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A search for extensible low-WAFOM point sets

Shin Harase

Abstract. Matsumoto, Saito, and Matoba recently proposed the Walstefigf merit (WAFOM),
which is a computable criterion for quasi-Monte Carlo paets using digital nets. Several
algorithms have been proposed for finding low-WAFOM poingsé the existing algorithms,
the number of points is fixed in advance, but extensible etd are preferred in some appli-
cations. In this paper, we propose a random search algofihrextensible low-WAFOM
point sets. For this, we introduce a method that uses loo&bfes to compute WAFOM
faster. Numerical results show that our extensible low-\@#WF point sets are comparable
with Niederreiter—Xing sequences for some low-dimendiand smooth test functions.

Keywords. Quasi-Monte Carlo method; Numerical integration; Digitelt; Walsh figure of
merit.

AMS classification.65C05, 65D30, 65C10, 11K45.

1. Introduction

For a Riemann integrable functidn [0,1)° — IR, we consider the integrel, ; s f (x)dXx
and its approximation by quasi-Monte Carlo integration,
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where the point seP := {Xo,...,Xn-1} C [0,1)% is deterministically chosen and
denotes the cardinality d?. Several criteria foP have been proposed, such as the
t-value of a digital net related to the star discrepancy [6/183[26] and dyadic di-
aphony[12]. Recently, Matsumoto, Saito, and Matdba [16ppsed théValsh figure

of merit(WAFOM), which is a computable criterion for digital né®s This criterion is
based on Dick’s error bound to ensure higher-order convergéhan classical quasi-
Monte Carlo sets for very smooth functions [3[ 4, 7] and rezg®(nsN) arithmetic
operations, whera is the number of digits of precision. Thus, WAFOM is expected
to be applied to a wide range of design and assessmelt fenerally speaking, ran-
dom search is easier than a mathematical construction.dimgaoheory, low-density
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parity-check (LDPC) codes, which are based on random sehesie been signifi-
cantly successful. Matsumoto et al. [16] proposeduential generatorsvhich are a
special subclass of digital nets and only req@@N) steps for each computation of
WAFOM, and obtained low-WAFOM point sets by random seardhisiclass. Harase
[11]] proposed a search algorithm for point sets whegelue and WAFOM are both
small by using random linear scrambling [14] so as to be &ffedor a wide range
of function classes. However, in these frameworks, the rmirobpointsN has to be
fixed in advance. Extensible point sets, which are pointwiksthe property that the
number of points may be increased while retaining the exjgpboints, are preferred
in some applications becaulecan be increased without discarding previous function
evaluations.

The aim of this paper is to give a search algorithm for extd#adow-WAFOM
point sets based on general digital nets in the same spititca® mentioned above.
For this, we introduce a method that uses lookup tables tgpateWVAFOM values,
which requireO(sN) steps. Numerical experiments confirm that our extensivle lo
WAFOM point sets are comparable with (or even slightly sigretio) Niederreiter—
Xing sequences$ [32] for some low-dimensional smooth fomsti

The rest of this paper is organized as follows. In Se¢fione2briefly recall the nota-
tion of digital nets and WAFOM to be used in later sectionxti®a[3 is devoted to our
main results: an acceleration method that uses lookupstableompute WAFOM and
a search algorithm for obtaining extensible low-WAFOM paats. In Sectiohl4, we
report comparisons between our extensible low-WAFOM pséts and other quasi-
Monte Carlo point sets (e.g., Sobdl [28] and Niederreiténg [32] sequences) for
the Genz test function package[8, 9].

2. Notation

2.1. Digital nets

Let sandn be positive integers. Léf, := {0,1} be the two-element field, and let
V = Mgp(F2) the set of(s x n)-matrices with coefficients ifi,. Thus,x € V denotes
a matrixx := (Xi j)1<i<si<j<n With_xu- c Fo. We id_entifyx = (Xi,j)1<i<s1<j<n With
ans-dimensional pointy{_; x1j271,..., 37 1% j27)) € [0,1), which is also denoted
by (x1,...,X%s) € [0,1)%. Note thatn is the number of digits of precision.

To constructP := {Xg,X1,...,Xom_1}, we use the following construction scheme
called adigital net(see [7] and[[19] for details). We first seleget x m)-generating
matrices G, ...,Cs € Mam(IF2). Fork=0,1,...,2"—1, letk = 3" k;2! with k; € F»
be the expansion dk in base 2. We sek :=!(ko,...,km_ 1) € FJ', where' rep-
resents the transpose, and ggt='(Cik,---,...,CK) € Msn(F2). The point set
P:= {Xo,...,Xon_1} is called adigital net over F,. Throughout this paper, we as-
sume thaP is a digital net, s&® C V is anF»-linear subspace &f. Note that the first
29 points Py := {Xo,...,Xpa_4} for d < mare generated from the firdtcolumns of



A search for extensible low-WAFOM point sets 3

Cy,...,Cs. Note also thaPy is extensiblethat is,Py D Py_1. The quality of the point
sets is determined by the generating matrices.

2.2. Walsh figure of merit (WAFOM)

Matsumoto et al.[[16] recently proposed the Walsh figure ofinfe/AFOM) as a
computable criterion for digital ne8. Based on Dick’s (Koksma—Hlawka type) in-
equality for integration errors[3] 4], WAFOM has the potehto achieve higher-order
convergence tha®(N—1) for function classes with very high smoothness (so-called
smooth functionjs More recently, Yoshiki[[34] gave a more explicit error Imouthan
Dick’s by using the dyadic difference. Thus, throughous treper, we adopt Yoshiki’s
new result and consider the same setting as ih [11] (with stase of notation). Fol-
lowing [11,[15/16], we briefly recall WAFOM.

Forx = (Xi,j)1<i<s1<j<n € Msn(IF2), we define thes-dimensional subintervadl C
[0,1)° by

n n ) n . n :
b= 3 27 Y xa 27 +27 o x [y %270 Y %27 4271,
le le JZl JZl

For a Riemann integrable functidn: [0,1)° — R, we define ther-digit discretization
fn 1V — R by fa(x) := (1/Vol(Ix)) i f(x)dx. This is the average value éfoverly.
Under Lipschitz continuity off, it was shown in[[16] that the discretization error be-
tweenf andf, only is negligible ifnis large enough (e.g., wher> 30). Thus, forf :
[0,1)°* — R and largen, we may assume th@t/|P|) S ycp f(X) = (1/|P|) Sxep fn(X).
Suppose that is ann-smooth function (se&[4] andl[7, Ch. 14.6] for the defini}ion
Yoshiki [34] gave the following Koksma—Hlawka type inedjtyaby improving Dick’s
inequality ([5, Section 4.1] and [16, (3.7)]):

1
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where||f || is the infinity norm off, and f (Nu-Ns) :— gNut+Ns £ /g5 ... g3l The
value WAFOMP) is a quality criterion for the digital ne® and is called the Walsh
figure of merit (WAFOM) ofP. Inequality [Z.1) claims that digital nets with smaller
WAFOM(P) values have better performance. Therefore, we want toFfifad which
WAFOM(P) is small. This value can be obtained using the following fiolan

< sup |[fNND|| L WAFOM(P),  (2.1)

0<Nqy,..., Ns<n

WAFOM(P):% Zv{lrl ln (1+(1)’“'-12<J+1>)1}. (2.2)
XE <i<sl<j<n

Thus, WAFOMP) is computable ifD(nsN) arithmetic operations, where= (x; j) €
P andN = |P|. We refer the reader t0 [116] and [15, Section 2] for detaifsthie next
section, we search for extensible low-WAFOM point sets bynseof random search.
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3. A search for extensible low-WAFOM point sets

3.1. Acceleration using lookup tables

To search for a low-WAFOM point s&, it is crucial to computd (2]12) as fast as pos-
sible. Matsumoto et all_[16] restricted the search-spaeesipecial subclass of digital
nets, calledsequential generatorsand reduced the complexity ©(nN) arithmetic
operations for computing WAFO[W) for eachP. However, for general digital nets,
we needO(nsN) steps for the naive method in(R.2). In this subsection, megse
the use of lookup tables as another direction of acceleratio

For simplicity, we assume without loss of generality th@ a positive integer that
dividesn, e.g.,n= 30 andy = 3. We consider theth row vectorxV := (x; 1,...,% n) €
] of x € P. We splitxV into g equal segments, and $et= n/q. Thusx is decom-
posed intad!”, ..., d’), whered := (X ¢ 1)141,- .-, %cl) for eachc = 1,...,q, that
is,

[
x() = Xidy oo s Wil Xi 42y -5 X205 5 Xin—l+25 -+ -5 Xine

g g al)

We identifyd¢’ with the |-bit integers}_; x ¢ 1,21, so thatd{’ is viewed as an
integer from 01,...,2'"1,
For eaclc=1,...,q, we construct the following lookup tables in advance:

tablecle] « [ (1+(-1)%2 (W) (e=o0,...,2 ~1), (3.1)

1=<j<l

where eacle; € I is given by the binary expansian= zlj:lejzl_j. The products

Mi<j<n(1+ (—1)% 2-(U+1)y in (Z2) then reduce ttﬂlgcgqtablec[dg)}. Thus, we
obtain the following proposition.

Proposition 3.1.If we use the above lookup tables, thenl(2.2) is computali si)
arithmetic operations, where the hidden constant depends. dn other words, our
method decreases the number of multiplications by a fadtiylo

For increasing speed, we recommend selecting a spgith that the correspond-
ing tables made by (3.1) are included in cache memory. (Weratsommend using
1-dimensional arrays rather than a 2-dimensional arragaaip tables.) To show the
effectiveness of our approach, we conduct experiments adngpthe naive method
and our lookup-table method. We $atq) = (30,3) and generate the first2pointsP
of the Niederreiter—Xing sequences implemented by Pig&¢ With Gray code order
[2]. We measure the CPU time for computing WAFOM valuesder 4,6.8, ..., 16.
The experiments are conducted on a 64-bit Intel Core i7-3%0 GHz CPU. Our
codes are implemented in C and compiled by the GCC compildr tlve -O3 opti-
mization flag on a Linux operating system. As shown in the sd@nd third rows of
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Tableld, in each case, our method runs over 30 times fastethianaive method. By
using the lookup tables, we also have the advantages thatithmetic operations and
the conditional branches in{2.2) are avoided.

Ohori and Yoshiki [[22] recently gave a fast and simple metf@dcomputing
a good approximation of WAFOM that was originally proposed[16]. In sum-
mary, WAFOMP) is well-approximated by the QMC-error of the functidiix) =
exp(—25 71 %) (see Remark 2 in[15]). We implement their method on the aptate
form, and record the CPU times in the last row of Tdlle 1. Oaklp table method
is still faster than the approximation method wtsda small. This is possibly because
the calculation of ex{x) is much slower than multiplication on some platforms. We
note that these timings strongly depend on the CPU (seexémmpgle, Chapter 3.7 in
[24]). For randomized digital nets, no corresponding apipnation method is known.
See Remark 32 for details.

Table 1. CPU time (sec) taken to compute WAFOM values fét-Boint Niederreiter—
Xing sequencesn(= 30).

S 4 6 8 10 12 14 16
Naive 11773 | 19.307 | 26.651 | 33.039 | 39.527 | 46.119 | 52.639
Table @ = 3) 0.367 | 0505 | 0.654 | 0.795 | 0.972 | 1.112 | 1.249
Approximation || 1.111 | 1.197 | 1.282 | 1.384 | 1479 | 1565 | 1.676

3.2. A heuristic algorithm for searching for extensible lowWAFOM point sets

To obtain an extensible point 98t:= {Xo, ..., Xxd_1} D Py_1, we consider a search al-
gorithm for determiningn x m)-generating matriceSy, .. .,Cs € M, m(F2) for which
WAFOM(Py) is small for eactd = 1,...,m. Let us decompogg; into column vectors

so thatC; = (E(li), ... ,(‘:ﬁ?). Our approach is as follows.

(1) We generate the first column vectﬁﬁ@, ... ,E(ls) at randonM times, and select
the first column vectors with the smallest WAFQR{) values.

(2) Ford = 2,...,m, if the first (d — 1) column vectorsr‘:(l'),...,?:((j'il elF) (i =
1,...,s) have been determined, then we generatéitiecolumn vector:‘;él), . ,CE?
atrandonM times, and select treth column vectors with the smallest WAFGIRY )
values.

To ensure the uniformity of each 1-dimensional projecﬁne,generatéél), . ,(‘:E? o)

that the uppefd x d)-submatrix of(6(1'>, e ,E&”) is regular for each=1,...,s. This

property ensures that each 1-dimensional projection isngpform the view point of
thet-value of the(t, m, s)-net (that is, the-value is 0). See [7, 19] for details.
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Figure 1. WAFOM (on a log, scale) for our extensible point sets (with= 7000 and
M = 100000) and point sets from existing methods.

We compare our methods with the existing methods includiegequential gener-
ators from [16]. From now on, we set= 32. We search for sequential generators in
the same way as Matsumoto et al.|[16]. For this, we conducd 7T@0dom searches
for (n,s) = (32,5). Conversely, for our methods, we dgtm,s) = (32,25,5) and
search for column vectors using = 7000 trials andVl = 100000 trials. We also
compute WAFOM values for the Sobol” [13] and Niederreiteirgl[25] sequences.
Figure[1 shows the WAFOM values for these point setsdfer 8,...,25. Note that
the sequential generators do not possess extensibilityViFe 7000 trials, our exten-
sible low-WAFOM point sets are slightly better than the paats constructed from
sequential generators for larde This is possibly because Matsumoto—Saito—Matoba
sequential generators have a somewhat restricted pansspate.

Remark 3.2.In terms of the Walsh coefficients &éf Goda, Ohori, Suzuki, and Yoshiki
[10] proposed a quality criterio#’ (P) for randomized quasi-Monte Carlo integration
using digitally shifted digital nets. This criterion is t&d theWalsh figure of merit for
root mean square errgwhich satisfies a Koksma—Hlawka type inequality on the root
mean square error. The computable formula#6(P) is given by

W(P) = %x;{lﬂsl<|:|<n(l+(1)Xi.j2_2(j+1)) 1}.

Our search algorithm is also applicable here by replacing? in (Z:2) with 2-2(i+1),



A search for extensible low-WAFOM point sets 7

At present, an efficient approximation #f (P), such as that mentioned in Section|3.1,
is not known. Thus, our lookup table method seems to be a gpibohan the case of
randomization by digital shifts as well.

Remark 3.3.Suzuki [29] gave an explicit mathematical constructionosf{WAFOM
point sets using Niederreiter-Xing sequences and Dick&sliacing construction [3, 4]
for a fixed sizeN = 2™. A mathematical construction of extensible low-WAFOM goin
sets is an open problem.

4. Numerical experiments

We evaluate the following four methods:
(a) Extensible low-WAFOM point sets foan = 100000 (using the procedure in the
previous section);

(b) Matsumoto—Saito—Matoba sequential generafors [1&§h¢uthe procedure in
the previous section);
(c) Niederreiter—Xing sequenceés [32] implemented by {Z5];
(d) Sobol’ sequences with good two-dimensional projectids].
For point sets (a)—(d), the WAFOM values are plotted in Fedliin the previous sec-

tion. We use the following six different types of test functifrom the Genz package
[8,[9] defined ovef0, 1)S:

Oscillatory: f1(x) = cog2muy + 37, aixi),
Product Peak: fa(x) = [15,[1/(a 2+ (x — w)?)],
Corner Peak:  fa(x) = (1+ 35, ax%) 5+,
Gaussian: fa(x) = exp(— 354 @2(x — uj)?),
Continuous:  f5(x) = exp(— ;1 & [x — ui|),

0, if Xy > Up OrXo > Uy,
) exp(y; jax), otherwise.

We can obtain the exact valuéf;) := [ s fjdx analytically, so such families have
been used as test functions[20] 25, 27] and analyzed fromamdtical point of view
[23]. The different test integrands are obtained by chamgis (ay,...,as) andu =
(ug,...,Us). The parametea affects the degree of difficulty, and the parametects
as a shift parameter. We generatandu as uniform random vectors i, 1], anda

is renormalized to satisfy

ia =h;, (4.)
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whereh; depends on the family;. This condition determines the difficulty of inte-
gration, as the difficulty of computing the integidlfj) increases wheh; increases.
In this way, we obtain a functiom; for each test family in dimensiosiand make 20
quantitative examples df, by changinga andu. For any sample siZ®| = 29 and any
family fj, we compute the median of the relative errors (on aJsgale)

1(f) —In(T))
R T

whereN := |P|, In(fj) := (1/|P]) 3xep fj(x), andl (fj) := [j 1)s fjoX. As suggested
in Remark 2.2 in[[16], we translate by adding(2—"1,...,27""1) to obtain better
performance for numerical integration.

We select the parameteys- 5 and(hy, hy, hs, hg, hs, he) = (4.5,3.6250.925 3.515 10.2,2.15),
which are the same settings aslinl[11]. (These values aretlé values used in the
case of 10-dimensional test functionslin [1, p. 284].) Fefigives a summary of the
median of the relative errors far = 8,...,23. Point sets (a) and (b) are superior to
the Sobol’ and Niederreiter—Xing sequences fpand f3, and are comparable with
the Niederreiter—Xing sequence féy and f4. However, forfs (continuous but not
differentiable functions), the Niederreiter—Xing seqcers superior to the WAFOM-
based methods. Fdg, the Sobol’ sequence seems to be best. Recall thatihkeie
of the (t,m,s)-net [19], which is a well-established figure of merit for githl net.
The Niederreiter—Xing and Sobol’ sequences are optiming@rms of the-values.
For non-smooth functions, these point sets seem to be migetieé than our simple
low-WAFOM point sets, which do not consider thealues (except for 1-dimensional
projections). See, for example, Table 1 in][11]. This temyecoincides with the
experimental results in_[15]. Harade [11] gave a searchridigo for quasi-Monte
Carlo point sets with both small WAFOM values anidalues using random linear
scrambling[[14] to improve the rates of convergence for siméunctions while being
robust for non-smooth functions. However, his point setaolohave the property of
extensibility.

When the dimensios is high, our extensible low-WAFOM points are inferior to
the Niederreter—Xing sequences with the exceptionf @ind f3. Although we con-
ducted experiments wite = 10, it seems to be difficult to obtain good point sets
by simple random search for high dimensions. (Theoreficttie smallest value of
log(WAFOM(Py)) is O(—d?/s) for Py with |Py| = 29, so the rate of convergence tends
to be worse whes is large, see [17, 31, 33].) A breakthrough in high-dimenalo
integration is to take into account importance of variakemwn asweights Suzuki
[30] recently studied an infinitely differentiable funatiepace with certain weights
for which WAFOM (with weights) works well, and showed a sufict condition
for very fast convergence (calleatcelerating convergence with strong tractability
when the weights decay sufficiently quickly. Research onfcient approximation
of WAFOM with weights (calledWAFOM with derivation sensitivity paramejdas
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also reported [21, 22]. We refer the reader to a recent sdoregetails [15].

5. Conclusions

We have proposed a random search algorithm for extensist®AlAFOM point sets
in terms of digital nets. The key to our algorithm is deternminthe columns of gen-
erating matrices, inductively. We also introduce a lookaiple method to compute
WAFOM faster. The point sets obtained have almost the sauet ¢ accuracy as
Matsumoto—Saito—Matoba non-extensible point sets forarigal integration, and are
comparable with (or even slightly superior to) Niederneiding sequences for some
low-dimensional functions with high smoothness.
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