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Abstract — We provide an a posteriori error analysis of finite element approximations of pointwise
state constrained distributed optimal control problems for second order elliptic boundary value prob-
lems. In particular, we derive a residual-type a posteriori error estimator and prove its efficiency and
reliability up to oscillations in the data of the problem and a consistency error term. In contrast to the
case of pointwise control constraints, the analysis is more complicated, since the multipliers associated
with the state constraints live in measure spaces. The analysis essentially makes use of appropriate reg-
ularizations of the multipliers both in the continuous and in the discrete regime. Numerical examples
are given to illustrate the performance of the error estimator.

Keywords: optimal control, state constraints, adaptive finite elements, a posteriori error analysis, ef-
ficiency and reliability

1. Introduction

The theory and application of adaptive finite element methods for the efficient nu-
merical solution of boundary and initial-boundary value problems for partial dif-
ferential equations (PDEs) has reached some state of maturity as documented by
a series of monographs. There exist several concepts including residual and hier-
archical type estimators, error estimators that are based on local averaging, the so-
called goal oriented dual weighted approach, and functional type error majorants
[1–3,12,29,31] and the references therein).

On the other hand, as far as the development of adaptive finite element schemes
for optimal control problems for PDEs is concerned, much less work has been done.
The goal oriented dual weighted approach has been applied to unconstrained prob-
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lems in [3,4]. Residual-type a posteriori error estimators for control constrained
problems have been derived and analyzed in [14,15,18,22,24,26], whereas the the-
ory of functional type error majorants has been investigated for control constrained
elliptic problems in [16].

As opposed to the control constrained case, the difficulty associated with point-
wise state constrained optimal control problems is due to the fact that the Lagrange
multiplier for the state constraints lives in a measure space (see, e.g., [7,8,20,30]).
Finite difference and finite element approximations of such problems have been stu-
died both with regard to a priori error estimates [9,10,13] as well as with respect to
the efficient iterative solution of the discretized problems by primal-dual active set
strategies and interior-point methods [5,6,19,21,23].

However, an a posteriori error analysis of adaptive finite element approxima-
tions of pointwise state constrained control problems has not yet been provided. In
this paper, we attempt to close this gap by the development, analysis and imple-
mentation of a residual type a posteriori error estimator. The paper is organized as
follows. In Section 2, as a model problem we consider a distributed optimal control
problem for a two-dimensional, second order elliptic PDEwith a quadratic objective
functional and unilateral constraints on the state variable. The optimality conditions
are stated in terms of the state, the adjoint state, the control, and a Lagrangian multi-
plier for the state constraints which lives in the space of Radon measures. We further
introduce a regularized multiplier and a modified adjoint state which will play an
essential role in the error analysis.

In Section 3, we describe the finite element discretization of the control problem
with respect to a family of shape regular simplicial triangulations of the computa-
tional domain using continuous, piecewise linear finite elements for the state, the
control, the adjoint and the modified adjoint state, and the regularized multiplier,
whereas the multiplier itself is approximated by Dirac delta functionals associated
with the nodal points of the triangulations.

In Section 4, we present the residual-type a posteriori error estimator for the
global discretization errors in the state, the adjoint state and the control. A consis-
tency error and data oscillations are considered as well, since they essentially enter
the error analysis which is the subject of the subsequent Sections 5 and 6.

In particular, in Section 5 we prove reliability of the error estimator, i.e., we
prove that it provides an upper bound for the global discretization errors up to data
oscillations and the consistency error. Section 6 deals with the efficiency of the
estimator by showing that, modulo data oscillations, the error estimator also gives
rise to a lower bound for the discretization errors.

Section 7 is devoted to the derivation of a computable upper bound for the con-
sistency error in generic cases where a priori information on the Lagrange multiplier
is available.

Finally, Section 8 provides a detailed documentation of numerical results for
two test examples in terms of the convergence history of the adaptive finite element
process including visualizations of the adaptively generated simplicial triangula-
tions.



Aposteriori error estimation of FE approximations 221

2. The state constrained distributed control problem

Let Ω ⊂ R
2 be a bounded domain with boundary Γ := ΓD ∪ ΓN ,ΓD ∩ ΓN = ∅.

We use standard notation from Lebesgue and Sobolev space theory and refer to
W k,p(Ω),k ∈ N,1 < p < ∞, as the Sobolev spaces with norms ‖ · ‖k,p,Ω. Note
that for k = 0 we obtain the Lebesgue space Lp(Ω). In case p = 2, we refer to
(·, ·)0,Ω as the inner product of the Hilbert space L2(Ω), and we will write Hk(Ω)

instead of W k,2(Ω) and ‖ · ‖k,Ω instead of ‖ · ‖k,2,Ω. For k > 1, we further refer
to | · |k,p,Ω as the associated seminorm on W k,p(Ω) which actually is a norm on
W k,p

0 (Ω) := {v ∈W k,p(Ω) | (Dαv)|Γ = 0, |α| 6 k− 1}. If we consider functions in
W k,p(D),D⊂Ω, we will write ‖ · ‖k,p,D and | · |k,p,D, respectively. We recall that for
q conjugate to p in the sense that 1/p+ 1/q = 1, the space W−k,q(Ω) is dual to
W k,p(Ω). Finally, we denote by C(Ω) the Banach space of continuous functions on
Ω. Its dual M (Ω) =C(Ω)∗ is the space of Radon measures onΩwith 〈·, ·〉 standing
for the associated dual pairing. We refer toC+(Ω) and M+(Ω) as the positive cones
ofC(Ω) and M (Ω). In particular, σ ∈ M+(Ω) iff 〈σ ,v〉 > 0 for all v ∈C+(Ω).

For given c ∈ R+, we refer to A : V → H−1(Ω),V := {v ∈ H1(Ω) | v|ΓD = 0},
as the linear second order elliptic differential operator

Ay := −∆y + cy, y ∈V

and to a(·, ·) : V ×V → R with a(y,v) :=
∫
Ω(∇y ·∇v+ cyv)dx as the associated

bilinear form. We assume c > 0 or meas(ΓD) 6= 0. In particular, this assures that A
is bounded and V-elliptic, i.e., there exist constants C > 0 and γ> 0 such that

|a(y,v)| 6 C‖y‖1,Ω‖v‖1,Ω, a(y,y) > γ‖y‖21,Ω . (2.1)

We further assume that Ω is such that for all u ∈ L2(Ω) the solution of the elliptic
boundary value problem

Ay = u in Ω, y = 0 on ΓD
satisfies y ∈ V ∩W 1,r(Ω) for some r > 2. We note that this allows nonconvex do-
mains, e.g., such with reentrant corners (cf. [17]). According to the Sobolev imbed-
ding theorem we have y ∈C(Ω).

Now, given a desired state yd ∈ L2(Ω), a shift control ud ∈ L2(Ω), a regulariza-
tion parameter α > 0 and a function ψ ∈W 1,r(Ω) satisfying ψ|ΓD > 0, we consider
the objective functional

J(y,u) := 1
2
‖y− yd‖20,Ω +

α
2
‖u−ud‖20,Ω

and the associated state constrained distributed optimal control problem:
Find (y,u) ∈V ×L2(Ω) such that

inf
y,u
J(y,u) (2.2)
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subject to the constraints

Ay = u in Ω, y = 0 on ΓD (2.3)
Iy ∈ K := {v ∈C(Ω) | v(x) 6ψ(x) , x ∈Ω} (2.4)

where I stands for the embedding operator I :W 1,r(Ω) →֒C(Ω). Since the solution
y= y(u) of (2.1) lives in V ∩C(Ω), we define G : L2(Ω) →C(Ω) as the control-to-
state map which assigns to u∈ L2(Ω) the unique solution y= y(u) of (2.1). We note
that the control-to-state map G is a bounded linear operator.

We assume that the following Slater condition is satisfied:

there exists v0 ∈ L2(Ω) such that Gv0 ∈ int(K) . (2.5)

We note that the assumption ψ|ΓD > 0 is necessary for (2.5) to hold true.
Substituting the state y= y(u) by y(u) =Gu leads to the reduced objective func-

tional
Jred(u) :=

1
2
‖Gu− yd‖20,Ω +

α
2
‖u−ud‖20,Ω

which allows to reformulate the optimal control problem (2.2)–(2.4) according to

inf
u∈Uad

Jred(u) , Uad := {v ∈ L2(Ω) | (Gv)(x) 6ψ(x) , x ∈Ω} . (2.6)

Since Jred is lower semicontinuous, strictly convex and coercive, and the admissible
control setUad is closed and convex, the optimal control problem has a unique solu-
tion. The optimality conditions for the optimal solution (y,u) ∈V ∩C(Ω)×L2(Ω)
are given as follows.

Theorem 2.1. The optimal solution (y,u) ∈K×L2(Ω) of (2.2)–(2.4) is charac-
terized by the existence of an adjoint state p∈Vs, where Vs := {v∈W 1,s(Ω) | v|ΓD =
0} and s is conjugate to r (r > 2 from the regularity assumption), and a multiplierσ ∈ M+(Ω) such that

(∇y,∇v)0,Ω +(cy,v)0,Ω = (u,v)0,Ω, v ∈V (2.7)
(∇p,∇w)0,Ω+(cp,w)0,Ω = (y− yd ,w)0,Ω+ 〈σ ,w〉, w ∈Vr (2.8)

p+α(u−ud) = 0 (2.9)
〈σ ,y−ψ〉 = 0 . (2.10)

Proof. The proof follows the lines of [8]. Since there are stronger regularity
assumptions in [8], it will be presented here. Denoting by IK the indicator function
of the constraint set K, the reduced problem (2.6) can be written in the formally
unconstrained form

inf
v∈L2(Ω)

Ĵ(v) := Jred(v)+ (IK ◦G)(v) . (2.11)
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The optimal solution u ∈ L2(Ω) satisfies 0 ∈ ∂Ĵ(u), where ∂Ĵ(u) stands for the
subdifferential of Ĵ at u. Due to the Slater condition, subdifferential calculus tells us∂(IK ◦G)(u) = G∗ ◦∂IK(Gu) and hence, (2.11) results in

0 ∈ J′red(u)+G∗ ◦∂IK(Gu) .

Consequently, there exists σ ∈ ∂IK(Gu) such that

(y(u)− yd ,y(v))0,Ω +α(u−ud ,v)0,Ω+(G∗σ ,v)0,Ω = 0, v ∈ L2(Ω). (2.12)

We define σ := G∗σ (2.13)
as a regularization of σ ∈ M (Ω) and obtain from Theorem 4 in [8] that σ ∈ Vs
with 1 < s < 2 being conjugate to r > 2. We further introduce p ∈ V as the unique
solution of

(∇p,∇v)0,Ω+(cp,v)0,Ω = (y(u)− yd ,v)0,Ω, v ∈V. (2.14)

Setting p := p+σ , we have p ∈ Vs :=W 1,s
0 (Ω). Then, (2.12) gives (2.9), whereas

(2.13) and (2.14) imply (2.8). Finally, σ ∈∂IK(u) is equivalent to 〈σ ,v−y〉6 0,v ∈
K which proves σ ∈ M+(Ω) and (2.10). �

We define A (y) := {x∈Ω | y(x) =ψ(x)} andI (y) := {x∈Ω | y(x) <ψ(x)} as
the active and inactive set and refer to F (y) :=∂A (y)∩I (y) as the free boundary.

3. Finite element approximation

We assume that {Tℓ(Ω)} is a family of shape-regular simplicial triangulations of Ω
which align with ΓD,ΓN on Γ . We refer to Nℓ(D) and Eℓ(D) , D ⊆ Ω, as the sets
of vertices and edges of Tℓ(Ω) in D ⊆ Ω. We denote by hT and |T | the diameter
and area of an element T ∈ Tℓ(Ω) and by hE the length of an edge E ∈ Eℓ(D). For
E ∈ Eℓ(Ω) such that E = T+ ∩ T−,T± ∈ Tℓ(Ω), we define ωE := T+ ∪ T− as the
associated patch.

Throughout the paper, we will also use the following notation: If A and B are
two quantities, we say A� B, if there exists a positive constant C that only depends
on the shape regularity of the triangulations but not on their granularities such that
A6CB.

The state constrained optimal control problem (2.2)–(2.4) is discretized by con-
tinuous piecewise linear finite elements with respect to the triangulation Tℓ(Ω). In
particular, we refer to Sℓ := {vℓ ∈ C(Ω) | vℓ|T ∈ P1(T ), T ∈ Tℓ(Ω)} as the finite
element space spanned by the canonical nodal basis functions ϕpℓ , p∈Nℓ(Ω), asso-
ciated with the nodal points inΩ and toVℓ as its subspaceVℓ := {vℓ ∈ Sℓ | vℓ|ΓD = 0}.
Moreover, we denote byWℓ := {wℓ ∈ L2(Ω) | wℓ|T ∈ P0(T ), T ∈Tℓ(Ω)} the linear
space of elementwise constant functions on Ω.
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Given some approximations udℓ ,ydℓ ∈ Sℓ of ud ,yd , we refer to Jℓ :Vℓ×Sℓ → R as
the discrete objective functional

Jℓ(yℓ,uℓ) :=
1
2
‖yℓ − ydℓ‖

2
0,Ω +

α
2
‖uℓ −udℓ‖

2
0,Ω . (3.1)

Further, we denote by ψℓ ∈ Vℓ the Vℓ-interpolant of ψ which is well defined, sinceψ ∈C(Ω).
The finite element approximation of the state constrained optimal control prob-

lem (2.2)–(2.4) reads as follows: Find (yℓ,uℓ) ∈Vℓ ×Sℓ such that

inf
yℓ,uℓ

Jℓ(yℓ,uℓ) (3.2)

subject to the constraints

(∇yℓ,∇vℓ)0,Ω+(cyℓ,vℓ)0,Ω = (uℓ,vℓ)0,Ω, vℓ ∈Vℓ (3.3)
yℓ ∈ Kℓ := {vℓ ∈Vℓ | vℓ 6ψℓ}. (3.4)

As in the continuous setting, the discrete state constrained optimal control problem
(3.2)–(3.4) admits a unique solution (yℓ,uℓ) ∈ Kℓ×Sℓ.

We further choose Mℓ ⊂ M (Ω) according to

Mℓ :=
{µℓ ∈ M (Ω) | µℓ = ∑

a∈Nℓ(Ω∪ΓN)

κaδa , κa ∈ R

}
(3.5)

where δa stands for the Dirac delta function associated with the nodal point a.
We obtain the discrete optimality conditions:

Theorem 3.1. Let (yℓ,uℓ)∈ Kℓ×Sℓ be the unique solution of (3.2)–(3.4). Then,
there exist a discrete adjoint state pℓ ∈ Vℓ and a discrete multiplier σℓ ∈ Mℓ ∩
M+(Ω) such that

(∇yℓ,∇vℓ)0,Ω+(cyℓ,vℓ)0,Ω = (uℓ,vℓ)0,Ω, vℓ ∈Vℓ (3.6)
(∇pℓ,∇vℓ)0,Ω+(cpℓ,vℓ)0,Ω = (yℓ − ydℓ ,vℓ)0,Ω+ 〈σℓ,vℓ〉, vℓ ∈Vℓ (3.7)

pℓ +α(uℓ−udℓ ) = 0 (3.8)
〈σℓ,yℓ −ψℓ〉 = 0. (3.9)

Proof. For a proof we refer to [10]. �

As in the continuous regime, we introduce a regularized discrete multiplier σ ℓ ∈
Vℓ as the solution of

(∇σ ℓ,vℓ)0,Ω+(cσ ℓ,vℓ)0,Ω = 〈σℓ,vℓ〉, vℓ ∈Vℓ (3.10)
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and define pℓ := pℓ−σ ℓ so that pℓ ∈Vℓ satisfies the discrete analogue of (2.14), i.e.,

(∇pℓ,vℓ)0,Ω+(cpℓ,vℓ)0,Ω = (yℓ − ydℓ ,vℓ)0,Ω, vℓ ∈Vℓ. (3.11)

We further define A (yℓ) and I (yℓ) as the discrete active and inactive sets according
to

A (yℓ) :=
⋃

{ T ∈ Tℓ(Ω) | yℓ(p) =ψℓ(p) for all vertices p ∈ Nℓ(T )}

I (yℓ) :=
⋃

{ T ∈ Tℓ(Ω) | yℓ(p) <ψℓ(p) for at least one vertex p ∈ Nℓ(T )}

and refer to F (yℓ) := ∂A (yℓ)∩I (yℓ) as the discrete free boundary.

4. Residual-type a posteriori error estimator

We introduce a residual-type a posteriori error estimator

ηℓ := ηℓ(y)+ηℓ(p) (4.1)

in terms of estimators ηℓ(y) and ηℓ(p) for the state y and the modified adjoint state
p which consist of element and edge residuals according to

ηℓ(y) :=
( ∑
T∈Tℓ(Ω)

η2
T (y)+ ∑

E∈Eℓ(Ω)

η2
E(y)

)1/2
(4.2)

ηℓ(p) :=
( ∑
T∈Tℓ(Ω)

η2
T (p)+ ∑

E∈Eℓ(Ω)

η2
E(p)

)1/2
. (4.3)

The element residuals ηT (y) and ηT (p), T ∈ Tℓ(Ω), are weighted elementwise L2-
residuals with respect to the strong form of the state equation (2.3) and the modified
adjoint state equation (2.14), respectively:

ηT (y) := hT‖cyℓ−uℓ‖0,T , ηT (p) := hT‖cpℓ−(yℓ−ydℓ )‖0,T , T ∈Tℓ(Ω). (4.4)

The edge residuals ηE(y) and ηE(p),E ∈ Eℓ(Ω), are weighted L2-norms of the
jumps νE · [∇yℓ] and νE · [∇pℓ] of the normal derivatives across the interior edges

ηE(y) := h1/2E ‖νE · [∇yℓ]‖0,E , ηE(p) := h1/2E ‖νE · [∇pℓ]‖0,E . (4.5)

We further have to take into account data oscillations with respect to the data ud ,yd
of the problem

oscℓ :=
(
osc2ℓ(ud)+osc2ℓ(yd)

)1/2
(4.6)
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where oscℓ(ud) and oscℓ(yd) are given by

oscℓ(ud) :=
(
∑

T∈Tℓ(Ω)

osc2T (ud)
)1/2

, oscT (ud) := ‖ud −udℓ‖0,T (4.7)

oscℓ(yd) :=
(
∑

T∈Tℓ(Ω)

osc2T (yd)
)1/2

, oscT (yd) := hT‖yd− ydℓ‖0,T . (4.8)

For standard finite element discretizations of second order elliptic boundary value
problems, it can be shown that residual-type a posteriori error estimators such as
(4.2), (4.3) provide and upper and a lower bound for the global discretization error
up to data oscillations. In this paper, we want to establish a similar result for the
global discretization errors in the state, the adjoint state, and the control. To this
end, we introduce

ey := y− yℓ, ep := p− pℓ, eu := u−uℓ. (4.9)

As in the case of finite element discretizations of control constrained elliptic bound-
ary value problems (cf. [18,22]), the a posteriori error analysis involves an auxiliary
state y(uℓ) ∈V and an auxiliary adjoint state p(yℓ) ∈V which are defined according
to

(∇y(uℓ),∇v)0,Ω +(cy(uℓ),v)0,Ω = (uℓ,v)0,Ω, v ∈V (4.10)
(∇p(yℓ),∇v)0,Ω +(cp(yℓ),v)0,Ω = (yℓ − yd,v)0,Ω, v ∈V. (4.11)

We note that y(uℓ), p(yℓ) ∈V ∩W 1,r(Ω) due the assumption on the regularity of the
solutions of the associated elliptic boundary value problems. We also introduce an
auxiliary discrete state yℓ(u)∈Vℓ as the solution of the finite dimensional variational
problem

(∇yℓ(u),∇vℓ)0,Ω +(cyℓ(u),vℓ)0,Ω = (u,vℓ)0,Ω, vℓ ∈Vℓ. (4.12)

The auxiliary states y(uℓ) ∈ V and yℓ(u) ∈ Vℓ do not necessarily satisfy the state
constraints, i.e., it may happen that y(uℓ) /∈K or yℓ(u) /∈Kℓ. Therefore, we introduce
the consistency error

ec(u,uℓ) := max(〈σℓ,yℓ(u)ψℓ〉+ 〈σ ,y(uℓ)−ψ〉,0) . (4.13)

Remark 4.1. Since both y(uℓ) and yℓ(u) are not available, we follow the idea
in the goal oriented dual weighted approach (cf., e.g., [3]) and approximate y(uℓ)|T ,
yℓ(u)|T ,T ∈ Tℓ(Ω) by ŷℓ|T , where this approximation is obtained in the following
way: Assuming that the triangulation Tℓ(Ω) stems from the refinement of a coarser
triangulation Tℓ−1(Ω), we consider the ’father’ TF ∈ Tℓ−1(Ω) of T and define ŷℓ as
the quadratic interpolant of yℓ on TF with respect to the nodal values in the vertices
and in the midpoints of the edges of TF .
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Choosing ŷℓ as in Remark 4.1, we obtain the approximation

êc := max(〈σℓ, ŷℓ −ψℓ〉+ 〈σ , ŷℓ−ψ〉,0) . (4.14)

The only remaining unknown quantity in (4.14) is the multiplier σ . In particular
cases, an explicit representation of σ is known (see, e.g., [7]). We will address this
issue in Section 7 and show that we can specify a computable upper bound

|êc| . ∑
T∈Tℓ(Ω)

µ̂T . (4.15)

The refinement of a triangulation Tℓ(Ω) is based on bulk criteria that have been
previously used in the convergence analysis of adaptive finite element for nodal
finite element methods [11,28]. For the state-constrained optimal control problem
under consideration, the bulk criteria are as follows: Given a universal constant Θ∈
(0,1), we create a set of edges M E ⊂ Eh(Ω) and a set of elements M T such that

Θ
( ∑
T∈Tℓ(Ω)

(η2
T + µ̂T +osc2T

)
+ ∑
E∈Eℓ(Ω)

η2
E

)

6 ∑
T∈M T

(η2
T + µ̂T +osc2T

)
+ ∑
E∈M E

η2
E . (4.16)

The bulk criterion is realized by a greedy algorithm (cf., e.g., [18]). We refine an
element T ∈Tℓ(Ω) by newest vertex bisection, if T ∈M T and an edge E ∈ Eℓ(T ) by
bisection ( joining its midpoint with the opposite vertices of the adjacent elements),
if E ∈ M E .

5. Reliability of the estimator

We prove reliability of the residual-type error estimator (4.1) in the sense that it
provides an upper bound for the discretization errors ey,eu, and ep := p− pℓ up to
the data oscillations oscℓ(ud) and oscℓ(yd) and the consistency error ẽc(u,uℓ). Since
the adjoint state p and the discrete adjoint state pℓ are related to the control u and
the discrete control uℓ by means of the fundamental relationships (2.9) and (3.8),
this leads to an upper bound for the L2-norm of the discretization error ep as well.

Theorem 5.1. Let (y,u, p,σ) and (yℓ,uℓ, pℓ,σℓ) be the solutions of (2.7)–(2.10)
and (3.6)–(3.9) and let ηℓ, oscℓ(ud), and ec(u,uℓ) be the error estimator, the data
oscillation, and the consistency error according to (4.1), (4.7), and (4.13), respec-
tively. Further, let p and pℓ be the modified adjoint states as given by (2.14), (3.11).
Then, there holds

‖ey‖21,Ω+‖eu‖20,Ω+‖ep‖21,Ω+‖ep‖20,Ω
� η2

ℓ +osc2ℓ(ud)+osc2ℓ(yd)+ ec(u,uℓ) . (5.1)
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The proof of Theorem 5.1 will be given by the following two Lemmas 5.1 and
5.2.

Lemma 5.1. In addition to the assumptions of Theorem 5.1 let y(uℓ) and p(yℓ)
be the auxiliary state and auxiliary adjoint state according to (4.10) and (4.11).
Then, there holds

‖ey‖21,Ω+‖ep‖21,Ω+‖eu‖20,Ω
� ‖y(uℓ)− yℓ‖21,Ω+‖p(yℓ)− pℓ‖21,Ω+osc2ℓ(ud)+ ec(u,uℓ) . (5.2)

Proof. Obviously, ey and ep can be estimated from above by

‖ey‖21,Ω 6 2
(
‖y− y(uℓ)‖

2
1,Ω+‖y(uℓ)− yℓ‖21,Ω

)
(5.3)

‖ep‖21,Ω 6 2
(
‖p− p(yℓ)‖21,Ω+‖p(yℓ)− pℓ‖

2
1,Ω

)
. (5.4)

Setting v= y−y(uℓ) in (2.7), (4.10), andM :=C/γwith γ,C from (2.1), for the first
term on the right-hand side in (5.3) we readily get

‖y− y(uℓ)‖
2
1,Ω 6M‖eu‖0,Ω‖y− y(uℓ)‖0,Ω 6M‖eu‖0,Ω‖y− y(uℓ)‖1,Ω

and hence,
‖y− y(uℓ)‖

2
1,Ω 6 M2‖eu‖20,Ω . (5.5)

Likewise, choosing v= p− p(yℓ) in (2.14) and (4.11), for the first term on the right-
hand side in (5.4) it follows that

‖p− p(yℓ)‖21,Ω 6M‖ey‖0,Ω‖p− p(yℓ)‖0,Ω 6M‖ey‖1,Ω‖p− p(yℓ)‖1,Ω .

Consequently, in view of (5.3) and (5.5) we obtain

‖p− p(yℓ)‖21,Ω 6 M2‖ey‖21,Ω 6 2M2
(
M2 ‖eu‖20,Ω+‖y(uℓ)− yℓ‖21,Ω

)
. (5.6)

It remains to estimate ‖eu‖0,Ω. Taking advantage of (2.9) and (3.8) and observing
p= p+σ , pℓ = pℓ +σ ℓ, we find

‖eu‖20,Ω = (eu,ud−udℓ )0,Ω−
1
α (eu,ep)0,Ω (5.7)

= (eu,ud−udℓ )0,Ω+
1
α

(
(eu, pℓ− p)0,Ω+(eu,σ ℓ−σ)0,Ω

)
.

Using Young’s inequality, the first term on the right-hand side in (5.7) can be easily
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estimated according to

(eu,ud −udℓ )0,Ω = ∑
T∈Tℓ(Ω)

(eu,ud−udℓ )0,T

6

( ∑
T∈Tℓ(Ω)

‖eu‖20,T
)1/2( ∑

T∈Tℓ(Ω)

oscT (ud)2
)1/2

= ‖eu‖0,Ω oscℓ(ud) 6
1
6
‖eu‖20,Ω+

3
2
osc2ℓ(ud) . (5.8)

The second term on the right-hand side in (5.7) will be split by means of

(eu, pℓ − p)0,Ω = (eu, pℓ− p(yℓ))0,Ω+(eu, p(yℓ)− p)0,Ω (5.9)

and the resulting two terms will be further estimated separately. Using Young’s in-
equality once more, for the first term we get

(eu, pℓ − p(yℓ))0,Ω 6
α
6
‖eu‖20,Ω+

3
2α ‖pℓ− p(yℓ)‖21,Ω. (5.10)

On the other hand, setting v= p(yℓ)− p in (2.7), (4.10) and v= y(uℓ)− y in (2.14),
(4.11), for the second term it follows that

(eu, p(yℓ)− p)0,Ω = (y− yℓ,y(uℓ)− y)0,Ω
= −‖y− y(uℓ)‖

2
0,Ω+(y(uℓ)− yℓ,y(uℓ)− y)0,Ω

6 ‖y(uℓ)− yℓ‖1,Ω‖y− y(uℓ)‖1,Ω
6 M‖y(uℓ)− yℓ‖1,Ω‖eu‖0,Ω
6
α
6
‖eu‖20,Ω+

3M2

2α ‖y(uℓ)− yℓ‖21,Ω (5.11)

where we further used (5.5) and Young’s inequality.
Finally, as far as the third term on the right-hand side in (5.7) is concerned, in

view of (2.7), (3.6), (4.10), (4.12) as well as (2.13), (3.10) and the complementarity
relations (2.10) and (3.9) we obtain

(eu,σ ℓ −σ)0,Ω = (∇(yℓ(u)− yℓ),∇σ ℓ)0,Ω+(c(yℓ(u)− yℓ),σ ℓ)0,Ω
− (∇(y− y(uℓ)),∇σ )0,Ω− (c(y− y(uℓ)),σ )0,Ω

= 〈σℓ,yℓ(u)− yℓ〉+ 〈σ ,y(uℓ)− y〉
= 〈σℓ,yℓ(u)−ψ〉+ 〈σℓ,ψ− yℓ〉︸ ︷︷ ︸

= 0

+〈σ ,y(uℓ)−ψ〉+ 〈σ ,ψ− y〉︸ ︷︷ ︸
= 0

6 ec(u,uℓ). (5.12)

Using (5.8), (5.10)–(5.12) in (5.7) results in

‖eu‖20,Ω � ‖y(uℓ)− yℓ‖21,Ω+‖p(yℓ)− pℓ‖21,Ω+osc2ℓ(ud)+ ec(u,uℓ). (5.13)

Collecting the estimates (5.5), (5.6), and (5.13) gives the assertion. �
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Lemma 5.2. Under the same assumptions as in Lemma 5.1 there holds

‖y(uℓ)− yℓ‖21,Ω � η2
ℓ (y) (5.14)

‖p(yℓ)− pℓ‖21,Ω � η2
ℓ (p)+osc2ℓ(yd) . (5.15)

Proof. Due to Galerkin orthogonality, the assertion follows by standard argu-
ments from the a posteriori error analysis of adaptive finite element methods (see,
e.g., [31]). �

Proof of Theorem 5.1. Combining the results from Lemma 5.1 and Lemma
5.2, we obtain

‖ey‖21,Ω+‖eu‖20,Ω+‖ep‖21,Ω � η2
ℓ +osc2ℓ(ud)+osc2ℓ(yd)+ ec(u,uℓ) . (5.16)

In particular, this estimate is satisfied by each norm on the left-hand side. In view of
(2.9), (3.8) we have ep = α(uℓ −u)+α(ud−udℓ ) whence

‖ep‖20,Ω � ‖eu‖20,Ω+osc2ℓ(ud) . (5.17)

Then, (5.1) is a direct consequence of (5.16) and (5.17). �

6. Efficiency of the error estimator

In this section, we show that up to data oscillations the error estimator η also pro-
vides a lower bound for the discretization errors in the state, the modified adjoint
state and the control.

Theorem 6.1. Let (y,u, p,σ) and (yℓ,uℓ, pℓ,σℓ) be the solutions of (2.7)–(2.10)
and (3.6)–(3.9) and let ηℓ and oscℓ(yd) be the error estimator and the data oscilla-
tion as given by (4.1) and (4.7), respectively. Further, let p and pℓ be the modified
adjoint states as given by (2.14), (3.11). Then, there holds

η2−osc2ℓ(yd) � ‖ey‖21,Ω+‖eu‖20,Ω+‖ep‖21,Ω . (6.1)

The proof of Theorem 6.1 will be a direct consequence of the subsequent Lem-
mas 6.1 and 6.2. In particular, these Lemmas will establish local efficiency of the
estimator in the sense that the element and edge residuals can be bounded from
above by norms of the discretization errors on the elements and associated patches,
respectively.

Lemma 6.1. Let ηT (y) and ηT (p),T ∈ Tℓ(Ω), be the element residuals as
given by (4.4). Then, there holds

η2
T (y) � ‖ey‖21,T +h2T‖eu‖20,T (6.2)

η2
T (p) � ‖ep‖21,T +h2T‖ey‖20,T +osc2T (yd) . (6.3)
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Proof. We denote by ϕT ,T ∈ Tℓ(Ω), the element bubble function given by the
product of the barycentric coordinates associated with the vertices of T and set
zℓ := (uℓ−cyℓ)ϕT . Taking advantage of the fact that zℓ is an admissible test function
in (2.7) and ∆yℓ|T = 0, we obtain

η 2
T (y) � h2T (uℓ − cyℓ,zℓ)0,T = h2T

(
(u,zℓ)0,T +(∆yℓ− cyℓ,zℓ)0,T +(uℓ−u,zℓ)0,T

)

= h2T
(
(∇(y− yℓ),∇zℓ)0,T +(c(y− yℓ,zℓ)0,T +(uℓ−u,zℓ)0,T

)
.

Using standard estimates for ‖∇zℓ‖0,T and ‖zℓ‖0,T (cf., e.g., [31]) readily gives (6.2).
The proof of (6.3) follows along the same lines. �

Lemma 6.2. Let ηT (y),ηT (p),T ∈ Tℓ(Ω), and ηE(y),ηE(p),E ∈ Eℓ(Ω), be
the element and edge residuals as given by (4.4), (4.5). Further, let oscT (yd),T ∈
Tℓ(Ω), be the element contribution to the data oscillation in yd according to (4.8).
Then, there holds

η 2
E(y) � ‖ey‖21,ωE +h2E‖eu‖20,ωE +η 2ωE(y) (6.4)

η 2
E(p) � ‖ep‖21,ωE +h2E‖ey‖20,ωE +η 2ωE(p)+osc2ωE (yd) (6.5)

where ηωE(y) := (η 2
T+(y) + η 2

T−(y))1/2 and ηωE(p),oscωE (yd) are defined analo-
gously.

Proof. We denote by ϕE ,E ∈ Eℓ(Ω), the edge bubble function given by the
product of the barycentric coordinates associated with the two vertices of E . We set
ζE := (νE · [∇yℓ])|E and zℓ := ζ̃EϕE , where is the extension of ζE to ωE as in [31].
Since zℓ is an admissible test function in (2.7) and ∆yℓ|T = 0, it follows that

η 2
E(y) � hE(νE · [∇yℓ],ζEϕE)0,E

= hE ∑
i∈{+,−}

{(ν∂Ti ·∇yl,zl)0,∂Ti − (∆yl,zl)0,Ti}

= hE
(
(∇(yℓ − y),∇zℓ)0,ωE +(c(yℓ − y),zℓ)0,ωE

+(u−uℓ,zℓ)0,ωE +(uℓ− cyℓ,zℓ)0,ωE
)
.

Using standard estimates for zℓ (cf., e.g., [31]) results in (6.4). The estimate (6.5)
can be proved in much the same way. �

Proof of Theorem 6.1. Summing up the estimates (6.3)–(6.5) over all T ∈
Tℓ(Ω) and E ∈ Eℓ(Ω), respectively, and using the fact that the union of the patchesωE has a finite overlap, immediately proves (6.1). �



232 R.H.W. Hoppe and M.Kieweg

7. Computable upper bound for the consistency error

In this section, we will provide a computable upper bound for the consistency error
as given by (4.13). For this purpose, we need some a priori information about the
Lagrange multiplier σ . The structure of σ has been studied in [7] for two generic
cases, the regular case and the non-regular case.

7.1. Regular case

The coincidence set A (y) is the union of a finite number of mutually disjoint sets
with nonempty interior and smooth boundary:

A (y) =
m⋃

i=1
Ai(y), cl(int(Ai(y))) = Ai(y), 1 6 i6 m (7.1)

Ai(y)∩A j(y) = ∅, 1 6 i 6= j 6 m
Ai(y), 1 6 i6 m, is connected with C1,1-boundary.

In this case, assuming sufficient regularity of ψ, Theorem 2 in [7] asserts

p|int(A (y)) ∈ H
2(int(A (y))), p|I (y) ∈H2(I (y)) (7.2)

and

p= −α∆ψ in A (y) (7.3a)
−∆p= yd− y in I (y) (7.3b)

p= −α∆ψ on F (y) (7.3c)

σ = λ +λF (y), λ ∈ L2+(Ω), λF (y) ∈H
1/2
+ (F (y)) (7.3d)

where

λ =

{
0 on I (y)
yd−ψ−α∆2ψ on A (y) (7.4a)

λF (y) = −
∂p|I (y)

∂nI (y)
+α ∂∆ψ

∂nA (y)
(7.4b)

and L2+(Ω) as well as H1/2
+ (F (y)) denote the non-negative cones in L2(Ω) and

H1/2(F (y)), respectively.
Consequently, in order to take advantage of the representations (7.4a), (7.4b),

we have to provide suitable approximations of the active set A (y), the inactive set
I (y), and the free boundary F (y). Denoting by χ(S) the characteristic function of
S⊂Ω, following [24], we approximate χ(A (y)) by

χℓ(A (y)) := 1− ψ− ŷℓ
γhrℓ +ψ− ŷℓ



Aposteriori error estimation of FE approximations 233

where 0< γ6 1 and r > 0 are fixed and ŷℓ is chosen as described in Remark 4.1. In
particular, for T ⊂ A (y) we find

‖χ(A (y))− χℓ(A (y))‖0,T 6 min(|T |1/2,γ−1h−rℓ ‖y− ŷℓ‖0,T )

which converges to zero whenever ‖y− ŷℓ‖0,T = O(hqℓ),q > r. Likewise, for T ⊂

I (y) one can show as well that ‖χ(I (y))− χℓ(I (y))‖0,T → 0 as hℓ → 0, whereχℓ(I (y)) := 1− χℓ(A (y)). Now, for fixed 0 < κ 6 1 and 0 < s 6 r we provide
approximations Âℓ(y) of A (y) and Îℓ(y) of I (y) according to

Âℓ(y) :=
⋃

{T ∈ Tℓ(Ω) | χℓ(A (y))(x) > 1−κhsℓ for all x ∈ T} (7.5a)

Îℓ(y) :=
⋃

{T ∈ Tℓ(Ω) | χℓ(A (y))(x) < 1−κhsℓ for some x ∈ T} (7.5b)

as well as an approximation F̂ℓ(y) of the free boundary F (y) by means of

F̂ℓ(y) := ∂Âℓ(y)∩ Îℓ(y).

We define approximations TI (y)∩I (yℓ), TA (y)∩A (yℓ), TI (y)∩A (yℓ), and TA (y)∩I (yℓ)
of I (y)∩I (yℓ), A (y)∩A (yℓ), I (y)∩A (yℓ), and A (y)∩I (yℓ) by

TI (y)∩I (yℓ) := Îℓ(y)∩I (yℓ), TA (y)∩A (yℓ) := Âℓ(y)∩A (yℓ)

TI (y)∩A (yℓ) := Îℓ(y)∩A (yℓ), TA (y)∩I (yℓ) := Âℓ(y)∩I (yℓ) .

If int Îℓ(y) 6= ∅ and int Âℓ(y) 6= ∅, we introduce

λ
F̂ℓ(y)

:= −
∂̂̄pℓ|Îℓ(y)∂n

Îℓ(y)
+α ∂∆ψ

∂n
Âℓ(y)

(7.6)

as an approximation of (7.4b), where ̂̄pℓ is defined in the same way as ŷℓ (cf. Re-
mark 4.1). We are now able to derive a computable upper bound for ec(u,uℓ) with
respect to the four sets I (y)∩I (yℓ),A (y)∩A (yℓ,A (y)∩I (yℓ),I (y)∩A (yℓ).

Case 1 (I ∗∩I ∗
hI ∗∩I ∗
hI ∗∩I ∗
h ). Since λ = 0 on I (y) and σℓ = 0 on I (yℓ), we obtain

|ec(u,uℓ)|I (y)∩I (yℓ)| 6 ∑
T∈Tℓ(Ω)

µ̂(1)
T

where for T ∈ TI (y)∩I (yℓ), T ∩F (yℓ) 6= ∅, and E ∈ Eℓ(F̂ℓ(y)∩I (yℓ))

µ̂(1)
T :=





‖λ

F̂ℓ(y)
‖0,E ‖ŷℓ −ψ‖0,E , T ∈ {T±}, E = T+∩T− ∈ Eℓ(F̂ℓ(y))
∑

a∈Nℓ(T∩F (yℓ))
κa|(ŷℓ −ψℓ)(a)|, T ∩F (yℓ) 6= ∅

and µ̂(1)
T := 0 otherwise.
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Case 2 (A ∗∩A ∗
hA ∗∩A ∗
hA ∗∩A ∗
h ). In view of (7.4a) and (7.4b), we can derive an upper bound

according to

|ec(u,uℓ)|A (y)∩A (yℓ)| 6 ∑
T∈Tℓ(Ω)

µ̂(2)
T

where for T ∈ TA (y)∩A (yℓ) and E ∈ Eℓ(F̂ℓ(y)∩A (yℓ))

µ̂(2)
T :=






‖yd−ψ−α∆2ψ‖0,T ‖ŷℓ −ψ‖0,T
+ ∑
a∈Nℓ(T )

κa|(ŷℓ −ψℓ)(a)|, T ∈ Âℓ(y)∩A (yℓ)

‖λ
F̂ℓ(y)

‖0,E ‖ŷℓ −ψ‖0,E , T ∈ {T±}, E = T+∩T− ∈ Eℓ(F̂ℓ(y))
∑

a∈Nℓ(T∩F (yℓ))
κa|(ŷℓ −ψℓ)(a)|, T ∩F (yℓ) 6= ∅

and µ̂(2)
T := 0 otherwise.

Case 3 (A ∗∩I ∗
hA ∗∩I ∗
hA ∗∩I ∗
h ). Taking σℓ = 0 on I (yℓ) and (7.4a) into account, we find

|ec(u,uℓ)|A (y)∩I (yℓ)| 6 ∑
T∈Tℓ(Ω)

µ̂(3)
T

where

µ̂(3)
T :=

{
‖yd−ψ−α∆2ψ‖0,T ‖ŷℓ −ψ‖0,T , T ∈ TA (y)∩I (yℓ)

0 otherwise.

Case 4 (I (y)∩A (yℓ)I (y)∩A (yℓ)I (y)∩A (yℓ)). Observing λ = 0 on I (y), we obtain

|ec(u,uℓ)|I (y)∩A (yℓ)| 6 ∑
T∈Tℓ(Ω)

µ̂(4)
T

where

µ̂(4)
T :=

{ ∑
a∈Nℓ(T )

κa|(ŷℓ −ψℓ)(a)|, T ∈ TI (y)∩A (yℓ)

0 otherwise.

Summarizing the four cases discussed above, it follows that

|ec(u,uℓ)| 6 ∑
T∈Tℓ(Ω)

µ̂T , µ̂T :=
4∑
i=1
µ̂(i)
T . (7.7)
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7.2. Non-regular case

The non-regular case assumes the following structure of the active set A (y):

A (y) is a Lipschitzian, strongly non-self-intersecting curve in Ω. (7.8)

We note that a curve C is said to be strongly non-self-intersecting, if for every
a ∈ int(C ) there exists an open neighborhood U (a) such that U (a)\C consists of
two connected components. Hence, A (y) dividesΩ into two connected componentsΩ+ and Ω−.

Theorem 4 in [7] provides the following characterization:

(∇p,∇w)0,Ω = (yd− y,w)−〈σ ,w〉, w ∈W 1,r(Ω) (7.9a)
σ = λA (y) = nA (y) ·∇p|A+(y) −nA (y) ·∇p|A−(y) (7.9b)

where nA (y) denotes the unit outer normal to A (y) pointing towards A+(y) :=
A (y)∩ Ω̄+ and A−(y) := A (y)∩ Ω̄−.

We further define λ
F̂ℓ(y)

according to

λ
F̂ℓ(y)

:=

{
nA (yℓ) ·∇̂̄pℓ|A (yℓ) −nI (yℓ) ·∇̂̄pℓ|Ih(yℓ) if meas(A (yℓ)) > 0

nA (yℓ) ·∇̂̄pℓ|A+(yℓ)−nA (yℓ) ·∇̂̄pℓ|A−(yℓ) if meas(A (yℓ)) = 0
(7.10)

where, for meas(A (yℓ)) = 0, nA (yℓ) and A±(yℓ) are defined as in the continuous
case.

Using the same approximations of the continuous active and inactive sets as
before, we obtain the upper bound

|ec(u,uℓ)| 6 ∑
T∈Tℓ(Ω)

µ̂T , µ̂T :=
(µ̂(1)

T + µ̂(2)
T + µ̂(4)

T

)
(7.11)

where µ̂(1)
T , µ̂(2)

T , and µ̂(4)
T are given as in the regular case except for the first term

on the right-hand side in the definition of µ̂(2)
T .

8. Numerical results

In this section, we illustrate the performance of the residual-type a posteriori error
estimator by two numerical examples. In both cases, the discrete problem (3.2) has
been solved by the active set strategy suggested in [6].

The first example falls into the category of the regular case. It features a solution
that strongly oscillates around the origin.
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Figure 1. Example 1: visualization of the desired state yd (left) and the control shift ud (right).

Example 1 (constant obstacle). The data of the problem are as follows:

Ω := (−2,2)2, yd := y(r)+∆p(r)+σ (r), ud := u(r)+α−1 p(r)
ψ := 0, α := 0.1, c= 0, ΓD := ∂Ω .

Here, y = y(r), u = u(r), p = p(r), and σ = σ (r), r := (x21 + x22)1/2, (x1,x2)T ∈ Ω,
are chosen according to

y(r) := −r4/3 γ1(r), u(r) := −∆y(r)
p(r) := γ2(r)

(
r4−

3
2
r3 +

9
16
r2

)
, σ (r) :=

{
0, r < 0.75
0.1 otherwise

where

γ1 :=






1, r < 0.25
−192(r−0.25)5 +240(r−0.25)4−80(r−0.25)3 +1, 0.25< r < 0.75
0 otherwise

γ2 :=
{
1, r < 0.75
0 otherwise.

It is easy to check that the above functions satisfy the optimality conditions (2.7)–
(2.10).

Figures 1, 2, and 3 display the desired state yd , the control shift ud , the control
uℓ, the state yℓ, the adjoint state pℓ and the modified adjoint state pℓ, respectively,
on an adaptively generated net with 11775 nodes.

The initial simplicial triangulation T0 was chosen according to a subdivision ofΩ by joining the four vertices resulting in four congruent triangles and one interior
nodal point. The parameter Θ in the bulk criterion has been specified according toΘ = 0.7. Figure 4 shows the adaptively generated triangulations after twelve (left)
and fourteen (right) refinement steps.

More detailed information is given in Tables 1 – 3. In particular, Table 1 displays
the error reduction in the total error

‖z− zℓ‖ := |y− yℓ|1,Ω +‖u−uℓ‖0,Ω
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Figure 2. Example 1: visualization of the discrete state yℓ (left) and the discrete control uℓ (right) on
a triangulation with 11775 nodes.

Figure 3. Example 1: visualization of the discrete adjoint state pℓ (left) and the discrete modified
adjoint state pℓ (right) on a triangulation with 11775 nodes.

Figure 4. Example 1: adaptively generated grid after 12 (left) and 14 (right) refinement steps, Θ =
0.7.
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Figure 5. Example 1: adaptive versus uniform refinement, Θ= 0.7.

and the H1-error in the state, the L2-errors in the control, and in the adjoint state,
and the H1-error in the modified adjoint state, respectively. The actual componentsηy,ηp of the residual type a posteriori error estimator, the data oscillations oscℓ(ud),
oscℓ(yd), and the consistency error ec(u,uℓ) are given in Table 2, whereas Table 3
contains the average values of the local element and edge contributions of the error
estimator as well as the average values of the data oscillations. Figure 5 displays
the total discretization error as a function of the number of degrees of freedom on
a logarithmic scale both for adaptive and uniform refinement. Since the solution is
smooth, the slopes of both curves are almost the same and quasi-optimal.

The second example which has been taken from [27] represents a degenerate
non-regular case where the active set only consists of a single point. It features a
Lagrange multiplier in M (Ω) =C∗(Ω) and an adjoint state p which is inW 1,s(Ω)
for any s ∈ (1,2).

Example 2 (Lagrange multiplier in C∗(Ω)C∗(Ω)C∗(Ω)).The data of the problem are as fol-
lows:

Ω := B(0,1), ΓD = ∅, yd(r) := 4+
1
π −

1
4πr2 +

1
2π ln(r)

ud(r) := 4+
1
4πr2−

1
2π ln(r), α := 1.0, c = 1.0, ψ(r) := r+4 .

The optimal solution is given by:

y(r) ≡ 4, p(r) =
1
4πr2−

1
2π ln(r), u(r) ≡ 4, σ = δ0.
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Table 1.
Example 1: convergence history of the adaptive FEM, Part I: total discretization
error and discretization errors in the state, the control, the adjoint state, and the
modified adjoint state.

ℓ Ndof ‖z− zℓ‖ |y−yℓ|1 ‖u−uℓ‖0 ‖p− pℓ‖0 |p− pℓ|1
0 5 2.48e+01 2.13e+00 2.11e+01 9.45e−01 7.54e−01
1 13 2.58e+01 1.51e+00 2.37e+01 2.06e+00 6.74e−01
2 41 1.46e+01 1.02e+00 1.35e+01 1.28e−01 1.06e−01
4 105 1.02e+01 7.34e−01 9.41e+00 9.54e−02 7.88e−02
6 244 6.58e+00 5.41e−01 6.01e+00 4.78e−02 6.02e−02
8 532 3.47e+00 2.80e−01 3.18e+00 3.92e−02 4.53e−02
10 1147 2.09e+00 1.74e−01 1.91e+00 2.36e−02 3.44e−02
12 2651 1.39e+00 1.03e−01 1.29e+00 1.81e−02 2.02e−02
14 6340 1.04e+00 6.32e−02 9.74e−01 1.22e−02 1.17e−02

Table 2.
Example 1: convergence history of the adaptive FEM, Part II: components of the
error estimator and data oscillations and consistency error.

ℓ Ndof ηy ηp oscℓ(ud) oscℓ(yd) ec(u,uℓ)

0 5 3.95e+01 7.05e+00 1.48e+01 4.99e+00 1.09e+00
1 13 2.19e+01 2.04e+00 1.37e+01 5.42e−01 1.37e−01
2 41 9.83e+00 8.10e−01 1.36e+01 6.22e−01 1.41e−01
4 105 3.67e+00 4.35e−01 9.42e+00 3.32e−01 4.98e−02
6 244 1.63e+00 2.60e−01 5.99e+00 1.11e−01 9.42e−04
8 532 1.17e+00 1.69e−01 3.17e+00 4.47e−02 3.86e−08
10 1147 7.72e−01 1.22e−01 1.90e+00 2.17e−02 0.00e+00
12 2651 4.71e−01 7.37e−02 1.29e+00 9.27e−03 0.00e+00
14 6340 2.93e−01 4.55e−02 9.74e−01 4.62e−03 0.00e+00

Table 3.
Example 1: convergence history of the adaptive FEM, Part III: average values of the local
estimators.

ℓ Ndof ηy,T ηp,T ηy,E ηp,E oscT (ud) oscT (yd)

0 5 1.88e+01 2.32e+00 6.05e+00 2.65e+00 7.40e+00 2.49e+00
1 13 3.53e+00 2.39e−01 6.56e−01 2.97e−01 1.71e+00 6.77e−02
2 41 6.11e−01 6.26e−02 3.13e−02 1.66e−02 7.57e−01 2.61e−02
4 105 1.42e−01 2.22e−02 1.54e−02 4.57e−03 3.49e−01 1.07e−02
6 244 3.84e−02 8.12e−03 4.70e−03 1.43e−03 1.37e−01 2.28e−03
8 532 2.14e−02 3.44e−03 1.34e−03 4.89e−04 4.08e−02 6.28e−04
10 1147 1.03e−02 1.56e−03 3.73e−04 1.79e−04 1.32e−02 2.01e−04
12 2651 4.50e−03 6.53e−04 9.77e−05 5.04e−05 3.68e−03 5.17e−05
14 6340 1.88e−03 2.70e−04 2.46e−05 1.33e−05 1.11e−03 1.41e−05
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Figure 6. Example 2: visualization of the desired state yd (left) and the control shift ud (right).

Figure 7. Example 2: visualization of the discrete state yℓ (left) and the discrete control uℓ (right) on
an adaptive generated mesh with 6735 nodes.

Figure 8. Example 2: visualization of the discrete adjoint state pℓ (left) and the discrete modified
adjoint state pℓ (right) on an adaptive generated mesh with 6735 nodes.
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Table 4.
Example 2: convergence history of the adaptive FEM, Part I: total discretization
error and discretization errors in the state, control, adjoint state and modified ad-
joint state.

ℓ Ndof ‖z− zℓ‖ ‖y−yℓ‖1 ‖u−uℓ‖0 ‖p− pℓ‖0 ‖p− pℓ‖1
0 5 1.55e−01 1.20e−02 1.43e−01 6.46e−02 3.81e−02
1 13 1.13e−01 8.51e−03 1.04e−01 3.73e−02 1.74e−02
2 41 7.39e−02 4.43e−03 6.95e−02 1.86e−02 9.01e−03
4 73 5.96e−02 2.30e−03 5.73e−02 1.00e−02 7.36e−03
6 121 3.60e−02 1.79e−03 3.42e−02 7.41e−03 6.11e−03
8 243 2.10e−02 1.07e−03 1.99e−02 4.13e−03 4.02e−03
10 604 1.18e−02 4.02e−04 1.14e−02 1.95e−03 2.43e−03
12 1621 6.55e−03 1.60e−04 6.39e−03 9.26e−04 1.52e−03
14 3991 3.62e−03 6.81e−05 3.55e−03 4.55e−04 8.79e−04

Table 5.
Example 2: convergence history of the adaptive FEM, Part II: components of the
error estimator and the data oscillations and the consistency error.

ℓ Ndof ηy ηp oscℓ(ud) oscℓ(yd) ec(u,ul)

0 5 1.91e−01 1.38e−01 1.73e−01 1.36e−01 0.00e+00
1 13 7.32e−02 7.62e−02 1.29e−01 4.36e−02 0.00e+00
2 41 2.45e−02 3.83e−02 8.14e−02 1.26e−02 0.00e+00
4 73 1.02e−02 2.54e−02 5.95e−02 7.78e−03 0.00e+00
6 121 3.11e−03 1.97e−02 3.56e−02 4.96e−03 0.00e+00
8 243 9.10e−04 1.32e−02 2.06e−02 1.87e−03 0.00e+00
10 604 2.59e−04 8.07e−03 1.17e−02 8.27e−04 0.00e+00
12 1621 7.22e−05 4.75e−03 6.54e−03 3.16e−04 0.00e+00
14 3991 2.01e−05 2.89e−03 3.62e−03 1.41e−04 0.00e+00

Table 6.
Example 2: convergence history of the adaptive FEM, Part III: average values of the local
estimators.

ℓ Ndof ηy,T ηp,T ηy,E ηp,E oscℓ(ud) oscℓ(yd)

0 5 9.95e−02 6.73e−02 8.01e−03 1.43e−02 8.67e−02 6.80e−02
1 13 1.03e−02 1.58e−02 1.01e−03 3.21e−03 1.91e−02 8.67e−03
2 41 9.39e−04 3.61e−03 8.46e−05 6.85e−04 3.39e−03 1.08e−03
4 73 3.20e−04 1.94e−03 1.99e−05 3.14e−04 1.75e−03 4.88e−04
6 121 8.10e−05 1.19e−03 8.36e−06 1.74e−04 7.40e−04 2.49e−04
8 243 1.44e−05 5.36e−04 1.33e−06 5.34e−05 2.16e−04 7.00e−05
10 604 2.20e−06 2.15e−04 1.37e−07 1.44e−05 5.28e−05 1.85e−05
12 1621 2.80e−07 7.80e−05 1.24e−08 3.36e−06 1.15e−05 4.07e−06
14 3991 4.32e−08 3.09e−05 1.31e−09 8.29e−07 2.76e−06 1.04e−06
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Figure 9. Example 2: adaptively generated grid after 12 (left) and 14 (right) refinement steps, Θ =
0.7.
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Figure 10. Example 2: adaptive vrs. uniform refinement, Θ= 0.7.
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Figures 6, 7, and 8 show a visualization of the desired state yd , the control shift
ud , discrete state yℓ, the discrete control uℓ, the discrete adjoint state pℓ and the
discrete modified adjoint state pℓ with respect to a simplicial triangulation consisting
of 6735 nodal points.

The initial simplicial triangulation Th0 has been chosen by means of the five
nodal points (0,0), (1,0), (0,1), (–1,0), and (0,–1) resulting in five congruent trian-
gles. During the refinement process each new point on a boundary edge has been
projected onto ∂B(0,1).

Tables 4 – 6 contain the same data as in Example 1 documenting the history of
the adaptive refinement process, whereas Fig. 10 displays adaptive versus uniform
refinement. Here, the slopes reflect optimality of the adaptive refinement and non-
optimality of the uniform refinement.
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