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applications
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Abstract. Sobol’ sequences are widely used for quasi-Monte Carlo methods that arise

in financial applications. Sobol’ sequences have parameter values called direction num-

bers, which are freely chosen by the user, so there are several implementations of Sobol’

sequence generators. The aim of this paper is to provide a comparative study of (non-

commercial) high-dimensional Sobol’ sequences by calculating financial models. Addi-

tionally, we implement the Niederreiter sequence (in base 2) with a slight modification,

that is, we reorder the rows of the generating matrices, and analyze and compare it with

the Sobol’ sequences.
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1 Introduction

Monte Carlo (MC) methods are an important numerical tool for pricing many fi-

nancial derivatives and calculating the Greeks. Generally speaking, these values

can be expressed as mathematical expectations, and the expectations reduce to in-

tegrals over the s-dimensional unit cube (0, 1)s after a suitable change of variables,

that is,
∫

(0,1)s f(x)dx for a function f : (0, 1)s → R and x := (x1, . . . , xs). How-

ever, it is often difficult to evaluate the exact value analytically and the dimension

s is over hundreds or thousands, so we use MC integration:

∫

(0,1)s
f(x)dx ≈ 1

N

N−1∑

n=0

f(xn), (1.1)

where {x0, . . . ,xN−1} ⊂ (0, 1)s is a point set of independent random samples

from the uniform distribution on (0, 1)s. MC has a probabilistic error of O(N−1/2),
which does not depend on the dimension s but is significantly slow. To im-

prove the rate of convergence, we apply quasi-Monte Carlo (QMC) methods using
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low-discrepancy point sets or sequences that are more uniformly distributed than

random points (see [7, 22] for the precise definition). Around the middle of the

1990s, a series of studies reported that QMC attains a higher rate of convergence

than MC for certain types of high-dimensional numerical integration in finance

[1, 4, 15, 23, 25]. Because of this, Sobol’ sequences have been widely used since

then.

Sobol’ sequences are a class of low-discrepancy sequences originally proposed

by Sobol’ [27] in 1967 and have parameters called direction numbers, which are

freely chosen by the user. Thus, there are several implementations of Sobol’ se-

quences with distinct parameter values [2,13,14,18,28]. Some of them have been

optimized with the aim of applying them to finance. A comparison of Sobol’ se-

quences for high-dimensional problems in finance was presented in [28], but we

want to know further numerical examples, including randomization and effective

dimension reduction techniques. According to [14], Joe and Kuo conducted some

preliminary calculations for financial models and found that their new Sobol’ se-

quence [14] provided better results in some cases and, at worst, was comparable

with the old sequence [13]; however, specific numerical examples were not in-

cluded in their paper.

The aim of this paper is to provide a comprehensive comparative study of (non-

commercial) high-dimensional Sobol’ sequences [13, 14, 18] in financial applica-

tions. Niederreiter [21, 22] proposed another class of low-discrepancy sequences,

called Niederreiter sequences. Recently, Faure and Lemieux [8] described the

relationships between Sobol’ and Niederreiter sequences in detail. Additionally,

Faure and Lemieux [9] reported that the Niederreiter sequence (in base 2) with a

slight modification, i.e., reordering the rows of the generating matrices, demon-

strated high performance in some applications. Motivated by their report, we also

analyze the modified Niederreiter sequence and compare it with Sobol’ sequences.

In the theory of “analysis of variance” (ANOVA) decomposition [4, 10, 11, 34,

35], it is known that the integrand f(x) for certain high-dimensional problems

in finance is dominated by the first few variables (low effective dimension in the

truncation sense) or is well approximated by a sum of functions of at most one or

two variables (low effective dimension in the superposition sense), i.e.,

f(x) = f0
︸︷︷︸

constant

+
s∑

i=1

fi(xi)

︸ ︷︷ ︸

order-1 terms

+
∑

1≤i<j≤s

fi,j(xi, xj)

︸ ︷︷ ︸

order-2 terms

+ (small higher-order terms).(1.2)

It is believed that these are reasons why QMC succeeds in high-dimensional nu-

merical integration even if the nominal dimension s is over hundreds or thousands.

The Sobol’ sequence provided by Joe and Kuo [14] was optimized so as to have
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good two-dimensional (2D) projections for the assumption (1.2). As we shall see

later, if the latter condition (1.2) is satisfied but the former condition is not sat-

isfied, that is, if f(x) has low effective dimension in the superposition sense but

high effective dimension in the truncation sense, then such optimization seems to

be effective.

The remainder of this paper is organized as follows: In Section 2, we review dig-

ital nets and sequences, the t-value, which is a criterion of uniformity, and Sobol’

and Niederreiter sequences. In Sections 3 and 4, we present our main results.

In Section 3, we calculate the frequency of t-values of Sobol’ and Niederreiter

sequences for 2D projections in high dimensions and show that the new Sobol’

sequence provided by Joe and Kuo [14] and the modified Niederreiter sequence

avoid the existence of extremely large t-values. In Section 4, we compare Sobol’

and Niederreiter sequences for numerical integration problems, e.g., Asian, digital,

and basket options, with or without effective dimension reduction. In Section 5,

we conclude this paper.

2 Preliminaries

2.1 Digital nets and digital sequences

Following [5, 7, 22], we recall a digital method to construct QMC point sets P
and (infinite) sequences S. Sobol’ sequences are included in these classes. Let

F2 := {0, 1} be the two-element field. We perform addition and multiplication

over F2 (or modulo 2).

Definition 2.1 (Digital nets). Let s ≥ 1 and m ≥ 1 be integers. Let C1, ..., Cs ∈
F
m×m
2 be m × m matrices over F2. For each n = 0, . . . , 2m − 1, let n =
∑m−1

l=0 nl2
l with nl ∈ F2 be the expansion in base 2. For each 1 ≤ i ≤ s,

set (xn,i,0, . . . , xn,i,m−1)
⊤ := Ci(n0, . . . , nm−1)

⊤, where ⊤ is the transpose, and

xn,i :=
∑m−1

l=0 xn,i,l2
−l−1. Then, the point set P = {xn := (xn,1, . . . , xn,s) | n =

0, . . . , 2m − 1} is called a digital net over F2 and C1, . . . , Cs are called the gener-

ating matrices of the digital net P .

The concept of digital nets can be extended to (infinite) sequencesS = {x0,x1, . . .} ⊂
[0, 1)s for ∞ × ∞ generating matrices C1, . . . , Cs ∈ F

∞×∞
2 and infinite expan-

sions n =
∑∞

l=0 nl2
l and xn,i :=

∑∞
l=0 xn,i,l2

−l−1 that contain only a finite num-

ber of nonzero terms. The resulting sequence S is called a digital sequence and

the matrices C1, . . . , Cs are called the generating matrices of the digital sequence.
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2.2 (t,m, s)-nets

As a quality parameter of uniformity for a point set P , we recall the definition of

the t-value. See [5, 7, 22] for details.

Definition 2.2. ((t,m, s)-nets). Let s ≥ 1, and t be an integer with 0 ≤ t ≤ m.

A point set P = {x0,x1, . . . ,x2m−1} consisting of 2m points in [0, 1)s is called

a (t,m, s)-net (in base 2) if every subinterval J =
∏s

i=1[ai/2di , (ai + 1)/2di) ∈
[0, 1)s with integers di ≥ 0 and 0 ≤ ai < 2di for 1 ≤ i ≤ s and of volume 2t−m

contains exactly 2t points of P .

Definition 2.3 (t-value for a (t,m, s)-net). The minimum t that satisfies the above

property is called the t-value for a (t,m, s)-net.

A point set P is well distributed if the t-value is small. The integration er-

ror is bounded by O(2t(logN)s−1/N) for N = 2m when f is smooth. The

factor (logN)s−1 is not negligible if s is large, but QMC works well for high-

dimensional numerical integration in finance possibly because f(x) has low effec-

tive dimension. In the case of digital nets, the t-value can be easily calculated by

some algorithms [6, 26].

2.3 Sobol’ and Niederreiter sequences

Sobol’ [27] proposed a construction method for generating matrices C1, . . . , Cs ∈
F
∞×∞
2 that have a good structure of (t,m, s)-nets. His sequences are now called

Sobol’ sequences and are included in a subclass of generalized Niederreiter se-

quences [31, 32]. Recently, Faure and Lemieux [8] described the relationships

between them in detail. From this viewpoint, Sobol’ sequences are formulated as

follows:

(i) Let p1(x) = x ∈ F2[x] and pi(x) ∈ F2[x], 2 ≤ i ≤ s, be the (i − 1)th
primitive polynomials in a list of primitive polynomials that are sorted in

non-decreasing order of degree, i.e., p2(x) = x+ 1, p3(x) = x2 +x+ 1, and

so on. Let ei := deg(pi).

(ii) For each 1 ≤ i ≤ s, set polynomials gi,0(x), . . . , gi,ei−1(x) ∈ F2[x] such

that

deg gi,k(x) = ei − 1 − k (2.1)

for 0 ≤ k ≤ ei − 1, in advance. These polynomials are the parameters that

can be freely chosen by the user and correspond one-to one to the so-called

direction numbers (see Remark 2.4 for details).
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(iii) For u = 1, 2, . . ., consider the formal power series expansion

gi,k(x)

pi(x)u
=

∞∑

v=1

a(i)(u, k, v)x−v ∈ F2((x
−1)). (2.2)

(iv) Define Ci = (c
(i)
j,v)j≥1,v≥1 ∈ F

∞×∞
2 as c

(i)
j,v = a(i)(Q + 1, k, v) ∈ F2 for

1 ≤ i ≤ s, j ≥ 1, v ≥ 1, where

j − 1 = Qei + k, (2.3)

with integers Q = Q(i, j) and k = k(i, j) satisfying 0 ≤ k ≤ ei − 1. Note

that each row of Ci corresponds to each formal power series expansion in

(2.2). Note that the conditions (2.1) and (2.3) correspond to the reordering of

rows of Ci so as to obtain non-singular upper triangular (NUT) matrices.

The first 2m points P can be viewed as a digital net generated by the upper-left

m×m submatrices of C1, . . . , Cs ∈ F
∞×∞
2 . We can prove that P is a (t,m, s)-net

with the following properties (see [7, 22]):

• Each one-dimensional (1D) projection is a (0,m, 1)-net, which means that

1D projections have already been optimized, that is, each t-value is 0.

• The t-value is ≤ ∑s
i=1(ei − 1) for any m, which means that the initial di-

mensions have already been optimized.

• For any low-dimensional projection, the t-value is ≤∑(ei − 1), where
∑

is

taken over the corresponding projections.

The condition (2.1) can be described as

gi,k(x) = xei−1−k + (lower terms) ∈ F2[x] (2.4)

for 0 ≤ k ≤ ei − 1, and a good selection of lower terms makes us obtain t-values

smaller than those of the above upper bounds.

Remark 2.4. Sobol’ [27] originally proposed a column-by-column construction

for generating matrices Ci using recurrences of columns based on primitive poly-

nomials pi(x) for each 1 ≤ i ≤ s. In this construction, the upper-left ei × ei
submatrices of generating matrices Ci are initial values, and were originally called

the direction numbers, which exactly correspond one-to-one to the polynomials

gi,0(x), . . . , gi,ei−1(x) with (2.1). See [8] for details.
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Remark 2.5. Niederreiter [21, 22] proposed another construction method for gen-

erating matrices C1, . . . , Cs ∈ F
∞×∞
b for low-discrepancy sequences, where b is

a prime power and Fb is a finite field with b elements. These sequences are called

Niederreiter sequences. In the standard implementation of [3] in base b = 2,

the main differences from Sobol’ sequences are that pi(x) ∈ F2[x], 1 ≤ i ≤ s,

are taken to be irreducible polynomials (sorted in non-decreasing order of degree)

instead of primitive polynomials, and gi,0(x), . . . , gi,ei−1(x) are taken to be

gi,k(x) = xk ∈ F2[x]

for ei = deg(pi) and 0 ≤ k ≤ ei − 1, instead of polynomials with the condition

(2.1). Note that there are no freely chosen parameters. Note that the resulting

generating matrices C1, . . . , Cs ∈ F
∞×∞
2 do not have the NUT properties (see

Figs. 1 and 2 in [8]), so we suffer from the leading-zero phenomenon, that is,

there are too many points close to the origin at the beginning of the sequences.

Additionally, note that we obtain the NUT generating matrices after reordering the

rows of Ci. According to Theorem 4.3 of [8], such NUT generating matrices are

obtained by the original column-by-column construction, which implies that the

primitivity of pi(x) is not necessary.

3 Analysis of Sobol’ and Niederreiter sequences with NUT

generating matrices

In this section, we compare high-dimensional Sobol’ and Niederreiter sequences

in terms of the t-values. In 1976, Sobol’ and Levitan [29] provided direction

numbers in terms of Property A and Property A’ [30], which are the criteria for

the equidistribution property of the 1 and 2 most significant bits, respectively. In

1988, Bratley and Fox [2] provided a FORTRAN implementation of the Sobol’

sequence using this set of direction numbers up to dimension 40. In our tests, we

investigate the following (non-commercial) high-dimensional Sobol’ and Nieder-

reiter sequences released after 2000:

(a) In 2003, Joe and Kuo [13] provided a Sobol’ sequence generator up to dimen-

sion 1111. The direction numbers for 1 ≤ s ≤ 40 are the same as those of

Bratley and Fox [2]. The direction numbers for 40 < s ≤ 1111 are selected

so as to satisfy Property A. We refer to this generator as Sobol’ (JoeKuo03).

(b) Lemieux et al. [18] provided a Sobol’ sequence generator up to dimension

360. The direction numbers for 1 ≤ s ≤ 40 are the same as those of Bratley

and Fox [2]. The direction numbers for 40 < s ≤ 360 are optimized in

terms of the resolution criterion for eight successive dimensions, see [17,
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Chapter 3.5.2]. We use the 2004 version and refer to this generator as Sobol’

(Lemieux).

(c) In 2008, Joe and Kuo [14] indicated that the 2003 version of the Sobol’ se-

quence generator has a bad structure (i.e., extremely large t-values) for some

2D projections and searched the new direction numbers up to 21201. Their

approach was to choose the direction numbers so that (i) Property A holds

for 1 ≤ s ≤ 1111; and (ii) the t-values of 2D projections of the point sets

are minimized by proposing the search criterion D(6). Consequently, ex-

tremely large t-values are avoided. We refer to this new generator as Sobol’

(JoeKuo08).

(d) Recently, Faure and Lemieux [8] discussed the Niederreiter sequence (in base

2) with NUT generating matrices after reordering the rows of the generat-

ing matrices. This sequence can be viewed as the Sobol’ sequence based

on irreducible polynomials p1(x) = x, p2(x), . . . , ps(x) ∈ F2[x] with non-

decreasing order of degree and given by gi,k(x) = xei−1−k for ei = deg(pi)
and 0 ≤ k ≤ ei − 1, so as to satisfy the condition (2.1). Additionally,

Faure and Lemieux [9] reported that the Niederreiter sequence with NUT

generating matrices already demonstrated high performance in some high-

dimensional numerical integrations without optimizing the lower terms of

gi,k(x) in (2.4). To confirm their new findings, we implement this generator

and refer to it as Niederreiter (NUT). The irreducible polynomials and direc-

tion numbers are available at https://github.com/sharase/niederreiter-nut.

In addition, Kucherenko et al. [28] released commercial software for Sobol’ se-

quences up to dimension 65536 with Property A for all dimensions and Property

A’ for successive dimensions, but we exclude it from our tests because it requires

a commercial license.

To compare the sequences (a)–(d), we assume that the integrand f(x) satisfies

the condition (1.2). The t-values of 1D projections are all 0, so we calculate the

t-values of 2D projections. Let m ≥ 1 and

t(i, s;m)

denote the t-value of the digital net that corresponds to the (i, s)-projection (i.e.,

the 2D projection of dimensions i and s with 1 ≤ i ≤ s− 1) of the first 2m points.

Tables 1 and 2 show the frequency of all the values of t(i, s;m) (1 ≤ i ≤ s−1) for

2 ≤ s ≤ 360 and 2 ≤ s ≤ 1024, respectively. Sobol’ (Lemieux) is up to dimen-

sion 360, and hence it is excluded in Table 2. From the tables, there exist extremely

large t-values for Sobol’ (Lemieux) and (JoeKuo03), but Niederreiter (NUT) tends

to avoid such large t-values, as well as Sobol’ (JoeKuo08). Conversely, the occur-

rence of small t-values (e.g., 1 or 2) for Niederreiter (NUT) is more frequent than

https://github.com/sharase/niederreiter-nut
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for Sobol’ sequences. This implies that Niederreiter (NUT) has high uniformity

for 2D projections in high dimensions without optimizing direction numbers.

4 Comparison in financial applications

We compare Niederreiter (NUT) and Sobol’ sequences in Section 3 from the view-

point of financial applications. In the QMC setting, we apply randomizations using

linear scrambling and digital shift to point sets (see [12, 16, 17] for details). This

technique preserves the t-values of (t,m, s)-nets and avoids the problem that the

first point is always the origin. We apply the randomizations M times, make M

point sets P̃l = {x̃(l)
n } ⊂ (0, 1)s (l = 1, . . . ,M), and compute M independent

estimates of (1.1):

Ql :=
1

N

N−1∑

n=0

f(x̃(l)
n ).

Further, we compute the mean and the standard error of Q1, . . . , QM , i.e.,

Q̄ :=
1

M

M∑

l=1

Ql, stderr(Q̄) :=

√
√
√
√ 1

M(M − 1)

M∑

l=1

(Ql − Q̄)2.

Throughout this paper, we set M = 100 as the number of randomizations.

4.1 Asian option

Assume that under the risk-neutral measure the asset price St follows the Black–

Scholes model (i.e., geometric Brownian motion):

dSt = rStdt+ σStdBt, (4.1)

where r is the risk-free interest rate, σ is the volatility, Bt is a standard Brownian

motion. The problem of pricing an Asian call option on the discrete arithmetic av-

erage is formulated as follows: the payoff function is given by max(0, 1
s

∑s
i=1 Sti−

K), where K is the strike price at maturity T , and a time interval [0, T ] is dis-

cretized at equally spaced times ti = i∆t for i = 1, . . . , s, where ∆t = T/s. Then,

the value of the option at time 0 is given by

E

[

e−rT max(0,
1

s

s∑

i=1

Sti −K)

]

. (4.2)
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The analytical solution to (4.1) is given by St = S0 exp((r−σ2/2)t+σBt), so it is

sufficient to simulate sample paths of Brownian motion. The standard construction

of Brownian motion is to generate Bti sequentially in time: given B0 = 0,

Bti = Bti−1 +
√

∆tZi, i = 1, . . . , s, (4.3)

where Z1, . . . , Zs ∼ N(0, 1) are i.i.d. standard normally distributed random vari-

ables. The standard construction (4.3) can be written as

(Bt1
, . . . , Bts)

⊤ = A(Z1, . . . , Zs)
⊤, A =

√
∆t









1 0 · · · 0

1 1 · · · 0
...

...
. . .

...

1 1 · · · 1









, (4.4)

where A is an s × s lower triangular matrix. Thus, the expectation (4.2) can be

written as

∫

(0,1)s
e−rT max

(

0,
1

s

s∑

i=1

S0 exp

[(

r − σ2

2

)

ti + σwi

]

−K

)

dx,

where Φ : (0, 1) → R denotes the cumulative distribution function of the standard

normal distribution and (w1, . . . , ws)
⊤ := A(Φ−1(x1), . . . ,Φ

−1(xs))
⊤ for x =

(x1, . . . , xs) ∈ (0, 1)s. We use the following parameters: T = 1, r = 0.1, σ =
0.2, S0 = 100,K = 100, which were used in [34].

First, we consider the case of dimension s = 360. Figure 1 shows a summary of

the standard error stderr(Q̄) in log2 scale for m = 1, . . . , 20. In our experiments,

we applied QMC methods based on Sobol’ and Niederreiter sequences (a)–(d) and

crude MC methods using random number sequences from Mersenne Twister [19].

For this, we observed that Niederreiter (NUT) and Sobol’ (JoeKuo08) are more

effective than the others, particularly for m = 10, . . . , 18, which are often used

in practice. Additionally, our result seems to agree with the frequency of t-values

for 2D projections in Table 1. Thus, it is inferred that the Asian option using the

standard construction (4.3) has low effective dimension in the superposition sense

but high effective dimension in the truncation sense.

Further, we consider the higher dimensional case s = 1024. Figure 2 shows a

summary of stderr(Q̄) in log2 scale. In the standard construction (4.3), Niederre-

iter (NUT) and Sobol’ (JoeKuo08) also provide better results than Sobol’ (JoeKuo03).

Further, we recall dimension reduction techniques, such as the principal compo-

nent analysis (PCA) construction [1] for generating Brownian motion Bt, which

enhance the efficiency of QMC methods. Here, the sampled Brownian motion
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(Bt1
, . . . , Bts)

⊤ is normally distributed with mean 0 and covariance matrix C =
(min(ti, tj))

s
i,j=1, i.e., (Bt1

, . . . , Bts)
⊤ ∼ N(0, C). Generally, we obtain the

equivalent paths of Brownian motion:

(Bt1
, . . . , Bts)

⊤ = A(Z1, . . . , Zs)
⊤, (Z1, . . . , Zs)

⊤ ∼ N(0, Is),

provided we apply the change of variables x = Az with AA⊤ = C. The

matrix A in the standard construction (4.4) is the Cholesky matrix of C, i.e.,

AA⊤ = C. Conversely, the PCA construction is a method used to choose A =
[
√
λ1v1, · · · ,

√
λsvs], where λ1 ≥ · · · ≥ λs are the eigenvalues and v1, . . . ,vs are

the corresponding unit-length eigenvectors of C. In our experiment, the Nieder-

reiter (NUT) and Sobol’ sequences with PCA outperform those with the standard

construction, but those with PCA have exactly the same convergence rates. Our

result implies that PCA transforms the integrand so as to have low effective di-

mension in the truncation sense, that is, the important variables are concentrated

in the first few dimensions (e.g., ≤ 2 or 3). However, for Sobol’ sequences, the

lower terms of gi,k(x) in (2.4) have almost no choice and are fixed in these first

dimensions because the degree ei in (2.4) is sufficiently small. Thus, it seems to

be difficult to expect further improvement for dimension reduction techniques as a

result of changing the direction numbers for Sobol’ sequences.

We also tested the Brownian bridge (BB) construction [20] as another dimen-

sion reduction technique and observed that there is no difference among Niederre-

iter (NUT) and Sobol’ sequences for the convergence rates, which are better than

the standard construction but worse than PCA, so we omitted the results.

4.2 Digital option

Assume that the asset price St follows the Black–Scholes model (4.1). Papageor-

giou [24] considered the following digital option:

E

[

1

s

s∑

i=1

(Sti − Sti−1
)0
+Sti

]

, (4.5)

where (x)0
+ is equal to 1 if x > 0 and is 0 otherwise, x ∈ R. He indicated that

effective dimension reduction techniques perform worse than the standard con-

struction (4.3). Wang and Tan [36] and Wang [33] found that if the paths are

generated by the standard construction, then the discontinuities of the payoff func-

tion of the sum of the indicator functions are aligned with the coordinate axes,

so good performance is expected, but BB and PCA do not have this type of dis-

continuity. Thus, the standard construction is a good choice in this QMC setting.

Figure 3 shows a summary of stderr(Q̄) in log2 scale. We used the parameters
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s = 128, T = 1, r = 0.045, σ = 0.3, S0 = 100 from [24]. Indeed, PCA is worse

than the standard construction. Niederreiter (NUT) and Sobol’ (JoeKuo08) with

good 2D projections are useful for such a problem. Note that this example is very

simple and the value (4.5) can be calculated analytically.

4.3 Basket option

Following [34, 35], under the risk-neutral measure, we consider a European-style

basket call option on the arithmetic average over s assets S
(1)
t , . . . , S

(s)
t , and as-

sume that each asset satisfies

dS
(i)
t = rS

(i)
t dt+ σ(i)S

(i)
t dB

(i)
t (i = 1, . . . , s), (4.6)

for a mean return parameter r and volatility parameters σ(i). Assume B
(1)
t , . . . , B

(s)
t

are correlated Brownian motions with correlations ρij , and the terminal pay off at

T is given by max(0, 1
s

∑s
i=1 S

(i)
T − K). For this, we compute the price of the

basket option:

E

[

e−rT max

(

0,
1

s

s∑

i=1

S
(i)
T −K

)]

. (4.7)

Note that s is the number of assets, not the number of discretization steps. The so-

lutions to (4.6) are given by S
(i)
t = S

(i)
0 exp((r− (σ(i))2/2)t+σ(i)B

(i)
t ). Here, the

random vector (B
(1)
T , . . . , B

(s)
T )⊤ is normally distributed with mean 0 and covari-

ance matrix C = (ρijT )
s
i,j=1. Let (Z1, . . . , Zs)

⊤ ∼ N(0, Is). The standard con-

struction for generating Brownian motion is (B
(1)
T , . . . , B

(s)
T )⊤ = A(Z1, . . . , Zs)

⊤,

where A is the Cholesky matrix of C. By contrast, the PCA choosesA = [
√
λ1v1, · · · ,

√
λsvs],

where λ1 ≥ · · · ≥ λs are the eigenvalues and v1, . . . ,vs are the corresponding

unit-length eigenvectors of C. Expectation (4.7) is expressed as

∫

(0,1)s
e−rT max

(

0,
1

s

s∑

i=1

S
(i)
0 exp

[(

r − (σ(i))2

2

)

T + σ(i)wi

]

−K

)

dx,

where (w1, . . . , ws)
⊤ := A(Φ−1(x1), . . . ,Φ

−1(xs))
⊤. We set the parameters

s = 128, T = 1, r = 0.1, σ(i) = 0.2, ρij = 0.3(i 6= j), S
(i)
0 = 100,K = 100,

which are taken from [34, 35], and conduct experiments on the standard and PCA

constructions. Figure 4 shows a summary of stderr(Q̄) in log2 scale. Unlike the

previous examples, the Niederreiter (NUT) and Sobol’ sequences using the stan-

dard (Cholesky) construction have exactly the same convergence rates. According

to [34, Table 3 and 6] and [35, Table 3 and Table 5], it is inferred that the value
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of basket options using the standard (Cholesky) construction is determined by de-

pending on the first few variables or depending on a high proportion to order-1

terms
∑s

i=1 fi(xi) in (1.2), compared with those of Asian options.

4.4 Asian option under the Heston model

As a more complicated model, under the risk-neutral measure, we consider the

pricing of an Asian call option (4.2) with maturity T and strike K written on an

asset whose price process St satisfies the Heston stochastic volatility model:

dSt = rStdt+ σtSt

[

ρdB
(1)
t +

√

1 − ρ2dB
(2)
t

]

,

dσ2
t = κ

[
θ − σ2

t

]
dt+ ξσtdB

(1)
t ,

where σ2
t is the volatility process, B

(1)
t and B

(2)
t are two independent standard

Brownian motions, r is the risk-free interest rate, κ is the speed of mean reversion,

θ > 0 is the long-run mean variance, ξ is the volatility of the volatility, ρ is

the correlation between the Brownian motions driving St and σ2
t . The volatility

process σ2
t follows a CIR process, which is always positive under the assumption

2κθ > ξ2. We use the Euler–Maruyama scheme with s steps to discretize both

St and σ2
t as in [17, Fig. 7.3 in Chapter 7.2.1]. Let ∆t = T/s. Then, we need

2s-dimensional points to simulate both Sti and σ2
ti

for ti = i∆t (i = 1, . . . , s).
Figure 5 gives results for an Asian option under the Heston model with s = 512.

We use the parameters T = 0.5, r = 0, κ = 2, θ = 0.01, ξ = 0.1, ρ = 0.5, S0 =
100, σ0 = 0.1,K = 100, which are from [17, Chapter 7.3]. Note that Niederreiter

(NUT) and Sobol’ (JoeKuo08) give better results than Sobol’ (JoeKuo03).

5 Concluding remarks

Sobol’ sequences have been used successfully in high-dimensional numerical in-

tegration in financial applications. There are several implementations of Sobol’

sequence generators with distinct direction numbers, so it is natural to assess

which of them is better. Hence, we tested Sobol’ sequences for calculating fi-

nancial models and observed that the Sobol’ sequence with good 2D projections

[14] outperforms the previous Sobol’ sequences [13,18], particularly in the case in

which the integrands have low effective dimension in the superposition sense but

high effective dimension in the truncation sense. Additionally, we implemented

the Niederreiter sequence with NUT generating matrices, suggested by Faure and

Lemieux [8, 9]. Surprisingly, the modified Niederreiter sequence has already had

good 2D projections, and had high performance for calculating some financial

models without optimizing direction numbers.
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Figure 1. Comparison of Niederreiter (NUT) and Sobol’ sequences for the pricing

of an Asian option with s = 360.
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Figure 2. Comparison of Niederreiter (NUT) and Sobol’ sequences for the pricing

of an Asian option using the standard and PCA constructions for s = 1024.
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Finally, we mention the possibility of the further improvement of Sobol’ se-

quences. In fact, we attempted the further improvement of Sobol’ type digital nets

by optimizing direction numbers in terms of the framework of generalized Nieder-

reiter sequences based on irreducible polynomials. For example, we attempted to

search direction numbers so as to have even better t-values for 2D projections or

better three-dimensional projections in addition to good 2D projections. The aim

appears to be theoretically achieved, but we could not observe a clear difference

from the Niederreiter sequence with the NUT generating matrices for calculating

financial models. Perhaps, there might be a limit to the further improvement of

Sobol’ sequences by optimizing direction numbers from a practical perspective.

Therefore, further improvement of Sobol’ sequences is left for future work.

Bibliography

[1] P. Acworth, M. Broadie and P. Glasserman, A comparison of some Monte Carlo and

quasi-Monte Carlo techniques for option pricing, Monte Carlo and Quasi-Monte

Carlo Methods 1996 (P. Hellekalek, G. Larcher, H. Niederreiter and P. Zinterhof,

eds.), Lecture Notes in Statistics 127, Springer-Verlag, New York, 1998, pp. 1–18.

[2] P. Bratley and B. L. Fox, Algorithm 659: Implementing Sobol’s quasirandom se-

quence generator, ACM Trans. Math. Software 14 (1988), 88–100.

[3] P. Bratley, B. L. Fox and H. Niederreiter, Implementation and tests of low-

discrepancy sequences, ACM Trans. Model. Comput. Simul. 2 (1992), 195–213.

[4] R. E. Caflisch, W. Morokoff and A. B. Owen, Valuation of mortgage backed securi-

ties using brownian bridges to reduce effective dimension, Journal of Computational

Finance 1 (1997), 27–46.

[5] J. Dick, F. Y. Kuo and I. H. Sloan, High-dimensional integration: the quasi-Monte

Carlo way, Acta Numer. 22 (2013), 133–288.

[6] J. Dick and M. Matsumoto, On the fast computation of the weight enumerator poly-

nomial and the t value of digital nets over finite abelian groups, SIAM J. Discrete

Math. 27 (2013), 1335–1359.

[7] J. Dick and F. Pillichshammer, Digital nets and sequences. Discrepancy theory and

quasi-Monte Carlo integration, Cambridge University Press, Cambridge, 2010.

[8] H. Faure and C. Lemieux, Irreducible Sobol’ sequences in prime power bases, Acta

Arith. 173 (2016), 59–80.

[9] H. Faure and C. Lemieux, Implementation of irreducible Sobol’ sequences in prime

power bases, 2018, Submitted for publication.

[10] M. Griebel and M. Holtz, Dimension-wise integration of high-dimensional functions

with applications to finance, J. Complexity 26 (2010), 455–489.



Comparison of Sobol’ sequences 17

[11] M. Holtz, Sparse grid quadrature in high dimensions with applications in fi-

nance and insurance, Lecture Notes in Computational Science and Engineering 77,

Springer-Verlag, Berlin, 2011.

[12] H. S. Hong and F. J. Hickernell, Algorithm 823: Implementing scrambled digital

sequences, ACM Trans. Math. Software 29 (2003), 95–109.

[13] S. Joe and F. Y. Kuo, Remark on Algorithm 659: implementing Sobol’s quasirandom

sequence generator, ACM Trans. Math. Software 29 (2003), 49–57.

[14] S. Joe and F. Y. Kuo, Constructing Sobol′ sequences with better two-dimensional

projections, SIAM J. Sci. Comput. 30 (2008), 2635–2654.

[15] C. Joy, P. P. Boyle and K. S. Tan, Quasi-Monte Carlo methods in numerical finance,

Management Sci. 42 (1996), 926–938.

[16] P. L’Ecuyer, Quasi-Monte Carlo methods with applications in finance, Finance

Stoch. 13 (2009), 307–349.

[17] C. Lemieux, Monte Carlo and quasi-Monte Carlo sampling, Springer Series in

Statistics, Springer, New York, 2009.

[18] C. Lemieux, M. Cieslak and K. Luttmer, RandQMC User’s Guide: A Package for

Randomized Quasi-Monte Carlo Methods in C, Department of Computer Science,

University of Calgary, Calgary, AB, Canada, Technical report no. 2002-712-15,

2002, Version January 13 2004.

[19] M. Matsumoto and T. Nishimura, Mersenne twister: a 623-dimensionally equidis-

tributed uniform pseudo-random number generator, ACM Trans. Model. Comput.

Simul. 8 (1998), 3–30.

[20] B. Moskowitz and R. E. Caflisch, Smoothness and dimension reduction in quasi-

Monte Carlo methods, Math. Comput. Modelling 23 (1996), 37–54.

[21] H. Niederreiter, Low-discrepancy and low-dispersion sequences, J. Number Theory

30 (1988), 51–70.

[22] H. Niederreiter, Random number generation and quasi-Monte Carlo methods,

CBMS-NSF Regional Conference Series in Applied Mathematics 63, Society for

Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.

[23] S. Ninomiya and S. Tezuka, Toward real-time pricing of complex financial deriva-

tives, Applied Mathematical Finance 3 (1996), 1–20.

[24] A. Papageorgiou, The brownian bridge does not offer a consistent advantage in quasi-

Monte Carlo integration, J. Complexity 18 (2002), 171 – 186.

[25] S. Paskov and J. Traub, Faster valuation of financial derivatives, Journal of Portfolio

Management 22 (1995), 113–120.

[26] G. Pirsic and W. Ch. Schmid, Calculation of the quality parameter of digital nets and

application to their construction, J. Complexity 17 (2001), 827 – 839.



18 S. Harase

[27] I. M. Sobol’, On the distribution of points in a cube and the approximate evaluation

of integrals, USSR Computational Mathematics and Mathematical Physics 7 (1967),

86 – 112.

[28] I. M. Sobol’, D. Asotsky, A. Kreinin and S. Kucherenko, Construction and compari-

son of high dimensional Sobol’ generators, Wilmott (2011), 64–79.

[29] I. M. Sobol’ and Levitan I. M., The Production of Points Uniformly Distributed in a

Multidimensional Cube, Institute of Applied Mathematics, USSR Academy of Sci-

ences, Technical report no. 40, 1976, (In Russian).

[30] I.M. Sobol, Uniformly distributed sequences with an additional uniform property,

USSR Computational Mathematics and Mathematical Physics 16 (1976), 236 – 242.

[31] S. Tezuka, Polynomial arithmetic analogue of Halton sequences, ACM Trans. Model.

Comput. Simul. 3 (1993), 99–107.

[32] S. Tezuka, Uniform Random Numbers: Theory and Practice, Kluwer Academic Pub-

lishers, Norwell, MA, 1995.

[33] X. Wang, Handling discontinuities in financial engineering: good path simulation

and smoothing, Oper. Res. 64 (2016), 297–314.

[34] X. Wang and K.-T. Fang, The effective dimension and quasi-Monte Carlo integra-

tion, J. Complexity 19 (2003), 101–124.

[35] X. Wang and I. H. Sloan, Why are high-dimensional finance problems often of low

effective dimension?, SIAM J. Sci. Comput. 27 (2005), 159–183.

[36] X. Wang and K. S. Tan, Pricing and hedging with discontinuous functions: quasi-

Monte Carlo methods and dimension reduction, Management Sci. 59 (2013), 376–

389.

Received ???.

Author information

Shin Harase, College of Science and Engineering, Ritsumeikan University, 1-1-1

Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.

E-mail: harase@fc.ritsumei.ac.jp

mailto:harase@fc.ritsumei.ac.jp


Comparison of Sobol’ sequences 19

Table 1. Frequency of t(i, s;m) for 2 ≤ s ≤ 360.

Number of occurrences of the t-value

m 0 1 2 3 4 5 6 7 8 9

10 Niederreiter (NUT) 163 11321 23097 16270 7947 3495 1472 576 231 48

Sobol’ (JoeKuo08) 214 8201 20243 18004 10275 4819 1924 777 163

Sobol’ (Lemieux) 204 8210 20040 18000 10092 4865 1991 863 233 122

Sobol’ (JoeKuo03) 204 8208 20285 17854 9886 4997 1961 835 250 140

12 Niederreiter (NUT) 71 7679 22265 17458 9527 4353 1954 864 332 79

Sobol’ (JoeKuo08) 62 4752 17648 19105 12303 6334 2848 1127 389 52

Sobol’ (Lemieux) 49 4757 17452 18973 12091 6408 2842 1270 498 191

Sobol’ (JoeKuo03) 56 4774 17342 19027 12307 6249 2814 1276 467 215

14 Niederreiter (NUT) 21 5119 19870 19164 11111 5373 2375 1020 405 134

Sobol’ (JoeKuo08) 14 2857 14942 19442 14020 7581 3516 1551 557 140

Sobol’ (Lemieux) 15 2913 14912 19155 13589 7531 3581 1690 705 329

Sobol’ (JoeKuo03) 16 2864 14967 19131 13669 7414 3634 1698 696 329

16 Niederreiter (NUT) 6 3044 16906 20478 13001 6584 2903 1115 434 130

Sobol’ (JoeKuo08) 5 1771 12568 19566 14939 8566 4252 1893 750 285

Sobol’ (Lemieux) 4 1815 12586 19696 14735 8257 4077 1917 846 408

Sobol’ (JoeKuo03) 6 1745 12503 19418 15039 8354 4097 1902 890 390

18 Niederreiter (NUT) 8 1804 14312 20990 14831 7440 3267 1343 455 144

Sobol’ (JoeKuo08) 3 1119 10985 19412 15999 9175 4595 2087 830 335

Sobol’ (Lemieux) 1 1168 10897 19421 15963 9064 4538 2028 854 380

Sobol’ (JoeKuo03) 1 1075 10866 19422 15870 9236 4540 2003 909 397

20 Niederreiter (NUT) 3 1183 12437 20942 15387 8394 3806 1594 636 189

Sobol’ (JoeKuo08) 1 787 9470 19570 16932 9897 4736 1992 831 320

Sobol’ (Lemieux) 1 762 9615 19188 16888 9798 4884 2052 868 325

Sobol’ (JoeKuo03) 1 764 9526 19188 17006 9834 4790 2117 817 351

Number of occurrences of the t-value (continued)

m 10 11 12 13 14 15 16 17 18 19

10 Niederreiter (NUT)

Sobol’ (JoeKuo08)

Sobol’ (Lemieux)

Sobol’ (JoeKuo03)

12 Niederreiter (NUT) 38

Sobol’ (JoeKuo08)

Sobol’ (Lemieux) 56 33

Sobol’ (JoeKuo03) 56 37

14 Niederreiter (NUT) 28

Sobol’ (JoeKuo08)

Sobol’ (Lemieux) 124 50 17 9

Sobol’ (JoeKuo03) 135 50 8 9

16 Niederreiter (NUT) 19

Sobol’ (JoeKuo08) 25

Sobol’ (Lemieux) 150 76 28 19 3 3

Sobol’ (JoeKuo03) 161 71 32 11 1

18 Niederreiter (NUT) 24 2

Sobol’ (JoeKuo08) 80

Sobol’ (Lemieux) 167 82 31 17 4 3 2

Sobol’ (JoeKuo03) 174 73 32 14 7 1

20 Niederreiter (NUT) 41 8

Sobol’ (JoeKuo08) 82 2

Sobol’ (Lemieux) 140 55 24 12 4 2 1 1

Sobol’ (JoeKuo03) 126 53 32 10 3 2
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Table 2. Frequency of t(i, s;m) for 2 ≤ s ≤ 1024.

Number of occurrences of the t-value

m 0 1 2 3 4 5 6 7 8 9

10 Niederreiter (NUT) 1217 91368 187247 131306 64096 28622 12135 5079 1881 825

Sobol’ (JoeKuo08) 1713 66135 163425 146133 81378 39763 15828 6864 1920 617

Sobol’ (JoeKuo03) 1761 65788 163011 146129 80810 40093 16015 7134 2025 1010

12 Niederreiter (NUT) 358 61934 178807 141504 77363 35943 16214 7030 2920 1188

Sobol’ (JoeKuo08) 464 37931 140291 154369 99570 51840 23418 10403 3884 1380

Sobol’ (JoeKuo03) 420 37691 139255 154868 99220 51931 23360 10514 4002 1756

14 Niederreiter (NUT) 131 41284 161893 153405 87958 43456 20196 9017 3904 1672

Sobol’ (JoeKuo08) 113 21774 116341 156401 113622 62704 30350 13787 5688 2326

Sobol’ (JoeKuo03) 109 21745 115939 155545 112483 63286 30287 14127 5909 2706

16 Niederreiter (NUT) 51 25934 142119 159612 101194 51623 24259 10993 4912 2035

Sobol’ (JoeKuo08) 29 12562 94650 153576 123743 73026 36970 17348 7471 3128

Sobol’ (JoeKuo03) 37 12580 94525 152964 123493 72503 36228 17522 7846 3583

18 Niederreiter (NUT) 20 15374 118340 164947 114523 60295 28790 12922 5415 2118

Sobol’ (JoeKuo08) 14 7362 77577 148682 130582 81034 42592 20643 9316 3984

Sobol’ (JoeKuo03) 8 7464 77049 148627 131116 80131 42178 20536 9189 4254

20 Niederreiter (NUT) 9 8790 95347 163784 127680 71672 33322 14166 5747 2254

Sobol’ (JoeKuo08) 4 4609 64037 144019 137413 87005 46421 22518 10407 4664

Sobol’ (JoeKuo03) 3 4524 64039 143480 137250 87005 46332 22273 10359 4831

Number of occurrences of the t-value (continued)

m 10 11 12 13 14 15 16 17 18 19

10 Niederreiter (NUT)

Sobol’ (JoeKuo08)

Sobol’ (JoeKuo03)

12 Niederreiter (NUT) 432 83

Sobol’ (JoeKuo08) 226

Sobol’ (JoeKuo03) 519 240

14 Niederreiter (NUT) 675 139 46

Sobol’ (JoeKuo08) 622 48

Sobol’ (JoeKuo03) 1020 436 126 58

16 Niederreiter (NUT) 793 220 31

Sobol’ (JoeKuo08) 1044 226 3

Sobol’ (JoeKuo03) 1439 659 240 118 26 13

18 Niederreiter (NUT) 767 234 31

Sobol’ (JoeKuo08) 1497 446 47

Sobol’ (JoeKuo03) 1834 805 331 153 61 32 4 4

20 Niederreiter (NUT) 751 218 33 3

Sobol’ (JoeKuo08) 1940 644 95

Sobol’ (JoeKuo03) 2012 942 425 184 70 18 17 9 3


