
HAL Id: hal-00680652
https://hal.science/hal-00680652v2

Submitted on 16 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Parallel Algorithm for solving BSDEs
Céline Labart, Jérôme Lelong

To cite this version:
Céline Labart, Jérôme Lelong. A Parallel Algorithm for solving BSDEs. Monte Carlo Methods and
Applications, 2013, 19 (1), pp.11-39. �10.1515/mcma-2013-0001�. �hal-00680652v2�

https://hal.science/hal-00680652v2
https://hal.archives-ouvertes.fr

A Parallel Algorithm for solving BSDEs

Céline Labart1,3 Jérôme Lelong2,3

January 4, 2013

Abstract

We present a parallel algorithm for solving backward stochastic differential
equations. We improve the algorithm proposed in Gobet and Labart (2010), based on
an adaptive Monte Carlo method with Picard’s iterations, and propose a parallel version
of it. We test our algorithm on linear and non linear drivers up to dimension 8 on a
cluster of 312 CPUs. We obtained very encouraging efficiency ratios greater than 0.7.

Keywords : backward stochastic differential equations, parallel computing, high per-
formance computing, Monte-Carlo methods.

1 Introduction

Let (Ω,F ,P) be a given probability space endowed with a d-dimensional standard Brownian
motion W , whose natural filtration, augmented with P-null sets, is denoted (Ft)0≤t≤T (T
is a fixed terminal time). We denote by (Y t,x, Zt,x) the solution of the following backward
stochastic differential equation (BSDE)

− dY t,x
s = f(s,Xt,x

s , Y t,x
s , Zt,x

s)ds− Zt,x
s dWs, Y t,x

T = Φ(Xt,x
T), t ≤ s ≤ T (1.1)

where f : [t, T] ×R
d ×R×R

d → R, Φ : Rd → R and Xt,x is the R
d-valued process solution of

Xt,x
s = x+

∫ s

t
b(r,Xt,x

r)dr +

∫ s

t
σ(r,Xt,x

r)dWr, t ≤ s ≤ T (1.2)

with b : [t, T] × R
d → R

d and σ : [t, T] × R
d → R

d×d. The process Y is real valued, whereas
the process Z has values in R

d (as a row vector).
Solving BSDEs numerically is a very challenging issue. On a single processor system, it

can require several hours of computation for high values of d. Recent advances in parallel
computing hardwares such as multi–core processors, clusters and GPUs are then of high
interest. Several algorithms to solve BSDEs can be found in the literature. Ma et al. (1994)
presented an algorithm to solve quasilinear PDEs (associated to forward BSDEs) using a
finite difference approximation. Concerning algorithms based on the dynamic programming

1 Laboratoire de Mathématiques, CNRS UMR 5127, Université de Savoie, Campus Scientifique, 73376 Le
Bourget du Lac, France. labart@univ-savoie.fr.
2 Univ. Greonble Alpes, Laboratoire Jean Kuntzmann, 51, rue des Mathématiques, BP 53, 38041 Grenoble,
Cedex 09, France jerome.lelong@imag.fr.
3 Projet MathRisk, INRIA Paris–Rocquencourt.
This research was supported by the Finance for Energy Market Research Centre, www.fime-lab.org.

1

equation, we refer to Bouchard and Touzi (2004), Gobet et al. (2005), Bally and Pagès
(2003) and Delarue and Menozzi (2006). In Bouchard and Touzi (2004), the authors
compute the conditional expectations appearing in the dynamic programming equation
using Malliavin calculus techniques, whereas Gobet et al. (2005) propose a scheme based on
iterative regression functions, approximated by projections on a reduced set of functions —
the coefficients of the projection being evaluated using Monte Carlo simulations.
Bally and Pagès (2003) and Delarue and Menozzi (2006) use quantization techniques for
solving reflected BSDEs and forward BSDEs respectively. Bender and Denk (2007) propose
a forward scheme which avoids the use of nested conditional expectations backward in time.
Instead, it mimics Picard’s type iterations for BSDEs and, consequently, has nested
conditional expectations along the iterations. Our approach is based on the algorithm
developed by Gobet and Labart (2010) which combines Picard’s iterations and an adaptive
control variate to solve the associated non linear PDE (called PACV algorithm in the
following). Compared to the algorithms based on the dynamic programming equation, the
PACV algorithm provides regular solutions in time and space (which is coherent with the
regularity of both the option price and its delta).

In this paper, we propose a parallel version of the algorithm developed by
Gobet and Labart (2010), after having replaced the kernel operator by an extrapolating op-
erator to approximate functions and their derivatives. The parallelization is far from being
as simple as for crude Monte-Carlo algorithms. We explain the difficulties encountered when
parallelizing it and how we solved them. Our implementation relying on MPI for passing
messages is therefore suitable for clusters. Finally, we present and discuss the performances
of our approach for solving BSDEs appearing in financial problems, such that pricing Eu-
ropean options in the Black–Scholes framework with a borrow rate different from the bond
rate. In this context, the driver is non linear and pricing cannot be achieved using a standard
Monte–Carlo approach.

The paper is organized as follows. In section 2, we briefly recall the link between BSDEs
and PDEs which is the keystone of the PACV algorithm. In section 3, we describe the
algorithm and discuss the choice of the approximating operator and in Section 4 we explain
how the parallelization has been carried out. Finally, in Section 5, we conclude the paper
by some numerical tests of our parallel algorithm for pricing and hedging European basket
options under constrained portfolios in dimension up to 8.

1.1 Definitions and Notations

• Let Ck,l
b be the set of continuously differentiable functions φ : (t, x) ∈ [0, T] × R

d with
continuous and uniformly bounded derivatives w.r.t. t (resp. w.r.t. x) up to order k
(resp. up to order l).

• Ck
p denotes the set of Ck−1 functions with piecewise continuous kth order derivative.

• For α ∈]0, 1], Ck+α is the set of Ck functions whose kth order derivative is Hölder
continuous with order α.

2

2 Link between BSDEs and non linear PDEs

From now on, we assume the following Hypothesis, which ensures among others existence and
uniqueness of solutions to Equations (1.1)-(1.2).

Hypothesis 1

• The driver f is a bounded Lipschitz continuous function, i.e, for all
(t1, x1, y1, z1), (t2, x2, y2, z2) ∈ [0, T] × R

d × R × R
d, ∃Lf > 0,

|f(t1, x1, y1, z1) − f(t2, x2, y2, z2)| ≤ Lf (|t1 − t2| + |x1 − x2| + |y1 − y2| + |z1 − z2|).

• σ is uniformly elliptic on [0, T] × R
d, i.e, there exist two positive constants σ0, σ1 s.t.

for any ξ ∈ R
d and any (t, x) ∈ [0, T] × R

d

σ0|ξ|2 ≤
d
∑

i,j=1

ξi[σσ
∗]i,j(t, x)ξj ≤ σ1|ξ|2.

• Φ is bounded in C2+α, α ∈]0, 1].

• b and σ are in C1,3
b and ∂tσ is in C0,1

b .

Let us also recall the link between BSDEs and semilinear PDEs, which is the keystone of
the PACV algorithm. We refer to Pardoux and Peng (1992) or El Karoui et al. (1997) for
a proof of the following result.

We can link the solution (Y, Z) of the BSDE (1.1) to the solution of a PDE.
Let u be a C1,2 function satisfying |u(t, x)| + |∂xu(t, x)σ(t, x)| ≤ C(1 + |x|) and solving

{

∂tu(t, x) + Lu(t, x) + f(t, x, u(t, x), (∂xuσ)(t, x)) = 0,

u(T, x) = Φ(x),
(2.1)

with L defined by

L(t,x)u(t, x) =
1

2

∑

i,j

[σσ∗]ij(t, x)∂2
xixj

u(t, x) +
∑

i

bi(t, x)∂xi
u(t, x).

Then, u(t, x) = Y t,x
t and

∀s ∈ [t, T], (Y t,x
s , Zt,x

s) = (u(s,Xt,x
s), ∂xu(s,Xt,x

s)σ(s,Xt,x
s)). (2.2)

It remains to know how to ensure that PDE (2.1) has a unique solution.

Theorem 1 (Delarue and Menozzi (2006), Theorem 2.1). Under Hypothesis 1, PDE (2.1)
admits a unique solution which belongs to C1,2

b .

3

3 Presentation of the PACV Algorithm

3.1 Description

We present the algorithm introduced by Gobet and Labart (2010) to solve standard BSDEs.
Assume that we want to solve BSDE (1.1) with X starting from x at time 0. In the following,
for the sake of clearness, we may omit the upper index (0, x) when there is no possible
confusion and use the notations X (resp. (Y, Z)) instead of X0,x (resp. (Y 0,x, Z0,x)). Then,
(2.2) gives

∀t ∈ [0, T], (Yt, Zt) = (u(t,Xt), ∂xu(t,Xt)σ(t,Xt)).

Then, solving BSDE (1.1) is equivalent to solving the semilinear PDE (2.1) on [0, T]. The
current algorithm provides a converging sequence of approximations (uk)k of the solution of
this PDE, based on Picard’s iterations combined with an adaptive Monte–Carlo method. We
need to approximate u on the whole domain [0, T] × R

d (since we want to get (Yt, Zt)0≤t≤T).
Then, we need to compute each approximation uk on a grid of points.
Let uk denote the approximation of the solution u of (2.1) at step k. If we are able to
compute an explicit solution of (1.2), the approximation of (Y, Z) at step k follows from (2.2):
(Y k

t , Z
k
t) = (uk(t,Xt), ∂xu

k(t,Xt)σ(t,Xt)), for all t ∈ [0, T]. Otherwise, we introduce the
approximation XN of X obtained with a N–time step Euler scheme:

∀s ∈ [0, T], dXN
s = b(ϕN (s), XN

ϕN (s))ds+ σ(ϕN (s), XN
ϕN (s))dWs, (3.1)

where ϕN (s) = sup{tj : tj ≤ s} is the largest discretization time not greater than s and
{0 = t0 < t1 < · · · < tN = T} is a regular subdivision of the interval [0, T]. Then, we write

(Y k
t , Z

k
t) = (uk(t,XN

t), ∂xu
k(t,XN

t)σ(t,XN
t)), for all t ∈ [0, T].

The basic idea of each iteration step is the following:

uk+1 = uk + Monte–Carlo evaluations of the error(u− uk). (3.2)

By combining Itô’s formula applied to u(s,Xt,x
s) and uk(s,XN,t,x

s) (XN,t,x denotes the
approximation of Xt,x using an Euler scheme with N time steps) between t and T and the
semilinear PDE (2.1) satisfied by u, we get that the correction term is given by

(u− uk)(t, x) = E

[

Ψ (t, x, fu,Φ,W) − ΨN
(

t, x,−(∂t + LN)uk, uk(T, .),W
)

|Gk
]

(3.3)

where

• Gk is the σ-algebra generated by the set of all random variables used to build uk. In
other words, the conditional expectation in Equation (3.3) can be seen as a standard
expectation computed only w.r.t. to the law of W , all other variables being constant.

• LN denotes the generator associated to the Euler Scheme XN , i.e.

LNu(s,XN,t,x
s) =

1

2

∑

i,j

[σσ∗]ij(ϕ(s), XN,t,x
ϕ(s))∂2

xixj
u(s,XN,t,x

s) +
∑

i

bi(ϕ(s), XN,t,x
ϕ(s))∂xi

u(s,XN,t,x
s),

4

• fv : [0, T] × R
d → R denotes the following function

fv : t, x 7−→ f(t, x, v(t, x), (∂xvσ)(t, x)),

where f is the driver of BSDE (1.1), σ is the diffusion coefficient of the SDE satisfied
by X and v : [0, T] × R

d → R is C1 w.r.t. to its second argument.

• Ψ and ΨN denote

Ψ(t, x, g1, g2,W) =

∫ T

t
g1(r,Xt,x

r (W))dr + g2(Xt,x
T (W)),

ΨN (t, x, g1, g2,W) =

∫ T

t
g1(r,XN,t,x

r (W))dr + g2(XN,t,x
T (W)),

where W denotes the standard Brownian motion appearing in (1.2) and used to simulate
XN , as given in (3.1).

Remark 2. The definition of uk+1 given by (3.2) enables to reduce the variance of the esti-
mator, since we compute by Monte-Carlo an approximation of (uk − u) (uk represents the
adaptive control variate), which tends to zero when k goes to infinity. An other way to define
uk+1 is to use only Picard’s iterations : uk+1(t, x) := E[Ψ (t, x, fuk

,Φ,W) |Gk]. In such a
case, the convergence is slower than in the case of combining Picard’s iterations and adaptive
control variate (see Gobet and Labart (2010, Remark 5.3)).

Note that Ψ and ΨN can actually be written as expectations by introducing a random
variable U uniformly distributed on [0, 1].

Ψ(t, x, g1, g2,W) = E

[

g1(t+ (T − t)U,Xt,x
t+(T −t)U (W)) + g2(Xt,x

T (W))|W
]

,

ΨN (t, x, g1, g2,W) = E

[

g1(t+ (T − t)U,XN,t,x
t+(T −t)U (W)) + g2(XN,t,x

T (W))|W
]

.

In the following, let ψN (t, x, g1, g2,W,U) denote

ψN (t, x, g1, g2,W,U) = g1(t+ (T − t)U,XN,t,x
t+(T −t)U (W)) + g2(XN,t,x

T (W)) (3.4)

such that ΨN (t, x, g1, g2,W) = E[ψN (t, x, g1, g2,W,U)|W].

Remark 3. Instead of introducing the uniformly distributed random variable U in the defi-
nition of Ψ and ΨN , we could approximate the integral by a Riemann summation. Note that
the use of a summation increases the complexity of the algorithm without any guarantee of a
better accuracy because we do not have any insight of the regularity of (∂t + LN)uk(s,XN,t,x

s).

From a practical point of view, the PDE (2.1) is solved on [0, T] × D where D ⊂ R
d is

chosen such that P(∀t ∈ [0, T], Xt ∈ D) is very close to 1.

Algorithm 1 We begin with u0 ≡ 0. Assume that an approximated solution uk of class C1,2

is built at step k. Here are the different steps to compute uk+1.

• Pick at random n points (tki , x
k
i)1≤i≤n uniformly distributed over [0, T] × D.

5

• Evaluate the Monte–Carlo correction ck at step k at the points (tki , x
k
i)1≤i≤n using M

independent simulations

ck(tki , x
k
i) =

1

M

M
∑

m=1

[

ψN
(

tki , x
k
i , fuk

+ (∂t + LN)uk,Φ − uk,Wm,k,i, Um,k,i
)]

.

• Compute the vector (uk(tki , x
k
i))1≤i≤n and deduce the vector (uk + ck)(tki , x

k
i))1≤i≤n.

• From these values, extrapolate the function uk+1 = uk + ck on [0, T] × D

uk+1(t, x) = Pk(uk + ck)(t, x), for (t, x) ∈ [0, T] × D, (3.5)

where Pk is a deterministic operator, which only uses the values of the function at the
points (tki , x

k
i)1≤i≤n to approximate the function on the whole domain [0, T] × D. The

choice of the operator Pk is discussed in Section 3.2.

3.2 Choice of the operator

The most delicate part of the PACV algorithm is how to extrapolate a function h and its
derivatives when only knowing its values at n points (ti, xi)i=1,...,n ⊂ [0, T] × D. We recall
that D is a subset of Rd, hence each xi is R

d-valued.

3.2.1 A kernel operator

In the originally published PACV Algorithm, a function h was extrapolated from the values
computed on the grid by using a kernel operator of the form

h(t, x) =
n
∑

i=1

h(ti, xi)Kt(t− ti)Kx(x− xi),

where Kt is a one dimensional kernel whereas Kx is a product of d one dimensional kernels.
Hence, evaluating the function h at a given point (t, x) required O(n× d) computations.

The convergence result established by Gobet and Labart (2010, Theorem 5.1) was based
on the properties of the operator presented in Gobet and Labart (2010, Section 4). Using
the linearity and the boundedness of the operator, they managed to prove that the errors
‖v−Pkv‖ and ‖∂xv−∂x(Pkv)‖ are bounded, which is a key step in proving the convergence of
the algorithm. At the end of their paper, they present an operator based on kernel estimators
satisfying the assumptions required to prove the convergence of the algorithm.

3.2.2 An extrapolating operator

The numerical properties of kernel operators are very sensitive to the choice of their window
parameters which are quite hard to tune for each new problem. Hence, we have tried to
use an other solution. Basically, we have used a least–square approach which consists in
extrapolating a function by solving a least square problem defined by the projection of the
original function on a countable set of functions. Assume we know the values (yi)i=1,...,n of a
function h at the points (ti, xi)i=1,...,n, the function h can be extrapolated by computing

α = arg min
α∈Rp

n
∑

i=1

∣

∣

∣

∣

∣

yi −
p
∑

l=1

αlBl(ti, xi)

∣

∣

∣

∣

∣

2

, (3.6)

6

where (Bl)l=1,...,p are some real valued functions defined on [0, T]×D. Once α is computed, we

set ĥ(t, x) =
∑p

l=1 αlBl(t, x). For the implementation, we have chosen the (Bl)l=1,...,p as a free

family of multivariate polynomials. For such a choice, ĥ is known to converge uniformly to h
when p goes to infinity if D is a compact set and h is continuous on [0, T] × D. Our algorithm
also requires to compute the first and second derivatives of h which are approximated by the
first and second derivatives of ĥ. Although the idea of approximating the derivatives of a
function by the derivatives of its approximation is not theoretically well justified, it is proved
to be very efficient in practice. We refer to Wang and Caflish (2010) for an application of
this principle to the computations of the Greeks for American options. In the following, we
denote by PACVLS this new algorithm with the extrapolating step performed by a least-
squared method.

Practical computation of the vector α In this part, we use the notation d′ = d+ 1. It
is quite easy to see from Equation (3.6) that α is the solution of a linear system. The value
α is a critical point of the criteria to be minimized in Equation (3.6) and the vector α solves

p
∑

l=1

αl

n
∑

i=1

Bl(ti, xi)Bj(ti, xi) =
n
∑

i=1

yiBj(ti, xi) for j = 1, . . . , p, i.e.

Aα =
n
∑

i=1

yiB(ti, xi) (3.7)

where the p × p matrix A = (
∑n

i=1Bl(ti, xi)Bj(ti, xi))l,j=1,...,p and the vector
B = (B1, . . . , Bp)∗. The matrix A is symmetric and positive definite but often
ill-conditioned, so we cannot rely on the Cholesky factorization to solve the linear system
but instead we have to use some more elaborate techniques such as a QR factorization with
pivoting or a singular value decomposition approach which can better handle an almost
rank deficient matrix. In our implementation of Algorithm 1, we rely on the routine dgelsy
from Lapack Anderson et al. (1999), which solves a linear system in the least square sense
by using some QR decomposition with pivoting combined with some orthogonalization
techniques. Fortunately, the ill-conditioning of the matrix A can be improved by centering
and normalizing the polynomials (Bl)l such that the domain [0, T] × D is actually mapped
to [−1, 1]d

′

. This reduction improves the numerical behaviour of the polynomial chaos
decomposition by a great deal.

The construction of the matrix A has a complexity of O(np2d′). The computation of α
(Equation 4.3) requires to solve a linear system of size p× p which requires O(p3) operations.
The overall complexity for computing α is then O(p3 + np2d′).

Choice of the (Bl)l. The function uk we want to extrapolate at each step of the algorithm
is proved to be quite regular (at least C1,2), so using multivariate polynomials for the Bl

should provide a satisfactory approximation. Actually, we used polynomials with d′ variates,
which are built using tensor products of univariate polynomials and if one wants the vector
space Vect{Bl, l = 1, . . . , p} to be the space of d′−variate polynomials with global degree

less or equal than η, then p has to be equal to the binomial coefficient
(d′+η

η

)

. For instance,

for η = 3 and d′ = 6 we find p = 84. This little example shows that p cannot be fixed by
specifying the maximum global degree of the polynomials Bl without leading to an explosion

7

Nb variates degree q size of the basis reduction factor

3 3 1 20 1
3 3 0.8 13 1.54
3 5 1 56 1
3 5 0.8 35 1.6
3 5 0.6 25 2.24
5 3 1 56 1
5 3 0.8 26 2.15
5 3 0.6 16 3.5
5 5 1 252 1
5 5 0.9 131 1.92
5 5 0.8 96 2.63
5 5 0.6 56 4.5
8 3 1 165 1
8 3 0.8 53 3.11
8 3 0.6 25 6.6
8 5 1 1287 1
8 5 0.9 503 2.55
8 5 0.8 265 4.85

Table 1: Sizes of several hyperbolic bases

of the computational cost, we therefore had to find an other approach. To cope with the curse
of dimensionality, we studied different strategies for truncating polynomial chaos expansions.
We refer the reader to Chapter 4 of Blatman (2009) for a detailed review on the topic. From
a computational point of view, we could not afford the use of adaptive sparse polynomial
families because the construction of the family is inevitably sequential and it would have
been detrimental for the speed-up of our parallel algorithm. Therefore, we decided to use
sparse polynomial chaos approximation based on an hyperbolic set of indices as introduced
by Blatman and Sudret (2009).

A canonical polynomial with d′ variates can be defined by a multi-index ν ∈ N
d′

— νi being
the degree of the polynomial with respect to the variate i. Truncating a polynomial chaos
expansion by keeping only the polynomials with total degree not greater than η corresponds
to the set of multi-indices: {ν ∈ N

d′

:
∑d′

i=1 νi ≤ η}. The idea of hyperbolic sets of indices is
to consider the pseudo q−norm of the multi-index ν with q ≤ 1











ν ∈ N
d′

:





d′

∑

i=1

νq
i





1/q

≤ η











. (3.8)

Note that choosing q = 1 gives the full family of polynomials with total degree not greater
than η. The effect of introducing this pseudo-norm is to favor low-order interactions : this
approach tends to first capture the main effects and after add some interactions with a low
degree. Decreasing q leads to a sparser representation, therefore less precise but also faster to
compute, which allows for considering larger total degrees while keeping the computational
time reasonable.

8

4 Parallel approach

In this part, we present a parallel version of the PACVLS algorithm, which is far from be-
ing embarrassingly parallel as a crude Monte–Carlo algorithm. We explain the difficulties
encountered when parallelizing the algorithm and how we managed to solve them.

4.1 Detailed presentation of the PACVLS algorithm

Here are the notations we use in the algorithm.

• n: number of points of the grid

• k: index of current Picard’s iteration

• uk = (uk(tki , x
k
i))1≤i≤n ∈ R

n

• ck = (ck(tki , x
k
i))1≤i≤n ∈ R

n

• Kit: number of iterations of the algorithm

• M : number of Monte–Carlo samples

• N : number of time steps used for the discretization of X

• p: number of functions Bl used in the extrapolating operator. This is not a parameter
of the algorithm on its own as it is determined by fixing η and q (the maximum total
degree and the parameter of the hyperbolic multi-index set) but the parameter p is of
great interest when studying the complexity of the algorithm.

• (Bl)1≤l≤p is a family of multivariate polynomials used for extrapolating functions from
a finite number of values.

• αk ∈ R
p is the vector of the weights of the polynomial chaos decomposition of uk.

• d′ = d+ 1 is the number of variates of the polynomials Bl.

4.2 Complexity of the algorithm

In this section, we study in details the different parts of Algorithm 1 to determine their
complexities. Before diving into the algorithm, we would like to briefly look at the evaluations
of the function uk and its derivatives. We recall that

uk(t, x) =
p
∑

l=1

α
k
l Bl(t, x)

where the Bl(t, x) are of the form tβl,0
∏d

i=1 xi
βl,i and the βl,i are some integers. Then the

computational time for the evaluation of uk(t, x) is proportional to p × d′. The first and
second derivatives of uk write

∇xu
k(t, x) =

p
∑

l=1

α
k
l ∇xBl(t, x),

∇2
xu

k(t, x) =
p
∑

l=1

α
k
l ∇2

xBl(t, x),

9

Algorithm 1 the PACVLS algorithm

1: u0 ≡ 0, α0 ≡ 0.
2: for k = 0 : Kit − 1 do
3: Pick at random n points (tki , x

k
i)1≤i≤n.

4: for i = 1 : n do
5: for m = 1 : M do
6: Let W be a Brownian motion with values in R

d discretized
on a time grid with N time steps.

7: Let U ∼ U[0,1].
8: Compute

ai,k
m = ψN

(

tki , x
k
i , fuk + (∂t + LN)uk,Φ − uk,Wm, Um

)

.

/∗ We recall that uk(t, x) =
∑p

l=1 α
k
l Bl(t, x) ∗/

9: end for

c
k
i =

1

M

M
∑

m=1

ai,k
m (4.1)

u
k
i =

p
∑

l=1

α
k
l Bl(t

k
i , x

k
i) (4.2)

10: end for
11: Compute

α
k+1 = arg min

α∈Rp

n
∑

i=1

∣

∣

∣

∣

∣

(uk
i + c

k
i) −

p
∑

l=1

αlBl(t
k
i , x

k
i)

∣

∣

∣

∣

∣

2

. (4.3)

12: end for

and the evaluation of ∇xBl(t, x) (resp. ∇2
xBl(t, x)) has a computational cost proportional to

d2 (resp. d3).

• The computation (at line 6) of the discretization of the d−dimensional Brownian motion
with N time steps requires O(Nd) computations.

• The computation of each ak,i
m (line 8) requires the evaluation of the function uk and its

first and second derivatives which has a cost O(pd3). Then, the computation of ck
i for

given i and k has a complexity of O(Mpd3).

• The computation of α (Equation 4.3) requires O(p3 + np2d) operations as explained in
Section 3.2.2.

The overall complexity of Algorithm 1 is O(KitnM(pd3 + dN) +Kit(p
2nd+ p3)).

To parallelize an algorithm, the first idea coming to mind is to find loops with independent
iterations which could be spread out on different processors with very few communications.
The iterations of the outer loop (line 2) are linked from one step to the following, consequently
there is no hope parallelizing this loop. On the contrary, the iterations over i (loop line 4)

10

are independent as are the ones over m (loop line 5), so we have at hand two candidates to
implement parallelizing. We could even think of a 2 stage parallelism : first parallelizing the
loop over i over a small set of processors and inside this first level parallelizing the loop over
m. Actually, M is not large enough for the parallelization of the loop over m to be efficient
(see Section 3.2). It turns out to be far more efficient to parallelize the loop over i as each
iteration of the loop requires a significant amount of work.

4.3 Description of the parallel part

4.3.1 Parallel topology

As we have just explained, we have decided to parallelize the loop over i (line 4 in Algorithm 1).
We have used a Master Slave approach. In the following, we assume to have P + 1 processors
at hand with n > P . We reproduce the following scheme at each step of the algorithm:

1. Send to each of the P slave processors the solution αk computed at the previous step
of the algorithm.

2. Spread the computation of the vector ck among the P slave processors.

3. Get from all the slave processors their contributions to the computation of ck and
compute αk+1. This part is done by the master process.

Note that at the end of every iteration, ie. after the computation the vector α, all the
processors have to be synchronised, which is obviously a bottle neck of our approach but also
an intrinsic characteristic of the mathematical problem. Now, we make precise how we have
implemented step 2 of the above scheme

Load–balancing. At step k, the computation of the vector ck requires to run a Monte–
Carlo computation at each point of the grid (tki , x

k
i)1≤i≤n. The burning issue is to know how

to distribute these computations among the P slave processes. Several strategies can be used
to do so, we have decided to concentrate on two approaches: the first one is fully dynamic
while the second is purely static.

• Dynamic approach. At iteration k, the master assigns slave i the computation of
the correction term (ck

i) for all 1 ≤ i ≤ P . As soon as a slave process has finished its
computation, it sends the result back and the master process assigns it the computa-
tion of the correction ck at an other point of the grid. The process goes on until the
correction has been computed at all points. In this approach, the approximate number
of communications between the master and a slave process is ⌊n/P ⌋ + 1.

• Static approach. Before starting any computations, assign to each process a block of
points at which the corrections ck should be computed and send each slave process the
corresponding data all at once. This way, at each iteration k, only two communications
between the master and a slave process have to be initialised : one at the beginning to
send the data and one at the end to get the result back.

The performances of these two strategies are compared in details in Section 6.3.

11

Passing Messages. Considering the wide range of data to be sent and the intensive use
of complex structures, the most natural way to pass these objects was to rely on the packing
mechanism of MPI. Moreover, packing enables to build a message composed of objects of
different types, which can therefore be passed in a single message. The numerical library we
are using in the code (see Section 4.3.3) already has a MPI binding which makes the packing
mechanism and message passing almost transparent.

4.3.2 Random numbers in a parallel environment

One of the basic problem when solving a probabilistic problem in parallel computing is the
generation of random numbers. Random number generators are usually devised for sequential
use only and special care should be taken in parallel environments to ensure that the sequences
of random numbers generated on each processor are independent. We would like to have
minimal communications between the different random number generators, ideally after the
initialisation process, each generator should live independently of the others.

There are basically two strategies for that : either to split a unique stream in substream
or to create independent streams.

1. Splitting a sequence of random numbers across several processors can only be efficiently
implemented if the generator has some splitting facilities such that there is no need
to draw all the samples prior to any computations. We refer to L’Ecuyer and Côté
(1991); L’Ecuyer et al. (2002) for a presentation of a generator with splitting facilities.
To efficiently split the sequence, one should know in advance the number of samples
needed by each processor or at least an upper bound of it. To encounter this problem,
the splitting could be made in substreams by jumping ahead of P steps at each call to the
random procedure if P is the number of processors involved. This way, each processor
uses a sub-sequence of the initial random number sequence rather than a contiguous
part of it. However, as noted by Entacher et al. (1999), long range correlations in the
original sequence can become short range correlations between different processors when
using substreams.

Actually, the best way to implement splitting is to use a generator with a huge period
such as the Mersenne Twister (its period is 219937 −1) and divide the period by a million
or so if we think we will not need more than a million independent substreams. Doing
so, we come up with substreams which still have an impressive length, in the case of
the Mersenne Twister each substream is still about 219917 long.

2. A totally different approach is to find generators which can be easily parametrised
and to compute sets of parameters ensuring the statistical independence of the related
generators. Several generators offer such a facility such as the ones included in the
SPRNG package (see Mascagni (1997) for a detailed presentation of the generators
implemented in this package) or the dynamically created Mersenne Twister (DCMT in
short), see Matsumoto and Nishimura (2000).

For our experiments, we have decided to use the DCMT. This generator has a sufficiently
long period (2521 for the version we used) and we can create at most 216 = 65536 independent
generators with this period which is definitely enough for our needs. Moreover, the dynamic
creation of the generators follows a deterministic process (if we use the same seeds) which
makes it reproducible.

12

4.3.3 The library used for the implementation

Our code has been implemented in C using the PNL library (see Lelong (2007-2011)). This
is a scientific library available under the Lesser General Public Licence and it offers various
facilities for solving mathematical problems and more recently some MPI bindings have been
added to easily manipulate the different objects available in PNL. In our problem, we needed
to manipulate matrices and vectors and pass them from the master process to the slave
processes and decided to use the packing facilities offered by PNL through its MPI binding.
The technical part was not only message passing but also random number generation as
we already mentioned above and PNL offers many functions to generate random vectors or
matrices using several random number generators among which the DCMT.

Besides message passing, the algorithm also requires many other facilities such as multi-
variate polynomial chaos decomposition which is part of the library. For the moment, three
families of polynomials (Canonical, Hermite and Tchebichev polynomials) are implemented
along with very efficient mechanism to compute their first and second derivatives. The im-
plementation tries to make the most of code factorization to avoid recomputing common
quantities several times. The polynomial chaos decomposition toolbox is quite flexible and
offers a reduction facility such as described in Section 3.2.2 which is completely transparent
from the user’s side. To face the curse of dimensionality, we used sparse polynomial families
based on an hyperbolic set of indices.

5 Numerical experiments

In this section, we study the convergence of the PACVLS Algorithm and test its parallel
version in high dimension. To do so, we compare our results with benchmarks ensuing from
financial problems. Then, we apply the parallel version of the PACVLS Algorithm to price
and hedge European options. We consider the case of the Black-Scholes model with a linear
driver (through the pricing of European options in a standard case) and with a non linear
driver (through the pricing of European options with a borrowing rate higher than the bond
rate).

5.1 Framework

Consider a financial market with a risk-free asset satisfying dS0
t = rS0

t dt and d risky assets,
with prices S1

t , · · · , Sd
t at time t. We assume that (St) satisfies the following stochastic

differential equation:

dSi
t = Si

t



µidt+
d
∑

j=1

ΣijdW j
t



 , i = 1, · · · , d (5.1)

on a finite interval [0, T], where T is the maturity of the option, µi represents the trend of Si

and (Σij)uj is the matrix of volatility which embeds both the correlation between the assets
and the volatilities of each of them. We denote by St,x

s a continuous version of the flow of the
stochastic differential Equation (5.1). St,x

t = x almost surely.
We are interested in computing the price of a European option with payoff Φ(ST), where

Φ : Rd 7−→ R+ is a continuous function and S follows (5.1).

13

Linear driver We denote by Vt the option price and by πt the amount of the wealth Vt

invested in the ith stock at time t. From El Karoui et al. (1997), we know that the couple
(V, π) satisfies

−dVt = rVtdt+ π∗
t Σθdt+ π∗

t ΣdWt, VT = Φ(ST),

where θ is the solution (supposed to be unique) of the linear system µ − r1 = Σθ where 1
is a vector whose elements are all 1. Then, (V, π) is solution of a standard BSDE (1.1). Y
corresponds to V , Z corresponds to π∗

t Σ and the driver f(t, x, y, z) := −ry − zθ.

Non Linear driver Let us now consider the hedging of claims with a borrowing rate higher
than the bond rate. We refer to El Karoui et al. (1997) for this example of constrained
portfolio. We consider the case where the investor is allowed to borrow money at time t at an
interest rate R > r, where r is the constant bond rate. We borrow and invest money in the
bond at the same time, but we restrict ourselves to policies in which the amount borrowed at
time t is equal to (Vt −

∑d
i=1 π

i
t)

−. The strategy (wealth, portfolio) (V, π) satisfies

dVt = rVtdt+ π∗
t Σθdt+ π∗

t ΣdWt − (R− r)

(

Vt −
d
∑

i=1

πi
t

)−

dt.

Finding the strategy (V, π) consists in solving BSDE (1.1) with the nonlinear driver
f(t, x, y, z) := −ry − zθ + (R− r)(y −

∑d
i=1(zΣ−1)i)

−.

5.2 Numerical results

The accuracy tests have been achieved using the facilities offered by the University of Savoie
computing center MUST. We consider the multi dimensional Black Scholes model defined by
Equation (5.1) We introduce the volatility vector σ and assume that the volatility matrix Σ
satisfies Σij = σiLij where the matrix L satisfies LL∗ = (ρ1{i6=j} + 1{i=j})1≤i,j≤d.

Since we know how to simulate the law of (St, ST) exactly for t < T , there is no use to
discretize equation (5.1) using the Euler scheme. In this Section N = 2.

We want to study the numerical accuracy of our algorithm and to do that we consider
the case of European basket options for which we can compute benchmark prices by using
very efficient Monte-Carlo methods, see Jourdain and Lelong (2009) for instance for an
efficient high dimensional adaptive Monte-Carlo method. In the following paragraphs, we
compute using our algorithm an approximation of Y at time t = 0; this value is then
compared to the benchmark prices.

Standard European put basket option (linear driver). Consider the following put
basket option with maturity T

(

K −
1

d

d
∑

i=1

Si
T

)

+

(5.2)

in the standard case, i.e. when the borrowing rate equals the bond one.

Figure 1 presents the influence of the parameters M and n. The results obtained for
M = 50, 000 (curves (+) and (∗)) are very close to the true price, for both values of n.

14

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M=5000 n=1000
M=50000 n=1000
M=50000 n=2000

Figure 1: Convergence of the algorithm for a European put basket option with d = 5, ρ = 0.1, T = 1,

S0 = 100, σi = 0.2, µi = 0.06, r = 0.02 K = 100, η = 3, q = 1. The benchmark price computed with

a high precision Monte–Carlo method yields 3.2764 with a confidence interval of (3.2645, 3.2882).

Moreover we can see that the algorithm stabilizes after very few iterations (less than 5). The
result obtained for M = 5, 000 (curve (×)) does not seem to converge very well.

To conclude, we notice that the larger the number of Monte–Carlo simulations is, the
smoother the convergence is. The influence of n does not seem so crucial.

Standard European call basket option (linear driver). Consider the following call
basket option with maturity T

(

1

d

d
∑

i=1

Si
T −K

)

+

(5.3)

in the standard case, i.e. when the borrowing rate equals the bond one. Figure 2 represents
the evolution of the approximated price of a European call option in dimension 8 for M = 5000
(curve (×)) and for M = 50, 000 (curve (+)). As for the pricing of the put basket option
in dimension 5, one notices that the curve (+) converges very fast toward the reference
price. This curve corresponds to M = 50, 000 and n = 1, 000. Curve (×) (M=5, 000)
oscillates around the reference price. As before, one notices that the larger M is, the faster
the convergence is, even for small values of n.

European put basket option with higher borrowing rate (non linear driver). Con-
sider the put basket option with payoff given by (5.2) with maturity T when the borrow-
ing rate differs from the bond one. In such a case, the driver is non linear and satisfies

15

5.6

5.7

5.8

5.9

6

6.1

6.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M=5000 n=1000
M=50000 n=1000

Figure 2: Convergence of the price of a European call basket option with d = 8, ρ = 0.3, T = 1,

S0 = 100, σi = 0.2, µi = 0.06, r = 0.02, K = 100, η = 3, q = 1. The benchmark price computed with

a high precision Monte–Carlo method yields 5.9726 with a confidence interval of (5.9543, 5.5.9909).

f(t, x, y, z) := −ry − zθ + (R − r)(y −
∑d

i=1(zΣ−1)i)
−. In this case we do not have any

reference price, we only study the convergence of the algorithm.
Figure 3 illustrates the impact of the sparsity of the polynomial basis on the convergence

of the algorithm. The fastest convergence is achieved for the curve (+), i.e. when η = 3 and
q = 1. The algorithm stabilizes near 1.61 after very few iterations.

• Influence of η : for a fixed value of q, the sparsity increases when η decreases, so the
basis with η = 3, q = 0.8 is more sparse than the one with η = 5, q = 0.8. When
comparing curves (∗) (η = 5) and (×) (η = 3) for fixed values of q (= 0.8), we can see
that for η = 3 (curve (×)) the algorithm converges to 1.4, whereas for η = 5 (curve (∗))
the algorithm converges to 1.57. The higher is η, the better is the convergence.

• Influence of q : for fixed values of η (= 5), we compare curves (∗) (q = 0.8) and (◦)
(q = 0.9). We can see that for q = 0.9 (curve (◦)) the algorithm converges nearer to
1.61 than for q = 0.8 (curve (∗)).

Actually, when the polynomial basis becomes too sparse, the approximation of the solution
computed at each step of the algorithm incorporates a significant amount of noise which has
a similar effect to reducing the number of Monte–Carlo simulations. This is precisely what
we observe on Figure 4: the curves (+) (M = 30, 000, n = 2, 000, η = 5, q = 0.8) and (∗)
(M = 5, 000, n = 1, 000, η = 5, q = 0.9) have very similar behaviours although curve (+) has
a much larger number of simulations.

16

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5

eta=3 q=0.8
eta=3 q=1

eta=5 q=0.8
eta=5 q=0.9

Figure 3: Convergence of the price of a European put basket option with d = 5, ρ = 0.1, T = 1,

S0 = 100, σi = 0.2, µi = 0.05, R = 0.1, r = 0.02 K = 95, M = 30, 000 and n = 2000.

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5

M=30000 n=2000 eta=3 q=1
M=30000 n=2000 eta=5 q=0.8

M=5000 n=1000 eta=5 q=0.9

Figure 4: Convergence of the price of a European put basket option with d = 5, ρ = 0.1, T = 1,

S0 = 100, σi = 0.2, µi = 0.05, R = 0.1, r = 0.02, K = 95.

17

Discussion on the influence of the various parameters. We have noticed in our experi-
ments that the number of Monte-Carlo samples plays a crucial role in the convergence whereas
this parameter did not prove so central in the convergence rate obtained by Gobet and Labart
(2010). From our point of view, this behaviour is closely related to the choice of the interpo-
lating operator. In this article, we have chosen to consider a least-square polynomial approx-
imation based on the reference values computed at the point (tki , x

k
i) using a Monte-Carlo

method. Hence, a weak accuracy on these values can lead to a fairly different polynomial
approximation. In a way, the polynomial approximation tends to incorporate the noise on the
original data, which explains why the numerical convergences illustrated in Figures 2 and 4
depend so much on the number of Monte-Carlo samples M . This phenomenon is even empha-
sized for the approximation of the derivatives which definitely drive the convergence of the
algorithm — at least in the non linear case. To improve the computation of the derivatives, on
needs to consider polynomials with higher degrees but the global degree dramatically impacts
the computational cost of the algorithm, hence the use of sparse bases.

6 Performance analysis

6.1 The cluster

All our performance tests have been carried out on a PC cluster from INRIA Paris–
Rocquencourt with 316 cores. Each node has two processors with six cores per processor:
INTEL Xeon X5650 2.67 GHz. Inside one node, all the cores share 48Gb of RAM. All the
nodes are interconnected using a Gigabit Ethernet network. In none of the experiments, did
we make the most of the multi core architecture since our code is single threaded. Hence, in
our implementation a multi core processor is actually seen as many single core processors.

6.2 The performance measurements

The performance analysis of the algorithm has been carried out in the Black–Scholes model
in dimensions 5 and 8 in the non linear case, ie. with a borrowing rate different from the
bond rate and the trend is also chosen different from the bond rate.

Definition 4 (Efficiency). The efficiency of a parallel algorithm using n cores is defined by

E(n) =
sequential computational time

n × computational time for n cores
(6.1)

A parallel code is said to be scalable when its efficiency remains close to 1.
We summarize in Tables 2 and 3 all the computational time measures we have performed

on our algorithm. The computational times are expressed in seconds. We show on Figures 5
and 6 our efficiency measures as cross marks “+”. One may wonder why the efficiency graphs
are so irregular; there are two reasons for that. First, since the algorithm is random, the
computational time may vary slightly between two runs. Second, adding one more processor
only decreases the computation time if it enables to reduce the amount of computations of
the most loaded processors and this is not so frequent. Let us take an example : assume we
have 2, 000 correction terms to compute and 100 slave processors, each of them will compute
20 correction terms; but if instead we have 101 slave processors, 20 slave processors will
compute 19 correction terms whereas the 81 other slave processors will still have to compute

18

20 correction terms, hence the time to wait for the result will be the same for 100 and 101
processors. We need at least 106 processors to eventually reduce the computational time; in
this case, each slave processor will compute at most 19 correction terms.

Therefore, we thought that an average efficiency function could be more meaningful and
we decided to plot the linear regression of the efficiency measures as plain lines on our graphs
(see Figures 5 and 6).

Nb proc. Time Efficiency

1 12223 0.977647
2 5988 0.997727
3 3999 0.995902
7 1711 0.997226
15 810 0.983462
23 531 0.977149
31 402 0.958182
47 273 0.929001
63 212 0.891802
95 153 0.817773
127 125 0.751972
135 126 0.697084
143 119 0.701623
167 114 0.624322
179 114 0.584023
199 118 0.508844
207 109 0.527103
215 111 0.497231
223 113 0.470531
271 113 0.389894
279 115 0.371787
287 116 0.357697
295 118 0.341882
303 120 0.327936
311 122 0.314424

Nb proc. Time Efficiency

1 11954 0.99961
2 6010 0.994146
3 4030 0.988221
7 1752 0.974141
15 806 0.988106
23 551 0.941649
31 405 0.950102
47 271 0.937632
63 199 0.94874
95 139 0.89962
127 104 0.896829
135 101 0.871769
143 90 0.92315
167 79 0.902976
179 82 0.811206
199 75 0.792396
207 67 0.849704
215 66 0.83697
223 66 0.811259
271 57 0.772816
279 54 0.783046
287 55 0.753074
295 54 0.738246
303 54 0.72895
311 53 0.714815

Table 2: Efficiency in dimension 5 using the dynamic (resp. static) load balancing strategy
in the left (resp. right) table

A quick comparison of Figures 5 and 6 shows that the scalability of our approach becomes
better when the dimension of the problem increases. We expected such a behaviour as the
computational cost increases much faster that the communication cost. Actually, the dynamic
load–balancing approach is far more sensitive to the dimension of the problem than the static
one: from our experiments, the static approach always outperforms the dynamic one. We
refer to Section 6.3 for a detailed analysis of the two strategies.

6.3 Load–balancing

From a theoretical point of view, the dynamic load–balancing ensures that the computations
are better shared among the nodes such that all the nodes ideally stop working at the same

19

�� �� ��� ��� ��� ��� ���

���

���

��	

���

��A

���

��B

���

�
�����

�
�

�

�

�

��

�
�

�
�
�
�

������

(a) dynamic load–balancing

�� �� ��� ��� ��� ��� ���

���	

���A

���B

����

��A�

��A	

��AA
���
�
�

�
�

�
�

� �

�

�

�

�

�

�
�

�

�
�

�
�
�
�

(b) static load–balancing

Figure 5: Efficiency ratios in dimension 5

�� �� ��� ��� ��� ��� ���

����

����

����

����

����

�
��
�

��

�
� �

�
���

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(a) dynamic load–balancing

�� �� ��� ��� ��� ��� ���

����

���	

���A

��A�

��AB

��A�

��A	

��
�
�

�

�
� �

�

�

�
�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

��

�

�

�

�

�

(b) static load–balancing

Figure 6: Efficiency ratios in dimension 8

time. This dynamic approach should show better results than the static one, but one has to
take into account the extra communications induced by the dynamism. Actually, we can see
from Figures 5 and 6 that our experiments contradict this theoretical intuition and we will
try to understand why. To do so, we first analyze the static approach and study how we could
improve it.

Static approach. The idea of the static approach is to equally spread the computations
of the n correction terms (ck

i)1≤i≤n. Practically, there is hardly no chance that the number
of processors P divides n; hence, one has to be careful of how to treat the remainder since
the computation cost of one correction term is far from negligible. Therefore, the remaining
computations (n− ⌊n/P ⌋ ×P correction terms to be computed) are uniformly shared among
all the processors, which means that some processors compute ⌊n/P ⌋ + 1 correction terms
whereas the others only compute ⌊n/P ⌋ terms. Obviously, in this approach we assume that

20

Nb proc. Time Efficiency

1 145566 0.999546
2 73590 0.988585
3 49060 0.98857
7 20810 0.998816
15 9998 0.970118
23 6518 0.970422
31 4730 0.992248
47 3145 0.984333
63 2342 0.985792
95 1628 0.940501
127 1207 0.948543
135 1130 0.953726
143 1070 0.950526
151 1057 0.911502
159 989 0.924526
167 934 0.932029
175 920 0.902949
183 851 0.93369
191 851 0.894721
199 852 0.857354
207 783 0.896722
215 785 0.861675
223 718 0.907823
231 718 0.876125
239 720 0.844622
247 720 0.817644
255 652 0.874123
263 653 0.846656
271 654 0.820905
279 655 0.795728
287 593 0.853546
295 590 0.835287
303 591 0.811958
311 592 0.789684

Nb proc. Time Efficiency

1 148655 0.978776
2 74355 0.978414
3 49817 0.973548
7 21465 0.968314
15 10183 0.952539
23 6580 0.961336
31 4903 0.95723
47 3243 0.954376
63 2438 0.946965
95 1684 0.909315
127 1231 0.93038
135 1164 0.925512
143 1087 0.935746
151 1068 0.901408
159 995 0.919115
167 929 0.937534
175 915 0.907674
183 859 0.92505
191 866 0.879222
199 828 0.882184
207 788 0.890912
215 783 0.863829
223 697 0.935231
231 691 0.911311
239 694 0.876406
247 702 0.838182
255 629 0.906539
263 635 0.870393
271 617 0.869531
279 627 0.830648
287 550 0.920515
295 550 0.896195
303 549 0.873166
311 549 0.851524

Table 3: Efficiency in dimension 8 using the dynamic (resp. static) load balancing strategy
in the left (resp. right) table

all the correction terms require the same computational effort, which is a realistic assumption
at least at large scale. This computation effort may vary depending on the (ti)i≤i≤n when
using the Euler scheme; however if we assume that the number of ti is large enough, then the
strong law of large numbers guaranties that the computational effort should be roughly the
same for all the processors.

21

Dynamic approach. In the dynamic load–balancing, at the beginning of every iteration,
the master process entrusts every slave process with the computation of one correction term;
this means that the master has to communicate with each slave. Then, as soon as a slave
finishes its computation, it sends the result back to the master process which in turn sends it
back a new correction term to be computed and the process goes on until all the correction
terms are computed. Obviously, this way of balancing computations looks smart but it creates
far more communications than in the static approach. This is actually confirmed by our
experiments in which the static approach is faster and shows a better scalability. The dynamic
approach requires 2n communications between the master and a slave process whereas the
static one requires only 2P communications. To improve the scalability of the dynamic
approach, we could try to use a divide to conquer approach: we could group corrections
and consider several master processes, each of them being in charge of balancing a bunch of
computations. This would significantly reduce the overhead between the computations of two
correction terms.

7 Conclusion

In this work, we have presented a parallel algorithm for solving BSDE in high dimensions and
applied it to the pricing and hedging of European options with a bond rate different from the
borrow rate. Solving a BSDE at large scale remains a computationally demanding problem
for which very few scalable implementations have been studied. Our parallel algorithm shows
an encouraging scalability in high dimensions. To improve the efficiency of the algorithm, we
could try to refactor the interpolation step to make it more accurate and less sensitive to the
curse of dimensionality. The interpolation step is solved sequentially for the moment and a
first improvement could be to use a multi–thread solver for this part.

References

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society
for Industrial and Applied Mathematics, Philadelphia, PA, third edition, 1999. ISBN 0-
89871-447-8 (paperback).

V. Bally and G. Pagès. Error analysis of the optimal quantization algorithm for obstacle
problems. Stochastic Processes and their Applications, 106(1):1–40, 2003.

C. Bender and R. Denk. A forward scheme for backward SDEs. Stochastic Processes and
their Applications, 117(12):1793–1812, 2007.

G. Blatman. Adaptive sparse polynomial chaos expansions for uncertainty propagation and
sensitivity analysis. PhD thesis, Université Blaise Pascal - Clermont II, 2009.

G. Blatman and B. Sudret. Anisotropic parcimonious polynomial chaos expansions based on
the sparsity-f-effects principle. In Proc ICOSSAR’09, International Conference in Struc-
tural Safety and Relability, 2009.

22

B. Bouchard and N. Touzi. Discrete time approximation and Monte Carlo simulation of
backward stochastic differential equations. Stochastic Processes and their Applications,
111:175–206, 2004.

F. Delarue and S. Menozzi. A forward-backward stochastic algorithm for quasi-linear PDEs.
Annals of Applied Probability, 16(1):140–184, 2006.

N. El Karoui, S. Peng, and M. Quenez. Backward Stochastic Differential Equations in Finance.
Mathematical Finance, 7(1):1–71, 1997.

K. Entacher, A. Uhl, and S. Wegenkittl. Parallel random number generation: Long-range
correlations among multiple processors, 1999.

E. Gobet and C. Labart. Solving BSDE with adaptive control variate. SIAM Journal of Num.
Anal., 48(1), 2010.

E. Gobet, J. Lemor, and X. Warin. A regression-based Monte Carlo method to solve backward
stochastic differential equations. Annals of Applied Probability, 15(3):2172–2202, 2005.

B. Jourdain and J. Lelong. Robust adaptive importance sampling for normal random vectors.
Annals of Applied Probability, 19(5):1687–1718, 2009.

P. L’Ecuyer and S. Côté. Implementing a random number package with splitting facilities.
ACM Trans. Math. Softw., 17(1):98–111, 1991. ISSN 0098-3500. doi: http://doi.acm.org/
10.1145/103147.103158.

P. L’Ecuyer, R. Simard, E. J. Chen, and W. D. Kelton. An object-oriented random-number
package with many long streams and substreams. Oper. Res., 50(6):1073–1075, 2002. ISSN
0030-364X. doi: http://dx.doi.org/10.1287/opre.50.6.1073.358.

J. Lelong. Pnl. http://www-ljk.imag.fr/membres/Jerome.Lelong/soft/pnl/index.html,
2007-2011.

J. Ma, P. Protter, and J. Yong. Solving forward backward stochastic differential equations
explicitly-a four step scheme. Probability Theory Related Fields, 98(1):339–359, 1994.

M. Mascagni. Some methods of parallel pseudorandom number generation. In in Proceed-
ings of the IMA Workshop on Algorithms for Parallel Processing, pages 277–288. Springer
Verlag, 1997. available at http://www.cs.fsu.edu/~mascagni/papers/RCEV1997.pdf.

M. Matsumoto and T. Nishimura. Monte Carlo and Quasi-Monte Carlo Methods 1998, chap-
ter Dynamic Creation of Pseudorandom Number Generator. Springer, 2000. available at
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/DC/dgene.pdf.

E. Pardoux and S. Peng. Backward Stochastic Differential Equations and Quasilinear
Parabolic Partial Differential Equations. Lecture Notes in CIS, 176(1):200–217, 1992.

Y. Wang and R. Caflish. Pricing and hedging american-style options: a simple simulation-
based approach. The Journal of Computational Finance, 13(3), 2010.

23

http://www-ljk.imag.fr/membres/Jerome.Lelong/soft/pnl/index.html
http://www.cs.fsu.edu/~mascagni/papers/RCEV1997.pdf
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/DC/dgene.pdf

