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FUNCTIONAL A POSTERIORI ERROR ESTIMATES FOR
PROBLEMS WITH NONLINEAR BOUNDARY

CONDITIONS

S. REPIN AND J. VALDMAN

Abstract. In this paper, we consider variational inequalities related
to problems with nonlinear boundary conditions. We are focused on
deriving a posteriori estimates of the difference between exact solutions
of such type variational inequalities and any function lying in the ad-
missible functional class of the problem considered. These estimates
are obtained by an advanced version of the variational approach earlier
used for problems with uniformly convex functionals (see [13, 15]). It
is shown that the structure of error majorants reflects properties of the
exact solution. The majorants provide guaranteed upper bounds of the
error for any conforming approximation and possess necessary continu-
ity properties. In the series of numerical tests performed, it was shown
that the estimates are explicitly computable, provide sharp bounds of
approximation errors, and give high quality indication of the distribution
of local (elementwise) errors.

1. Introduction

The problem of how to properly define boundary conditions in a certain
mathematical model is of utmost importance in the mathematical modeling.
In many cases, commonly used Dirichlét or Neumann boundary conditions
cannot properly describe the behavior of a model and should be replaced by
more sophisticated conditions that reflect real physical situations. Typical
examples are presented by problems with unilateral boundary conditions
and friction (see, e.g., [1, 3, 4, 7, 8, 12]). The respective boundary–value
problems are formulated as variational inequalities and can be solved numer-
ically by known (regularization or saddle-point) methods. Error estimates
for finite element and other approximations form an important part of the
numerical analysis of these problems. A priori rate convergence estimates
for finite element approximations of such problems has been investigated in
70s-80s (see, e.g., [5]). However, the necessity of using adaptive multi-level
algorithms requires a posteriori estimates able to (a) provide a reliable and
directly computable estimate of the approximation error and (b) efficient
error indicator able to detect the regions with excessively high errors. First
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a posteriori error estimates for FEM approximations were developed at the
end of 70s (see Babuška and Rheinboldt [25, 26]). Later, this subject was
investigated by many authors (readers will find a consequent exposition of
the results and more references in the books by Ainsworth and Oden [20],
R. Verfürth, [21], Babuška and Strouboulis [27], Neittaanmaki and Repin
[28].

In this paper, we present a posteriori estimates of the difference between
exact solutions of a boundary–value problem with nonlinear boundary con-
ditions and any function in the admissible (energy) class of the problem
considered. Estimates contain no mesh–dependent constants and provide
guaranteed upper bounds of the approximation errors (therefore we also call
them Error Majorants). They are obtained by a modification of the varia-
tional approach earlier used for problems with uniformly convex functionals
[13, 14, 15]. A posteriori error estimates for the approximations that not
necessarily satisfy the prescribed Dirichlét, Neumann or mixed Dirichlét-
Neumann boundary conditions has been considered in [17, 18]. These con-
ditions can be viewed as special forms of nonlinear boundary conditions
considered in this paper. In the present work, we analyze the structure of
the Error Majorants and show that it reflects properties of the exact solu-
tion. They possess necessary continuity properties and make it possible to
obtain the upper bound as close to the actual error as it is required. In
the series of numerical tests performed, it was shown that the estimates are
explicitly computable, provide sharp bounds of approximation errors, and
give high quality indication of the distribution of local (elementwise) errors.

2. Statement of a problem with nonlinear boundary conditions

2.1. Classical statement. Let Ω ∈ Rd, d = 2, 3 be an open bounded do-
main with Lipschitz continuous boundary Γ. We assume that the boundary
is piecewise smooth, so that one can uniquely define the unit outward nor-
mal in almost all points of Γ. It is assumed that Γ consists of two disjoint
measurable parts Γ0 and Γ1. In Ω we find a solution of the differential
equation

divA∇u + f = 0 ,(2.1)

where A : M d×d
s → M d×d

s is a symmetric positive definite matrix. We
assume that its components are bounded measurable functions and that the
usual coercivity conditions

cª |κ|2 ≤ Aκ · κ ≤ c⊕ |κ|2 ∀κ ∈ Rd(2.2)

hold. Here |κ| :=
√

κ · κ. Note that the symbol · denotes an Euclidean
product of two vectors a · b :=

∑
i=1...d aibi for any vectors a, b ∈ Rd. It is

assumed that

u(x) = u0(x), x ∈ Γ0.(2.3)
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The boundary conditions on Γ1 are more complicated. We present them
in one common form

−u,n(x) ∈ ∂j(u(x)) x ∈ Γ1 ,(2.4)

where u,n denotes the normal derivative of u, j : Rd → R is a convex lower
semicontinuous functional, and ∂j is the subdifferential of j. Note that if
j ≡ 0, then (2.4) is transformed to the Neumann boundary condition.

Functional j is called the ”boundary dissipative potential” (see e.g. [12]).
It makes possible to present a wide spectrum of boundary conditions in
one common form. The latter is especially important in the problems of
continuum mechanics where ”classical” Dirichlét and Neumann conditions
are often unable to adequately describe a wide variety of contact phenom-
ena (e.g., unilateral contact, contact with friction, etc.). In this case, the
boundary conditions can be presented in the form

−σn(x) ∈ ∂j(u(x)) x ∈ Γ1 ,(2.5)

where σ is the stress tensor and u is the displacement. Our model (2.1)–(2.4)
can be considered as a simplified version of the elasticity model, in which
u is a scalar–valued function and (2.5) is replaced by a simpler condition
(2.5). However, from the mathematical point of view these two problems
are similar. Our aim is to derive functional type a posteriori estimates for
approximate solutions of (2.1)–(2.4), investigate their properties and verify
numerically. The elasticity problem with nonlinear boundary condition (2.5)
will be considered in a subsequent publication.

3. Functional formulation of the problem

3.1. Notation. We denote the spaces of square summable scalar- and vector-
valued functions defined on the set S by L2(S) and L2(S,Rd ), respectively.
Their norms are associated with natural scalar products∫

S
uv ds and

∫

S
p · y ds.

Since no confusion my arise, we use for these norms one common symbol
‖ ‖. We shall use special notations Y and Y ∗ for the spaces that contain
gradients of the solutions and their fluxes, respectively. Functions in these
spaces we denote by y, q, η and y∗, q∗, η∗, respectively. In the considered case,
the gradients and fluxes belong to L2(Ω,Rd). However, by reasons that will
become clear later, we keep different notation for this pair of spaces.

We shall also use the space

Q∗(Ω) := {y∗ ∈ Y ∗ | divy∗ ∈ L2(Ω)} .

It is known that Q∗ is a Hilbert space with respect to the norm

‖y∗‖2
Q∗ :=

∫

Ω

(|y∗|2 + |divy∗|2) dx

and that the smooth functions C∞(Ω,M d×d
s ) are dense in Q∗.
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Let V = H1(Ω,Rd) and

γ ∈ L
(
H1(Ω),H1/2(Γ)

)
, H1/2(Γ) ↪→ L2(Γ)

be the trace operator. By H1
0 (Ω) we denote the kernel of γ.

Also, for any φ ∈ H1/2(Γ), one can define the continuation operator

µ ∈ L(H1/2(Γ),H1(Ω))

such that
µφ = w, φ ∈ H1(Ω), γw = φ on Γ

and (see, e.g., [10])

‖φ‖1/2,Γ ≤ cγ ‖w‖1,Ω , ‖w‖1,Ω ≤ cµ ‖φ‖1/2,Γ ,(3.1)

where ‖·‖1,Ω and ‖·‖1/2,Γ are the norms in H1 and H1/2, respectively.
By means of the operator γ we define the space

V0 := {v ∈ V | γv = 0 a.e. on Γ0} ,

which is a subspace of V . The set γ(V0) is a subspace of H1/2(Γ). Hereafter,
we denote this set by Z and the respective dual space by Z∗ (also called
H−1/2), which can be identified with the set of traces on Γ1 of functions
belonging to Q∗(Ω). Indeed, for any smooth y∗ and any v ∈ V0, we have the
classically relation∫

Γ1

(y∗ · n)γv dx =
∫

Ω

(y∗ · ∇v + (divy∗)v) dx .(3.2)

For any y∗ ∈ Q∗(Ω), the right–hand side of this identity is a linear continuous
functional Λy∗ : V0 → R that satisfies the relations

Λy∗v = 0 ∀v ∈ H1
0 (Ω) ,(3.3)

|Λy∗v| ≤ cµ ‖y∗‖Q∗ ‖γv‖1/2,Γ .(3.4)

In essence, Λy∗ , is a linear continuous mapping defined on a factor space
of V0. Really,

Λy∗(v1) = Λy∗(v2) if v1, v2 ∈ V0 and γv1 = γv2 .

Thus, in this factor space two functions belong to one class if they have
the same trace on Γ1. This means that Λy∗ is a mapping from Z to R
and, consequently, can be identified with a certain element in Z∗, which we
denote δny∗ and call the normal trace of y∗ on Γ1.

Hereafter, we follow the usual convention and denote the value of the
functional ξ∗ ∈ Z∗ on ξ ∈ Z by means of duality pairing 〈ξ∗, ξ〉

Γ1
. Then,

(3.2) comes in a more general form

Λy∗(γv) = 〈δny∗, γv〉
Γ1

=
∫

Ω

(y∗ · ∇v + divy∗ · v) dx .(3.5)
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The norm of such a functional is given by the standard relation

‖δny∗‖Z∗ = sup
v∈V0

∫
Ω

(y∗ · ∇v + divy∗ · v) dx

‖γv‖Z

(3.6)

In view of (3.4), this norm is bounded:

‖δny∗‖Z∗ ≤ cµ ‖y∗‖Q∗ .(3.7)

3.2. Conjugate functionals defined on spaces of traces. For any ξ ∈ Z
we define the functional

Υ(ξ) :=
∫

Γ1

j(ξ) dΓ .

We assume that the integrand j : Rd → Rd is a nonnegative, convex, and
lower semicontinuous (l.s.c.) function. In addition, we assume that j(0) = 0
and

dom j := {p ∈ Rd ‖ j(p) < +∞} 6= ∅ ,

so that j belongs to the class of so–called proper convex functionals.
In this case, the functional Υ(ξ) is also nonnegative, convex and l.s.c. on

Z. Since γ is a bounded linear operator, the functional Υ(γv) also possesses
the above properties as the functional on V0.

Let us introduce a new functional

Υ∗(ξ∗) := sup
ξ∈Z

{
〈ξ∗, ξ〉

Γ1
−Υ(ξ)

}
,(3.8)

which we call conjugate (in the sense of Young–Fenchel) to the functional
Υ.

Under the above assumptions, the functional Υ : Z → R coincides with
pointwise supremum of all its affine minorants. It is easy to see that

Υ(ξ) ≥ 〈ξ∗, ξ〉
Γ1

+ λ ∀ λ ≤ −Υ∗(ξ∗).

This effectively means that

Υ(ξ) = sup
ξ∗∈Z∗

{
〈ξ∗, ξ〉

Γ1
−Υ∗(ξ∗)

}
(3.9)

By recalling (3.6), we see that

Υ(γv)= sup
y∗∈Q∗





∫

Ω

(y∗ · ∇v + divy∗ · v) dx−Υ∗(δny∗)



(3.10)

Υ∗(δny∗)= sup
v∈V0





∫

Ω

(y∗ · ∇v + divy∗ · v) dx−Υ( γv)



 .(3.11)

In what follows we use the compound functional

DΓ1
(γv, δny∗) := Υ(γv) + Υ∗(δny∗)− 〈γv, δny∗〉

Γ1
.
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It is easy to see that

DΓ1
(γv, δny∗) := sup

w∈V0

[∫

Ω

(y∗ ·∇(w−v) + divy∗ · (w−v)) dx +

+
∫

Γ1

(j(γv)−j(γw)) dΓ
]
,(3.12)

DΓ1
(γv, δny∗) ≥ 0.(3.13)

Moreover,

DΓ1
(γv, δny∗) = 0 ⇒ δny∗ ∈ ∂Υ(γv)

and if δny∗ ∈ L2(Γ1,Rd), then

Υ∗(δny∗) =
∫

Γ1

j∗(δny∗) dx ,

where j∗ : Rd → R is the function conjugate to j, i.e.

j∗(q∗) = sup
q∈Rd

{q∗ · q − j(q)} .

3.3. Variational inequality. On V × V we define the bilinear form

a(u, v) :=
∫

Ω

A∇(u) · ∇v dx.

The action of external forces is described by the linear functional

`(v) :=
∫

Ω

fv dx .

Henceforth, we assume that

f ∈ L2(Ω),(3.14)
u0 ∈ V (Ω) .(3.15)

Now we may formulate the above contact problem in the form of varia-
tional inequality (see, e.g., [4, 8]).
Problem P. Find u ∈ V0 + u0 := {w | w = w0 + u0, w0 ∈ V0} such that

a(u,w − u) + Υ(w)−Υ(u) ≥ `(w − u) ∀w ∈ V0 + u0 .(3.16)

In view of the Lions-Stampacchia Theorem, this problem is equivalent to
the variational problem: find u ∈ V0 + u0 such that

J(u) = inf
w∈V0+u0

J(w), J(w) =
1
2
a(w,w) + Υ(w)− `(w).(3.17)

Since the functional J is strictly convex, continuous, and coercive on V and
the set V0 + u0 is a convex closed subset of V , we arrive at the conclusion
that Problem P is uniquely solvable.
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It is not difficult to see that on Γ1 u and its normal derivative u,n satisfy
the boundary condition (2.4).

4. Estimates of deviations

4.1. General estimate. The minimizer u to problem P meets the varia-
tional inequality (3.16). This leads to the inequality

J(v)− J(u) =
1
2
a(v − u, v − u) +

+ a(u, v − u)− 〈f, v − u〉+ Υ(v)−Υ(u) ≥
≥ 1

2
a(v − u, v − u) ∀ v ∈ V0 + u0 ,(4.1)

which implies the basic ”deviation” estimate

1

2
||| v − u |||2 ≤ J(v) − inf P ∀v ∈ V0 + u0 ,(4.2)

where inf P denotes the exact lower bound of the functional J and ||| v |||:=
(a(v, v))1/2. In general, the quantity inf P is unknown so that (4.2) has little
to offer as a practical tool of error estimation. Our aim is to show that the
right–hand side of (4.2) can be estimated from above by a quantity which
is practically computable, possesses necessary continuity properties and has
clear physical motivation.

For this purpose, we apply the techniques earlier used in [15, 16] based on
the consideration of the so–called perturbed functionals. In our case, such a
functional has the form

Jξ∗(v) =
1
2
a(v, v)− `(v) + 〈ξ∗, γv〉

Γ1
−Υ∗(ξ∗) .(4.3)

It is easy to see that

sup
ξ∗∈Z∗

Jξ∗(v) = J(v)

and, consequently, for any ξ∗ ∈ Z∗

inf
v∈V0+u0

Jξ∗(v) ≤ inf
v∈V0+u0

J(v) = inf P.(4.4)

The perturbed Problem Pξ∗ is to find uξ∗ ∈ V0 + u0 such that

Jξ∗(uξ∗) = inf
v∈V0+u0

Jξ∗(v) = inf Pξ∗ .

This problem is a simple quadratic problem, which has a unique solution for
any ξ∗ ∈ Z∗. The perturbed problem has a dual counterpart.
Problem P∗ξ∗ : Find y∗ξ∗ ∈ Q∗

`ξ∗ such that

I∗ξ∗(y
∗
ξ∗) = sup

η∗∈Q∗`ξ∗

I∗ξ∗(η
∗) ,
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where

I∗ξ∗(η
∗) =

∫

Ω

∇(u0) · η∗ dx− 1
2
a∗(η∗, η∗)− `ξ∗(u0)−Υ∗(ξ∗) ,

a∗ is a bilinear form conjugate to a, `ξ∗(·) = `(·) − 〈ξ∗, ·〉
Γ1

is a linear
functional and

Q∗
`ξ∗ :=



η∗ ∈ Y ∗ |

∫

Ω

η∗ · ∇v dx = `ξ∗(v) , ∀v ∈ V0



 .

This problem also has a unique solution. Moreover,

inf Pξ∗ = supP∗ξ∗ .

In view of the above connection between lower and upper bounds in Prob-
lems Pξ∗ and P∗ξ∗ , we obtain

1
2
‖v − u‖2

a ≤ J(v)− supP∗ξ∗ ≤ J(v)− I∗ξ∗(η
∗) ∀η∗ ∈ Q∗

`ξ∗ .(4.5)

The right–hand side of (4.5) can be estimated as follows

(4.6) J(v)− I∗ξ∗(η
∗) =

1
2
a(v, v) +

1
2
a∗(y∗, y∗)−

∫

Ω

∇v · y∗ dx+

+ Υ(γv) + Υ∗(ξ∗)− `(v)−
∫

Ω

∇(u0) · η∗ dx− `ξ∗(γu0)+

+
∫

Ω

∇v · y∗ dx +
1
2
a∗(η∗, η∗)− 1

2
a(y∗, y∗) ,

where y∗ is an arbitrary element of Y ∗. Since

`(v − u0) =
∫

Ω

η∗ · ∇(v − u0) dx + 〈ξ∗, γ(v − u0)〉Γ1
,(4.7)

we obtain

(4.8) J(v)− I∗ξ∗(η
∗) =

1
2
a(v, v) +

1
2
a∗(y∗, y∗)−

∫

Ω

∇v · y∗ dx+

+ Υ(γv) + Υ∗(ξ∗)− 〈ξ∗, γv〉
Γ1

+

+
∫

Ω

∇v · (y∗ − η∗) dx +
1
2
a∗(η∗, η∗)− 1

2
a(y∗, y∗) .
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This identity has an equivalent form

(4.9) J(v)− I∗ξ∗(η
∗) =

1
2

∫

Ω

(A∇v · ∇v + A−1y∗ · y∗ − 2∇v · y∗) dx+

+ Υ(γv) + Υ∗(ξ∗)− 〈ξ∗, γv〉
Γ1

+
∫

Ω

(∇v −A−1y∗) · (y∗ − η∗) dx+

+
1
2

∫

Ω

A−1(η∗ − y∗)(η∗ − y∗) dx .

Now we use the inequality

η · η∗ ≤ β

2
Aη · η +

1
2β

A−1η∗ · η∗ ,

which is valid for all vectors η and η∗ and any β > 0. We obtain the estimate

∫
Ω

(∇v −A−1y∗) · (y∗ − η∗) dx ≤ β

2

∫

Ω

A(∇v −A−1y∗) · (∇v −A−1y∗) dx +

+
1
2β

∫

Ω

A−1(y∗ − η∗) · (y∗ − η∗) dx,

which gives the relation

(4.10)

J(v)− I∗ξ∗(η
∗) =

1
2
(1 + β)

∫

Ω

(A∇v · ∇v + A−1y∗ · y∗ − 2∇v · y∗) dx+

+ Υ(γv) + Υ∗(ξ∗)− 〈ξ∗, γv〉
Γ1

+

+
1
2

(
1 +

1
β

) ∫

Ω

A−1(η∗ − y∗) · (η∗ − y∗) dx.

Let us introduce the following quantities

M1(v, y∗) = DA(∇v, y∗) =(4.11)

=
1
2

∫

Ω

(A∇v · ∇v + A−1y∗ · y∗ − 2∇v · y∗) dx,

M2(γv, ξ∗) = DΥ(γv, ξ∗) = Υ(γv) + Υ∗(ξ∗)− 〈ξ∗, γv〉
Γ1

,(4.12)

M3(y∗, ξ∗) =
1
2

inf
η∗∈Q∗`ξ∗

∫

Ω

A−1(η∗ − y∗) · (η∗ − y∗) dx.(4.13)
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Then (4.5), (4.10)–(4.13) result in the estimate
1

2
‖v − u‖2

a ≤ (1+β)M1(v, y∗) + M2(γv, ξ∗)+

+
(
1+

1

β

)
M3(y∗, ξ∗),(4.14)

where y∗, ξ∗ and β are arbitrary elements of the sets Y ∗, Z∗ and R+, re-
spectively.

Let us discuss the meaning of three quantities in the right–hand side of
(4.14). In view of the Young–Fenchel inequality, M1 and M2 are evidently
nonnegative. Since A−1 is positive definite, M3 is also nonnegative.

The quantity M1(v, y∗) vanishes if and only if v and y∗ satisfy the relation
(2.4). Therefore, this term presents the error in the relation

p∗ = A∇u.

It is easy to see that M2(γv, ξ∗) = 0 if and only if

ξ∗ = ∂Υ(γv) on Γ1,

so that M2 is a measure of the error in the boundary condition (2.3) com-
puted on Γ1 for the function −ξ∗ ∈ Z∗ (which can be thought of as an image
of the normal component of the flux) and the trace of v .

The quantity M3(y∗) vanishes if and only if y∗ ∈ Q∗
`ξ∗ , i.e., if

∫

Ω

y∗ · ∇vdx =
∫

Ω

f · vdx− 〈ξ∗, γv〉
Γ1

∀v ∈ V0 .

However ∫

Ω

y∗ · ∇vdx = 〈δny∗, γv〉
Γ1
−

∫

Ω

divy∗ · vdx.

Thus, we arrive at the conclusion that this term vanishes if and only if
(i) the equilibrium equation (2.5) holds;
(ii) the relation δny∗ = − ξ∗ on Γ1 holds.

It is worth remarking that the above relations are understood in a general-
ized sense.

4.2. Another form of the estimate. To obtain the estimate in a more
convenient form, we assume that y∗ belongs to the set

Q∗
Γ1

:= {y∗ ∈ Y ∗ | divy∗ ∈ L2(Ω), δny∗ ∈ L2(Γ1)} .

Note that p∗ ∈ Q∗
Γ1

provided that f ∈ L2(Ω,Rd) and the trace δnp∗ on Γ1 is
a square summable function.

Now we concentrate on finding another form of the term M3. For this
purpose we consider an auxiliary problem in the domain Ω. This problem
is to find ũ and p̃∗ that satisfy the relations (2.1)–(2.4) where

f = g ∈ L2(Ω)
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and the boundary condition on Γ1 is given by the relation

p∗n = G ∈ L2(Γ1).

Then, in view of the duality relation (see e.g. [6])

(4.15) sup
η∗∈Q∗gG


−1

2

∫

Ω

A−1η∗ · η∗ dx


 =

= inf
w∈V0




∫

Ω

(
1
2
A∇(w) · ∇(w)− g · w

)
dx−

∫

Γ1

G · γw dΓ


 ,

where

Q∗
gG :=



η∗ ∈ Y ∗ |

∫

Ω

η∗ · ∇vdx =
∫

Ω

g · wdx +
∫

Γ1

G · γwdΓ ∀w ∈ V0



 .

Take some functions y∗ ∈ Q∗
Γ1

and η∗ ∈ Q∗
gG. Then

(4.16)
∫

Ω

(η∗ − y∗) · ∇w dx =

=
∫

Ω

(divy + g) · w dx +
∫

Γ1

(G− δny∗) · γw dΓ ∀w ∈ V0 .

Let us set

g̃ = divy∗ + g ∈ L2(Ω,Rd)

and

G̃ = G− δny∗ ∈ L2(Γ1,Rd).

We observe that κ∗ = η∗− y∗ belongs to the set Q∗
gG with g = g̃ and G = G̃

(hereafter it is called Q∗
eg eG). By the equality (4.15), we see that

(4.17) sup
κ∗∈Q∗eg eG


−1

2

∫

Ω

A−1κ∗ · κ∗ dx


 =

= inf
w∈V0




∫

Ω

(
1
2
A∇(w) · ∇(w)− g̃ · w) dx−

∫

Γ1

G̃ · γw dΓ


 .

Note that
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(4.18) sup
κ∗∈Q∗eg eG


−1

2

∫

Ω

A−1κ∗ · κ∗ dx


 =

= sup
η∗∈Q∗gG


−1

2

∫

Ω

A−1(η∗ − y∗) · (η∗ − y∗) dx


 .

Thus, (4.17) and (4.18) means that

sup
η∗∈Q∗gG


−1

2

∫

Ω

A−1(η∗ − y∗) · (η∗ − y∗) dx


 =

= inf
w∈V0




∫

Ω

(
1
2
A∇w · ∇w − g̃ · w) dx−

∫

Γ1

G̃ · γw dΓ


 =

= inf
w∈V0




∫

Ω

(
1
2
A∇(w) · ∇w − (divy∗ + g) · w) dx−

∫

Γ1

(G− δny∗) · γwdΓ




what gives the relation

(4.19) inf
η∗∈Q∗gG


1

2

∫

Ω

A−1(η∗ − y∗) · (η∗ − y∗)dx


 =

= − inf
w∈V0




∫

Ω

(
1
2
A∇w · ∇w − (divy∗ + g) · w

)
dx

−
∫

Γ1

(G− δny∗) · γwdΓ


 .

The set Q∗
`ξ∗ coincides with Q∗

gG if g = f and G = −ξ∗ ∈ L2(Γ1). By
applying (4.19), we obtain

(4.20) inf
η∗∈Q∗`ξ∗


1

2

∫

Ω

A−1(η∗ − y∗) · (η∗ − y∗)dx


 =

= − inf
w∈V0




∫

Ω

(
1
2
A∇w · ∇w − (divy∗ + f) · w

)
dx

+
∫

Γ1

(ξ∗ + δny∗)(γw)dΓ


 .
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It is easy to see that

(4.21)

inf
w∈V0




∫

Ω

(
1
2
A∇w · ∇w − (divy∗ + f) · w

)
dx +

∫

Γ1

(ξ∗ + δny∗)(γw)dΓ


 ≥

≥ inf
w∈V0

[
1
2
a(w, w)−RΩ(y∗) ‖w‖Ω −RΓ1

(y∗, ξ∗) ‖γw‖Γ1

]
,

where

RΩ(y∗)2 :=
∫

Ω

(divy∗ + f)2dx,

RΓ1
(δny∗, ξ∗)2 :=

∫

Γ1

(ξ∗ + δny∗)2dΓ.

In view of the embedding theorems for functions and their traces, there exist
constants CΩ, and CΓ1 such that

‖w‖2
Ω ≤ C2

Ω a(w,w) ,(4.22)

‖γw‖2
Γ1
≤ C2

Γ1
a(w,w)(4.23)

for all w ∈ V0. Estimate (4.22) follows from (2.2) and the Friedrichs’ type
inequality for the functions vanishing at Γ1. Estimate (4.23) follows from the
trace theorem. More detailed information concerning such type inequalities
and the constants can be found in the works of Sauter and Carstensen [2],
S. G. Mikhlin [11] among others.

Then the right–hand side of (4.21) is bounded from below by the quantity

inf
z∈R+

{
z2

2
− (

CΩRΩ(y∗) + CΓ1RΓ1
(δny∗, ξ∗)

)
z

}
=

= −1
2

(
CΩRΩ(y∗) + CΓ1RΓ1

(δny∗, ξ∗)
)2

.

Thus, we have

(4.24) 1
2

‖v − u‖2
a ≤ M⊕(v, y∗, ξ∗, β) := (1+β)M1(v, y∗)+

+M2(γv, ξ∗) + 1
2

(
1+ 1

β

)(
CΩRΩ(y∗) + CΓ1RΓ1

(δny∗, ξ∗)
)2

Here, y∗ ∈ Q∗
Γ1

, ξ∗ ∈ L2(Γ1), and β > 0. Let us discuss the meaning of
this estimate. We see that the Majorant M⊕ depends on the approximate
solution v and also on two other functions: y∗ and ξ∗. The first one can be
regarded as an image of the true flux p∗ and the second one is the image of
the normal trace p∗ · n on the boundary γ1. Assume that

M⊕(v, y∗, ξ∗, β) = 0.



14 S. REPIN AND J. VALDMAN

Since all the terms are nonnegative, we arrive at the conclusion that

y∗ = A∇v,(4.25)
ξ∗ ⊂ ∂Υ(γv),(4.26)
divy∗ + f = 0, ξ∗ = −δny∗.(4.27)

The relations (4.25), (4.26), and (4.27) means that v is the exact solution,
p∗ is its flux and ξ∗ = δnp∗ on γ1.

Note that (4.21) also leads to a somewhat different estimate. Indeed,

inf
w∈V0

[
1
2
a(w,w)−RΩ(y∗) ‖w‖Ω −RΓ1

(y∗, ξ∗) ‖γw‖Γ1

]
≥

≥ inf
w∈V0

[
1
2
a(w,w)−

√
R2

Γ1
(y∗, ξ∗) + R2

Ω(y∗)
√
‖w‖2

Ω + ‖γw‖2
Γ1

]
.

It is easy to see that

‖w‖2
Ω + ‖γw‖2

Γ1
≤ C2

(Ω,Γ1)a(w, w)

with a certain constant C(Ω,Γ1). Therefore the value of inf is bounded from
below by the quantity

−1
2
C2

(Ω,Γ1)

(
R2

Γ1
(y∗, ξ∗) + R2

Ω(y∗)
)
.

Thus, instead of (4.24), we have

(4.28) 1
2

‖v − u‖2
a ≤

≤ M̃⊕(v, y∗, ξ∗, β) := (1+β)M1(v, y∗) + M2(γv, ξ∗)+

+1
2

(
1+ 1

β

)
C2

(Ω,Γ1)

(
R2

Γ1
(y∗, ξ∗) + R2

Ω
(y∗)

)

Let us now consider particular forms of the estimates (4.24) and (4.28).
First, we set

ξ∗ = −δny∗.

In this case,
RΓ1

(δny∗ξ∗) = 0

and by (4.24) we obtain the estimate

(4.29) 1
2 ‖v − u‖2

a ≤ (1+β)M1(v, y∗)+

+ M2(γv, δny∗) + 1
2

(
1+

1
β

)
C2

ΩR2
Ω(y∗).

Note that this estimate is sharper than the one that follows from (4.28)
because CΩ ≤ C(Ω,Γ1).

Another estimate, if the last term of (4.24) is estimated from above by
means of the Young’s inequality. Then, we obtain the following inequality
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which involves a new positive constant α:

(4.30) 1
2 ‖v − u‖2

a ≤ (1+β)M1(v, y∗) + M2(γv, ξ∗)+

+1
2

(
1+ 1

β

)
(1 + α)C2

ΩR2
Ω(y∗)

+1
2

(
1+ 1

β

) (
1 + 1

α

)
C2

Γ1
R2

Γ1
(δny∗, ξ∗) .

For α = 1, we can view (4.30) as a form of (4.28) with

C(Ω,Γ1) =
√

2(C2
Ω + C2

Γ1
).

Let us gather in (4.30) all the terms related to the boundary condition
on Γ1 and denote them

(4.31) IΓ1
(γv, δny∗, ξ∗) = =

∫

Γ1

(j(γv)+ j∗(ξ∗)− (γv) ξ∗ + θ
2 |δny∗ +ξ∗|2)dΓ,

where θ =
(
1+ 1

β

) (
1 + 1

α

)
C2

Γ1
.

To minimize the right–hand side of (4.30) we should minimize IΓ1
with

respect to ξ∗. Now the estimate (4.30) comes in the form

(4.32) 1
2 ‖v − u‖2

a ≤ (1+β)M1(v, y∗) + inf
ξ∗

IΓ1
(γv, δny∗, ξ∗)+

+ 1
2

(
1+ 1

β

)
(1 + α)C2

ΩR2
Ω(y∗) ,

5. Particular cases

5.1. Neumann type of boundary condition. This type boundary con-
ditions correspond to the case, in which Υ is a linear functional, i.e.

Υ(ξ) := 〈η∗, ξ〉
Γ1

(5.1)

where η∗ ∈ Z∗. In particular, if η∗ is associated with a square summable
(on Γ1) function F , then one can set

j(v) = F v, −δnp∗ = F a.e. onΓ1 .(5.2)

Then

Υ(ξ) =
∫

Γ1

F ξ dΓ,

Υ∗(ξ∗) =
{

0, if ξ∗ = F a.e. onΓ1,
+∞ otherwise.

In this case,

IΓ1
=

∫

Γ1

(
F γv + 0− F γv + θ

2 |δny∗ + F |2
)

dΓ = θ
2

∫

Γ1

|δny∗ + F |2 dΓ .
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Now the estimate comes in the form

(5.3)
1
2 ‖v − u‖2

a ≤ (1+β)M1(v, y∗) + 1
2

(
1+ 1

β

) (
1 + 1

α

)
C2

Γ1

∫

Γ1

|δny∗ + F |2 dΓ

+ 1
2

(
1+ 1

β

)
(1 + α)C2

ΩR2
Ω(y∗).

5.2. Robin type of boundary condition. In this case we have

j(v) = F v +
c

2
v2 a.e. onΓ1 .

where F is a square summable (on Γ1) function and c is a positive constant.
It is easy to calculate

j∗(ξ∗) =
1
2c

(ξ∗ − F )2

and therefore

IΓ1
=

∫

Γ1

(
F γv +

c

2
(γv)2 +

1
2c

(ξ∗ − F )2 − γv ξ∗ + θ
2 |δny∗ + ξ∗|2

)
dΓ.

If we choose ξ∗ = −δny∗, then the θ dependent term drops out and we obtain

IΓ1
=

∫

Γ1

(
F γv +

c

2
(γv)2 +

1
2c

(δny∗ + F )2 + γv δny∗
)

dΓ

=
1
2c

∫

Γ1

(F + c γv + δny∗)2 dΓ.

Then, the majorant estimate reads (by taking the limit case α → 0)

(5.4) 1
2 ‖v − u‖2

a ≤ (1+β)M1(v, y∗) +
1
2c

∫

Γ1

(F + c γv + δny∗)2 dΓ+

+ 1
2

(
1+ 1

β

)
C2

ΩR2
Ω(y∗).

5.3. Friction type of boundary condition. Here we have

j(v) = µ |v|, µ > 0.(5.5)

In this case,

Υ(ξ) =
∫

Γ1

µ |ξ| dΓ,

Υ∗(ξ∗) =
{

0, if |ξ∗| ≤ µ a.e. onΓ1,
+∞ otherwise
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and, therefore,

IΓ1
=

∫

Γ1

(
µ |γv|+ 0− ξ∗ (γv) + θ

2 |δny∗+ξ∗|2
)

dΓ(5.6)

under the assumption |ξ∗| ≤ µ. If |δny∗| ≤ µ, then we set ξ∗ = −δny∗ and

IΓ1
=

∫

Γ1

(µ |γv|+ (δny∗)(γv)) dΓ.

If δny∗ ≥ µ, then to minimize the quadratic term we take ξ∗ = −µ and

IΓ1
=

∫

Γ1

(
µ |γv|+ µ (γv) + θ

2 |δny∗ − µ|2
)

dΓ.

Analogously, if δny∗ ≤ µ, then we set ξ∗ = +µ and

IΓ1
=

∫

Γ1

(
µ |γv| − µ (γv) + θ

2 |δny∗ + µ|2
)

dΓ.

All three cases can be written in one form if one introduces the function

(5.7) φ(γv, δny∗, µ) :=





θ
2(δny∗ + µ)2 − µ (γv) if δny∗ < −µ,

(δny∗) (γv) if |δny∗| < µ,
θ
2(δny∗ − µ)2 + µ (γv) if δny∗ > µ.

Then, the majorant estimate reads

(5.8) 1
2 ‖v − u‖2

a ≤ (1+β)M1(v, y∗) +
∫

Γ1

(µ|γv|+ φ(γv, δny∗, µ)) dΓ+

+ 1
2

(
1+ 1

β

)
(1 + α)C2

ΩR2
Ω(y∗).

Remark 1. Since the quadratic and linear terms in ξ∗ in (5.6) were not
minimized simultaneously, the estimate can be further improved. A careful
minimization provides a sharper estimate

(5.9) φ(γv, δny∗, µ) :=





θ
2(δny∗ + µ)2 − µ (γv) if (γv)

θ − δny∗ ≥ µ,

(δny∗) (γv)− (γv)2

2θ if | (γv)
θ − δny∗| ≤ µ,

θ
2(δny∗ − µ)2 + µ (γv) if (γv)

θ − δny∗ ≤ −µ.

5.4. Winkler type boundary condition. Another problem arises if we
define j as follows

j(v) =
1
2
κ |v|2 ,(5.10)

where κ and is a positive constant. This case can be viewed as a simplified
variant of the Winkler’s boundary condition widely used in solid mechanics.
In this condition, on Γ1 a body is connected with an elastic foundation which
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Figure 1. Comparison of majorant parts (5.7) and (5.9).
The values of φ(γv, δny∗, µ) are displayed versus variable δny∗
for given γv, µ and θ. Here, γv = 0.05, µ = 0.01 and θ = 0.33.
The majorant part (5.9) displayed as a dotted line provides
sharper estimate then (5.7) displayed as a full line.

provides a certain response to boundary deflections (such a condition can
be modeled by a large amount of springs connected with Γ1). Now, we have

−p∗n = κu, a.e. onΓ1 .(5.11)

and

j∗(ξ∗) = sup
ξ∈Rd

{
ξ∗ · ξ − 1

2
κ |ξ|2

}
=

1
2κ
|ξ∗|2 .(5.12)

Consider the quantity

IΓ1
= 1

2

∫

Γ1

(
κ |γv|2 + 1

κ |ξ∗|2 − 2ξ∗ γv + θ |δny∗ + ξ∗|2
)
dΓ

The minimization of this quantity over ξ∗ leads to the condition

1
κ

ξ∗ − γv + θ(δny∗ + ξ∗) = 0(5.13)

or (
1
κ

+ θ

)
ξ∗ = γv − θδny∗ ⇒ ξ∗ =

κ(γv − θδny∗)
1 + κθ

This gives a simple expression for IΓ1
:

IΓ1
= 1

2

∫

Γ1

θ

1 + κθ
(κ(γv) + δny∗)2dΓ.(5.14)
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Figure 2. Discrete solutions of the minimization problem
for µ →∞ (left), µ = 0 (middle) and µ = 0.1 (right).

By (4.29), we obtain the a posteriori estimate

1
2 ‖v − u‖2

a ≤ (1+β)M1(v, y∗) + 1
2

∫

Γ1

θ

1 + κθ
(κ(γv) + δny∗)2dΓ +

+1
2

(
1+ 1

β

)
(1 + α)C2

ΩR2
Ω(y∗) .(5.15)

Note the the boundary term vanishes if and only if γv and δny∗ satisfy the
Winkler boundary condition (5.11).

6. Numerical implementation

6.1. The nonlinear problem and its discrete solution. We will only
discuss the case of the friction boundary condition described in Section 5.3,
i.e., the energy minimization problem

(6.1) e(w) :=
∫

Ω

(
1
2
|∇w|2 − fw

)
dx + µ

∫

Γ1

|w| dΓ → min

over all function w ∈ V0. By the variation of this functional, one obtains
in accordance with (2.4) the friction boundary condition for the solution
u ∈ V0 of (6.1)

|u|∂u

∂n
+ µu = 0 on Γ1.(6.2)

We consider a unit square domain Ω := (0, 1)× (0, 1) ∈ R2, whose bound-
ary Γ is split into its nonlinear boundary condition part Γ1 = {1} × [0, 1]
and the purely Dirichlét part Γ0 := Γ \ Γ1. Let assume the external force

f(x, y) := 2x(1− x) + 2y(1− y), (x, y) ∈ Ω.

The finite element method is used to provide discrete approximations of
the minimization problem above. Let divide the domain Ω by a regular
triangulation T in triangles in the sense of Ciarlet [19], i.e. T is a finite
partition of Ω into closed triangles; two distinct elements T1 and T2 are
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either disjoint, or T1 ∩ T2 is a complete edge or a common node of both T1

and T2. The Hilbert space V is approximated by the set of T - piecewise
affine functions that are zero on ΓD by

S1
Γ0

(T ) := {w ∈ H1
Γ0

(Ω) : ∀T ∈ T , w|T ∈ P1(T )}.
(P1(T ) denotes the affine functions on T .)

Algorithm 1 (solution algorithm). Let v ∈ S1
Γ0

(T ) be an approximation
of the discrete solution. Define g1 := v|Γ1 as its boundary value and repeat
until convergence:
(a) Upgrade v as a solution of the minimization problem

∫

Ω

(
1
2
|∇w|2 − fw

)
dx → min

over all functions w ∈ S1
Γ0

(T ) satisfying the boundary condition

w|Γ1 = g1.

(b) Upgrade v as a solution of the minimization problem (6.1) over all func-
tions v + w ∈ S1

Γ0
, w|Ω\Γ1

= 0. Set g1 := v|Γ1.

It should be remarked that the step (a) is equivalent to a Laplace problem
−4u = f in Ω with the Dirichlét boundary conditions u|Γ0 = 0, u|Γ1 = g1.
The step (b) is in realized through the point-wise relaxation, see [8] for more
details. Note that the sequential calling of steps (a) and (b) provides mono-
tone decreasing of the energy functional e(w) on the finite element space
S1

Γ0
(T ). By this fact it is possible to prove [8] that the sequence tends to

the Galerkin approximation (exact minimizer on S1
Γ0

(T )).

In the dependence on the friction parameter µ, we are interested in three
model cases:

• µ → ∞ - (6.2) implies the homogeneous Dirichlét boundary condi-
tion u|Γ1 = 0.

• µ = 0 - (6.2) implies the homogeneous Neumann boundary condition
∂u
∂n |Γ1 = 0.

• µ = 0.1 - this is a typical friction boundary condition, i.e., the mix-
ture of Dirichlét and Neumann boundary conditions.

Using a Matlab based code we calculated discrete solutions on uniform
triangulations with 25, 81, 289, 1089, 4225, 16641, 66049, 263169 nodes. For
convenience, we refere to these triangulations by their level number: level 1
stand for the triangulation with 25 nodes, level 2 for the triangulation with
81 nodes and so on. For higher levels calculations it was useful to exploit a
nested iteration method which projects a solution from a coarser triangula-
tion on the finer triangulation and takes this as a solution approximation on
a finer mesh. Then, Algorithm 1 needen only about 3 iteration to achieve
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level total energy energy in Ω energy on Γ1

1 -1.066241e-02 -1.325955e-02 2.597139e-03
2 -1.200491e-02 -1.456770e-02 2.562794e-03
3 -1.237813e-02 -1.492187e-02 2.543735e-03
4 -1.247626e-02 -1.500665e-02 2.530394e-03
5 -1.250161e-02 -1.502860e-02 2.526984e-03
6 -1.250798e-02 -1.503393e-02 2.525948e-03
7 -1.250958e-02 -1.503490e-02 2.525316e-03
8 -1.250999e-02 -1.503516e-02 2.525172e-03

Table 1. Energy functional (6.1) values for the case µ = 0.1.

sufficient convergence. Table 1 reports on energy values for all triangulation
levels in the case µ = 0.1.

Numerically, it turns out feasible to replace the limit µ → ∞ by the
choice µ = 1000. Then it holds |∂u

∂n | ≤ µ and the condition (6.2) implies
again the homogeneous Dirichlét boundary condition u|Γ1 = 0. Figure 2
displays discrete solutions for the level 4 triangulation. It is easy to check
an exact solution

u = x(1− x)y(1− y), (x, y) ∈ Ω̄,

for the case µ → ∞. Exact solutions for the remaining two cases are not
known to authors. Thus a reference solution is generated as a discrete
solution calculated on the level 8 triangulation with 263169 nodes.

6.2. Majorant minimization in detail. The error of the discrete solution
v, i.e, the distance to the exact solution u is measured in the energy norm
by the majorant estimate (5.8). Its application requires knowledge of the
constants CΩ and CΓ1 from the Friedrichs’ and trace inequalities (4.22) and
(4.23). The constant CΩ can be estimated throughout the minimal eigenval-
ues of the operator ∆, see [11]. For the unit square domain with the right
(free) edge Γ1, we can take the value

CΩ =
2√
5π2

≈ 0.2847.

For the case µ → ∞, the right edge Γ1 represents in fact the Dirichlét
boundary, for which the constant can be reduced to

CΩ =
1√
2π2

≈ 0.2251.

With the help of the Cauchy-Schwarz inequality it is possible to bound the
constant

CΓ1 ≤ 1.

The majorant in (5.8) is evaluated in our numerical experiments by three
methods:
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• Method (a): averaging on the same mesh = from a known discrete
approximation v of the solution u we choose the testing function
y = Gv, where G represents an averaged gradient operator, see e.g.
[24] for more details. This is a very cheap way to get some PRE-
LIMINARY knowledge on the upper bound of the error.

• Method (b): averaging on the refined mesh. This method is similar
to method (a), only with the difference that the averaging is done for
the the solution calculated on once more refined mesh. This method
can be regarded as a quantitative form of the Runge’s rule.

• Method (c): minimization of the majorant one the same mesh. Due
to the freedom in the scalar parameters α, β > 0 and the testing
function y∗ it is possible to minimize the majorant with respect
to these unknowns. This is the most expensive method for the a
DETAILED knowledge of the error.

6.3. Majorant minimization in detail. The majorant in the right-hand
side of (5.8) represents a strictly convex functional for given scalar param-
eters α, β > 0 and unknown function y∗ ∈ Q∗

Γ1
. The majorant (5.8) is

decomposed as a sum of a quadratic functional

(6.3) (1+β)M1(v, y∗) + 1
2

(
1+ 1

β

)
(1 + α)C2

ΩR2
Ω(y∗)

defined in the domain Ω and a nonlinear functional

(6.4) IΓ1
:=

∫

Γ1

(µ|γv|+ φ(γv, δny∗, µ)) dΓ

defined on the boundary Γ1. Due to the term 1
β in (6.3) and 1

α occurring
in the definitions of φ(·) in (5.7) or (5.9), the majorant is not convex in
scalar parameters α, β. Let us show that the optimal values of α and β
for a given (or approximated) function y∗ are calculable analytically for the
case of (5.7). We decompose the boundary integral (6.4) in dependence of
θ =

(
1+ 1

β

) (
1 + 1

α

)
C2

Γ1
as

(6.5) IΓ1
=

θ

2
IΓ1,1

+ IΓ1,2
+

1
2θ

IΓ1,3
=

=
θ

2

∫

Γ1

φ1(δny∗, µ)dΓ +
∫

Γ1

φ2(γv, δny∗, µ)dΓ +
1
2θ

∫

Γ1

φ3(δny∗, µ)dΓ,

where φ1(·), φ2(·), φ3(·) are defined using the formula (5.7) or the formula
(5.9). Now the α and β dependent part of the majorant estimate has a
structure

(6.6) (1 + β)a + (1 +
1
β

)(1 +
1
α

)b1 +
b3

(1 + 1
α)(1 + 1

β )
+ (1 +

1
β

)(1 + α)c,

where the parameters a, b1, b3, c read
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a = M1(v, y∗),

b1 =
1
2
C2

Γ1
IΓ1,1

, b3 =
1
2

IΓ1,3

C2
Γ1

,

c =
1
2
C2

ΩR2
Ω(y∗).

(6.7)

We have come to the principial difference of formulae (5.7) and (5.9). For
(5.7), φ1(·), φ2(·), φ3(·) depend additionally on θ. Thus coefficients b1 and
b3 are functions of θ and the minimization of (6.6) with respect to α and β
represents a nonlinear problem with no analytical solution.

Using the formula (5.7) instead, φ1(·), φ2(·) are independent of θ. Since
is also holds b3 = 0 (or IΓ1,3

= 0) and it is possible to obtain an analytic

solution α =
√

b1
c , β =

√
b1+

√
c√

a
which minimizes the expression (6.6). Using

back substitutions (6.7), we obtain the optimal values

(6.8) α =
CΓ1

CΩ

√
IΓ1,1

RΩ(y∗)
, β =

CΓ1

√
IΓ1,1

+ CΩRΩ(y∗)
2M1(v, y∗)

.

If the boundary nonlinear terms IΓ1,1
additionally drops out, we get the

optimal values

(6.9) α = 0, β =
CΩRΩ(y∗)√
2M1(v, y∗)

already known from a minimization problem with a Dirichlet boundary con-
dition on Γ1, i.e., the case µ →∞.

The problem of finding a minimizer y∗ of the quadratic functional (6.3)
(for given α, β) is equivalent to the solution of a linear system of equations.
For a given approximation v, only the boundary values δny∗|Γ1 contribute
to the nonlinear functional (6.4). Therefore, point-wise relaxation [8] is
applied for the minimization of the majorant (5.8) on the Γ1 boundary. A
combination of a quadratic functional minimization, a boundary point-wise
relaxation and the calculation of optimal values of α and β gives rise to the
following majorant optimization algorithm.

Algorithm 2 (Majorant minimization). Let v ∈ V0 be a given discrete
solution. Let α, β > 0 are approximated parameters.
(a) Set y∗ ∈ Q∗

Γ1
by minimizing the quadratic functional (6.3).

(b) Correct δny∗|Γ1 by minimizing the majorant (5.8) with φ(·) defined by
(5.7) on the Γ1 boundary only.
(c) Go to step (a) until the convergence in y∗ is achieved.
(d) Upgrade α and β from y∗ using the formulae (6.9).
(e) Go to step (a) until the convergence in α and β is achieved.
(f) Recalculate the majorant value (5.8) by using φ(·) defined by (5.9).
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Due to the strict convexity of the majorant, the algorithm reduces the ma-
jorant values through steps (a)-(b) monotonically. When the convergence is
achieved and y∗ is known, optimal α and β are calculated, which leads to
the further reduction of the majorant value. Finally, the recalculation using
φ(·) defined by (5.9) improves the majorant estimate (5.8) once again.

6.4. Numerical tests with majorant evaluation. Majorant evaluations
were performed for all triangulation levels up to level 7 with 66049 trian-
gulation nodes. Corresponding to three µ parameter cases (µ = 1000, µ =
0, µ = 0.1) and three methods for the majorant computation (method (a),
(b), (c) explained before), there are nine tables, see Tables 2 - 10. Tables
columns describe majorant values (5.8) in detail:

• ”l” triangulation level.
• ”left” denoting the value (1+β)M1(v, y∗)
• ”right” denoting the value 1

2

(
1+ 1

β

)
(1 + α)C2

ΩR2
Ω(y∗)

• ” middle” denoting the value IΓ1
defined in (6.4).

• ”α, β” denoting the optimal values.
• ”major.” denoting the majorant defined in (5.8), i.e., the sum of

”left”, ”right” and ”middle” terms above.
• ”error2/2” denoting 1

2 ‖v − u‖2
a = 1

2

∫
Ω

(∇(u− v))2 dx.

• ”Ieff” denoting the index of efficiency Ieff := majorant
error .

It holds α = 0 according to (6.9) for the case µ →∞. This value and the
zero ”middle” term are not displayed in Tables 2, 3, 4 for simplicity.

Tables 2, 5 and 8 confirm that the method (a), i.e., an averaging on the
same mesh leads to the majorant values that cause a pessimistic majorant
estimate particularly for larger triangulations. The dominating ”right” and
”middle” terms lead to a high index of efficiency, e.g. Ieff = 22.66 for the
level 7 triangulation in the case µ = 0.1.

The method (b), i.e, the averaging on once more refined mesh provides
slightly better majorant values, see Tables 3, 6 and 9, however it still reaches
too high values for finer triangulations.

The majorant optimization method (c) described in Algorithm 2 provides
the best applicable results (see Tables 4, 7 and 10), allowing index of effi-
ciency Ieff to go up to 3.32 for the level 7 triangulation in the case µ = 0.1.
The comparison of error distribution and the majorant distribution for the
case µ →∞ is displayed on Figure 3.
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l left right β major. error2/2 Ieff
1 3.4e-03 4.5e-03 1.32 7.9e-03 1.7e-03 2.14
2 1.1e-03 1.7e-03 1.54 2.9e-03 4.5e-04 2.52
3 3.5e-04 7.2e-04 2.04 1.0e-03 1.1e-04 3.06
4 1.1e-04 3.1e-04 2.82 4.2e-04 2.8e-05 3.84
5 3.6e-05 1.4e-04 3.96 1.7e-04 7.2e-06 4.97
6 1.1e-05 6.6e-05 5.57 7.8e-05 1.8e-06 6.58
7 4.0e-06 3.1e-05 7.86 3.5e-05 4.5e-07 8.87

Table 2. Method (a) in case µ →∞.

l left right β major. error2/2 Ieff
1 2.4-03 2.2e-03 0.91 4.7e-03 1.7e-03 1.65
2 8.4-04 9.2e-04 1.10 1.7e-03 4.5e-04 1.98
3 2.6e-04 3.9e-04 1.46 6.6e-04 1.1e-04 2.40
4 8.4e-05 1.7e-04 2.01 2.5e-04 2.8e-05 2.97
5 2.7e-05 7.6e-05 2.81 1.0e-04 7.2e-06 3.78
6 8.8e-06 3.5e-05 3.95 4.4e-05 1.8e-06 4.93

Table 3. Method (b) in case µ →∞.

l left right β major. error2/2 Ieff
1 2.3e-03 6.0e-04 0.26 2.9e-03 1.7e-03 1.30
2 6.6e-04 2.3e-04 0.35 9.0e-04 4.5e-04 1.41
3 1.7e-04 7.3e-05 0.42 2.4e-04 1.1e-04 1.47
4 4.4e-05 2.0e-05 0.47 6.4e-05 2.8e-05 1.50
5 1.1e-05 5.4e-06 0.50 1.6e-05 7.2e-06 1.51
6 2.7e-06 1.4e-06 0.51 4.1e-06 1.8e-06 1.52
7 6.9e-07 3.6e-07 0.52 1.0e-06 4.5e-07 1.53

Table 4. Method (c) in case µ →∞.
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