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A RESTARTED ESTIMATION OF DISTRIBUTION ALGORITHM
FOR SOLVING SUDOKU PUZZLES

SYLVAIN MAIRE AND CYRIL PRISSETTE

ABsTrACT. In this paper, we describe a stochastic algorithm to solve sudoku
puzzles. Our method consists in computing probabilities for each symbols of
each cell updated at each step of the algorithm using estimation of distributions
algorithms (EDA). This update is done using the empirical estimators of these
probabilities for a fraction of the best puzzles according to a cost function.
We develop also some partial restart techniques in the RESEDA algorithm to
obtain a convergence for the most difficult puzzles. Our algorithm is tested
numerically on puzzles with various levels of difficulty starting from very easy
ones to very hard ones including the famous puzzle Al escargot. The CPU
times vary from few hundreds of a second for the easy ones to about one
minute for the most difficult one.

1. INTRODUCTION

Sudoku is a very popular logic-based puzzle game which appeared in Europe in
the early 2000’s. Even though there are many variants of sudoku puzzles, its main
version consists of the 81 cells of a 9 x 9 grid. Each cell should be filled with symbols
that are usually the numbers between one to nine. The main grid is additionally
divided in nine 3 x 3 blocks. Some of the cells are pre-filled by the puzzle builder
such that there is one and only one puzzle that met the following constraints: the
numbers one to nine must appear only once in each row, each column and each
block 3 x 3. A typical easy puzzle is given in figure 1.

If human people try to solve sudoku puzzles logically using a certain number
of basic or more sophisticated tricks, most algorithms available do not use logic
but optimization tools. A wide range of deterministic algorithms are used based
on backtracking [16], brutal force search or constraint programming [2]. The most
recent works also include a Sinkhorn balancing algorithm [13] and an algorithm
based on the connections with sparse solution of underdetermined linear systems
[1].

Stochastic algorithms have been also developed based on simulated annealing [11]
or on different metaheuristic techniques [14] like cultural algorithms [15], repulsive
particle swarm optimization [9] or quantum simulated annealing [4]. The method
we propose is also a stochastic algorithm but more based on adaptive Monte Carlo
strategies that is sequential Monte Carlo methods. These methods were introduced
by John Halton in the early 1960’s [6] to solve in particular linear systems. They
have been used successfully more recently to solve partial differential equations
like transport [3] or diffusion equations [5] but also to compute approximations on
orthonormal bases [12]. In the case of stochastic optimization, these algorithms are
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called estimation of distribution algorithms (EDA) [8,10]. The idea is to compute
adaptively probabilities for each number of each cell updated after each step of
the algorithm. Empirical estimators of the probabilities of a fraction of the best
puzzles according to the cost function are used to make these updates. For the
most difficult puzzles, we introduce a new method called RESEDA (for restarted
EDA) based on partial restarts of the algorithm while keeping part of the puzzles
that were not hundred percent correct.

Our paper is organized as follows. In section 2, we describe the basic version
of our algorithm and its main parameters. We give first the cost function that
we use to evaluate the quality of a grid and how we initialize the probabilities
in the different cells. Then, we discuss the updating of these probabilities from
a step to another by making a linear combination of the empirical estimators of
the probabilities of a fraction of the best puzzles at step n + 1 and of the current
probabilities at step n. Finally, we describe the stopping criterion of the algorithm
and the restart procedures in case of failure.

In section 3, we test our algorithm on easy or medium examples to analyse its
performances and to make the most efficient choices for its different parameters. We
especially focus on the balance between the probability of success and the number
of steps until convergence. It can be a lot more efficient to restart one or few times
a cheap algorithm that does not always converge than a very consuming one that
always does.

Section 4 is devoted to restart techniques. We observe that the usual full restart
technique of the algorithm is not sufficient to make the algorithm efficient. We
develop partial restart techniques where some parts of the solution obtained after
the first try are considered as fixed to start the algorithm again. This idea is really
useful when the chosen part is a random block, row or column.

Section 5 gives the mean performances of the algorithm on many puzzles with
five different levels of difficulty taken from an open source code. We also solve
the AI escargot puzzle [7] which is considered as one of the most difficult puzzle
available. Some additional restart tricks are necessary for its numerical resolution.

2. DESCRIPTION OF THE OPTIMIZATION ALGORITHM

2.1. Initialization and cost function. The principle of our method is to compute
a probability for each symbol of each cell at every step of the algorithm. The cells of
the puzzle are denoted by a; ; with 1 < 4,5 <9 like in matrix notations and we de-
note by pg?k the probability P (a; ; = k) for the cell a; jto contain the symbol &
at step n of the algorithm. For each puzzle a set G C [1,9]% x [1, 9] constituted of M
cells and symbols is given. This set is assumed to be rich enough so that the puzzle
has a unique solution. We set P(®)(a; ; = k) = 1 for all (i, j, k) € G. The initializa-
tion of the other probabilities for the 81 — M cells and symbols belonging to G¢ is
uniform on the set of possible points. More precisely, for each cell a; ;, we define
the set V; ; of all the symbols corresponding to the points € G that have a column,
a row or a block 3 x 3 in common with the cell a; ;. Then we set P(")(a; ; = k) =0

if k € ‘/Z,] and P(O)(aiJ' = k') = #ﬂw if not.
’ (n)

The optimization algorithm involves samples from the Di ok and we need to define
a cost function to measure the quality of a puzzle and to stop the algorithm when a
sample vanishes this cost function. Many cost functions are possible, the constraint
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is that the cost function is zero when all the rows, all the columns and all the blocks
3 x 3 contains all the 9 symbols. Our cost function is the sum over all rows, all
columns and all blocks of the missing symbols in the rows, columns and blocks. For
example, if a row contains the symbols (2,2,3,3,3,5,6,7,8) its contribution to the
cost function is 3 as numbers 1,4 and 9 are missing.
2.2. Optimization algorithm. Once the probability distribution pg?k is built,
we draw Q samples from it and keep a small number @Q; of the best ones according
to the cost function. These best samples can be obtained by sorting the @ samples
and keep the @) with lowest cost function using insertion for instance. Another
possibility is to take the sample with lowest cost function among % samples of size
Q1. The second method has a smaller complexity but may omit very good samples.

Then for each cell a; ;, we compute the empirical probability distribution rgjljj’,;l)
of the k symbols among the ()1 samples. It remains to update the new probability
distribution pz(.f;ﬁ:) by letting

Pk = ap s+ (L= a)r )

where 0 < a < 1. The smoothing parameter « represents the fraction of the prob-
ability distribution which is kept from an iteration to the other. It is very similar
to the cooling parameter which appears in simulated annealing. The larger this
fraction is, the slower the convergence is but the more robust the algorithm is. The
number ()1 of the best samples kept among ) samples plays the same role in the
convergence. If @1 is large, the algorithm is more robust but the convergence is
slower.

2.3. Stop and restart. The algorithm obviously stops when one of the samples
solves the puzzle but we also need to stop it when the probability to obtain the
solution becomes too small. Our stopping test is based on
_ : (n)
p(n) = min (max p; ).

We stop the algorithm when p(n) > § where ( is a parameter close to one. Indeed,
if p(n) > f the algorithm is around a local minimum of the cost function which
is not zero and can only escape from it with a very small probability. In many
optimization problems (solved or not by stochastic algorithms) like for example the
travelling salesman problem, one is not necessarily looking for the optimal solution
but only to a good one according to a given criterion. The main difficulty of our
optimization problem is that people are not interested with a puzzle with very few
errors but only with the one with none. Moreover, the cost function often needs to
cross a gap of 3 or 4 to reach the exact solution.

Our algorithm may fail to converge in one shot, so it is necessary to start it again
using the approximate solution obtained after this first shot or not. The most simple
approach counsists in a full restart of the algorithm starting again with the original
grid. We will see in some of the numerical examples that this trick is not efficient
enough for very difficult puzzles. For such puzzles, our algorithm is attracted almost
every time towards a local minimum which is not the solution. Nevertheless, a large
proportion of the cells have the right symbol and it is worth using this information
to restart the algorithm. The partial restart algorithm consists in restarting the
algorithm with additional fixed symbols or more generally with symbols with an
increased probability.
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3. BASIC NUMERICAL EXAMPLES WITHOUT RESTARTING

3.1. Easy example. Our first example (see figure 1) is an easy puzzle taken from
the website www.e-sudoku.fr (puzzle 114949) .

8167 4 2
4 213 9
3|7 2

2

819 215 6|7
3

9 713
3 512
7 b} 31219

Figure 3.1: easy puzzle

Our algorithm is applied without restart procedures using (1 = 10 puzzles from
a sample of @@ = 100 puzzles to update the empirical probabilities. The algorithm
stops when p(n) = 0.6. These parameters will be used in all the following numerical
tests. We compare three algorithms based on different strategies. The first one is
based on the additional constraints described in section 2.1.

The second one gets rid of these constraints but tries to pick permutations in
each of the 9 blocks 3 x 3 whenever it is possible instead of picking each case
individually. To do this, we have to conciliate the probabilities of each symbol of
the individual cells and the will to pick a permutation. We do not know if this
can be done optimally. Our technique is to first pick a symbol in the cell having
the highest probability. Once this symbol is picked, it is removed from the possible
symbols of the remaining cells of the block and the probabilities in these cells are
recomputed knowing that the probability of this symbol is now zero. This method
is iterated until the last cell is filled. Note that it may happen it is impossible to
pick a permutation especially for the final steps of the process. In this case, we just
pick the remaining symbols uniformly at random.

The third one is the combination of the first two strategies: trying to pick per-
mutations in blocks while taking into account the constraints given by the fixed
cells. This may increase the number of blocks that are not permutations but these
ones are likely to be discarded by the selection procedure. If we go back to the
properties of EDA [10], the strategy of filling the cells independently is univariate
while the two other ones are multivariate strategies on the nine cells of a block.

Table 2 represents the number of successful algorithms among one hundred and
the number of iteration steps in case of convergence for different values of « for
each of the strategies described above.
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permutations | pre-computation | both optimizations

« | success | rounds | success | rounds | success | rounds
0.99 98 574 100 522 100 188
0.9 82 67 96 60 100 25
0.7 42 25 71 22 100 9
0.5 11 17 35 14 100 6

Table 1: success rates with different optimizations.

These preliminary results show that the algorithm works well in all its versions
and it is better to run our algorithm with the two optimization tools simultaneously.
Indeed these tools reduce the search space and avoid many impossible puzzles. As
a consequence they will be used in all the following numerical examples. We can
also remark that increasing « leads to a more successful algorithm but may increase
a lot the number of iterations until convergence. Looking at the results we obtain
on this easy puzzle, it seems to be a lot more efficient in terms of computational
times to take a smaller value of a coupled eventually with a full restart procedure.
We shall investigate on other examples if this still holds and chose a value of «
close to optimality in terms of complexity. Finally, we can give the performances
of the algorithm. If we chose both optimizations and « = 0.7, the mean number of
puzzles tested is only 900 and the mean CPU times are 0.03 seconds. Our program
is written in C++ and executed on a desktop PC, with an Intel Core 2 Duo 2,66GHz
processor running under GNU/Linux.

3.2. Medium difficulty example. Our second puzzle taken from [14] is described
in figure 2 and has a medium level of difficulty.

214 7
6
31618 41115
4131 )
5 2
719
2 91711 8
4 913
301 41715

Figure 3.2: medium puzzle

Our algorithm can still solve quite easily this puzzle but the probability of success
decreases significantly when « decreases as illustrated in table where « is taken
between 0.1 and 0.99.
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« | success | iterations
0.99 99 277
0.9 81 37
0.7 61 14
0.5 43 8
0.3 26 7
0.1 12 7

Table 2: « and success rates

As the algorithm does not always solves the puzzle, it is necessary to restart
one or a few times the algorithm until convergence. It is interesting to find a
balance between the probability of success and the mean number of iterations until
convergence or a restart. We have tested different puzzles with different levels of
difficulty for which the value @ = 0.7 has appeared as a good balance. This value
will be used in all the following tests.

4. SOLVING SUDOKU PUZZLES WITH PARTIAL RESTART

4.1. Behaviour of the algorithm with harder puzzles. We take now an harder
example from [1] (figure 3). This puzzle is a lot more difficult to solve with our
algorithm. In fact, we only succeed in solving it 3 times out of an hundred.

1 7 819
318

(SR ENE Ro ol V)

Figure 4.1: hard puzzle

Even though the probability of solving the puzzle in one shot is quite small, it is
very interesting to have a precise look at the puzzles obtained even if they are not
completely solved. Indeed, to distinguish two puzzles only by the fact that they are
true or wrong may hide that the wrong puzzles are partially correct. The following
grid (figure 4) has been built using one hundred tries of the algorithm and indicates
the level of correctness of each of the cells of the puzzles. For each cell of the puzzle,
we give the grade A if it always correct and the grade B if it is not always correct
but at least ninety times out of an hundred. An empty cell indicates that the right
value has been found less than ninety times out of an hundred.
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A|/BJA|B|A|A|B
AlA AlAA
BIAJAJA|B|AJA A
AlA AlA

AJAJAAA A
AJAJAJA A AlA
ATAAJATAJALAATA
ATAAJA|AIAJAAA
ATAAJTAJAJATAJATA

Figure 4.2: hard puzzle: level of correctness of each cell

We can see that many rows, blocks or columns are always or very often correct
using our algorithm. For instance the three bottom blocks (and consequently the
three bottom rows!) as well as column two and four are always correct. Some other
regions like column five or line three have also a large probability to be correct.
In the next subsection, we shall use these nice properties to develop partial restart
techniques.

4.2. Restarted estimation of distribution algorithm. The difficulty of a puz-
zle depends mainly of the number of the initial fixed cells. Adding only few more
fixed cells can transform a very hard puzzle into an easy one. Our algorithm could
for instance take advantage of few basic deterministic guesses from human sudoku
experts but we intend for the moment to keep it fully stochastic. Nevertheless
we can try to make these guesses from our algorithm using the conclusions of the
previous subsection. We have seen that many individual cells and also complete
rows columns or blocks are correct. The partial restarts estimation of distribution
algorithm (RESEDA) is built in adding to the initial fixed cells columns, rows or
blocks obtained after a first resolution of the algorithm while discarding obviously
any of them which is not a permutation. We have tried to fix cells at random among
the ones obtained after the first resolution of the algorithm but this was not really
efficient. Indeed, this increases a lot the probability that one of the new fixed cells
is wrong compared to fixing all the cells of a row, block or column. Similarly, we
have chosen to add only one zone at a time because the probability that two zones
are simultaneously correct is small.

There are 27 ways to complete the initial puzzle if we add one zone at a time.
We could run any of these 27 configurations but we have observed in practice that if
the algorithm fails to converge for one of the type of zones it is unlikely to converge
for the others. In this case, it is better to make a full restart which avoids 24 more
resolutions from initial configurations that are likely to be wrong.

Table 4 describes this behaviour for the previous hard puzzle. It gives the number
of success among 1000 attempts of resolution and the average total execution time
in seconds. Four methods are compared: without restart, when we restart with one
fixed zone at a time out of 3, 9 or 27 zones which are respectively the 3x3 blocks
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on the first diagonal, all the 3x3 blocks and all the rolumns, rows and 3x3 blocks.
The estimation of mean time of success (ETS) of the algorithm is also given.

Method Number of success | time | ETS

No partial restart 89 0.198 | 2.225
Restart with 1 zone out of 3 474 0.614 | 1.295
Restart with 1 zone out of 9 619 1.113 | 1.798
Restart with 1 zone out of 27 906 1.694 | 1.869

Table 3: Comparison of restart techniques on the hard puzzle

As one can see on this example, the best trade-off between execution time and
success rate is a partial restart with one block at a time, out of the 3 blocks on the
first diagonal. Moreover, this example shows that the algorithm is faster with a
partially completed puzzle. This is a common and quite obvious behaviour : adding
clues makes the puzzle easier and so the resolution attempt need less time.

Our partial restart technique will be based only on resolutions on puzzles com-
pleted by one of the 3 blocks obtained after a first resolution of the basic algorithm.
If the algorithm does not converge after trying each of these 3 blocks, then we do
a full restart of the algorithm.

5. MORE NUMERICAL TESTS

5.1. Test on different levels of difficulty. We shall now give in table 4 more
numerical examples on puzzles with five level of difficulty: very easy, easy, medium,
hard and fiendish taken from the open source code sudoku 1.0.1-3 by Michael Ken-
nett. For each level of difficulty, 1000 puzzles are randomly generated. The mea-
sured times are the execution time expressed in seconds until the algorithm stops
in case of convergence or in case of failure.

For each set of 1000 puzzles, we count the number of successfully solved puzzle
and the average execution time fixing successively one zone among the 27 zones
after the restart. Then we do the same algorithm with only the nine 3x3 blocks
and finally among the three 3x3 blocks of the first diagonal.

27 zones 9 zones 3 zones
success | time | success | time | success | time
very easy | 1000 | 0.046 | 1000 | 0.049 | 1000 | 0.047

easy 1000 | 0.113 994 0.129 982 0.104
medium 959 1.015 884 0.718 659 0.502
hard 811 2.394 563 1.451 365 0.726

fiendish 605 3.458 336 1.831 221 0.824

Table 4: Simulations on puzzles with different difficulties

The success rate is high when we fix exhaustively the 27 zones, but one can see
that using less zones insures a good success rate and decreases significantly the
execution time. This can be explained quite easily : at the end of the first step, the
algorithm gives many successfully solved zones, even if we don’t know which zones
are successfully solved. This is the key idea of the partial restart.
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However, sometimes at the end of the first step, the algorithm founds a local
minimum which is very different from the solution. In this case, restarting is a loss
of time if no fixed zone is correct. Thus, limiting the number of tested fixed blocks
for a restart is a good choice because it keeps a good success rate if the first step
has found an interesting partial solution, and limiting the loss of time if this first
step gives a poor partial solution.

So, we recommend to make a partial restart 3 times, fixing one of the 3 blocks
on the first diagonal for each restart. If no solution is found, then we recommend
to make a full restart. The mean time of resolution using this strategy is the mean
time of the algorithm divided by the probability of success. This mean time goes
from 0.047 seconds for the very easy puzzles to % ~ 3.71 seconds for the fiendish
ones.

5.2. Very hard puzzle : AI Escargot. Until now, the puzzles were either quite
easy puzzles built to be solved by human players, or randomly generated puzzles
with a level of difficulty measure with some criteria, such as the length of a deduction
chain needed to solve them with a deterministic algorithm.

In order to illustrate the behaviour of the RESEDA algorithm, we now use it
to solve a puzzle of another kind : a puzzle built to be the most complex to solve.
The puzzle we study is known as Al Escargot and has been created by Arto Inkala
who introduces it as the most difficult puzzle in the world. This puzzle which has
a unique solution and is given in figure

1 7 9
3 2 8
1 8 2
6 4
3 1
4 7
7 3

Figure 5.1: AI Escargot puzzle

Once more, our algorithm is executed 1000 times and we measure in table 5 the
success rate and the average execution time, in the 3 configurations : partial restart
with one zone out of 3, 9 or 27 zones.

Number of tested zones | Number of success | CPU time
3 0 1.251
9 1 2.857
27 9 7.045

Table 5: Simulations with 1000 resolutions of AI Escargot
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As one can see, this is a hard puzzle to solve for the algorithm RESEDA. The
success rate is not zero if we make a partial restart with 9 or 27 zones, but it’s
still low. There are many reasons to explain this behaviour. First, the puzzle has
few clues : only 23 numbers are given. This can be a hindrance to the distribution
evaluation at the beginning of the algorithm and make it converge towards a local
minimum which is very different from the solution. Moreover, even if a few zones
are less hard to solve, we have no evidence that they are the 3x3 blocks of the first
diagonal. So for this kind of puzzle, we recommend to use exhaustively the 27 zones
for the partial restarts.

The execution time (with success or not) is roughly twice the time needed to
solve a fiendish puzzle but the probability of success is only %. This leads to a
mean time of success of about 778 seconds which is quite long. In order to reduce
this CPU times, we propose to couple RESEDA with brutal force techniques. The
idea is to run the algorithm considering as fixed each of the admissible permutations
of a given 3x3 block. If we do this for the up left corner block, there are only 24
permutations that met the basic constraints. One of these 24 permutations is the
right permutation, and it adds 6 clues to the puzzle. When it is correctly guessed,
the success rate grows to % with a CPU time of 1.517 seconds, which leads to a
mean time of success of 1000x24xL51T ~ 63 geconds. Using this new idea, the CPU
times are divided by ten.

6. CONCLUSION

We have introduced and tested a new stochastic algorithm RESEDA for solving
sudoku puzzles. The basic versions enables to solve easy or medium puzzles in
one or a few shots. To solve the most difficult ones, partial restart techniques
were necessary to obtain good convergence properties. The CPU times vary from
few hundreds of a second to about one minute for the AI escargot puzzle. The
algorithm seems to be faster than the other stochastic algorithms developed in
[11,14]. Finding ways for decreasing the difficulty of the puzzle is a key idea for
further improvements of RESEDA. We have already done a basic attempt based on
a combination with brutal force but it should be certainly more efficient to combine
RESEDA with other resolution algorithms especially for 4 x 4 or 5 x 5 puzzles. One
could for instance find some easy clues using a deterministic method and then use
our algorithm with these supplementary clues.
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