈
Qk1;Φ

〉
=−

〈
∇Vk1;∇Φ

〉
+

〈
∂Vk1

∂n
;Φ

〉
∂Ω

;〈
Tk1;Φ

〉
=−

〈
∇Ek1;∇Φ

〉
+

〈
∂Ek1

∂n
;Φ

〉
∂Ω

;

(3.7)
and



〈
Ek2;Φ

〉
+b
〈
∇Ek2;∇Φ

〉
−b
〈

∂Ek2

∂n
;Φ

〉
∂Ω

=

−δ t ·F
(
En +Ek1,Un +Uk1,Vn +Vk1,Pn +Pk1,Qn +Qk1

)
;〈

Uk2;Φ
〉
+d
〈
∇Uk2;∇Φ

〉
−d
〈

∂Uk2

∂n
;Φ

〉
∂Ω

=

−δ t ·G
(
En +Ek1,Un +Uk1,Vn +Vk1,Tn +Tk1

)
;〈

Vk2;Φ
〉
+d
〈
∇Vk2;∇Φ

〉
−d
〈

∂Vk2

∂n
;Φ

〉
∂Ω

=

−δ t ·H
(
En +Ek1,Un +Uk1,Vn +Vk1,Tn +Tk1

)
.

(3.8)
Remark: It’s easy with FreeFem++ to define boundary condition, in fact if we have
the Dirichlet Boundary Conditions on a border Γ1⊂R like U|Γ1 = f , then it is defined
as on(gamma1,u=f), where u is the unknown function in the problem. We note

that the Neumann Boundary Conditions on Γ2 ⊂ R, like
∂U
∂n
|Γ2 = g, appear in the

Weak formulation of the problem after integrating by parts for example in the system

(3.6) we have
〈

∂U
∂n

;Φ

〉
Γ2

= 〈g;Φ〉
Γ2

=
∫

Γ2

g ·Φ which is defined in FreeFem++ by

int1d(Th,gamma2)(g*phi) where Th is the triangulated domain of Ω. We
will see in the next section how it’s also easy to define the Bi-Periodic Boundary
Conditions.
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We remark also that the system (3.3) can be written on the following matrix form:

M 0 0
0 M 0
0 0 M


︸ ︷︷ ︸

A

·

 En+1

Un+1

Vn+1


︸ ︷︷ ︸

X

=


〈En +

Ek1 +Ek2

2
;Φ〉

〈Un +
Uk1 +Uk2

2
;Φ〉

〈Vn +
Vk1 +Vk2

2
;Φ〉


︸ ︷︷ ︸

B

(3.9)

where Mi j =
∫

Ω

ϕiϕ jdxdy is the mass matrix.

Algorithm 1: Finally, to solve the systems (3.3), (3.6), (3.7) and (3.8), we follow as:

Set En = E0 = ηh0 = η0,Un = U0 = uh0 = u0,Vn = V0 = vh0 = v0
Set Pn = Ph0,Qn = Qh0,Tn = Th0,Pk1 = Phk1,Qk1 = Qhk1,Tk1 = Thk1
Set En+1 = ηh,Un+1 = uh,Vn+1 = vh
Set Ek1 = ηhk1,Uk1 = uhk1,Vk1 = vhk1,Ek2 = ηhk2,Uk2 = uhk2,Vk2 = vhk2
For t = 0 : δ t : T

Mesh adaptation, (optional)
Compute Ph0,Qh0,Th0 Compute ηhk1,uhk1,vhk1
Compute Phk1,Qhk1,Thk1 Compute ηhk2,uhk2,vhk2
Compute ηh,uh,vh

Set ηh0 = ηh,uh0 = uh,vh0 = vh
End for

Algorithm 2: Another method to solve the systems (3.6), (3.7) and (3.8), taking into
account (3.9):

Set En = E0 = ηh0 = η0,Un = U0 = uh0 = u0,Vn = V0 = vh0 = v0
Set Pn = Ph0,Qn = Qh0,Tn = Th0,Pk1 = Phk1,Qk1 = Qhk1,Tk1 = Thk1
Set En+1 = ηh,Un+1 = uh,Vn+1 = vh
Set Ek1 = ηhk1,Uk1 = uhk1,Vk1 = vhk1,Ek2 = ηhk2,Uk2 = uhk2,Vk2 = vhk2
Compute A(if we want to use the mesh adaptation

we must compute A in the for-loop time)
For t = 0 : δ t : T

Mesh adaptation, (optional)
Update ηh0 = ηh0;uh0 = uh0;vh0 = vh0;ηh = ηh;uh = uh;vh = vh;
(with mesh adaptation)
Compute Ph0,Qh0,Th0 Compute ηhk1,uhk1,vhk1
Compute Phk1,Qhk1,Thk1 Compute ηhk2,uhk2,vhk2
Compute A(with mesh adaptation)
Set X = [ηh,uh,vh] Compute B Solve AX = B

Set ηh0 = ηh,uh0 = uh,vh0 = vh
End for



8 Georges Sadaka

4. Code

In this section we will present by details all the step of the FreeFem++ code to solve
(3.3) to (3.9).

4.1. Declaration of the problems

Note that in FreeFem++ the scalar product in L2: 〈.,ϕh〉=
∫

Ω

. ·ϕh = int2d(Th)(

.*phih ) ; also we can define a macro for the right hand side function F(E,U,V,P,Q),
G(E,U,V,T) ,H(E,U,V,T) defined in (3.2) using the keyword macro, that will
be used in the sequence, as:

macro F(e,u,v,p,q)(div(u,v)+dx(e)*u+e*dx(u)+dy(e)*v+e*dy(v)+
åa*div(p,q))//

macro G(e,u,v,t)(dx(e)+dx(u)*(u)+dx(v)*(v)+c*dx(t))//
macro H(e,u,v,t)(dy(e)+dy(u)*(u)+dy(v)*(v)+c*dy(t))//

We note that all the variable (e,u,v,p,q,t) used in the macro are dummies.
We declare the problem for Uk1 defined is the system (3.7) and for En+1 defined in
the system (3.3) as:

problem UHK1(uhk1,phih) = int2d(Th)(uhk1*phih) + int2d(Th)(
ågrad(uhk1)’*grad(phih)*d) + int2d(Th)( G(etah0,uh0,vh0,
åTh0)*phih*dt)+"Boundary Conditions of uh for uhk1";

problem ETAH(etah,phih) = int2d(Th)(etah*phih) - int2d(Th)(
åetah0*phih) - int2d(Th)((etahk1 + etahk2) * phih /2.);

The declaration of the problems for all other variables are written in the same form.

Remark: In order to make our code faster, we can use the keyword init in the
declaration of the problem. When init=0 the mass matrix is computed and when
init=1 the mass matrix is reused so it is much faster after the first iteration.

4.2. Solve of the problems

To solve all the problems defined above, we make a for-loop time and we call the
problems by their names when we want them to be solved, then we update the data
and at the end we plot the solution using the keyword plot.
We note that in each iteration of the for-loop a mesh adaptation will be done which
depend on the error (err) which is the P1 interpolation error level, where hmin is
the minimum edge size and nbvx is the maximum number of vertices generated by
the mesh generator.

for (real t=0.;t<=T;t+=dt){
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Th=adaptmesh(Th,etah0,err=1e-4,hmin=Dx,nbvx=1e6); // we
åcan use adaptmesh each 10 iterations or more.

PH0; QH0; TH0;
ETAHK1; UHK1; VHK1;
PHK1; QHK1; THK1;
etah0pk1=etah0+etahk1; uh0pk1=uh0+uhk1; vh0pk1=vh0+

åvhk1;
Th0pk1=Th0+Thk1; Ph0pk1=Ph0+Phk1; Qh0pk1=Qh0+

åQhk1;
ETAHK2; UHK2; VHK2;
ETAH; UH; VH;
etah0=etah; uh0=uh; vh0=vh; //update of the data
plot(etah0,cmm="t="+t+"sec",fill=true,value=true,dim=3);

}

In order to use the second method, we build the matrix A before the for-loop time as:
varf Mass(u, phih) = int2d(Th)( u * phih );
matrix A, MASS;
MASS = Mass(Vh,Vh);
A = [[MASS, 0, 0],[0, MASS, 0],[0, 0, MASS]];
set(A,solver=GMRES); // to be set

Then we build the vector B in the for-loop time as:
for (real t=0.;t<=T;t+=dt){
PH0; QH0; TH0;
ETAHK1; UHK1; VHK1;
PHK1; QHK1; THK1;
etah0pk1=etah0+etahk1; uh0pk1=uh0+uhk1; vh0pk1=vh0+vhk1;
Th0pk1=Th0+Thk1; Ph0pk1=Ph0+Phk1; Qh0pk1=Qh0+Qhk1;
ETAHK2; UHK2; VHK2;
Vh B1, B2, B3, etahk1pk2D2, uhk1pk2D2, vhk1pk2D2;
real[int] B(3*Vh.ndof), X(3*Vh.ndof), X0(3*Vh.ndof), W(3*Vh.

åndof);
etahk1pk2D2 = .5*etahk1 + .5*etahk2;
uhk1pk2D2 = .5*uhk1 + .5*uhk2;
vhk1pk2D2 = .5*vhk1 + .5*vhk2;
X0=[etah0[], uh0[], vh0[]];
B1[]=MASS*etahk1pk2D2[];
B2[]=MASS*uhk1pk2D2[];
B3[]=MASS*vhk1pk2D2[];
B=[B1[],B2[],B3[]];
X = Aˆ-1*B;
W = X + X0;
[etah[], uh[], vh[]] = W;
etah0=etah; uh0=uh; vh0=vh; //update of the data
plot(etah0,cmm="t="+t+"sec",fill=true,value=true,dim=3);
}

Finally, if we want to use mesh adaptation in the second method, we must compute
the matrix A in the for-loop time.
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4.3. Numerical simulations

In the sequel, we present the results of numerical simulations of the evolution of
initially localized heaps of fluid of initial velocity zero. Unless specified, all com-
putations were performed on the square Ω =]−40,40[×]−40,40[, a P1 continuous
piecewise linear functions was used for the finite element space and for all the nu-
merical simulations, we work with the space discretization ∆x = 0.5 and the time
step ∆t = 0.1.

4.3.1. Rate of convergence. At the beginning, we prove in the figure below, that
the RK2 time scheme considered for the BBM-BBM system is of order 2. In this
example, we took zero Dirichlet homogenous Boundary Conditions for ηh, uh and vh
on the whole boundary and we have consider the following exacts solutions:

ηex = et · sin(πx) · (y−1) · y,

uex = et · x · cos(3πx/2) · sin(πy),

vex = et · sin(πx) · cos(3πy/2) · y.
Then, we compute the corresponding right hand side in order to obtain the L2 norm
of the error between the exact solution and the numerical one in the table below.

N |ηh−ηex|L2 |uh−uex|L2 |vh− vex|L2

10 0.00871494 0.0233966 0.0230945

20 0.00265707 0.00641675 0.00632314

40 0.000670301 0.00160223 0.00157848

80 0.0001817 0.000419198 0.000412791

160 4.80657e-05 0.000108456 0.000106767

Table 2: L2 norm of the error for η ,u,v.

4.3.2. Computation time. In this section, we consider the BBM-BBM Boussinesq
system on the domain Ω =]−40,40[×]−40,40[ with P1 continuous piecewise linear
functions, the space discretization ∆x = 0.5, the time step ∆t = 0.1 and as initial data
ηh0(x,y) = 0.2e−(x

2+y2)/5,uh0(x,y) = vh0(x,y) = 0 with zero Dirichlet homogenous
Boundary Conditions for ηh, uh and vh on the whole boundary.
In order to solve this system, we will show the time comparison of different method:

• M1 to solve Algorithm 1 without using adaptmesh technique and the keyword
init.



SOLUTION OF 2D BOUSSINESQ SYSTEMS WITH FREEFEM++: THE FLAT BOTTOM CASE11

Figure 1: Rate of convergence for BBM-BBM.

• M1init to solve Algorithm 1 using the keyword init and without using
adaptmesh technique.

• M1A-4 to solve Algorithm 1 using adaptmesh technique with err=1e-4
and without the keyword init.

• M1A-2 to solve Algorithm 1 using adaptmesh technique with err=1e-2
and without the keyword init.

• M2 to solve Algorithm 2 without using adaptmesh technique and the keyword
init.

• M2init to solve Algorithm 2 using the keyword init and without using
adaptmesh technique.

• M2A-4 to solve Algorithm 2 using adaptmesh technique with err=1e-4
and without the keyword init.

• M2A-2 to solve Algorithm 2 using adaptmesh technique with err=1e-2
and without the keyword init.

We present in Table 3, the time of computation in second at time T = 10s using all
the different method cited before. All computation was made on a Macbook OS X,
Intel core 2 Duo (CPU), 4Go (Memory), 2 Ghz (Processor).

We note that, without using the mesh adaptation technique, we have the same result
for all the computed solution, so we can see from Table 3 that the best method to use
is the M2init.
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M1 M1init M1A-4 M1A-2
1555.48 722.507 115.485 45.3462

M2 M2init M2A-4 M2A-2
1217.01 619.462 99.5689 39.3365

Table 3: Comparison of computation time for the different method used to solve the
BBM-BBM system.

In other hand, using the mesh adaptation technique, we can remark from Table 3 that
the computation time is better then other method, but unfortunately, we have a little
difference between the computed solution, that we plot in Figure 2 the square of L2

norm of the error between the computed solution using the M1 method and the one
computed with the M1A-8, M1A-6, M1A-4, M1A-2 methods where we have
err=1e-8, err=1e-6, err=1e-4, err=1e-2, respectively vs the time till
T = 30s. We also plot in Figure 3 the mean of all the square of L2 norm of the error
computed for different mesh adaptation method.

Figure 2: Comparison of the error between the solutions.

We can remark from this result that we have the same result using M1A-8, M1A-6,
M1A-4 method and the mean error between the solution computed with these method
and the computed one using the M1 is of order 10−5 and we can see the large time
difference.



SOLUTION OF 2D BOUSSINESQ SYSTEMS WITH FREEFEM++: THE FLAT BOTTOM CASE13

Figure 3: Mean of the error between the solutions.

4.3.3. Reflection of expanding symmetric waves at two boundaries of the BBM-
BBM Boussinesq system. In Figures 4 and 5 we show the reflection from two
parts of the boundary of an expanding symmetric wave of the BBM-BBM Boussinesq
system where a = c = 0 and b = d = 1/6. For this experiment we used as initial
data the functions ηh0(x,y) = .2e−(x

2+y2)/5,uh0(x,y) = vh0(x,y) = 0. We used zero
Neumann Boundary Conditions for ηh on the whole boundary, zero Dirichlet data
for uh and vh on x =−40 and y = 40 (where we have the wall), and zero Neumann
boundary data for uh and vh on x = 40 and y = −40. The expanding waves are
reflected from the x =−40 and y = 40 parts of the boundary.
We note that in Figure 4 we show the effect of the mesh adaptation following the
evolution of ηh in time and in Figure 5 we show the propagation of the solution ηh.
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Figure 4: Propagation of the mesh for the BBM-BBM Boussinesq system where
a = c = 0 and b = d = 1/6 for different time t = {0.1,20,40,70}

Figure 5: Propagation of the solution of the BBM-BBM Boussinesq system where
a = c = 0 and b = d = 1/6 for different time t = {0,20,40,70}
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4.3.4. Expanding symmetric waves under the KdV-KdV Boussinesq system.
In Figure 6, we present the evolution of the ηh profile emanating from the radially
symmetric initial data ηh0(x,y) = .5e−(x

2+y2)/5,uh0(x,y) = vh0(x,y) = 0, under the
KdV-KdV Boussinesq system where a= c= 1/6 and b= d = 0. We used Bi-Periodic
Boundary Conditions for ηh, uh and vh and we work with the time step ∆t = 0.001.
We remark here that with these Bi-Periodic Boundary Conditions for η , u and v and
their derivatives, in addition by integrating the equations in the system (2.1) on the

hole domaine, we deduce the following mass conservation: (Id−b∆)
∫

Ω

ηt = 0 and

the relations (Id−d∆)
∫

Ω

ut = 0, (Id−d∆)
∫

Ω

vt = 0. Hence:

∫
Ω

η = cte =
∫

Ω

η0,
∫

Ω

u = cte =
∫

Ω

u0,
∫

Ω

v = cte =
∫

Ω

v0. (4.1)

In other hand, numerically, we see that these defined quantity are well conserved
over time and we have:∫

Ω

η = cte=
∫

Ω

η0 = 7.84527,
∫

Ω

u= cte=
∫

Ω

u0 = 0,
∫

Ω

v= cte=
∫

Ω

v0 = 0.

Figure 6: Propagation of the solution of the KdV-KdV Boussinesq system where
a = c = 1/6 and b = d = 0 for different time t = {0,10,20,60}

We can see in Figure 6 from t = 10 a small amplitude periodic profile (ripples)
which are propagating in front of the wavefront and which has been observed in [4]
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(in the case of 1D KdV-KdV system). These ripples are still observed when using P2
elements but they do not infer to the numerical stability, we still have the mass
conservation of the fluid.
Other simulation for different Boussinesq systems can be found in [18].

4.4. Comparison of the results with Mitsotakis et al.

We validate also our code by comparing the results with those of Mitsotakis et al.
[9] (in Figure 8, page 847) where they consider the cross section in x direction to
the η component of the solution from radially symmetric initial data of the form
ηh0(x,y) = .2e−(x

2+y2)/5 with uh0(x,y) = vh0(x,y) = 0 under the BBM-BBM and the
Bona-Smith system, both considered with zero Dirichlet boundary conditions for
η ,u and v. We remark in Figure 7, that the shape of the solution for the results of our
code at the left part and for those of Mitsotakis et al. code at the right part are similar.
We note also that in their paper, they used Galerkin finite elements based on tensor
products of smooth splines and an explicit second order (for BBM-BBM system
with bilinear splines) and fourth order (for Bona-Smith system with bi-cubic splines)
Runge-Kutta scheme while in the present work, we used P1 continuous piecewise
linear functions and an explicit second order Runge-Kutta scheme for all systems.

4.5. Comparison of different Boussinesq models

We compare here KdV-KdV, BBM-BBM and Bona-Smith models as defined in
section 2.1 Table 1.
In Figures 8, we present a comparison of the evolution of the η component of the
solution from radially symmetric initial data of the form ηh0(x,y) = .5e−(x

2+y2)/5

with uh0(x,y) = vh0(x,y) = 0, under the BBM-BBM (solid line with zero Dirichlet
b.c., ∆t = 0.1, ∆x = 0.5), the Bona-Smith system (dotted line with zero Dirichlet
b.c., ∆t = 0.1, ∆x = 0.5) and the KdV-KdV system (dashed line with periodic b.c.,
∆t = 0.001, ∆x = 0.5). Figure 8 shows the cross sections of the η profiles for
different time in the x - direction. The speed and the amplitude of the outgoing
front is approximately the same for the BBM-BBM and Bona-Smith systems but
the pattern of the oscillations behind the fronts are different: in the case of the Bona-
Smith system the two outgoing wave trains have practically separated by t = 25s,
while the larger in amplitude dispersive oscillatory tails of the BBM-BBM solution
seem to be still interacting. In other hand, the speed of the outgoing front for the
KdV-KdV system is approximately the same with other systems while the amplitude
for the internal crest is bigger, we remark also that the solution still interacting after
t = 25s.
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Figure 7: Cross sections in x direction of η(x,y, t) at t = 30s, Bona-Smith (above)
and BBM-BBM (below), using our code (left) and Mitsotakis et al. code (right)
borrowed from the article [9].

5. Conclusion

We have presented a numerical approach with FreeFem++ to solve the Boussinesq
systems with a flat bottom, we validated our code and establishes the adequacy of the
chosen finite element discretization by comparing the results with those of Mitsotakis
et al. We have established also the feasibility of simulating complex equations of
hydrodynamics as Boussinesq systems with FreeFem++ and we have optimized the
algorithm that we use in section 4.3.2.
Using this approach, we can consider the case of a variable bottom (in space and/or in
time), see [18] which is an ongoing work to appear soon. As a feature we address the
simulation of Tsunamis with our approach, by including realistic data (bathymetry,
generation of tsunami waves).
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Figure 8: Comparison of the cross sections in x direction of η(x,y, t) at time t =
{2,5,10,15,20,25}s, where in all the figure, the dotted line is for Bona-Smith system,
the dashed for KdV-KdV one and the solid line for BBM-BBM one.
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14. FÉLIPE LINARES, DIDIER PILOD AND JEAN-CLAUDE SAUT. Well-posedness of strongly
dispersive two-dimensional surface waves Boussinesq. ArXiv:1103.4159v2, 11 Apr 2011.

15. BRIGITTE LUCQUIN AND OLIVIER PIRONNEAU. Introduction to Scientific Computing. Wiley,
1998.

16. ALAIN MIRANVILLE AND ROGER TEMAM. Mathematical modeling in continuum mechanics.
Cambridge University Press, 2005.

17. DIMITRIOS MITSOTAKIS. Boussinesq systems in two space dimensions over a variable bottom
for the generation and propagation of tsunami waves. Mat. Comp. Simul., 80:860-873, 2009.
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