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Abstract: We aim at analyzing in terms of a.s. convergence and weak rate the performances of the Multilevel
Monte Carlo estimator (MLMC) introduced in [7] and of its weighted version, the Multilevel Richardson—
Romberg estimator (ML2R), introduced in [12]. These two estimators permit to compute a very accurate
approximation of Iy = E[Yy] by a Monte Carlo-type estimator when the (non-degenerate) random variable
Y, € L(IP) cannot be simulated (exactly) at a reasonable computational cost whereas a family of simulatable
approximations (Yp)nes¢ is available. We will carry out these investigations in an abstract framework before
applying our results, mainly a Strong Law of Large Numbers and a Central Limit Theorem, to some typical
fields of applications: discretization schemes of diffusions and nested Monte Carlo.
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1 Introduction

In recent years, there has been an increasing interest in Multilevel Monte Carlo approach which delivers
remarkable improvements in computational complexity in comparison with standard Monte Carlo in biased
framework. We refer the reader to [8] for a broad outline of the ideas behind the Multilevel Monte Carlo method
and various recent generalizations and extensions. In this paper we establish a Strong Law of Large Numbers
and Central Limit Theorem for two kinds of multilevel estimator, Multilevel Monte Carlo estimator (MLMC) in-
troduced by Giles in [7] and the Multilevel Richardson-Romberg (weighted) estimator introduced in [12]. We
consider a rather general and in some way abstract framework which will allow us to state these results what-
ever the strong rate parameter is (usually denoted by S). To be more precise, we will deal with the versions
of these estimators designed to achieve a root mean squared error (RMSE) € and establish these results as
& — 0. Doing so, we will retrieve some recent results established in [2] in the framework of Euler discretiza-
tion schemes of Brownian diffusions. We will also deduce an SLLN and a CLT for Multilevel nested Monte
Carlo, which are new results to our knowledge. More generally, our result apply to any implementation of
Multilevel Monte Carlo methods.

Let (Q, A, IP) be a probability space and let (Y)nca¢ be a family of real-valued random variables in L?(IP)
associated to Yy, where H = {% : n > 1}, such that limp_,o|| Yy — Yol2 = 0. In the sequel, a fixed h € H will
be called bias parameter (though it appears in a different framework as a discretization parameter). In what
follows we will be interested in the computational cost of the estimators denoted by the Cost( - ) function. We
assume that the simulation of Y}, has an inverse linear complexity, i.e. Cost(Yy,) = h~!. A natural estimator
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of Iy = E[Y(] is the standard Monte Carlo estimator, which reads for a fixed h,
N O s N 1
Iy =+ > YK with  Cost(Iy) = h™'N,

where (Y;l‘ )i>1 are i.i.d. copies of Yy and N is the size of the estimator, which controls the statistical error. In
order to give the definition of a Multilevel estimator, we consider a depth R > 2 (the finest level of simulation)
and a geometric decreasing sequence of bias parameters h; = nﬁ] with nj = M1,j=1,...,R.If Nis the esti-
mator size, we consider an allocation policy g = (q1, . . ., qr) such that, at each level j = 1, ..., R, we will
simulate Nj = [Ngj] scenarios (see (1) and (2) below). Thus, we consider R independent copies of the family

= (Yg))hejc, j=1,...,R, attached to independent random copies Yg) of Yo. Moreover, let (Y0):K),.; be
independent sequences of independent copies of Y0). We denote by I an estimator of size N of Iy, attached
to a simulation parameter 7 € II ¢ RY,

A standard Multilevel Monte Carlo (MLMC) estimator, as introduced by Giles in [7], reads

N = IhNR = Z Y(1) k Z Z 1) ki ,k 1)
NJ k=1
with 7 = (h, R, q).
A Multilevel Richardson—-Romberg (ML2R) estimator, as introduced in [12], is a weighted version of (1)
which reads

IN IhNRq__ZY(l)k Z zyo)k (])k )
j=2 Nj

with 71 = (h, R, q). The weights (W]R )j=1,...,r are explicitly defined as functions of the weak error rate a (see
equation (WE, 3) below) and of the refiners nj, j = 0, ..., R, in order to kill the successive bias terms in the
weak error expansion (see Section 4.3 for more details on the weights). When no ambiguity, we will keep
denoting by I estimators for both classes. We notice that a Crude Monte Carlo estimator of size N formally
appears as an ML2R estimator with R = 1 and an MLMC estimator appears as an ML2R estimator in which the
weights set W]R =1,j=1,...,R.Based on the inverse linear complexity of Yj, it is clear that the simulation
cost of both MLMC and ML2R estimators is given by

N R
Cost(I} p ) ﬁ Z i(nj-1 +n))

with the convention ng = 0. The difference between the cost of MLMC and of ML2R estimator comes from the
different choice of the parameters M, R, h, g and N.

The calibration of the parameters is the result, a root M > 2 being fixed, of the minimization of the sim-
ulation cost, for a given target Mean Square Error or L2-error €, namely,

(n1(e), N(g)) = argmin Cost(Iﬁ). 3)

Y -Ioll <&

This calibration has been done in [12] for both estimators MLMC and ML2R under the following assumptions
on the sequence (Y,)nesc. The first one, called bias error expansion (or weak error assumption), states

Ja>0,R>1, (¢/)1cps  ElYa] - E[Yo] = Z ckh®™ + h*Ryp(h), lim 5 (h) = (WE, )
k=1

The second one, called strong approximation error assumption, states
3B>0, V120, [Yh-Yol3=E[Ys- Yol?] < VihP. (SEp)
Note that the strong error assumption can be sometimes replaced by the sharper

3B>0, V120, |Yh-Yuld=E[Yy-Yul]<Vilh-RE, hn ex.
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From now on, we set IN(¢) := If;’((j)) , where 71(¢) and N(g) are closed to solutions of (3) (see [12] for the con-

struction of these parameters and Tables 1 and 2 for the explicit values). As mentioned by Duffie and Glynn
in [5], the global cost of the standard Monte Carlo with these optimal parameters satisfies

Cost(IN(e)) < K(a)e™ @@,

where the finite real constant K(a) depends on the structural parameters a, Var(Yy), h, and we recall that
f(e) < g(e) if and only if lim sup,_,, g(€)/f(€) < 1. Giles for MLMC in [7] and Lemaire and Pagés for ML2R
in [12] showed that, using these optimal parameters the global cost is upper bounded by a function of ¢,
depending on the weak error expansion rate a and on the strong error rate 8. More precisely, for both estima-
tors we have

Cost(IN(¢)) < K(a, B, M)v(e), (4)

where the finite real constant K(a, B, M) is explicit and differs between MLMC and ML2R (see [12] for more
details). Denoting vymc and vy or the dominated function in (4) for the MLMC and ML2R estimator, respec-
tively, we obtain two distinct cases. In the case > 1 both estimators behaves very well as an unbiased Monte
Carlo estimator, i.e. virmc(€) = vmior(€) = € 2. In the case 8 < 1, the ML2R is asymptotically quite better than

MLMC since lim,_,o %‘Z = 0. More precisely, we have the following scheme.

vmmc (€) vmL2R (€)
B=1 £2log(1/e)> &£2log(1/e)
: 18
ﬁ <1 8727¥ e’zeW 2log(1/¢) log(M)

The aim of this paper is to prove a Strong Law of Large Numbers (SLLN) and a Central Limit Theorem
(CLT) for both estimators MLMC and ML2R calibrated using these optimal parameters. First notice that as
these parameters have been computed under the constraint IIIg (€) - Ip|l; < €, the convergence in L2 holds by
construction. As a consequence, it is straight forward that, for every sequence (g)=1 such that )., 8,2( < 400,

Y E[IIY (ex) - Io|*] < +00,
k>1

so that
Iﬁ(ek) as, Io ask — +oo.

We will weaken the assumption on the sequence (€x)r>1 when Y}, has higher finite moments, so we will inves-
tigate some LP criterions for p > 2. Moreover, provided a sharper strong error assumption and adding some
more hypothesis of uniform integrability, we will show that

IN@Ee) -1 c

&) -Io m(e) = N(0, %) ase— 0,
with m(e) = @ where u(e) = ]E[If,v ] - Iy is the bias of the estimator, and m? + 02 < 1, owing to the explicit
expression of the constraint

IIY (&) = Ioll3 = u(e)* + Var(Iy (e)) < €. (5)

In particular, we will prove that lim._,o m(g) = O for the ML2R estimator. More precisely we will use in the
proof the expansion
IN(e) - Io

: =m(e) + 0205 +

—S\/%Ul(f ase — 0,

where {§ and ¢§ are two independent variables such that ({7, ¢¥) £, N(0, I) as £ — 0. We will see that i
comes from the coarse level of the estimator, while (28 derives from the sum of the refined levels. When 8 > 1,
£+/N(g) converges to a constant, hence the variance o2 results from the sum of the variance of the first coarse
level 02 and the variance of the sum of the refined fine levels 035. When ¢ (0, 1], since e+/N(¢) diverges, the
contribution to ¢ of the coarse level disappears and only the variance of the refined levels contributes to ¢2.
More details on m and o will follow in Section 3.
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The paper is organized as follows. In Section 2 we briefly recall the technical background for Multilevel
Monte Carlo estimators. In Section 3 we stable our main results: a Strong Law of Large Numbers and a Central
Limit Theorem in a quite general framework. Section 4 is devoted to the analysis of the asymptotic behavior of
the optimal parameters, to the study of the weights of the ML2R estimator and to the bias of the estimators and
its robustness. These are auxiliary results that we need for the proof of the main theorems, which we detail
in Section 5. In Section 6 we apply these results first to the discretization schemes of Brownian diffusions,
where we retrieve recent results by Ben Alaya and Kebaier in [2], and secondly to Nested Monte Carlo.

Notations.

« LetN* ={1, 2,...}denote the set of positive integers and IN = N* U {0}.

o Forevery x € R, = [0, +00), [x] denotes the unique n € N* satisfyingn -1 < x < n.

o If (ap)new and (by)new are two sequences of real numbers, a, ~ by if a, = €,b, with lim, e, =1,
an = O(by) if (€n)nen is bounded and a, = o(by) iflim, &, = 0.

o We denote by Var(X) and o(X) the variance and the standard deviation of a random variable X, respec-
tively.

2 Brief background on MLMC and ML2R estimators

We follow [12] and recall briefly the construction of the optimal parameters derived from the optimization
problem (3). The first step is a stratification procedure allowing us to establish the optimal allocation policy
(q1, - - -, qr) Wwhen the other parameters R, h, M are fixed. We focus now on the effort of the estimator defined
as the product of the cost times the variance, i.e. Effort(I ,1;’ ) = Cost(Iﬁ ) Var(I ,I;’ ). Introducing the notations

B

h -5 . .

Z) = (W) Z(Y(])h - Y(})h ) f01‘ all] 2 2 and Zl = Y;ll),
Mm-1 M2

a Multilevel estimator MLMC (1) or ML2R (2) writes

Weg XA 3L S W)

where WJR = 1 for the MLMC and WJR = WJR for the ML2R. By definition and using the approximation N; = Ng;
the effort satisfies

R Var(Yy) h \fVar(Z;)
Effort(I}) = ( " g; Cost(Z; wp)? ")
ort(Iy) (j;q] ost( ﬂ)( a Z( ) (Ml 1) qj )

Given R, h, M, a minimization of g € (0, 1) Effort(Iﬁ) on {q € (0, 1R : ijl gj = 1} gives the solution

x _ x| Var(Yp)

9, =H Cost(Yy) . N R
IR SN N e with p* such that Z gi=1, (6)
=H (M)'—l)2| j | Cost(Z)) j=1

using the Schwarz’s inequality (see [12, Theorem 3.6] for a detailed proof). The strong error assumption (SEp)
allows us to upper bound Var(Yy) and Var(Z;) by Var(Yo)(1 + Ghﬁ/z)2 with 6 = Var(Y ;and V(1 + MPBI2)2,
respectively. On the other hand, we assume that Cost(Z;) = 1+M M) ppi-1 . Plugging theses estimates in (6), we
obtain the optimal allocation policy used in this paper and glven in Tables 1 and 2. Notice that this particular
choice for the g; is not unique, if we change (SEg) with a different strong error assumption, for example with
the sharp version, then we have to replace the upper bound for Var(Z;) with V|1 - MPI2|2 and a new expres-
sion for the g; follows. In the same spirit, the Cost(Z;) can be different and hence have an impact on the gj,
see [6] or the nested Monte Carlo methods as examples of alternative costs.

The second stepis to select h(€) € H and R(¢) > 2 to minimize the cost of the optimally allocated estimator
given a prescribed RMSE & > 0. To do this, we use the weak error assumption (WE, ) and we obtain

h
Th(1 + 2a)%|cq|a e~ M-(R-1)]

h(e) =
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1
log@&h) \? | - log(A/e) _
+ TogiM ) +2alog(M)], A=+vV1+4a

1

1

log(€%h

Re) [% + Tt \j(
h(g)  h/[h(1 +2aR) 2R T

1
2
1 1 _
O”OE_WMfT]

. 8 i B IECT P
q) g1 =p"(1+6h2), q;=p"0h2Cy IW;(R, MM~ 2 =2, R YR G =1

L onb e, R LAY
Var(Yo)(1+6h 7 +6h 7 Cy g S5, IW;RMIM 2 U0

NE)  (1+5%) o

Table 1. Optimal parameters for the ML2R estimator.

1
log(lci|@h) | log(A/e) _
R(e) [1 + =ogom t alog(M)], A=+V1+2a

h(e) h/Th(1 +20)% |c1|5 =3 M~(R-D)

. s *ons ~BEG
q(e) q1=p*(1+6h2), qgj=p ehng,pM 2 =200 R YR G =1
v B onbe, SR U
ar(Yo)(1+6h 2 +0h 2 Cy,p YR, M2
2y

)

N  (1+45%)

Table 2. Optimal parameters for the MLMC estimator.

with c; the first coefficient in the weak error expansion, for the MLMC estimator. For the ML2R estimator we
made the additional assumption ¢, = limR_mIcRI% € (0, +00) and then we obtain

h
- —.
[h(1 + 2aR) %k ¢ e~ar M~ "7

h(e) =

The depth parameter R > 2 follows and the choice of N is directly related to the constraint (5).

We report in Tables 1 and 2 the ML2R and MLMC values for R(¢), h(e), q(€) = (q1(€), ..., qr(€)), N(g)
computed in [12] and used throughout this paper. Note that these parameters are used in the web application
of the LPMA at the address http://simulations.lpma-paris.fr/multilevel/. The following constants are used in
this paper and in the Tables 1 and 2:

1% ~ . 1
0= \/Var(lYo) and Cy = Iellrrgolchlle € (0, +00)

and .
1+M:3

s =
Notice that 1+ M? comes from the (SEp) and V1 + M-T from the cost, hence the constants C m,p and Cm,p
depend on them, but on anything else.
In what follows, we will shorter these notations by setting

and Cyp= (1+M§) 1+M1,

_ |~ ) 2 (1)
R(e) = [CR + \jCR + alog(l) log . (7)
with ) )
@ _ 1 log(Czh) @ _ (1 log(czh)y2 log(A)
Ch =3+ Togan 4 Cr = (2 " Tog(M) ) alog(M)
for ML2R and 1 1
_ |~ it
R(e) = [CR " alog(M) 1og<£ ﬂ )
with

1
) log(|c1|ah) ~ log(A)
-1
Cr' =1+ —0etn) " alog(l)

for MLMC.
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3 Main results

The asymptotic behavior, as € goes to 0, of the parameters given in Tables 1 and 2 will be exposed in Section 4.

We proceed here to the analysis of the asymptotic behavior of the estimator I (¢) := Iﬁg; ase — 0.

3.1 Strong Law of Large Numbers

We will first prove a Strong Law of Large Numbers, namely

Theorem 3.1 (Strong Law of Large Numbers). Let p > 2. Assume (WE, ) for all R>1and Yy € LP. Assume
furthermore the following LP-strong error rate assumption:

3p>0, VP30, |Yh-Yolb = E[lY, - YolP] < VPR, hedt. ©)

Then, for every sequence of positive real numbers (£x)k>1 such that } ;- si < +00, both MLMC and ML2R esti-
mators satisfy
N 2510 ask — +oo. (10)

3.2 Central Limit Theorems

A necessary condition for a Central Limit Theorem to hold will be that the ratio between the variance of the
estimator and € converges as € — 0. It seems intuitive that (SEg) should be reinforced by a sharper estimate

as h — 0. We define
W~
Z(h) = (M)

A necessary condition to obtain a CLT is to assume that (Z(h))xes¢ is L2-uniformly integrable. We state two
results, the first one in the case > 1 and the second one in the case § < 1.

NI

(Yy-Yy) and Z :=Z<H_Ll). (11)
-

3.2.1 Caseff>1

In this case, note that following (SEg) we have sup;,; Var(Z;) < V(1 + M ¢ )2,

Theorem 3.2 (Central Limit Theorem, 8 > 1). Assume (SEp) for B > 1 and that (Z(h))nes is L?-uniformly inte-
grable. We set

Var(Yn)

1 1h? Y, M7 07 Var(z))
Z Var(Yo)(1 + 6h?)

and 0% =
2T War(Yo)ViCyy,

1B
%= XM, B, 0,h) = [1 +ont(1+ CM,ﬁM—lﬁﬂ.
1-M7

2 _
0] =

with

Then the following statements hold.
(@) ML2R estimator: Assume (WE, ) for all R > 1. Then

IN@E) -1
M—L—J\f(o, 0l +03) ase— 0. (12)

. . N Do . M*ﬂ
(b) MLMC estlrizator. Assume (WEa,R) for R = 1. Then there exists, for every € > 0, m(g) such that T <
Im(e)| < T and

Ne) -1 2
LA D RCN :N(o, S (@34 o§)> ase — 0.
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Note that the variance of the first term Yy associated to the coarse level contributes to the asymptotic vari-
ance of the estimator throughout 02, while the variances of the correcting levels, Var(Z;), j > 2, contribute
throughout a%. The ML2R estimator is asymptotically unbiased, whereas the MLMC estimator has an a priori
non-vanishing bias term. This gain on the bias for ML2R is balanced by the variance, which is reduced of a
factor ;2% for MLMC. The constraint (5) yields o7 + 03 < 1, which is easy to verify if we recall that

1
1+2a’

Var(Yy) < Var(Yo)(1+6h?)?, Var(Zy) < Vi(1+M?)> and m(e)? <

3.2.2 Case B € (0,1]

In this case, we make the additional sharper assumption that limh_,OIIZ(h)H% = Voo(M, B). This assumption
allows us to identify lim;_,,, Var(Z;). More precisely, note that owing to the consistence of the strong and
weak error 2a > ff and owing to (WE, ) we have

E(Z;] = <%>§E[Y#’_ - Y%] -1 _Ma)<,%>a§ N 0((%>a§)’

so that

2 _ea _Ma)2<£)za—ﬁ N o((E)Za_ﬁ>.

vy =[5 ), i 5

We conclude that

lim Var(Zj) =

j—o+oo

Voo (M, B) if 2a > B,
VoM, B) — c2(1 - M5)?  if 2a = B.

Theorem 3.3 (Central Limit Theorem, 0 < 8 < 1). Assume (SEg) for 8 € (0, 1]. Assume that (Z(h))nesc is L2-uni-
formly integrable and assume furthermore limh_,ollZ(h)H% = Voo(M, B). We set

o [YeMLB(1 e ME) Y if2a > B, (13)
(Veo(M, B) - c2(1 - M5)2)(1+ M2)2V;' if 2a = B.
Then the following statements hold.
(@) ML2R estimator: Assume (WE, 1) for all R > 1. Then
Ny _
I@® =1 £ 50,02 ase—o. (14)

(b) MLMC estimator: Assume (WE, ) for R = 1 and that 2a > B when B < 1. Then there exists, for every € > 0,

M 1
m(e) such that = < |m(¢)| < 5= and

IN(@e) -1 c 2a
L&) -l m(e) = N(O, —02> ase — 0.
£ 20+ 1
We will see in the proof that the asymptotic variance corresponds to the variance associated to the correct-
ing levels.

3.3 Practitioner’s corner

In the proof of Theorems 3.2 and 3.3 we will obtain the more precise expansion

INe)-Io

1
. =m(e) + 2205 + ———=21{] ase— 0,

e+/N(g)

where ¢ and {3 are two independent variables such that ({7, %) R N(0, I) as € — 0, and the real values X;
and X, depend on whether we are in the MLMC or in the ML2R case and on the value of . Fundamentally ¥,
comes from the variance of the first coarse level and %, from the sum of variances of the correcting levels.
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When 8 > 1, we will prove in Lemma 4.5 that £+/N(€) converges to a constant as € — 0, hence both the
coarse and the refined levels contribute to the asymptotic of the estimator.

When 8 < 1, we will see that (¢ \/W)*l — 0as € — 0so that, asymptotically, the variance of the coarse
level fades and only the refined levels contribute to the asymptotic variance. Still, it is commonly known in
the Multilevel framework that the coarse level is the one with the biggest size (speaking in terms of N;), hence
this term is not really negligible. We can go through this contradiction by observing the inverse convergence
rate to 0, namely £+/N(g). It is equivalent, up to a constant, to /R(¢) when = 1 and M PR® when B<1.

For ML2R, owing to the expression of R(¢) given in (7), e+/N(g) ~ C(log(1/ s))% , where C is a positive con-
stant when 8 = 1and £+/N(g) = o(¢7") forall > O when 8 < 1. Hence the convergence rate to 0 of (/N(g)) !
is very slow. By contrast, £; > Z,, since X is related to the variance of the coarse level which roughly approx-
imates the value of interest whereas Z, is related to the variance of the refined levels supposed to be smaller
a priori. Hence the product (+/N(g))~1Z; turns out not to be negligible with respect to =, for the values of the
RMSE ¢ usually prescribed in applications.

For MLMC, we get £+/N(¢) ~ C+/log(1/¢), C positive constant, for § = 1 and £+/N(g) ~ Cle~ " for B<1.
Hence, when 8 > 1, the slow convergence phenomenon is still observed though less significant.

Impact of the weights Wf,j =1,...,R, on the asymptotic behavior of the ML2R estimator. When § > 1,
one observes that neither the rate of convergence nor the asymptotic variance of the estimator depends in
any way upon the weights W]R,l Z,f 1,...,R. If B < 1, it depends in a somewhat hidden way through the
multiplicative constant of e=2M = R in the asymptotic of N(¢) (see Lemma 4.5 for more details). However,
at finite range, it may have an impact on the variance of the estimator, having however in mind that, by
construction, the depth of the ML2R estimator is lower than that of the MLMC which tempers this effect.

4 Auxiliary results

This section contains some useful results for the proof of the Strong Law of Large Numbers and of the Central
Limit Theorem. More in detail, we investigate the asymptotic behavior as € — 0 of the optimal parameters
given in Tables 1 and 2 and of the bias of the estimators and we analyze the weights of the ML2R estimator.

4.1 Asymptotic of the bias parameter and of the depth

An important property of MLMC and ML2R estimators is that h(e) — h and R(¢) — oo as € — 0. The satura-
tion of the bias parameter h is not intuitively obvious; indeed, it is well known that h(¢) — 0 as € — 0O for
Crude Monte Carlo estimator. Still, this is a good property, because h = h is the choice which minimizes the
cost of simulation of the variable Y, which we recall is inverse linear with respect to h. First of all, we retrace
the computations that led to the choice of the optimal h*(¢) and R*(¢g), starting from ML2R estimator. We
define

h(e,R) = (1 + 2aR) %K |cg| ®e@® M' T

and we recall that this is the optimized bias found in [12] at R fixed. Since the value of cy is unknown, it is
necessary to make the assumption |cg| ® — CasR — +ooand |cr |‘ﬁ isreplaced by ¢”=. The value of € is also
unknown and in the simulations we have to take an estimate of ¢, that we write ¢. We follow the lines of [12]

and define the polynomial

R(R-1)

P(R) = = log(M) - R1og(K) - % 10g< —1;’4“>

, (15)
where K = ¢ah. We set R, (¢) the positive zero of P(R). The optimal value for the depth of the ML2R estimator
is R*(e) = [R4(g)]. We notice that P(R*(g)) > 0, R*(¢) — +co0 as € — 0, and R* is increasing in ¢. We can
rewrite

L+4a \=k/ € \e Pm
R) = ‘ “ex h.
hie, B) <1+2aR) (|CR|%> er
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We notice that

h(s,R+):< 1+4a )ﬁ< : | )%h.

1+ 2aR+ |CR+|K

The optimal choice for the bias is the projection of h(e, R*(g)) on the set H = {% : n € N}, which reads

: h 1"
O g |

When we replace |cr I% with ¢, we finally obtain

h h -1
h*(e) = — —— :h{ —
[h(1 + 2aR*)zar ¢ag”ar" M~ 7 | h(e, R*)(|cpe |7 &-1)4
Let us analyze the denominator
h 1+4a _ﬁ _P(R*)
1. 1 :< *) e
h(e, R*)(|cg+|* & 1)a 1+ 2aR

Since P(R*) > 0 and since for R large enough the function (144 )‘ﬁ /1, it follows that, up to reducing &,

1+2aR
1+4a _ZaR* P(R*)
(m) e ®r <1 foralle€(0,é&), (16)
which yields
{ h - 1}:1 and h*(e)=h
h(e, R*)(|cg+ |77 &7 1)

For MLMC we may follow the same reasoning starting from h(e, R) = (1 + Za)‘i |c1|‘§£%MR‘1. We just
showed the following:

Proposition 4.1. There exists & > 0 such that h*(¢) = h for all € € (0, &].

In what follows, we will always assume that € € (0, £€] and h*(€) = h. This threshold & can be reduced in what
follows line to line.

As € — 0, we have R = R*(¢) — +oo at the rate ﬂm log($) in the ML2R case and alog(M) log(1) in
the MLMC case.

4.2 Asymptotic of the bias and robustness

u(h,R(e),M)
&

As part of a Central Limit Theorem, we will be faced to the quantity , Where

u(h, R(e), M) = E[I¥(e)] - Io

is the bias of the estimator. This leads us to analyze carefully its asymptotic behavior as € — 0. Under assump-
tion (WE, ) , the bias of a Crude Monte Carlo estimator reads

u(h) = c1h*(1 + n1(h)), ;11133) ni(h) =0

The bias of Multilevel estimators is dramatically reduced compared to the Crude Monte Carlo, more precisely
the following proposition is proved in [12]:

Proposition 4.2. The following statements hold.
(@) MLMC: Assume (WE, ) with R = 1.

i, R = e (s ) (1o (e )

with Timy,_o 0 (h) =
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(b) ML2R: Assume (WE, z) forallR > 1.

R- h*
u(h,R,M) = (-1) 1CR<MR(R 5 ) (1 +ng,n(h)),

R(R-1)

where ng a(h) = ()R IM* 7 ¥R - nR( h L) with limp o g (h) =

We notice that the ML2R estimator requires and takes full advantage of a higher order of the expansion of the
bias error (WE, ), whereas the MLMC estimator only needs a first order expansion. As the computations were
made under the constraint ||I ,1;’ Ipl2 < €, we have clearly that M < 1. We focus our attention on the
constants €., and c1, which a priori we do not know and that we replace in the simulations by ¢, = ¢1 = 1.
If we plug the values of h(g) = hand R(¢) in the formulas for the bias, owing to (15) and (16) we get, for ML2R,

R(E) \a 1 e
_ — aR(e)

Iuth, Rie), M) = 'CR(S)I( MROZTT ) = lere I @ ke ® Vi1 4
lerel 1 £ [CR(e)l 1

_ < €
eRE) eaPR@) \T 3 4a ~ RE T 2aR(e)
and, for MLMC,

l |mg < |uth, R(e), M)| < |_|

V1 + 2a
We set m(e) := M. Hence, when taking the true values ¢, = €, and ¢; = c¢1, we get
{limg_,o m(e) = for ML2R, (17)
M= 1
s < hmg_,o m(e) < T for MLMC.

For ML2R estimators, if cg has a polynomial growth depending on R, we have
lim |cgl® = 1
R—+00

and Co, = 1 corresponds to the exact value of C,. If the growth of cy, is less than polynomial, the convergence
to 0 in (17) still holds. The only uncertain case is when the growth of cp is faster than polynomial. Then, if

oo > |CRIT, |@ goes to O faster than m, but if we had taken ¢4, < 1, we would have obtained
lim IRl = +00,
R—+00 C§o

hence ¢, < 1 is definitely not a good choice. In conclusion, whenever the growth of cg is at most polynomial,
Coo = 1 remains a good choice. When the growth is faster than polynomial, it is better to overestimate ¢, than
to underestimate it. The remarkable fact is that, when we choose ¢,, we are not forced to have a very precise
idea of the expression of cg, but only of its growth rate. The choice of ¢1 for MLMC estimator is less robust,
since it is obvious that if we overestimate c; the inequality == '“(S)l < m still holds, but if we underestimate it
we eventually may not have '“(8 < 1 as expected. Hence the bras for the MLMC estimator is very connected to
an accurate enough estlmatlon of cy.

In Figures 1a and 1b we show the values of |c; | estimated with the formula

er=(2-n) 1Yy - BV

compared to the value plugged in the simulations ¢; = 1, for a Call option in a Black-Scholes model with
Xo=100,K=80,T=1,0=0. 4 and making the interest rate vary as follows: r = 0.01, 0.1,0.2,...,0.9, 1.
We simulated E[Y}], with h = 20, using an Euler and a Milstein discretization scheme and making a Crude
Monte Carlo simulation of size N = 108.

In Figures 2a and 2b we show the absolute value of the empirical bias for different values of r. In the simu-
lations, we fixed ¢; = 1 and ¢4, = 1. We can observe that when |c{| is underestimated, the bias for MLMC and
Crude Monte Carlo estimators do not satisfy the constraint |u(e)| < €, whereas the ML2R estimator appears to
be less sensible to the estimation of ¢.
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Figure 1. Estimated |c1| = (|E[Yr] - E[Yr ]|)(h - %)’1 when r varies.
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Figure 2. Empirical bias |u(€)| for a Call option in a Black-Scholes model for a prescribed RMSE € = 27> and for different values
of r, taking ¢, = €1 = 1.

4.3 Properties of the weights of the ML2R estimator

One significant difficulty in the proof of the Central Limit Theorem that we stated in Theorems 3.2 and 3.3, is
to deal with the weights W]R appearing in the ML2R estimator. Moreover, the analysis of the behavior of the
weights is necessary when studying the asymptotic of the parameters g = (q1, . . . , gr) and N. These weights
are devised to Kkill the coefficients cq, . .., cg in the bias expansion under (WEa, z)- They are defined as

R
Wi=>w, j=1,...,R, (18)
=
where the weights w = (w,),-1, .. r are the solution to the Vandermonde system Vw = e;, the matrix V being
defined by

—a ... —a

V=v(a,n" ..., ng% =

“aR-1) . p-a(R-D)
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Notice that W’f = 1 by construction. In order to give a more tractable expression of the weights W]R, one notices
that the weights w admit a closed form given by Cramer’s rule, namely

We=aebR_e, €=1,...,R,

where
1

* Mickee 1 (1~ Mk’
with the convention [19_, (1 - M~%®) = 1, and

ae €=1,...,R,

M—£€(€+1)
be = (1) ’ , £=0,...,R.
Hlskgt’(l -M- a)

As a consequence,
R -J
W}R:zaebR_ezzaR_ebe, jEl,...,R.
£=j £=0
We will make an extensive use of the following properties, which are proved in Appendix A.
Lemma 4.3. Let a > 0 and the associated weights (W]R)jzl g givenin (18).

(@) limpo oo @ = Ao < +00 and Y35 |be| = Beo < +00.
(b) The weights Wf are uniformly bounded,

IWfI < deBs forallR e N* andallje{l,...,R}. (19)
(c) Foreveryy >0,
R
- 1
li WMD) = .
R—1>Too :ZZ | J | MY -1

(d) Let{vj}j=1 be a bounded sequence of positive real numbers. Let y € R and assume thatlim;_, ., v; = 1 when
Y = 0. Then the following limits hold:

R Yis2 MYy < 400 for y<o,

z |w]1,'<’|My(i—1)Vj ~ 4R for y=0, asR — +oco.
& - ,

) M"Ra,, Z;zﬂzlezt belMY  for y >0,

4.4 Asymptotic of the allocation policy and of the size

Let us analyze the allocation policy q = (q1, . . . , gr) for the ML2R case. Since

8 8 pri g .
gi(e) =u*(e)(1+6hz) and gj(e) = Bh?gM,ﬁy*(e)|Wf(£)|M‘T(1—1), j=2,...,R(g), (20)

the condition Z]i(f) gj = 1yields

R(E) + . _1
@ = (1eom(10C,p Y WMD)
j=2

_ B+l
-2

I -1
n =(1+9h§<1+#)) .
M=z -1

Moreover, for all € € (0, &], the following inequalities hold:

Owing to Lemma 4.3 (c) with y the limit of this term as € — O is

1 = 1+0h% < L 1+ 0h§(1 +QM’ﬁaOOBOO;) = i (21)
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Remark 4.4. If we set WR(E)

MLMC allocation policy.

=1forallj=1,...,R(€), and aeBs = 1, we obtain the same results for the

The asymptotic of the estimator size N = N(¢) is given in the following lemma.

Lemma 4.5. We have N = N(¢) — +co as € — 0, with a convergence rate depending on f3 as follows:
« Case B > 1: We have N(g) ~ Cpge~2 with

18
Var(Y ~ M= 1 or ML2R,
Cpg = ar(* 0)[1+0h€(1+CM,ﬁ—21ﬁ):| J
H 1-M7 1+  for MLMC.

2

o Case B < 1: We recall the expression of R(¢) given in (7) for ML2R and (8) for MLMC. Then

, {R(e) ifp =1,

N(e) ~ N
(€) MERE® ifp <1,

where the constant Cg reads

_ 1 or ML2R, .
cp= Yl gpic, f ifp=1
1+ for MLMC,

and

Cp =

-1 B-1;
Varo) gt {aoon>1|Z{q_obe|M2] for ML2R, e

(1+5)—5 for MLMC,
M2 -1

We notice that for 8 > 1 the asymptotic behavior of N(¢) for ML2R does not depend on the weights W}R and
the difference between the coefficient Cg for ML2R and for MLMC estimator lies only in the factor (1 + 2—10‘),
whereas when f < 1, the asymptotic of the weights has an impact on the behavior of N(¢) for ML2R. Still, in
this case we observe thatif a,, = 1 and | Z’ __1 be| = 1forallj > 1, then

w3 |5

j=1 le=

L 1
) :T
M=z -1

and the factor (1 + ﬁ) appears again to be the only difference in the coefficient Cg of N(e) for the two
estimators.

Proof. ML2R: The estimator size N reads

N:N(e)=(1+ 1 )VaT(Yo)l

R(&)| 1 5E G-1)
k® ) (1 9hz+ehszﬁZ|w M~ )

We notice that R(¢) — +oo as € — 0 and use Lemma 4.3 (d) with y = 'B , with v; = 1 for each j > 1, to com-
plete the proof on the ML2R framework.
1-8 ,.
MLMC: The result follows directly from the convergence of the series Z}.e_“) M TB(H), since N reads

N = N(e) = (1 Za)vaL(*YO) ! (1 9h2(1+CMﬁ z MG ))

as desired. O

5 Proofs

We will use the notations

Ni(e) R(e) WRE) Nj(o)
T 1% vk 1),k T j Tk
! .= Y v By and 2=y L N T
£ Nie) & h TSN &Y
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where we set . . . '
V=YW -vh -E[YY-Y0 ] j=1,....Re).

These notations hold for both ML2R and MLMC estimators, where we set Wf(g) =1,j=1,...,R(g), for MLMC
estimators. We notice that
N(e) - Io =T! + T2 + u(h, R(g), M), (22)

where the bias p(h, R(g), M) — 0 as € — O (see Section 4.2 for a detailed description of the bias).

5.1 Proof of Strong Law of Large Numbers

The proof of the Strong Law of Large Numbers is a consequence of the following proposition.
Proposition 5.1. Let p > 2. There exists a positive real constant K(M, 8, p) such that
E[|T2P] < K(M, B, p)€P. (23)

Proof. ML2R: We first give the proof of (23) for the ML2R estimator. As a first step we show that, forall p > 2,

E[|VjPP] < CyppM 70D, j=1,...,R(e), withCypp=2°VP(1+M?)Ph7. (24)
By Minkowski’s inequality,

(]E[|7j|p])% <IYn =Y n lp+|EBYe =Y J|<IYn =Y s [p+ Y —Yn 1 <2[Yn =Y 1 |p.
0 o n e v e n; ey v vy

Applying again Minkowski’s inequality, the L?-strong approximation assumption (9) yields (24). As the ran-

dom variables (Y )ie1 are i.i.d. and the (Y, 1)j=1,...,R(¢) are centered and independent, Burkholder’s inequality
(see 10, Theorem 2.10, p. 23]) and (24) imply that there exists a positive universal real constant C, such that

R(e) Nj(e) wR(S) P R(e) Nj(e) WR(S) 2.8
“{) - 1]=orl2 2(5a™) ||
]Z; 1(21 N;(S) ]Z; kzl Nj(e) /
REeN@©y WRE 2y \ 5 Re) [WRO 2 N
<C ! =C J E[T: P p)
p(]zz kzl (N](S) }) 1{) p(}; N](S) ( [l ]l ])
(€) |WR(€)|2
J BG-1)
—— M .
< CpCM,/s,z(j; N:(©) )
As Nj(e) = [N(€)gj(e)1 = N(g)gj(e), we derive that
! ! j=1,...,R(e).

< s
Nj(e) = N(e)gj(e)
It follows from the expression of g; given in (20) and from inequality (21) that

(&)
AR 1 »
J MEF0D -2 Re).

<
(©) = b
qj(€) 6h= Cyy gu*

Then, using that supje(,....gy,r>1 W} | < @ooBoo, We get

p
£) 7

- N P 1 R 1B i
E[IT21P] < CpCum,p,2(acoB m)z(ehszﬁy )" (W > M= Y 1’) .

=~

T
N

Owing to Lemma 4.5, up to reducing &, we have
1 iff>1,

e 1R  ifp=1, forallec(0,é&l. (25)
M-HRO g <1,

1

<
N(e)

S
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Moreover,
L ifg>1,
R(¢) s 1-M 2
Y M7 0D < {R(e) ifg=1,
j=2 1B Ree
! Mz ifp <.
M7z -1
Then ,
R(e) 2
1 1B
— Mz(ll)) < K, &P
<N(£) ]; !
with e
5\ (1-M=)? ifp>1,
2
K1=K1(M,ﬁ,p)=<c—ﬁ) 1 ifp=1,
M7 -1)F ifp<1.
Hence (23) holds with

p
2

_ B . _pr
K(M, B, p) = CpCu,p,2(Gc0Boo) * (B0 Cyy pu*) 2 Ky,
MLMC: The proof for the MLMC estimator follows the same steps, by replacing Wf(s) =1,j=1,...,R(¢),
and deoBe = 1. O

The Strong Law of Large Numbers follows as a consequence of Proposition 5.1.

Proof of Theorem 3.1. Owing to the decomposition (22), equation (10) amounts to proving
F1 a.s. T2 a.s.
I, — 0 ask— +c0 and I;, — 0 ask — +co.

Aslim,_,g N1(€) = +0o and the (Yl(ll)’k) k>1 are i.i.d. and do not depend on ¢, the convergence of Tgk is a direct
application of the classical Strong Law of Large Numbers, for both ML2R and MLMC estimators.

To establish the a.s. convergence of Tgk, owing to Lemma 5.1 it is straightforward that for all sequence of
positive values (¢j)i-1 such that &y — 0as k — +oco and Y. & < +oo,

z E[|TZ 1] < +co.
k>1

Hence, by Beppo-Levi’s Theorem, Y., |7§k [P < +00 a.s., which in turn implies Tgk 2%, 0ask - +oo. O

5.2 Proof of the Central Limit Theorem

This subsection is devoted to the proof of Theorems 3.2 and 3.3. In order to satisfy a Lindeberg condition, we
will need the assumption (Z(h))nes¢ is L?-uniformly integrable. Owing to (WE, z), R = 1,

IE(Z(W)]] = le1(1 - MO)hS" + o(he5).

Since 2a > B, this deterministic sequence (E[Z(h)])nes¢ is bounded. Hence, the L?-uniform integrability of
(Z(h))nes vields the L2-uniform integrability of the centered sequence (Z(h))nesc = (Z(h) — E[Z(h)])nes<.
One criterion to verify the L2-uniform integrability is the following.

Lemma 5.2. The following statements hold.

(@) If there exists a p > 2 such that supyeqscZ(h)llp < +00, the family (Z(h))hes is L?-uniformly integrable.

(b) Ifthere exists a random variable D'™ ¢ L2 such that,as h — 0, Z(h) £, DD then the following conditions
are equivalent (see [3, Theorem 3.6]):
(i) The family (Z(h))neqc is L?-uniformly integrable.
(i) limpolZ(h)ll2 = [DM];.

Now we are in a position to prove the Central Limit Theorem, in both cases f > 1 and j € (0, 1].
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Proof of Theorems 3.2 and 3.3. Owing to the decomposition (22) (with W}R(‘E) =1,j=1,...,R(¢g) for MLMC
estimator),
e -l I T; ph,ReE),M)
£ e ¢ £
where T} and T2 are independent. The bias term has already been treated in (17).
ML2R: Formulas (12) and (14) amount to proving, as € — 0,

VN 5 N(O, Var(y“)) (26)
q:
and -
I; £, N(0, 0%) 27)

with g, = o for B € (0, 1]. Indeed, for (26) let us write % =

N(e)I}.

1 iff>1,
N(e) ~ Cpe* { R(¢) ifp=1, ase—O0.
MR fp <1,
In particular, since R(¢) — +co as € — 0, when f§ < —N = = = o(¢) and the term = L — 0 in probability. Since

1) k does not depend on €, N1(¢) — +ooand N1(g)/N(e) — qy as € — 0, the asymptotlc behavior of the first
term is driven by a regular Central Limit Theorem at rate \/N(¢), i.e.

VN(e)I} = VN(e) [ M@ z (YO gy ])] £-0 N(O’ Var(Yh))’

q1

which proves (26). We will use Lindeberg’s Theorem for triangular arrays of martingale increments (see [10,
Corollary 3.1, p. 58]) to establish (27). The random variables 17}‘ being centered and independent, the vari-
ance reads

R(e) Nj(e) , WwRE© R(e) WR(E) 2 1 R@ WR(S))
Var ———Y )= Ni(e) Var(Y)) —— Var(Y;).
<j:2 kgl & N].(g) ] 62 ]:Zz Nj(&‘) ] ] 2 Z N]( ) ]
Noticing that0 < I - [71] < -5, x > 0, and that Nj(¢) = [g;(e)N(¢)], we derive
R(g)\2 R(g)\2 R(€)\2

1 R(g) (W]‘ ) — 1 R@) (Wj ) R(E) (W ) —
— Var(Y;) - — Var(Y;) — Var(Y;).
g? ]; Nj(e) Vg2 5 qj(S)N( £) ! 82 z (Clj(é‘)N(é‘))2 !

The conclusion will follow from
R(g) (WR(S))Z

V. — 2
lim = Z WVar(Y]) =03 (28)

and
R(e) (WR(S))Z

i Z  GeNey? =0 9

Owing to the definition of Z; given in (11), we get Var(Yj) = (%)ﬁ Var(Z;) and, using the expression of gj(¢)
given in (20), we obtain

1 89 <w ”)2 o1 nf

R(e)
WRO | 0-D var(z,).
£2N(¢) 6C,; 51" (©) ];| i M ar(Z;)

Case 8 > 1: Owing to the expression of N(¢) given in Lemma 4.5 when f§ > 1,

Nhk

1 h’ 1
lim = Z
e—0 £2N(e) GCM ﬂH (8) b \/Val’(Yo)Vl CMﬁ
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and owing to the limit in Lemma 4.3 (d) with y = i—ﬁ <0,

R(e)
Y w; R@)| a6 Y var(z;) = ZM L0~ DVar(Z;) < +oo.
j=2 j=2

Hence the convergence of the variance (28) holds for Theorem 3.2.
Case f < 1: Owing to the expression of N(¢) given in Lemma 4.5 when f§ < 1, we get, as € — 0,

1 h 1 (R(e))! i = 1,
e2N() 00y p1"(©) i1+ MR | (M7 M Oaco Tpoy |51 belM 7)) B < 1.

We notice that
lim Var(Zj) = voo(M, B)
]—+00

if 2a > Band
Jim Var(Z)) = veo(M, B) - c§(1 _ M%)

59

if 2a = B. Hence, owing to the limit in Lemma 4.3 (d) withy = =F > 0, we obtain (28) with 0, = o givenin (13)

in Theorem 3.3.
For (29), it follows from the expression of g;(¢) in (20) that

R 4
Wi -y

4G gnic, ()

Owing to the definition of Z; in (11) and to inequality (21), we get

1 R® (wf(s))z B he 1 RE)
— ———— Var(¥j) < MU Var(Z))
€2 5 (gj(e)N(e))? (6h’ o gi*)? (eN(¢))2 ;
h# MRE-1
= sup Var(Zj) ) =———-
(6h’ €y guv? (EN(E)? (]>1 ) M-1
We conclude by showing that
MR(S)
W —0 ase— 0.

Owing to the expression of R(¢) given in (7), we notice that

Rie) =0 o[ 1)) = o{1o5(1)) a5 o

Moreover, using Lemma 4.5, up to another reduction of &, we have
yields

1
(eN(e))?
R

MR© < ( 2 ) 2 MR® — C-2l08(MR(E)-2108(}) _, ) ase — 0.
(eN(e))? B

Then (29) is proved and so is the first condition of Lindeberg’s Theorem.
For the second condition of Lindeberg’s Theorem we need to prove that, for every n > 0,

B () g

Nj(e) are identically distributed, we can write

R(s
’ 7
Nj(e)

]—»0 ase — 0.

1
€

.....

R(e) Nj(&) 1 WR(S) — 2
2 25| (ewa ) Y

Since the (7}‘ Va1

R(e) |wR(€)|2

1 1% 12
< ———E|[(Y)" 1 _ T .
>)1}:| j=2 e Nj(e) [ ! {le|>'?5|‘:§;<2) }]

wR® .
i
Nj(e)

1
€

(30)

< (C%;)Z‘s2 forall B > 0. This in turn
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We set Z; = Zj - E[Z;]. Replacmg q; by its values given in (20), using inequality (19) from Lemma 4.3 (b) and
the elementary inequality N® (g) < TON® N(g) yields

R(e) Nj( 1 WR(g k 2
=Z g [(8 N](S) ) 1{ >11}]
1 1 R@®

D

WR(S)

1
€

(8) }

B
Gh C ) € N(S) S0, M2 Cypr* ()
pH(€) {ly’bniMﬁ#ufl) sN(s)}

IN
NI

h Bt ZMzﬁ(’D]E[(Z)Z

a -
0Cy pu* ~ 7 €2N(e) = {lZ,-|>n9gM,ﬁE*aN(g)M-%}]

NS %

< h AooBoy SU IE[(Z)2 ] L Rf)M¥U‘“
- GQM,ﬁE* ® OO2<]<II?)£) ! |Zl|>®5N(€)M_¥} £2N(e) )

where we set © = 76C,; ,ju* VM. Now, it follows from Lemma 4.5 that

R(e) 1-8 1-8
1 Ls 1 M= RE _p5
MO0 = ( 1ipz1y + (R(€) + 1) 1yp= )—>K,
£2N(¢) ]; "~ €2N(e) Mlzﬂ B {B+1} (B=1}

as € — 0, where K is a real positive constant. Owing to (30), lim,_,o eN(e)M‘¥ = +00. Hence, since we as-
sumed that the family (Z)j>1 is L?-uniformly integrable, we obtain that

li E|(Z)*1 o1,]=0
£ 2<S]l<l}§(£) [( N1 {1Z)1>0eNEM "3~ }]
and the second condition of Lindeberg’s Theorem is proved.

MLMC: The proofs are quite the same as for ML2R, up to the constant 1 + ﬁ, coming from the constant Cg
in the asymptotic of N(g). Using Lemma 4.5 and the expression of R(¢) given in (8), we obtain

1 iff>1,
N(e) ~ Cge™? mlog(%) ifg=1, ase—0.
e if g < 1.

We replace Wf =1,j=1,...,R, and axBw = 1. The only significant difference comes when f < 1, while
proving (30). In this case, owing to Lemma 4.5 as we did in (25) and using the expression of R(¢) given in (8),
up to reducing &, we can write

MRE® 2\2 1)
M (£ ~(1-B)R(e) pR(e ( ) B +1) 2%
N S (C,;) £ M-(1-BR(E pR o)

which goes to 0, owing to the strict inequality assumption 2a > S. O

6 Applications

6.1 Diffusions
In this subsection we retrieve a recent result by Kebaier and Ben Alaya (see [2]) obtained for MLMC estima-

tors and we extend it to the ML2R estimators and to the use of path-dependent functionals. Let (X¢)¢e[o,T]
a Brownian diffusion process solution to the stochastic differential equation

t t
Xi=Xo + J b(s, Xs)ds + J o(s,Xs)dWs, tel0,T],
0 0
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where b : [0, T]xR? - R4, 0 : [0, T] x R — M(d, g, R) are continuous functions, Lipschitz continuous
in x, uniformlyin ¢ € [0, T], (W¢)te[o, 17 is @ g-dimensional Brownian motion independent of X, both defined
on a probability space (Q, A, P).

We know that X = (X¢t)¢e[o, 1) is the unique (F tW )te[o,)-adapted solution to this equation, where & W is the
augmented filtration of W. The process (X¢)¢c[o,r] cannot be simulated at a reasonable computational cost (at
least in full generality), which leads to introduce some simulatable time discretization schemes, the simplest
being undoubtedly the Euler scheme with step h = %, n > 1, defined by

t t
X7 :X0+Jb(§, Xg)ds+lo(§, Xg) dWs (1)
0 0

with s = @, s € [0, T]. In particular, if we set t7 = k%,

Xp = Xp + b6, Xk + ol Xp)VRUR, ;. ke l0,...,n-1},

Wn —-Wpn
where U,’z = % is i.i.d. with distribution N(0, I,). Furthermore, we also derive from (31) that

X{ = X[+ b(t, X{)(t =) + o(t, X)W, = Wy), te[0,T].

It is classical background that, under the above assumptions on b, g, Xo and W, the Euler scheme satisfies
the following a priori LP-error bounds:

_ T
¥P>2, Achopr>0, | sup 1X - X7 < cb,g,p,TJ ~(1+ 1 Xollp)- (32)
te[0,T] p n

For the weak error expansion the existing results are less general. Let us recall as an illustration the
celebrated Talay-Tubaro’s and Bally-Talay’s weak error expansions for marginal functionals of Brownian
diffusions, i.e. functionals of the form F(X) = f(X7).

Theorem 6.1. The following statements hold.

(a) Regular setting (Talay—Tubaro [13]): If b and o are infinitely differentiable with bounded partial derivatives
andiff : R — R is an infinitely differentiable function, with all its partial derivatives having a polynomial
growth, then for a fixed maturity T > O and for every integer R € N*,

- R 1\k 1\R+1
BN - Elfxn] = Y e -) +0((5) ) (33)
= n n
where the coefficients cy depend on b, o, f, T but not on n.
(b) (Hypo-)Elliptic setting (Bally-Talay [1]): If b and o are infinitely differentiable with bounded partial deriva-
tives and if o is uniformly elliptic in the sense that

00" (x) > g0ly forallx e Randallt e [0,T], &o>0,

or more generally if (b, 0) satisfies the strong Hérmander hypo-ellipticity assumption, then (33) holds true
for every bounded Borel function f : R — R.

For more general path-dependent functionals, no such result exists in general. For various classes of spec-
ified functionals depending on the running maximum or mean, some exit stopping time, first order weak
expansions in h%, a € (0, 1], have sometimes been established (see [12] for a brief review in connection with
multilevel methods). However, as emphasized by the numerical experiments carried out in [12], such weak
error expansion can highly be suspected to hold at any order under reasonable smoothness assumptions.

In this subsection we consider F : Cp([0, T], R?) — R a Lipschitz continuous functional and we set

Yo = F(X) and Yy, = F(X") withh = % andn>1(@G.eh=T).

We assume the weak error expansion (WE, ;). We prove now that both estimators ML2R (2) and MLMC (1)
satisfy a Strong Law of Large Numbers and a Central Limit Theorem when ¢ tends to O.
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Theorem 6.2. Let Xo € L? and assume that F : Cp([0, T], RY) — R is a Lipschitz continuous functional. Then
the assumption (SEp) is satisfied with § = 1.
IfXo € L? for p > 2, then the L?-strong error assumption | Y — Yollp < Vﬁ” 'Vhis satisfied so that both ML2R
and MLMC estimators satisfy Theorem 3.1.
If Xo € LP for p > 2 and if F is differentiable with DF continuous, then the sequence (Z(h))nes¢ is L*-uni-
formly integrable and
Ve > 0, }1113(1)||Z(h)||§ = (M- 1)Ve. (34)

As a consequence, both ML2R and MLMC estimators satisfy Theorem 3.3 (case 8 = 1).

Proof. First, note that if F is a Lipschitz continuous functional, with Lipschitz coefficient [F]y;,, we have for
allp > 2,

1Yn - Yol < [F]fiplE[tes[%pT 1%~ X; P] < (FIipch 5 p 2 (1 + IXollp)PHE,
then (Yp)pegc satisfies (SEg) with = 1 and the LP-strong error assumption as soon as Xy € L?.

Assume now that X, € L? forp > 2. Byastraightforward application of Minkowski’s inequality we deduce
from the LP-strong error assumption that | Y n = Yull, < C vh and then that suppesclZ(M)p < +oo. Applying
criterion (a) of Lemma 5.2, we prove that (Z(h))pes is L?>-uniformly integrable.

At this stage it remains to prove (34). The key is [2, Theorem 3], where it is proved that

_ - tabl
VAM(X" - X)) 222, g asn — +oo,

where UM = (UEM))IG[O,T] is the d-dimensional process satisfying

— t
M-1 ¢ - Lj
v = \/T Y Ve [ Ve e dBY,  telo, . (35)

L=l

We recall the notations of Jacod and Protter [11]
q .
dX; = p(X)dW, = Y ¢ (X)) dW)
j=0

with ¢ representing the jth column of the matrix ¢ = [@jjli-1,...,q,j=1,....¢> Or j=1,...,4, o =Db and
W; = (t, th, R Wf ) (column vector), where W? = t and the g remaining components make up a standard
Brownian motion. Moreover, V¢ ; is a d x d matrix, where (Vg ;)i = 0,x¢;; (partial derivative of ¢;; with
respect to the kth coordinate) and (V¢)¢e[o, 1) is the R%* yalued process solution of the linear equation

Vt=Id+

t
q .
JWp,,-(XS) dWlvs, telo,T].
jZO 0

Here (BY)1;, j<q is a standard g2-dimensional Brownian motion independent of W. This process is defined on
an extension (Q, F, (F;)0, P) of the original space (Q, F, (F1)t0, IP) on which lives W.
We write, using that h = I,

1
Z(h) = VaM(F(X"™) - F(X")) = - J DF(uX" + (1 - w)X™) du - UM,
0
where UflM) := VnM(X" — X"M), The fun(ition (x1,X2,Xx3) — fol DF(uxy + (1 — u)x) duxs is continuous, and
it suffices to prove that (X*, X", UMy =, (x, X, UM), as n goes to infinity, to conclude that

Z(h) S _DFXOU™  ash — 0. (36)

Let two bounded Lipschitz continuous functionals be ¢ : €,([0, T], R?Y) - R and ¥ : C,([0, T], RY) —» R
and denote X" = (X", X™M) and X = (X, X). We write

E[pXMp UL - pX)pU™M)] = B(p(X™) - pX)YULY) + pX)p(UL?) - p(u™y)).
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Since (UM),.»1 converges stably with limit U™, we have that
- 7 Dy _ (Y] —
Jim E[pX)(UR™) - pU))] =0

On the other hand, owing to (32), we prove that

HEI}mE[(¢(X") - ¢(X))¢’(U
By (36) and Lemma 5.2 (b) we have

lim I1Z()I% = IDFX)UM |2 = (M - 1)veo

UM

with ve, = |[DF(X)Z= T ||2 which does not depend on M owing to the definition of UM given in (35). O

6.2 Nested Monte Carlo

The aim of a nested Monte Carlo method is to compute by Monte Carlo simulation

E[f(E[X]| Y]],

where (X, Y) is a couple of R x R?"-valued random variables defined on a probability space (Q, A, P) with
X e L>(P) and f : R — R is a Lipschitz continuous function with Lipschitz coefficient [f]Lip- We assume that
there exists a Borel function F : R% x R?Y — R and a random variable ¢: (Q, A) —» R% independent of Y
such that

X=F(¢Y)
and we seth = Kio for some integer Ko > 1, h = #, K € KoN* = {Ko, 2Ko, ...} and

1 K
1 ::f(E,;lF(’fk’ Y)>,

where (&x)k>1 is a sequence of i.i.d. variables, & ~ ¢, independent of Y. A nested ML2R estimator then writes
(n,- = Mjfl)

Yo :=f(E[X|Y]), Yn=Y

N_ L1 g iy

=g 2 g P v
) R N; nK N 1 Mok N
+Z ¥ Z( (nKZF('fk YU)")) ( ok ; Z FE YU)"))),

j=2 Y =1

where (YU ');51 isa sequence of independent copies of Y(J ~Y,j=1,...,R, Y9 independentof Y© forj # ¢,
and (fk )k i>1,j=1,...,R is a sequence of i.i.d. variables f ~ &. We saw in [12] that, when f is 2R times dif-
ferentiable with f*) bounded, the nested Monte Carlo estimator satisfies (SE/;) with =1 and (WEa’ ) with
a = 1and R = R — 1. Here we want to show that the nested Monte Carlo satisfies also the assumptions of the
Strong Law of Large Numbers 3.1 and of the Central Limit Theorem 3.3. Then we define for convenience

1 K
o) := E[F(&, ], ¢ny) ::R;F(fk,y), K € KoN*,

so that Yy = f(¢po(Y)) and Yy, = f(¢n(Y)), and for a fixed y, we set or(y) := v/Var(F(¢, y)).

Proposition 6.3. Still assuming that f is Lipschitz continuous. If X € LP(P) for p > 2, then there exists Vgp ) such
that, forallh = 4 and h' = %7, K, K’ € KoN*,

1Y - Yuly < VPIR' - hIE, (37)
As a consequence, assumption (SEg) and the LP-strong error assumption (9) are satisfied with 8 = 1. Then both
ML2R and MLMC estimators satisfy a Strong Law of Large Numbers, see Theorem 3.1.
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Proof. Set Xy = F(&, Y) - E[F(&, Y)| Y] and Sy = Zlef:l X,. As f is Lipschitz, we have

K’ 1 k p
IYh = Yall = Hf( d ZF(sk, ) (E ZF(sk, Y)) i
Sk Sk|P
Llp‘KI ZX"_ ZX"” Llp ” K e
Assume without loss of generality that K < K'. Since p > 2, it follows that
- )= El (- )5 gois-sof |
EHK’ x| | =B\ xSkt gk = S0
1
p-1f| 2 _ L  —SeP1.
<2772 - | BUSKP1+ () Blisk - seP]]

Owing to Burkholder’s inequality, there exists a universal constant C, such that

)4

N]

E[|SkIP] < CpE [

k=1
Hence, as Sg — Sk ~ Sg'_x in distribution,

H Sk S|P
K’ K

Keeping in mind that K’ > K, we derive

115K
S IR N O e :‘——— x
‘K’ K‘ 2+\K"| =% %l %
2PC,E[IX1/P].

‘K’

We conclude by setting Vgp ) = Llp

For the Central Limit Theorem to hold, the key point is the following lemma.

.
] <Gy Y1501y ) = CREBI

_ 1o1p 1\
]SZP_ICPIE[IXllp][lF—I—(l K: +(F) |K’—K|§].

DE GRUYTER

Lemma 6.4. Assume that f : R — R is a Lipschitz continuous function and differentiable with f' continuous.

Let { be an N(0, 1)-distributed random variable independent of Y. Then, as h — 0,

M v
Z(h) = \/W(Yﬁ ~Yn) 5 VM= 1f (do(1)or(Y).

Proof. First note that Z(h) = z;M)(Y), where Z;M) is defined by

M
ZM@y) = J S F(@ 2 1) ~fipn(y) forally e RY".

Let y € R?7. We have
1

Z;lM)(y) = —(Jf’(vth(y) +(1- v)¢%(y)) dV>u§lM)(y)
0
with -
M
0, () = J = n ) = 5 ).

We derive from the Strong Law of Large Numbers that

lim n(y) = go(y) = lim ¢ (y) as.

and by continuity of the function (xq, x3) — jol f'(vx1 + (1 = v)x,) dv (since f’ is continuous) we get

1
im [ £ + (L= Vpy ) dv = (@o) as.
0

(38)

(39)

(40)
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We have now to study the convergence of the random sequence uﬁlM)(y) as h goes to zero. We set
& = &ux, k=1,...,K(M-1). Note that (&)=1,... k1) are i.i.d. with distribution & and are indepen-
dent of ({x)k=1...,m. Then we can write

o 1 K 1 MK
uy(y) = VMK(R k;F(s‘k,y)— W;F(&,y))

.....

\/_ M-1 K 1 MK
= MK(W k;(F ks y) — Po(y)) - TTe k:;H(F(fk; y) - ¢0()’))>

M—l( 1 § M-1 1 K(Ii—n B

=— —= F(fl,)/)—¢o()/)>— [ ( F(-fk,)/)—fl’o(Y))]-

VI \VEE M | JkMM-D\ =

Owing to the Central Limit Theorem and the independence of both terms on the right-hand side of the above
inequality, we derive that

M-1

T or(y)$1 - JEUF(Y)(Z ash -0,

(M) £
u, (y) — M

where {7 and {, are two independent random variables both following a standard Gaussian distribution.
; M-1y2 [M=1\2 _ a7 _ ;
Hence, noting that (W) +(\5)7 = M -1, we obtain
uM(y) Z VM= 10r(y){  with ¢ ~N(O, 1). (41)
By Slutsky’s Theorem, we derive from (39), (40) and (41) that for every y € RYY,

2My) S VM= 1f ($o()or(y)¢ ash — . 42)

Recall that Z(h) = z;lM) (Y). We prove (38) combining Fubini’s Theorem with the Lebesgue Dominated Con-
vergence Theorem and (42). More precisely, for all G € €} we have

lim E[[]2]6(Z(W) = lim E[G(z (V)] = E[lim G(z{" (V)]
h—0 h—0 h—0
= E[G(VM - 1f" (o) ar ()],
as desired. =

We are now in a position to prove that the nested Monte Carlo satisfies the assumptions of the Central Limit
Theorem 3.3.

Theorem 6.5. Assume that f : R — R is a Lipschitz continuous function and differentiable with f' continuous.
Then (Z(h))nesc is L2-uniformly integrable and

}lliL%IIZ(h)II% = (M - DIf'(Po(Y)or(V)II3. (43)

As a consequence, the ML2R and MLMC estimators (2) and (1) satisfy a Central Limit Theorem in the sense of
Theorem 3.3 (case B = 1).

Proof. We prove first the L?-uniform integrability of (Z(h))nesc. As f is Lipschitz, we have

M
1ZWP < Afple (NP with P (y) = J#th(y) ~$1 )

Consequently, it suffices to show that (u;M)(Y)) nesc is L?-uniformly integrable, to establish the L?-uniform
integrability of (Z(h))neg¢-

We saw in the proof of Proposition 6.4 that u'" (Y) =, VM= T10r(Y){ as h goes to 0, where { is a standard
normal random variable independent of Y. Owing to Lemma 5.2 (b), the uniform integrability will follow from
limp_o ||u§[M)(Y)||2 =[VvM -1 or(Y){],. In fact, this convergence holds as an equality. Indeed,

M-1

1 2
1M (V)2 = MKE[(Sk - Sux)?] = MK]E[(WSK - (S - sm) ]
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We notice that Syx — Sk is independent of Sk. Hence, since the & are independent,

ot = (e[ (M) | (g sme—s0) )

- MK((%)ZKE[(XQZ] ¥ (ﬁ)z(MK - OE[X)?])

= (M - DE[(X1)*] = (M - DE[0z(Y)].

We prove now (43) using again Lemma 5.2 (b) with the convergence in law of (Z(h))neq¢ established in
Lemma 6.4. O

We notice that, if assumption (37) in Proposition 6.3 holds with p > 2, the condition of L?-uniform integra-
bility is much easier to show since it is a direct consequence of Lemma 5.2 (a).

6.3 Smooth nested Monte Carlo

When the function f is smooth, namely C**(RR, R), p € (0, 1] (' is p-Holder), a variant of the former multi-
level nested estimator has been used in [4] (see also [8]) to improve the strong rate of convergence in order
to attain the asymptotically unbiased setting 8 > 1 in condition (SEg). A root M being given, the idea is to
replace in the successive refined levels the difference Y n = Yy (where h = %, K € KoIN*) in the ML2R and
MLMC estimators by

1 MK 1 M 1 K
Yy, 1 :=f(m kZlF(fk, Y)) - mZ_lf(E kZlF(&m_%k, Y)).
It is clear that
E[Y) 2] =E[Y} - Ya].

Computations similar to those carried out in Proposition 6.3 yield that, if X = F(¢, Y) € LP1*P)(PP) for some

p =2, then
B(1+p) E(1+p)
(p.p) h |2 2
1Y, 415 < Vie? |- o
M M

SLLN: The first consequence is that the SLLN also holds for these modified estimators along the sequences
of RMSE (&x)ks1 satisfying .., €} < +co owing to Theorem 3.1.

1 y
- V}V’}”’)l1 7 L (44)

CLT: When (44) is satisfied with p = 2, one derives that § = £(1 + p) = 1+ p > 1 whatever p is. Hence, the
only requested condition in this setting to obtain a CLT (see Theorem 3.2) is the L?-uniform integrability
of (h‘é Y, % Jhed¢, since no sharp rate is needed when B > 1. Moreover, if (44) holds for a p € (2, +00), i.e.
if X = F(&,Y) e LP#P)(P) with p > 2, then

1(1+p)

>

1
1-—

_E (p,p)i
h 2||Y,1,%||1,,<VM i

which in turn ensures the L?-uniform integrability.

As a final remark, note that if the function f is convex, Y, o < 0 so that E[Y L ] < E[Yx] which in turn
implies by an easy induction that IE[ Y] < E[Y}y] for every h € HH. A noticeable consequence is that the MLMC
estimator has a positive bias.

These results can be extended to locally p-Holder continuous functions with polynomial growth at
infinity. For more details and a complete proof we refer to [9].

7 Conclusion

We proved a Strong Law of Large Numbers and a Central Limit Theorem for Multilevel estimators with and
without weights and we exhibited two applications: the discretization schemes for diffusions, where we
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extend a result of Ben Alaya and Kebaier in [2], and the nested Monte Carlo, first mentioned in the Multilevel
framework by Lemaire and Pagés in [12]. The Strong Law of Large Numbers is essentially a consequence of the
strong error assumption (SEg) (or of its reinforced version (9)), and of the estimator levels’ independence. The
understanding of the behavior of the weights in the Multilevel Richardson-Romberg estimator is also crucial
at this stage, as it is for the proof of the Central Limit Theorem which follows. Under some additional assump-
tions of L2-uniform integrability, both the weighted and the standard Multilevel estimators follow a Central
Limit Theorem at rate € as the quadratic error € goes to 0. We distinguish between two cases, depending on
the value of the strong error rate 8. When f > 1, both the first coarse level and the successive fine correcting
levels contribute to the asymptotic variance of the estimator, whereas when f € (0, 1], the asymptotic vari-
ance contains only the contribution of the correcting levels. With the choice of optimal parameters made in
Tables 1 and 2, the Standard Multilevel Monte Carlo estimator has a bias (which is bounded), whereas the
weighted Multilevel Monte Carlo estimator is asymptotically without bias, hence we can build exact confi-
dence intervals for the weighted Multilevel Monte Carlo estimator.

A Asymptotic of the weights
We focus our attention on the behavior of W}R when R — +00. We recall
R -]
Wf = Z aebr—¢ = z ar-ebe
o= 2=0

with
1

B [Ti<kee-1 (1 - M%)
and with the convention [J{_,(1 - M%) = 1, and

ae

M—%e(fﬂ)
ngkge(l - M_ka) .

For convenience, we set W]R =0, forj >R+ 1, R € N*. We first notice that a, is an increasing and converging
sequence and we set

be = (-1)°

lim a, = ay.
£—+00

The sequence b, converges to zero and furthermore the series with general term b, is absolutely converging,
since ¥ ,.; M~34¢+1 < 00, This leads us to set

_ 1o +00
Boo = Y Ibel <+00 and Be, = ) be < +00.
¢=0 £=0

Claim (a) of Lemma 4.3 is then proved. As a consequence,
IWJRI < deBs forallR e N*andallje{l,...,R},
which proves claim (b) in Lemma 4.3. For the proof of claims (c) and (d), we will need the following:

LemmaA.1. Let ¢ : N* — IN* such that ¢(R) € {1,...,R—-1}forallR > 1, p(R) — +coand R - ¢(R) — +00
as R — +oo. Then

lim sup IWJI-2 -1|=0.
R—+c0 1<j<@(R)

In particular, for all j € N* we have Wf — 1 as R — +oo. However, this convergence is not uniform since
R j—1 .

W}H.Jr1 — Qoo Yp_q be foreveryj € N* as R — +oo.

Proof. We write
R-j R-j R-j

R
[W;* = dooBool = Z ag-ebe — Ao Z be - ae Z be| < Z(aoo —ag-¢)lbel + aoo Z [bel.

£=0 £=0 £>R-j+1 £=0 £>R—j+1
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First note that

lim  sup > lbel < lim > lbel =0

R=+00 jef1,...,0(R)} p2RTj41 R=+400 4o R 2o(R)+1

as R - ¢(R) — +ooand ) . |be| < +00. On the other hand, forevery j € {1, ..., p(R)},

Z(aoo ag-e)lbe| = Z(aoo ag)|br-|

£=0 £=j
o(R) R
= Y (@ —ag)lbrel + Y (Ao — ar)|br-e|
£=j =p(R)+1
R-j R-¢(R)-1
Ao Y |bel+ (Ao — prys1) Y. |Del
£=R-¢(R) £=0
+00 R-p(R)-1
<Aoo ). bl + (Ao — apmye1) Y. Ibel.
£=R-¢(R) £=0

Consequently, SUDjeq1,...,R} Zf;;é(aoo — ag_¢)|bel —» 0as R — +oo, since ¢(R) and R — ¢(R) — +oo. Finally,

lim sup |W]1-2 —deoBo| =0
R—+00 14j<q(R)

Moreover, by definition we have W1 =1 for all R, which implies that By, = i and completes the proof.
Finally, as a; — dco,

WE i, = Z ag-ebi ~—%5 ag, Y be,
as desired. O
Proof of Lemma 4.3 (c) and (d). (c) Let us consider the non-negative measure on IN* defined by
mp(j) = MUV, y <o.

We notice that it is a finite measure since

. 1
Y dmy(j) = TR

j=1

Since, as we saw in Lemma A.1, W}R — 1 as R — +oo for every j € N* and IWJRI < oo Boo, We derive from
Lebesgue’s Dominated Convergence Theorem that

1
1 WRM)’Jl)_ 1 WRMV(J 1) _
:I:LOZ' | Z tim | 1W;1 M

(d) If y < 0, we consider the non-negative finite measure on N* defined by m;;(j) =M y(f‘l)v,- since (Vj)j»1
is a bounded sequence of positive real numbers. As in the previous case (c) we have

R
li RiyvU-Dy, = yG-1)y,
Jim 3w = S
j=2 j=2
Ify = 0, letus consider a sequence ¢(R) € {1, ..., R - 1} such that ""TR) — 1,R- @(R) > +ooasR — +0o
(for example @(R) = R — VR). Then we can write

1& 1 &
Ezlwi |vj—EZv,
j=2 j=2

1(P(R) R 1 R
S[E;:Zzllel_ll+§ Z (|W|+1)]supv,

j=p[R)+1

<| su WR ¢(R) AooBoo + 1 _pB) sup v;.
[2<]<(£ZR)| | R +( " )( R >] }'>§)]

Owing to Lemma A.1, SUP»<j<y(r) |W — 1] - 0asR — +o0o. Using furthermore that ‘p(R — lasR — +ooand
that limj_,, vj = 1, one concludes by noting that, owing to Césaro’s Lemma, hmR_,+00 R Z] HVi=1.
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If y > 0, first, we notice that
R .
Y WM > [WEIMYR = ag| MR — +oo. (45)
j=2

Let n > 0. Since limj_,, vj = 1, there exists N, € N* such that, for each j > Ny, |v; - 1] < % Owing to
Lemma A.1 there exists Ry such that, for each R > Ry, sup,j«y, IW]RI <1+n.Then

YR, WRIMYG-Dy; ) Y WRIMYG-D]y; - 1
— < -
>R, IWRIMYG-D YR, IWRIMYG-D

N i .
L (WRIMYTDly; - 1]y 3Ry, 1 WRIMYO-D
>R, WRmyG-n 2 3R jWR MG

maxagjen, MY9D|v; - 1INy sup, ey, WS
+
Y, [WF|MyG-D
f(Np)(1 + 1) o

< Zﬁz |W}R|My(];1) 2

<

N

where f(N) = maxa<j<y MYU~D|v; - 1IN does not depend on R. Thanks to (45), there exists Ry, > 0 such that,
for each R > max(Ry, Ry), Z]}iz |W]’.Q|MVU*1) > w, which proves that
Zf;z |W,I-2|My(j_1)‘/i
im —— ——
R—+00 Zj:Z |W]_ |MYG-1)

This leads to analyze

1 R . R o R-1 o
o 2 (WRIMYOD = 5 (WRIMYETD = 5 W M
j=2 j=2 j=1

Using that IWIRI < dgoBoo forj e {1,..., R} and Lemma A.1, one derives from Lebesgue’s Dominated Conver-
gence Theorem that

R-1 j-1
_yi R—+00 i
Y AWE MY —= a0, ) | belM™V < +00
j=1 j=1le=0
. -1 j-1 =
since | ¥}, bel < Yo Ibel < Beo. O
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