
J. Numer. Math., Vol. 18, No. 4, pp. 281–302 (2010)

DOI 10.1515/ JNUM.2010.014

c© de Gruyter 2010

Adaptive finite element methods for the Laplace
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Abstract — We consider an adaptive finite element method (AFEM) for the Laplace eigenvalue
problem in bounded polygonal or polyhedral domains. We provide an a posteriori error analysis
based on a residual type estimator which consists of element and face residuals. The a posteriori
error analysis further involves an oscillation term. We prove a reduction in the energy norm of
the discretization error and the oscillation term. Numerical results are given illustrating the
performance of the AFEM.
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1. Introduction

Adaptive finite element methods (AFEMs) based on residual or hierarchical
type estimators, local averaging techniques, the goal-oriented dual weighted
approach, or the theory of functional-type error majorants have been be-
come an indispensable tool in the a posteriori error analysis of finite ele-
ment approximations of partial differential equations (see, e.g., the mono-
graphs [1–3, 11, 23, 27] and the references therein). For standard conforming
finite element approximations of linear elliptic boundary value problems, a
rigorous convergence analysis of AFEMs in the sense of a guaranteed error
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reduction has been initiated in [8] and further investigated in [20, 21]. Using
techniques from appro ximation theory, optimal order of convergence has been
established in [4, 6, 26].

As far as AFEMs for elliptic eigenvalue problems are concerned, residual
type a posteriori error estimators have been derived and analyzed in [27] within
the framework of AFEMs for nonlinear problems, and this approach has been
further applied in [18] for self-adjoint elliptic eigenproblems. A different tech-
nique has been used in [10] (cf. also [9] for an a posteriori analysis of mixed
finite element approximations of elliptic eigenproblems). In [5], reliability of
a residual type estimator has been shown which solely consists of edge resid-
uals. A convergence analysis in the spirit of [6] has been provided in [12, 13],
whereas quasi-optimality has been established in [7]. Estimators based on hi-
erarchical type estimators have been addressed in [15], gradient recovery tech-
niques have been considered in [19, 24], and the goal oriented dual weighted
approach for eigenproblems has been applied in [3] and [16].

In this paper, we focus on the convergence analysis of conforming P1 finite
element approximations of the Laplace eigenproblem on bounded polygonal
or polyhedral domains. The error estimator is of residual type and consists of
element and edge residuals. The a posteriori error analysis also involves an
oscillation term. The selection of elements and faces for refinement uses the
standard bulk criterion (Dörfler marking) and the refinement strategy relies on
repeated bisection. The paper is organized as follows: In Section 2, we consider
the Laplace eigenproblem and its finite element discretization. The residual
error estimator, the oscillation term and the refinement strategy are addressed
in Section 3 where we also state the main convergence result in terms of a
guaranteed reduction of the energy norm of the error and the oscillation term.
The main ingredients of the proof are provided in Section 4, whereas Section 5
is devoted to the proof of the reduction result. Finally, Section 6 contains a
detailed documentation of numerical results for some selected test examples
illustrating the performance of the adaptive scheme.

2. The eigenvalue problem and its finite element approximation

We adopt standard notation from Sobolev space theory. In particular, for a
bounded domain D ⊂ R

d ,d ∈ N, with boundary ∂D we denote by Hs(D),s ∈
R+, the standard real or complex Sobolev space with norm ‖ · ‖s,D and semi-

norm | · |s,D and write L2(D) instead of H0(D). We further refer to H1
0 (D) as

the subspace of H1(D) with vanishing trace on the boundary ∂D and note that

in view of Poincaré’s inequality | · |1,D defines a norm on H1
0 (D).

We assume Ω ⊂ R
d , d = 2 or d = 3, to be a bounded polygonal or polyhe-

dral domain with boundary Γ = ∂Ω and consider the following Laplace eigen-
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problem

−∆u = λu in Ω (2.1a)

u = 0 on Γ. (2.1b)

We set V := H1
0 (Ω) and denote by a(·, ·) : V ×V → C the sesquilinear form

a(u,v) := (∇u,∇v)0,Ω, u,v∈V. The weak formulation of (2.1a), (2.1b) amounts
to the computation of an eigenpair (u,λ ) ∈V ×C, u 6= 0, such that

a(u,v) = λ (u,v)0,Ω, v ∈V. (2.2)

It is well known (cf., e.g., [17]) that the set of eigenvalues λ of (2.2) is a
countably infinite sequence of increasing real, strictly positive numbers with
finite dimensional eigenspaces and that eigenfunctions belonging to different
eigenvalues are L2-orthogonal. We assume that the eigenfunctions u ∈ V are
normalized, i.e., ‖u‖0,Ω = 1. Moreover, regularity theory (cf., e.g., [14]) tells

us that an eigenfunction satisfies u ∈V ∩H1+r(Ω) with r ∈ (1/2,1] depending
on the opening angles at corners and edges of Ω.

For the finite element approximation of (2.2) we assume that {Tℓ(Ω)} is
a family of shape regular simplicial triangulations of Ω. We refer to Nℓ(D)
and Fℓ(D), D ⊆ Ω, as the sets of vertices and faces of Tℓ(Ω) in D ⊆ Ω. We
denote by hT and |T | the diameter and area of an element T ∈ Tℓ(Ω) and by
hF the diameter of a face F ∈ Fℓ(D). For F ∈ Fℓ(Ω) such that F = T+ ∩T−,
T± ∈ Tℓ(Ω), we define ωF := T+ ∪T− as the associated patch. We use hℓ as a
measure for the granularity of the overall triangulation Tℓ(Ω).

Throughout the paper, we will also use the following notation: If A and B

are two quantities, we say A . B, if there exists a positive constant C that only
depends on the shape regularity of the triangulations but not on their granular-
ities such that A 6 CB. We write A ≈ B, if both A . B and B . A.

We refer to Vℓ as the finite element space of continuous, piecewise linear fi-
nite elements with respect to the triangulation Tℓ(Ω) and consider the discrete
eigenvalue problem

a(uℓ,vℓ) = λℓ(uℓ,vℓ)0,Ω, vℓ ∈Vℓ. (2.3)

The set of eigenvalues λℓ of (2.3) is a finite sequence of increasing real, strictly

positive numbers and eigenfunctions belonging to different eigenvalues are L2-
orthonormal. Moreover, as far the approximation of an eigenpair of (2.2) by
(2.3) is concerned, there holds (cf., e.g., [25]): If (u,λ ) ∈V ×R+ is an eigen-
pair of (2.2), there exists an eigenpair (uℓ,λℓ) ∈Vℓ ×R+ of (2.3) such that for
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ℓ ∈ N0 the following a priori error estimates are satisfied

|u−uℓ|1,Ω 6 C1hr
ℓ (2.4a)

‖u−uℓ‖0,Ω 6 C1hr
ℓ|u−uℓ|1,Ω (2.4b)

|λ −λℓ| 6 C1|u−uℓ|21,Ω (2.4c)

where C1 > 0 is a constant that only depends on (u,λ ) and the shape regularity
of the triangulations.

3. The a posteriori error estimator and the main
convergence result

The a posteriori error analysis involves a residual-type a posteriori error esti-
mator as well as an oscillation term. The estimator is given by

ηℓ :=
(

∑
T∈Tℓ(Ω)

η2
T + ∑

F∈Fℓ(Ω)

η2
F

)1/2

(3.1)

where ηT ,T ∈ Tℓ(Ω), and ηF ,F ∈ Fℓ(Ω), stand for the element and the face
residuals according to

ηT := λℓhT‖ûℓ‖0,T , ηF := h
1/2
F ‖νF · [∇uℓ]‖0,F . (3.2)

Here, ûℓ is the elementwise constant function ûℓ|T := |T |−1
∫

T uℓ dx, T ∈Tℓ(Ω),
and [∇uℓ] denotes the jump of ∇uℓ across F ∈ Fℓ(Ω).

The oscillation term is given by

oscℓ(uℓ) :=
(

∑
T∈Tℓ(Ω)

osc2
T (uℓ)

)1/2

(3.3)

oscT (uℓ) := λℓhT‖uℓ− ûℓ‖0,T .

The refinement of a triangulation Tℓ is done by a bulk criterion, also known
as Dörfler marking, that is standard in the convergence analysis of adaptive
finite elements for nodal finite element methods [8]. Given universal constants

Θ1,Θ2 ∈ (0,1), we select sets of elements M
(ν)
Tℓ

⊂Tℓ(Ω),1 6 ν 6 2, and a set

of faces MFℓ
⊂ Fℓ(Ω) such that

Θ1

(

∑
T∈Tℓ(Ω)

η2
T + ∑

F∈Fℓ(Ω)

η2
F

)

6 ∑
T∈M

(1)
Tℓ

η2
T + ∑

F∈MFℓ

η2
F (3.4a)

Θ2 ∑
T∈Tℓ(Ω)

osc2
T 6 ∑

T∈M
(2)
Tℓ

osc2
T . (3.4b)
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Based on the bulk criterion, we generate a fine mesh Tℓ+1(Ω) as follows: If
T ∈ M

T
(1)

ℓ

∪M
T

(2)
ℓ

or F = T+ ∩ T− ∈ MFℓ
, we refine T or T± by repeated

bisection such that an interior nodal point pT in T or interior nodal points
p± ∈ T± are created [21]. The convergence analysis is based on the reliability
and the discrete efficiency of the estimator ηℓ, a perturbed Galerkin orthogo-
nality and a reduction in the oscillation oscℓ(uℓ) which will be addressed in
detail in the subsequent section. We note that the interior node property can
be circumvented following the approach in [7] which is in the spirit of [6] and
yields quasi-optimality. Nevertheless, the numerical results reported in Sec-
tion 6 document optimal decay rates for our approach.

The main result of this paper states a reduction both in the | · |1,Ω-norm of
the error u−uℓ and in the oscillation oscℓ(uℓ).

Theorem 3.1. Let (u,λ ) ∈V ×R+ be an eigenpair of (2.2) and (uℓ,λℓ) ∈
Vℓ ×R+ an eigenpair of (2.3) such that (2.4a)–(2.4c) hold true. Further, let

oscℓ be the oscillation term as given by (3.3). Assume that Θ2 > 1/4 in (3.4b).
Then, there exist hmax > 0 and constants 0 6 ρ < 1, C > 0, depending on

hmax,Θ1,Θ2, and on the shape regularity of the triangulations, such that for

hℓ < hmax there holds

|u−uℓ|21,Ω +C osc2
ℓ(uℓ) 6 ρ

(

|u−uℓ+1|21,Ω +C osc2
ℓ+1(uℓ+1)

)

. (3.5)

The proof of Theorem 3.1 will be presented in Section 5.

4. Reliability, local efficiency, perturbed Galerkin orthogonality,
and oscillation reduction

We first show reliability in the sense that up to a higher order term the residual-
type error estimator ηℓ from (3.1) and the oscillation term oscℓ(uℓ) from (3.3)
provide an upper bound for the energy norm error (cf. Theorem 3.1 in [10]).

Theorem 4.1. Let (u,λ )∈V ×R+ and (uℓ,λℓ)∈Vℓ×R+ be eigenpairs of

(2.2) and (2.3) such that (2.4a)–(2.4c) are satisfied. Moreover, let ηℓ and oscℓ

be the error estimator (3.1) and the oscillation (3.3), respectively. Then, there

holds

|u−uℓ|21,Ω . η2
ℓ + osc2

ℓ(uℓ)+
λ +λℓ

2
‖u−uℓ‖2

0,Ω. (4.1)

Proof. Setting e := u−uℓ and denoting by PVℓ
: V → Vℓ Clément’s quasi-
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interpolation operator (see, e.g., [27]), by (2.2) and (2.3) we find

|e|21,Ω = (∇e,∇(e−PVℓ
e))0,Ω +(λu−λℓuℓ,PVℓ

e)0,Ω

= ∑
T∈Tℓ(Ω)

(λℓuℓ,e−PVℓ
e)0,T + ∑

F∈Fℓ(Ω)

(νF · [∇uℓ],e−PVℓ
e)0,F

+(λu−λℓuℓ,e)0,Ω

= ∑
T∈Tℓ(Ω)

(λℓûℓ +λℓ(uℓ− ûℓ),e−PVℓ
e)0,T

+ ∑
F∈Fℓ(Ω)

(νF · [∇uℓ],e−PVℓ
e)0,F +

1

2
(λ +λℓ)‖e‖2

0,Ω (4.2)

where we have used (cf. Lemma 3.2 in [10])

(λu−λℓuℓ,e)0,Ω =
1

2
(λ +λℓ)‖e‖2

0,Ω.

We conclude by straightforward estimation in (4.2) taking into account the
well-known properties

‖v−PVℓ
v‖0,T 6 ChT |v|1,DT

, ‖v−PVℓ
v‖0,F 6 Ch

1/2
F |v|1,DF

of Clément’s quasi-interpolation operator, where DT :=
⋃{T ′ ∈Th(Ω)|Nh(T

′)
∩Nh(T ) 6= ∅} and DF :=

⋃{T ′ ∈ Th(Ω)|Nh(F)∩Nh(T
′) 6= ∅}. ¤

Corollary 4.1. Under the assumptions of Theorem 4.1 there exists ĥ1 > 0

and a constant C2 > 0, depending on ĥ1 and C1 from (2.4b) as well as on the

local geometry of the triangulation, such that for hℓ < ĥ1 there holds

|u−uℓ|21,Ω 6 C2

(

η2
ℓ +osc2

ℓ(uℓ)
)

. (4.3)

Proof. Taking (2.4b) and (4.1) into account, there exists C > 0, depending
only on C1 and on the shape regularity of the triangulation such that

|u−uℓ|21,Ω 6 C
(

η2
ℓ +osc2

ℓ(uℓ)+h2r
ℓ |u−uℓ|21,Ω

)

.

We conclude by choosing ĥ1 := C−1/2r. ¤

Secondly, we prove discrete efficiency of the error estimator in the sense
that it provides a lower bound for the energy norm of the difference uℓ −uℓ+1

between the coarse and fine mesh approximation up to the data oscillations and
the data terms.
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Theorem 4.2. Let (uk,λk) ∈Vk ×R+,k ∈ {ℓ,ℓ+1} be eigenpairs of (2.3)
and let ηℓ as well as oscℓ(uℓ) be the error estimator and the oscillation term

as given by (3.1) and (3.3). Then there holds

η2
ℓ . |uℓ−uℓ+1|21,Ω +osc2

ℓ(uℓ)

+(λ 2
ℓ −λ 2)h2

ℓ‖uℓ−uℓ+1‖2
0,Ω +(λℓ−λℓ+1)

2. (4.4)

As usual in the convergence analysis of adaptive finite element methods,
the proof of Theorem 4.2 follows from the discrete local efficiency. The guar-
anteed improvements that can be associated to the volume terms and the edge
terms will be established by the subsequent two lemmas.

Lemma 4.1. Let T ∈ M
(1)
Tℓ

with an interior nodal point p ∈ Nℓ+1(T ).
Then, there holds

η2
T . (1+λ 2h2

T )|uℓ−uℓ+1|21,T +osc2
T (uℓ)

+(λ 2
ℓ −λ 2)h2

T‖uℓ−uℓ+1‖2
0,T +h2

T (λℓ−λℓ+1)
2. (4.5)

Proof. We choose χ
(p)
ℓ+1 := κϕ

(p)
ℓ+1,κ ≈ λℓûℓ|T , as an appropriate multiple

of the level ℓ+ 1 nodal basis function ϕ
(p)
ℓ+1 associated with the interior nodal

point p such that

λ 2
ℓ h2

T‖ûℓ‖2
0,T 6 h2

T (λℓûℓ,χ
(p)
ℓ+1)0,T .

Observing ∇uℓ ∈ P0(T ) and χ
(p)
ℓ+1|∂T = 0, we find a(uℓ,χ

(p)
ℓ+1) = 0, whence

λ 2
ℓ h2

T‖ûℓ‖2
0,T 6 h2

T

(

(λℓûℓ,χ
(p)
ℓ+1)0,T −a(uℓ,χ

(p)
ℓ+1)

)

. (4.6)

Since χ
(p)
ℓ+1 is an admissible level ℓ+1 test function in (2.3), we have

a(uℓ+1,χ
(p)
ℓ+1)− (λℓ+1uℓ+1,χ

(p)
ℓ+1)0,T = 0. (4.7)

Adding (4.6) and (4.7) results in

λ 2
ℓ h2

T‖ũℓ‖2
0,T = h2

T a
(

uℓ+1 −uℓ,χ
(p)
ℓ+1

)

+h2
T

(

λℓ(uℓ−uℓ+1)

+(λℓ−λℓ+1)uℓ+1,χ
(p)
ℓ+1

)

0,T
+h2

T

(

λℓ(ûℓ−uℓ),χ
(p)
ℓ+1

)

0,T
. (4.8)

Observing the elementary relationships

h2
T |χ

(p)
ℓ+1|1,T ≈ h2

T |κ| ≈ λℓhT‖ûℓ‖0,T

hT‖χ
(p)
ℓ+1‖0,T ≈ hT |T |1/2|κ| ≈ λℓhT‖ûℓ‖0,T
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we conclude by straightforward estimation of the terms on the right-hand side
in (4.8). ¤

Lemma 4.2. Under the same assumptions as in Lemma 4.1 let F ∈ MFℓ
,

F = T+∩T−, T± ∈ Tℓ(Ω), be a refined face with interior point mF ∈ Nℓ+1(F)

and associated patch ωF
ℓ := T+∪T−. Then, there holds

η2
F . (1+λ 2h2

F)|uℓ−uℓ+1|21,ωF
ℓ

+osc2
ωF

ℓ
(uℓ)

+η2
ωF

ℓ
+(λ 2

ℓ −λ 2)h2
F‖uℓ−uℓ+1‖2

0,ωF
ℓ

(4.9)

where η2
ωF

ℓ
:= η2

T+
+η2

T− and osc2
ωF

ℓ
(uℓ) := osc2

T+
(uℓ)+osc2

T−(uℓ).

Proof. We set χ
(mF )
ℓ+1 := αϕ

(mF )
ℓ+1 , α := νF · [∇uℓ], where ϕ

(mF )
ℓ+1 is the level

ℓ+1 nodal basis function associated with mF ∈ Nℓ+1(F). It follows that

1

2
hF‖νF · [∇uℓ]‖2

0,F = hF(νF · [∇uℓ],χ
(mF )
ℓ+1 )0,F = hFa(uℓ,χ

(mF )
ℓ+1 ). (4.10)

On the other hand, since χ
(mF )
ℓ+1 is an admissible test function in (2.3), we have

a(uℓ+1,χ
(mF )
ℓ+1 )− (λℓ+1uℓ+1,χ

(mF )
ℓ+1 )0,ωF

ℓ
= 0. (4.11)

Multiplying (4.11) by hF and subtracting it from (4.10), we obtain

1

2
hF‖νF ·[∇uℓ]‖2

0,F = hFa(uℓ−uℓ+1,χ
(mF )
ℓ+1 )+λℓhF(ûℓ,χ

(mF )
ℓ+1 )0,ωF

ℓ
(4.12)

+λℓhF(uℓ+1−uℓ,χ
(mF )
ℓ+1 )0,ωF

ℓ
+λℓhF(uℓ−ûℓ,χ

(mF )
ℓ+1 )0,ωF

ℓ
.

Taking into account that

|χ(mF )
ℓ+1 |1,ωF

ℓ
. h

−1/2
F ‖νF · [∇uℓ]‖0,F , ‖χ

(mF )
ℓ+1 ‖0,ωF

ℓ
. h

1/2
F ‖νF · [∇uℓ]‖0,F

the assertion can be deduced by estimating the terms on the right-hand side
in (4.13). ¤

Proof of Theorem 4.2. The upper bound (4.4) follows directly from (4.5)

in Lemma 4.1 and from (4.9) in Lemma 4.2 by summing over all T ∈ M
(1)
Tℓ

∪
M

(2)
Tℓ

and all F ∈MFℓ
and taking advantage of the finite overlap of the patches

ωF
ℓ . ¤
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Corollary 4.2. Under the assumptions of Theorem 4.2 there exists a con-
stant C3 > 0, which only depends on the local geometry of the triangulations,
such that

η2
ℓ 6 C3

(

|uℓ−uℓ+1|21,Ω +osc2
ℓ(uℓ)

)

. (4.13)

Proof. The proof is an immediate consequence of (4.5) and |λℓ −λℓ+1| .
|uℓ−uℓ+1|21,Ω (cf. Theorem 6.4-3 in [25]). ¤

The following perturbed Galerkin orthogonality holds true.

Theorem 4.3. Let (u,λ ) ∈V ×R+ and (uk,λk) ∈Vk ×R+, k ∈ {ℓ,ℓ+1},
be eigenpairs of (2.2) and (2.3) such that (2.4a)–(2.4c) hold true. Then, there

exists a constant C4 > 0 depending on C1 in (2.4a)–(2.4c) such that

|uℓ−uℓ+1|21,Ω 6 (1+C4hr
ℓ(1+hr

ℓ))|u−uℓ|21,Ω

− (1−C4hr
ℓ(1+hr

ℓ))|u−uℓ+1|21,Ω. (4.14)

Proof. By straightforward computation

|uℓ−uℓ+1|21,Ω = |u−uℓ|21,Ω −|u−uℓ+1|21,Ω +2a(u−uℓ+1,uℓ−uℓ+1). (4.15)

Now, (2.2) and (2.3) imply

2a(u−uℓ+1,uℓ−uℓ+1) = 2(λu−λℓ+1uℓ+1,uℓ−uℓ+1)0,Ω

= 2λ (u−uℓ+1,uℓ−uℓ+1)0,Ω

+2(λ −λℓ+1)(uℓ+1,uℓ−uℓ+1)0,Ω. (4.16)

Using (2.4b) and Young’s inequality, for some ε > 0 the first term on the right-
hand side in (4.16) can be estimated from above according to

2λ |(u−uℓ+1,uℓ−uℓ+1)0,Ω|
6 2λ‖u−uℓ+1‖0,Ω

(

‖u−uℓ‖0,Ω +‖u−uℓ+1‖0,Ω

)

6 2C2
1λh2r

ℓ

(

(1+ ε)|u−uℓ+1|21,Ω +
1

4ε
|u−uℓ|21,Ω

)

. (4.17)

On the other hand, using (2.4b), (2.4c) and Young’s inequality, for the second
term on the right-hand side in (4.16) we obtain

2|(λ −λℓ+1)(uℓ+1,uℓ−uℓ+1)0,Ω|

6 2|λ −λℓ+1|1/2(λ +λℓ)
1/2

(

‖u−uℓ‖0,Ω +‖u−uℓ+1‖0,Ω

)

6 2C2
1(λ +λℓ)

1/2hr
ℓ

(

(1+ ε)|u−uℓ+1|21,Ω +
1

4ε
|u−uℓ|21,Ω

)

. (4.18)
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We choose ε = (
√

2−1)/2 in (4.17) and (4.18) and finally conclude by using
(4.16)–(4.18) in (4.15). ¤

The last ingredient of the proof of the main convergence result is the fol-
lowing oscillation reduction property.

Theorem 4.4. Let osck(uk),k ∈ {ℓ,ℓ+1}, be the oscillation terms as given

by (3.3). Assume Θ2 > 1/4 in (3.4b) such that κ := (4Θ2)
−1 < 1. Then, there

exists a constant C5 > 0, depending on C1 in (2.4a)–(2.4c) and on the shape

regularity of the triangulations, such that

osc2
ℓ+1(uℓ+1) 6 κ osc2

ℓ +C5|uℓ−uℓ+1|21,Ω. (4.19)

Proof. Taking (3.3) into account, we have

osc2
ℓ+1(uℓ+1) = ∑

T ′∈Tℓ+1(Ω)

λ 2
ℓ+1h2

T ′‖uℓ+1 − ûℓ+1‖2
0,T ′

6 ∑
T ′∈Tℓ+1(Ω)

λ 2
ℓ+1h2

T ′‖uℓ+1 −uℓ− (ûℓ+1 − ûℓ)‖2
0,T ′

+ ∑
T ′∈Tℓ+1(Ω)

|λ 2
ℓ+1 −λ 2

ℓ |h2
T ′‖uℓ− ûℓ‖2

0,T ′

+ ∑
T ′∈Tℓ+1(Ω)

λ 2
ℓ h2

T ′‖uℓ− ûℓ‖2
0,T ′ . (4.20)

In view of

‖uℓ+1 −uℓ− (ûℓ+1 − ûℓ)‖0,T ′ 6‖uℓ+1 −uℓ‖0,T ′

‖uℓ− ûℓ‖0,T ′ 6‖uℓ‖0,T ′

the boundedness of λk,k ∈ {ℓ,ℓ + 1}, and |λℓ − λℓ+1| . |uℓ − uℓ+1|21,Ω, for

the first two terms on the right-hand side in (4.20) straightforward estimation
yields

∑
T ′∈Tℓ+1(Ω)

λ 2
ℓ+1h2

T ′‖uℓ+1 −uℓ− (ûℓ+1 − ûℓ)‖2
0,T ′

. h2
ℓ |uℓ−uℓ+1|21,Ω (4.21)

∑
T ′∈Tℓ+1(Ω)

|λ 2
ℓ+1 −λ 2

ℓ |h2
T ′‖uℓ− ûℓ‖2

0,T ′

6 ∑
T ′∈Tℓ+1(Ω)

|λℓ−λℓ+1|(λℓ +λℓ+1)h
2
T ′‖uℓ‖2

0,T ′ . h2
ℓ |uℓ−uℓ+1|21,Ω. (4.22)
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Finally, observing (3.4b) and hT ′ 6 qhT where T ∈ Tℓ(Ω) is the parent of T ′,
for the third term on the right-hand side in (4.20) we obtain

∑
T ′∈T ′

ℓ+1(Ω)

λ 2
ℓ h2

T ′‖uℓ− ûℓ‖2
0,T ′ 6 q2 ∑

T∈Tℓ(Ω)

osc2
T (uℓ)

6 Θ−1
2 q2 ∑

T∈M
(2)
ℓ

osc2
T (uℓ). (4.23)

For T ∈ M
(2)
Tℓ

the refinement strategy implies q 6 1/2, whence for Θ2 > 1/4

Θ−1
2 q2 ∑

T∈M
(2)
Tℓ

osc2
T (uℓ) 6 κ osc2

ℓ(uℓ). (4.24)

Using (4.21)–(4.24) in (4.20) allows to conclude. ¤

5. Proof of the error reduction property

We have now all prerequisites to prove the main convergence result of this
contribution.

Proof of Theorem 3.1. The reliability (4.3), the bulk criterion (3.4a),
(3.4b), and the discrete efficiency (4.13) imply the existence of a constant

C6 > 0 depending on C2, C3, and Θi,1 6 i 6 2, such that for hℓ < ĥ1

|uℓ−uℓ+1|21,Ω > C−1
6 |u−uℓ|21,Ω −osc2

ℓ(uℓ). (5.1)

In view of the perturbed Galerkin orthogonality (4.14), for hℓ < ĥ2 such that

1−C4ĥr
2(1+ ĥr

2) > 0 and some 0 < ε < 1 we obtain

(1−C4hr
ℓ(1+hr

ℓ))|u−uℓ+1|21,Ω (5.2)

6 (1+C4hr
ℓ(1+hr

ℓ))|u−uℓ|21,Ω − ε|uℓ−uℓ+1|21,Ω − (1− ε)|uℓ−uℓ+1|21,Ω.

Using (5.1) in (5.2) results in

(1−C4hr
ℓ(1+hr

ℓ))|u−uℓ+1|21,Ω 6 (1+C4hr
ℓ(1+hr

ℓ)− εC−1
6 )|u−uℓ|21,Ω

+ ε osc2
ℓ(uℓ)− (1− ε)|uℓ−uℓ+1|21,Ω. (5.3)

Now, invoking the oscillation reduction property (4.19) in (5.3), it follows that

|u−uℓ+1|21,Ω +
(1− ε)C−1

5

1−q(hr
ℓ)

osc2
ℓ+1(uℓ+1) (5.4)

6
1+q(hℓ)− εC−1

6

1−q(hℓ)
|u−uℓ|21,Ω +

ε +(1− ε)C−1
5 κ

1−q(hℓ)
osc2

ℓ(uℓ)
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where q(hℓ) := C4hr
ℓ(1+hr

ℓ). For some 0 < ρ2 < 1 with κ < C5ρ2/C6 we set

p(hℓ) :=
C−1

5 (ρ2(1−q(hℓ))−κ)

1+C−1
5 (ρ2(1−q(hℓ))−κ)

and choose ĥ3 > 0 such that

q(ĥ3) < min(C−1
5 /2,1−C6κ/(C5ρ2)), 2C5q(ĥ3) < p(ĥ3).

Then, the reduction property follows for

hmax := min(ĥi|1 6 i 6 3), ρ := min(ρ1,ρ2), C := ε +(1− ε)C−1
5 κ

where

ρ1 :=
1+q(hmax)− εC−1

6

1−q(hmax)
, p(hmax) > ε > 2C6q(hmax). ¤

6. Numerical results

As usual, our adaptive algorithm can be described by the following loop

Solve −→ Estimate −→ Mark −→ Refine.

Let (uℓ,λℓ) be a discrete eigenpair of (2.3). We use

η̃ℓ = 0.15(ηℓ +oscℓ) (6.1)

as an error estimator (cf. Theorem 4.1) and use (3.4a)–(3.4b) as the marking
strategy. We note that the scaling factor 0.15 in (6.1) does not affect the mark-
ing strategy. In the following examples , we set Θ1 = Θ2 = 0.4. The marked
elements are bisected three times in order to introduce new interior nodes in
the marked elements.

The implementation of the adaptive algorithm is based on the Comsol Mul-
tiphysics software. Two numerical examples will be given to illustrate the com-
petitive performance of the adaptive algorithm. Denote by

0 < λ1 6 λ2 6 · · · and u1,u2, · · ·

the eigenvalues and eigenfunctions for (2.1). It is clear that the adaptive algo-
rithm depends on the eigenpair used in the a posteriori error estimates. Denote
by (uk

j,ℓ,λ
k
j,ℓ) the jth discrete eigenpair of the finite element approximation
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(2.3) after ℓ adaptive iterations using the a posteriori error estimates based
on the kth discrete eigenpair. Although, our theoretical result (Theorem 3.1)
suggests to use the a posteriori error estimates based on the jth discrete eigen-
pairs when the jth eigenpair is concerned, we will discuss how to choose the
a posteriori error estimates in the situation when multiple eigenpairs are re-
quired.

Example 6.1. The eigenvalue problem (2.1) on the L-shaped domain

Ω =
{

(r,ϑ) ∈ R
2 : 0 < r < 1,0 < ϑ < 3π/2

}

.

The eigenvalues and eigenfunctions for this example are

λ j = α2
j , u j = v j/

∥

∥v j

∥

∥

0,Ω
, v j = J2m j/3(α jr)sin(2m jϑ/3) (6.2)

where m j is some integer dependent of j and α j is a zero of the Bessel function
J2m j/3.

First, we test our adaptive algorithm by calculating the first eigenpair
(u1,λ1), where λ1 ≈ 11.3947473 and u1 is defined by (6.2) with m1 = 1. We
use the first discrete eigenpair for error estimates. Figure 1 shows the asymp-
totic behaviors of the errors of approximate eigenfunctions (left) and the er-
rors of the approximate eigenvalues. Both the errors of the eigenfunctions u1

1,ℓ

in energy norm and the a posteriori error estimators η̃ℓ decay at the rates of

O(DOFs(ℓ)−1/2) which are quasi-optimal. The decay of the errors of the eigen-
functions u1

1,ℓ in L2 norm is O(DOFs(ℓ)−1) which is much faster than the de-

cay in energy norm. This shows that the assumptions (2.4a)–(2.4c) in our main
theorem are reasonable. The decay of the errors of approximate eigenvalues
λ 1

1,ℓ is O(DOFs(ℓ)−1) which is quasi-optimal. Figure 2 plots the mesh (left)

of 5472 elements and the eigenfunction u1
1,7 (right) after 7 adaptive iterations.

The mesh is finer near the origin due to the singularity of the eigenfunction u1

there.
Next, we consider to approximate the 10th eigenpair (u10,λ10), where

λ10 ≈ 70.8499989 and u10 is defined by (6.2) with m10 = 3. Since the discrete
1st–9th eigenpairs are also obtained by-product during the calculations, we test
two cases. In one case, we use the 10th discrete eigenpairs for a posteriori er-

ror estimates, while in another case we use the 1st discrete eigenpairs. Figure 3
plots the errors of u10

10,ℓ, u10
1,ℓ, u1

10,ℓ, u1
1,ℓ (left), and λ 10

10,ℓ, λ 10
1,ℓ, λ 1

10,ℓ, λ 1
1,ℓ (right)

versus the total number of degrees of freedom. We see that
∣

∣u10 −u10
10,ℓ

∣

∣

1,Ω
= O(DOFs(ℓ)−1/2),

∣

∣u1 −u10
1,ℓ

∣

∣

1,Ω
≈ O(DOFs(ℓ)−2/5)

∣

∣u10 −u1
10,ℓ

∣

∣

1,Ω
= O(DOFs(ℓ)−1/2),

∣

∣u1 −u1
1,ℓ

∣

∣

1,Ω
= O(DOFs(ℓ)−1/2)
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Figure 1. Convergence rates of u1
1,ℓ (left) and λ 1

1,ℓ (right) for Example 6.1. Dotted lines give

reference slopes.

Figure 2. The adaptively refined mesh (left) of 5472 elements and the eigenfunction u1
1,7 (right)

after 7 adaptive iterations for Example 6.1.
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and

∣

∣λ10 −λ 10
10,ℓ

∣

∣ = O(DOFs(ℓ)−1),
∣

∣λ1 −λ 10
1,ℓ

∣

∣ ≈ O(DOFs(ℓ)−4/5)
∣

∣λ10 −λ 1
10,ℓ

∣

∣ = O(DOFs(ℓ)−1),
∣

∣λ1 −λ 1
1,ℓ

∣

∣ = O(DOFs(ℓ)−1).

In the first case that the 10th discrete eigenpairs are used in the a posteriori

error estimates, the decays of the errors of the 10th approximate eigenfunc-
tions and eigenvalues are quasi-optimal, the decays of the errors of the 1st ap-
proximate eigenfunctions and eigenvalues are not. However, this verifies our
main theorem for the 10th eigenpair. In the second case that the 1st discrete
eigenpairs are used in the a posteriori error estimates, the decays of the errors
of both the 10th and the 1st approximate eigenfunctions and eigenvalues are

quasi-optimal. Notice that the 10th approximate eigenpair (u10
10,ℓ,λ

10
10,ℓ) con-

verges a little faster than (u1
10,ℓ,λ

1
10,ℓ). We suggest to use the a posteriori er-

ror estimates based on the 10th discrete eigenpairs if only the 10th eigenpair
is cared, and to use the a posteriori error estimates based on the 1st discrete
eigenpairs if the first ten eigenpairs are all needed, since the singularity of u1

usually dominates the others. Figure 4 plots the mesh (left) of 7491 elements
and the eigenfunction u10

10,8 (right) after 8 adaptive iterations. The mesh is not

finer near the origin because the eigenfunction u10 has no singularity there.

Example 6.2. The eigenvalue problem (2.1) on the domain with a crack

Ω =
{

(r,ϑ) ∈ R
2 : 0 < r < 1,0 < ϑ < 2π/2

}

.

The eigenvalues and eigenfunctions for this example are

λ j = α2
j , u j = v j/

∥

∥v j

∥

∥

0,Ω
, v j = Jm j/2(α jr)sin(m jϑ/2) (6.3)

where m j is some integer dependent of j and α j is a zero of the Bessel function
Jm j/2.

First, we test our adaptive algorithm by calculating the first eigenpair
(u1,λ1), where λ1 = π2 ≈ 9.8696044 and u1 is defined by (6.3) with m1 = 1.
We use the first discrete eigenpair for error estimates. Figure 5 shows the
asymptotic behaviors of the errors of approximate eigenfunctions (left) and
the errors of the approximate eigenvalues. Both the errors of the eigenfunc-
tions u1

1,ℓ in energy norm and the a posteriori error estimators η̃ℓ decay at the

rate of O(DOFs(ℓ)−1/2) which are quasi-optimal. The decay of the errors of
the eigenfunctions u1

1,ℓ in L2 norm is O(DOFs(ℓ)−1) which is much faster than

the decay in energy norm. This again shows that the assumptions (2.4a)–(2.4c)
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Figure 3. Convergence rates of u1
10,ℓ, u10

10,ℓ, u10
1,ℓ, u1

1,ℓ (left), and λ 1
10,ℓ, λ 10

10,ℓ, λ 10
1,ℓ, λ 1

1,ℓ (right) for

Example 6.1. Dotted lines give reference slopes −1/2 (left) and −1 (right).

Figure 4. The adaptively refined mesh (left) of 7491 elements and the eigenfunction u10
10,8

(right) after 8 adaptive iterations for Example 6.1.
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in our main theorem are reasonable. The decay of the errors of approximate
eigenvalues λ 1

1,ℓ is O(DOFs(ℓ)−1) which is quasi-optimal. Figure 6 plots the

mesh (left) of 6135 elements and the eigenfunction u1
1,7 (right) after 7 adap-

tive iterations. The mesh is finer near the origin due to the singularity of the
eigenfunction u1 there.

Next, we consider to approximate the 10th eigenpair (u10,λ10), where
λ10 ≈ 57.5829409 and u10 is defined by (6.3) with m10 = 8. We also test two
cases. In one case, we use the 10th discrete eigenpairs for a posteriori error
estimates, while in another case we use the 1st discrete eigenpairs. Figure 7

plots the errors of u10
10,ℓ, u10

1,ℓ, u1
10,ℓ, u1

1,ℓ (left), and λ 10
10,ℓ, λ 10

1,ℓ, λ 1
10,ℓ, λ 1

1,ℓ (right)

versus the total number of degrees of freedom. We see that

∣

∣u10 −u10
10,ℓ

∣

∣

1,Ω
= O(DOFs(ℓ)−1/2),

∣

∣u1 −u10
1,ℓ

∣

∣

1,Ω
≈ O(DOFs(ℓ)−1/7)

∣

∣u10 −u1
10,ℓ

∣

∣

1,Ω
= O(DOFs(ℓ)−1/2),

∣

∣u1 −u1
1,ℓ

∣

∣

1,Ω
= O(DOFs(ℓ)−1/2)

and

∣

∣λ10 −λ 10
10,ℓ

∣

∣ = O(DOFs(ℓ)−1),
∣

∣λ1 −λ 10
1,ℓ

∣

∣ ≈ O(DOFs(ℓ)−2/7)
∣

∣λ10 −λ 1
10,ℓ

∣

∣ = O(DOFs(ℓ)−1),
∣

∣λ1 −λ 1
1,ℓ

∣

∣ = O(DOFs(ℓ)−1).

In the first case that the 10th discrete eigenpairs are used in the a posteriori

error estimates, the decays of the errors of the 10th approximate eigenfunc-
tions and eigenvalues are quasi-optimal, the decays of the errors of the 1st ap-
proximate eigenfunctions and eigenvalues are not. However, this verifies that
our main theorem for the 10th eigenpair. In the second case that the 1st dis-
crete eigenpairs are used in the a posteriori error estimates, the decays of the
errors of both the 10th and the 1st approximate eigenfunctions and eigenval-
ues are quasi-optimal. Notice that the 10th approximate eigenpair (u10

10,ℓ,λ
10
10,ℓ)

converges faster than (u1
10,ℓ,λ

1
10,ℓ). Again, we suggest to use the a posteriori

error estimates based on the 10th discrete eigenpairs if only the 10th eigenpair
is cared, and to use the a posteriori error estimates based on the 1st discrete
eigenpairs if the first ten eigenpairs are all needed. Figure 8 plots the mesh
(left) of 9327 elements and the eigenfunction u10

10,8 (right) after 8 adaptive iter-

ations. The mesh is not finer near the origin because the eigenfunction u10 has
no singularity there.

Finally, we present a comparison of the convergence rates between adap-
tive and uniform refinements. We denote by λ u

j,ℓ the jth discrete eigenvalue of

the finite element approximation (2.3) after ℓ uniform refinements. Figure 9
plots convergence rates of λ 10

10,ℓ, λ u
10,ℓ, λ u

1,ℓ, and λ 1
1,ℓ for Example 6.1 (left) and

for Example 6.2 (right).
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Figure 5. Convergence rates of u1
1,ℓ (left) and λ 1

1,ℓ (right) for Example 6.2. Dotted lines give

reference slopes.

Figure 6. The adaptively refined mesh (left) of 6135 elements and the eigenfunction u1
1,7 (right)

after 7 adaptive iterations for Example 6.2.



Adaptive FEMs for the Laplace eigenvalue problem 299

10
0

10
2

10
4

10
6

10
−2

10
0

10
2

DOFs

E
rr

o
rs

 o
f 
e
ig

e
n
fu

n
c
ti
o
n
s

: |u
10

−u
10, l

1
|
1,Ω

: |u
10

−u
10, l

10
|
1,Ω

: |u
1
−u

1, l

10
|
1,Ω

: |u
1
−u

1, l

1
|
1,Ω

10
0

10
2

10
4

10
6

10
−4

10
−2

10
0

10
2

DOFs

E
rr

o
rs

 o
f 
e
ig

e
n
v
a
lu

e
s

: |λ
10

−λ
10, l

1
|

: |λ
10

−λ
10, l

10
|

: |λ
1
−λ

1, l

10
|

: |λ
1
−λ

1, l

1
|

Figure 7. Convergence rates of u1
10,ℓ, u10

10,ℓ, u10
1,ℓ, u1

1,ℓ (left), and λ 1
10,ℓ, λ 10

10,ℓ, λ 10
1,ℓ, λ 1

1,ℓ (right) for

Example 6.2. Dotted lines give reference slopes −1/2 (left) and −1 (right).

Figure 8. The adaptively refined mesh (left) of 9327 elements and the eigenfunction u10
10,8

(right) after 8 adaptive iterations for Example 6.2.
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Figure 9. Convergence rates of λ 10
10,ℓ, λ u

10,ℓ, λ u
1,ℓ, and λ 1

1,ℓ for Example 6.1 (left) and for Exam-

ple 6.2 (right). Dotted lines give reference slopes.

Is is shown that

∣

∣λ10 −λ 10
10,ℓ

∣

∣ = O(DOFs(ℓ)−1),
∣

∣λ1 −λ 1
1,ℓ

∣

∣ ≈ O(DOFs(ℓ)−1)
∣

∣λ10 −λ u
10,ℓ

∣

∣ = O(DOFs(ℓ)−1),
∣

∣λ1 −λ u
1,ℓ

∣

∣ = O(DOFs(ℓ)−µ)

where µ = −2/3 for Example 6.1 and µ = −1/2 for Example 6.2. The con-
vergence rates of the discrete eigenvalues from the adaptive finite element al-
gorithm are quasi-optimal. As for the case of uniform refinement, the decay
of the error of λ u

10,ℓ is quasi-optimal because the eigenfunction u10 has no sin-

gularity, while the decay of the error of λ u
1,ℓ is not quasi-optimal due to the

singular eigenfunction u1.
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