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Abstract

We propose a fully backward representation of semilinear PDEs with application to stochas-
tic control. Based on this, we develop a fully backward Monte-Carlo scheme allowing to gen-
erate the regression grid, backwardly in time, as the value function is computed. This offers
two key advantages in terms of computational efficiency and memory. First, the grid is gen-
erated adaptively in the areas of interest and second, there is no need to store the entire grid.
The performances of this technique are compared in simulations to the traditional Monte-Carlo

forward-backward approach on a control problem of thermostatic loads.
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1 Introduction

The numerical resolution of non-linear PDEs is a crucial issue in many applications. In particu-
lar, stochastic control problems can be formulated by mean of the Hamilton-Jacobi-Bellman (HJB)
equations with terminal condition. In this paper, we focus more particularly on control problems
raised by demand-side management in power systems. The difficulties come especially from the
high dimensionality of the state space, which motivates the use of probabilistic representations.
The main issue of numerical schemes is then to concentrate the computing effort in specific re-

gions of interest in the state space. In classical regression Monte-Carlo approaches, the solution
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is evaluated backwardly in time from the final time to the initial time, while the regression grid
is generated forwardly from the initial time to the final one. In this paper, we propose a fully
backward probabilistic approach which allows to generate adaptively the regression grid, as the
solution is evaluated, taking advantage of the calculations already performed. Besides, there is
no need to store the entire grid, since the points are generated as they are used for calculations.
Our grid will be indeed simulated according to the time-reversal of some diffusion starting from
a judicious terminal distribution.

We are interested in semilinear PDEs of the type

{ do(t,x) + H(t,z,v(t, x), Vou(t,z)) + 3Trloo ! (H)V20(t,2)] =0, (t,z) € [0, T[xR? (L.1)

o(T,x) = g(),

where in particular o is a deterministic non-degenerate matrix-valued function. Under suitable
conditions, there exists a unique viscosity solution v of (ﬁ)%%ss of continuous functions
with polynomial growth. One classical probabilistic representation of v is provided by Forward-
Backward SDEs (FBSDEs), see e.g. C.ioul};se;l orward diffusion is fixed, with an arbitrary drift
b

dX, = b(t, X;)dt + o (t)dW,. (1.2)

. :PDE_Intro v . .
Then the solution of isrepresented by v(s,xz) = Yy, where (Y, Z) = (Y**, Z*7) is the unique

solution of the BSDE
T T
Y =g(Xr) + F(r,X,,Y,, Z)dr — / ZdW,., (1.3)
t t

E
with X = X** being the solution of (ﬁ%ﬁarting at time s with value x and F’ being related to i
by
. T - - T

F(ta,y,2) = Hit,a,y, (07 () 2) = (b(t.2), (07 (1) 2). (1.4)

Considering a time discretization mesh tj, = két, with 6t = L and k = 0,- - - ,n, for a given positive
t - .

integer n, | l% Ia}];roved that one can approximate (Y;,, Z;, ) by (Y%, Zj) such that Y,, = ¢g(Xr) and
fork=0,--- ,n—1

Yk = E < Z F(tfati}}&ZAf—l)ét + g(XT) th>
(=k+1 (1.5)
Zy = &E (Yk+1(Wtk+1 - W) th>'

Warin,benderl?2
Most of probabilistic numerical schemes (see e.g. regression Monte-Carlo [15 IJJ, Kernel Monte-
uchardTouzi larueMenozzi
Carlo [4], Quantization [[8]) rely on that representation. The common idea is then articulated in

wE
two steps. First, one generates a grid discretizing the forward process (ﬁ)‘fn space and time on
[0,7], (by Monte-Carlo simulations or Quantization, etc.). Then, one calculates the conditional
E A
expectations ﬁo—ﬁ%he grid points in order to estimate (Y, Z). These techniques have generally

two limitations.

|eq:PDE_Intro
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1. The degree of freedom in the choice of the forward diffusion X is difficult to exploit although
it has a major impact on the numerical scheme efficiency: how to chose a reasonable drift b

without a priori information on v ?

2. The entire grid discretizing the forward process has to be stored in memory to be revisited
backwardly in time in order to compute the solution process (Y, Z). This approach naturally
raises some huge memory issues which in general limit drastically the number of Monte-

Carlo runs and time steps, hence the accuracy of the procedure.

To overcome such limitations some approaches were proposed in the domain of mathematical fi-

nance, in particular for the evaluation of American style options. One techmque intended to deal
eliro0 sabino20
with the memory problem, relies on bridge simulation, see e.g. [34 Bl l—lowever this approach

requires specific developments for each price model (based for instance on the Brownian bridge
for Brownian prices or on the gamma bridge for variance gamma prices) and remains difficult to
generalize to a wide class of models. To address the efficiency issue, ﬁ%oped a scheme based
on Picard’s type iterations that avoids the use of nested conditional expectations backwardly in
time, which are replaced by nested conditional expectations along the iterations. In the same line,
ﬁ%}ﬁiosses an adaptive variance reduction technique which combines Picard’s iterations and
control variate to solve the BSDE. A parallel version of that algorithm was proposed in »ﬁﬁ]a}_rlztl%3 -
ever, those approaches require, at each iteration, to approximate the solution on the whole time
horizon. Similarly, importance sampling and Girsanov’s theorem, were considered to force the ex-
ploration of the space towards areas of interest Wrticular, this type of approach was derived
in the case of stochastic control in ﬁ%iding an iterative scheme that is capable of learning the
optimally controlled drift. Here again, that method requires several estimations of the value func-
tion on the whole time horizon. Besides ﬁ%posed an adaptive importance sampling scheme
for FBSDEs allowing to select the drift adaptively, as the calculations are performed backwardly.
Unfortunately, that approach is limited to situations where the driver /' does not depend on Z. In
the present paper, we introduce a new adaptive approach to address both the memory problem
and the efficiency issue (related to the drift selection) in the general case where the driver may
depend on X,Y and Z.

We propose to choose adaptively the drift b at the same time as we discover the function v such
that

v (t, X,) = </ H (s, Xs,0 (5, Xs) , Vv (5, Xs)) — <Z(3,XS),va (s,Xs)>ds—i—g(XT)

Xt) )
(1.6)

by simulating the time-reversal of a solution X of (ﬁ_startmg from the distribution of X7. More

specifically, to take advantage of the Ornstein-Uhlenbeck setting, we choose the drift b to be affine

w.r.t. the space variable. We fix a Gaussian distribution v and look for solutions £ of the McKean

‘RepFormulaIn




SDE

gONV7 . .
§t=§o—/ b(T—S7§s)+UUT(T—S)Q(T—3)_1(§s—m(T—3))dS+/ o (T = s)dps,

0

Q(T —t) =Cov (&) fort€]0,T].

(1.7) |Rev-SDEIntro

L. e —SDEIntro . . . sSs_nu .
By Proposition admits exactly one solution £, provided Assumption "l in Section 18

verified. That assumption depends on the covariance matrix of v, the drift b and the volatility

0. Indeed, one important limitation is that the covariance matrix should be chosen carefully to
ensure that the process is well-defined until 7". Point 2. of Proposition and Lemma %é%ma
that the time-reversal process é, ie. ét := &1y, is an Ornstein-Uhlenbeck process solution of (ﬁ)‘LE
such that the law of X is Gaussian with mean m(0) and covariance Q(0). This leads to the first
result of this paper which consists of the fully backward representation stated in Theorem e
The proof is based on Feynman-Kac type formula instead of BSDEs and it does not require explic-

itly the uniqueness of viscosity solution of the PDE (ﬁ;%nd contribution of the paper is

RepFormulaControl e E-Re X
Corollary B.AIwhichis the “instantiation” of Theorem in the framework of stochastic control,

i.e. the representation of its value function (solution of a Hamilton-Jacobi-Bellman equation). This
holds when the running and terminal cost have polynomial growth with respect to the state space
variable. We also suppose that the value function is of class C%! whose gradient has polynomial
. . . —corro . . .
growth. In particular, we derive in Corollary E‘%}f a representation involving the gap between the
s 5
optimally controlled drift and the instrumental drift b. In Section &we present a fully backward
Monte-Carlo regression scheme, where the instrumental drift is adaptively updated in order to
1
mimic the optimally controlled dynamics, see Algorithm ﬁ_%e expect that this approach is partic-
ularly well-suited when the final cost has a strong impact on the global cost and when the terminal
cost function is localized in a small region of the space, so that the initial distribution v can be cho-
. . . . . %exam@]l] e . . .
sen in an appropriate way. Finally, in Section lffwe 1llustrate the interest of this new algorithm
applied to the problem of controlling the consumption of a large number of thermostatic loads
in order to minimize an aggregative cost. We compare our approach to the classical regression

Monte-Carlo scheme based on a forward grid.

2 Notations

Let us fix T > 0, d,k € N*. For a given p € N*, [1,p] denotes the set of all integers between
1 and p included. (-,-) denotes the usual scalar product on R? and |-| the associated norm. EI-
ements of R? are supposed to be column vectors. M, (R) stands for the set of d x d matrices,
Sq (R) for the subset of symmetric matrices, S (R) the subset of symmetric positive semi-definite

matrices (in particular with non-negative eigenvalues) and S} (R) for the subset of strictly pos-



itive definite symmetric matrices. For a given A € M, (R), AT will denote its transpose, Tr (A)

its trace, Sp (A) its spectrum, i.e. the set of its eigenvalues, e

=0 ’;‘g—f its exponential and
||A]| == sup,cpa g1 |Az|. Fora given A € ST (R), VA denotes the unique element of S} (R) such
that (vA)? = A.

For a given continuous function f : [0,7] — RY (resp. g : [0,7] = M, (R)), we set ||f||,, =
subyeor) f (1)) (resp. llglloo = supregor llg (DI €12 (10, 7], RY) (resp. €O ([0,7], RY)) denotes
the set of real-valued functions defined on [0, 7] x R? being continuously differentiable in time
and twice continuously differentiable in space (resp. continuous in time and continuously differ-
entiable in space). C° ([0, 7] x R?) (resp C! (R?)) denotes the set of continuous (resp continuously
differentiable) real-valued functions defined on [0,7] x R? (resp. R?). V, will denote the gradi-
ent operator and V2 the Hessian matrix. For each p € N, P, (R?) denotes the set of polynomial

functions on R? with degree p.

In the whole paper, we say that a function v : [0, 7] x R? — R has polynomial growth if there exists
¢, K > 0 such that for all (t,x) € [0,T] x R?

v ()] < K (14 [z|").

When v verifies previous property with ¢ = 1, we say that it has linear growth.

For a given random vector X defined on a probability space (2, F,P), Ep (X) (resp. Covp (X) :=
Ep ((X —Ep (X)) (X —Ep(X ))T)) will denote its expectation (resp. its covariance matrix) under
P. When self-explanatory, the subscript will be omitted in the sequel. For a given (m, Q) € R x
ST (R), N (m, Q) denotes the Gaussian probability on R? with mean m and covariance matrix Q.
For any stochastic process X, FX will denote its canonical filtration. X will denote the time-

reversal process Xr_..

3 Representation of semilinear PDEs

Section

= 3.1 Around two backward ODEs

Let a (resp. c) be Borel bounded functions from [0, 7] to My (R) (resp. R9).

In the sequel we will fix a Gaussian Borel probability v on R? with mean m"” and covariance matrix
Q". We consider the functions m” : [0, 7] + R% and Q" : [0,T] +— Sy (R) denoting respectively the

unique solutions of the backward ODEs

{jtm"<t>a<t>mv<t>+c<t>, te[0.7)

m” (T) = i,

6

dov = QY a T a v
{dtQ ) =Q"t)a(t) +a(t)Q"(t)+X(t),te(0,T] (3.2)

Q" (T)=Q",

for which existence and uniqueness hold since they are linear.

5



ass_nu

1ondegen

bos__cond

We introduce an hypothesis on v which will be used in the sequel.
Assumption 1. Q”(0) € S (R).

Easy computations imply for all ¢ € [0, T

m? (£) = A(t) <A () — /tTA(s)_l ¢ (s) ds> , (33)

@0 =an(am @ (A7) - [ a0 2o (A67) @) Ao’ e

where A (t) ,t € [0,T] is the unique solution of the matrix ODE

LA =a(t)A(t),t€[0,T]
A(0) = 1.

(3.5)

We recall that for all ¢ € [0, 7], A (t) is invertible and the matrix valued function ¢ — A(t)~! solves
the ODE

(3.6)
A0) =14,

see Chapter 8 in iélofrgroglmilar and further properties.
Note that in the case a (t) = a, t € [0,7] for a given a € M, (R), then A : t — €% and identities

{giA(t)l — A a(t),t € 0,T]

xgQiexplicit
, simplify as follows:
T
m¥ (t) = e" T my — / e~ e () ds, (3.7)
t
= T T T
Ql/ (t) _ 6—a(T—t)Q1/6—a (T—t) / e—a(s—t)Z (8) e~ (s—t)ds’ (38)
t

forall t € [0,T].
Remark 3.1. Suppose that Q" (0) belongs to ST (R). Identity (Eilixgz%)ég i particular

QY (t) = A(t) (Q” (0) + /OtA(s)_l 5 (s) (A(s)_l)T ds> AT, telo,T]. (3.9)

Combining (ﬁé])xanlﬁ cfﬁlet 75afcwfda () is invertible for all t € [0, T, we remark that Q¥ (t) belongs to S;* (R)
forall t €]0,T.

Finally we give a condition depending on A, o, Q” and T to ensure the measure v fulfills Assump-

tion i I [S =—n

Proposition 3.2. Suppose that

2

T
minSp(Q”)Z/O o ()2 (A(T)A(s)_l)T ds. (3.10)

Then,
Q" (0) € ST (R). (3.11)

6
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1
Proof. Since A (T') is invertible and Q” (0) belongs to Sy (R), (%%quivalent to

A(T) Q" (0) A(T) € ST (R). (3.12)
i
To prove (%), taking into account (ﬁ%ces to show that the matrix

T
Q" —/ A(T) A(s)"' 5 (s) <A(T)A(s)_1)Tds €S (R),
0

or, equivalently, that for all « € R¢

A=z QVz — /T eTA(T)A(s)"1 2 (s) (A (T) A(s)_l)T xds > 0. (3.13)
0
Let z € RY,
2
A > min Sp (QY) |z|* — /T o(s)’ (.A (T)A(s)_l)Tx ds,
0
T 2 T2
min Sp (Q¥) — T -1 H d 2
> (winso @) - [l (oo ai) o) o
2 07
since (%%Fds. This ends the proof. O

Remark 3.3. In the case a (t) = a, t € [0,T] for a given a € My (R), Condition %%tisﬁed in

particular if

2
a's

(&

ds (3.14) ‘ cond_pos_sim

uinsp (@) = o7 [

is verified.

Remark 3.4. Let X be a solution of

t t
X, = Xo + / b (s, X,) ds + / o () dWs, t € [0,T], (3.15)
0 0

where o is a deterministic matrix-valued function and b the piecewise affine function

b(t,x) = a(t)x + c(t), t € [0,T],

and Xo be a square integrable r.v. It is well-known that X is a square integrable process. Let, for every
t € [0,7], m(t) = E(X;) and Q(t) the covariance matrix of X;. Setting m* = E(Xr) and Q" the
covariance matrix of Xr. Then

m=m", Q=Q". (3.16)
Indeed, by Problem 6.1 in Chapter 5 in HZCET ™ Errees;e Q) is solution of %:gesp. ﬁ% (%ﬁ follows by

uniqueness of previous ODEs.



3.2 The representation formula for a general semilinear PDE
s42

In the whole paper o will be a continuous function defined on [0, 7] with values in M, (R) such
that for all t € [0, T, o (t) is invertible. We will set ¥ := oo .

Letb: [0,7] x R+ R%and b. : [0,7] x R? x R? x S7+ (R) > R? defined by

be: (t,z,m, Q) —XH)Q (x—m), b: (t,z) —a(t)z+c(t), (3.17) |E42

where a, c were defined at Section% Let H : [0,T] xR¥xR xR? — Rand g : R — R. The goal of
this subsection is to provide a probabilistic representation of viscosity solutions, being continuous

in time and continuously differentiable in space, of the semilinear PDE

(.18)

{ O (t, ) + 3Tr (2 () V2u (t,2)) + H (t, 2,0 (t,2), Vv (,2)) = 0, (t,2) € [0, T[xRY
v(T,)=g.

To formulate the result we consider the following assumption.

Assumption 2. g is continuous and has polynomial growth.

Let v be a Gaussian Borel probability on R? with mean m"” and covariance Q”. Let t — mY (t)
lici 1io
defined in W(ﬂ be given by (ﬁ%n_cllcs*lutppose that v fulfills Assumption”tS o

We fix a filtered probability space (Q,]—"  (Ft)eeqo ,]P’) on which are defined a d-dimensional

Brownian motion  and a random vector &, distributed according to v and independent of £3.

Let £ be the unique strong solution of

t t
gt:go—/o b(T—s,gs)—|—bC(T—s,gs,m”(T—s),Q”(T—s))ds+/0 o (T — s)dBs, t € 0,T].
619

-SDE . . . . iy . s
strongEx | Remark 3.5. (%)szts a unique strong solution on [0, T since its drift is affine with time-dependent
continuous coefficients.

P_lemma| Lemma3.6. 1. The process E := &p_. solves the SDE

t t
Xo=Xo+ [ bsXds+ [ o(aw, te 1] (3.20)
0 0

where W is an FE-Brownian motion independent of Xo ~ N (m” (0), Q" (0)).

2. & extends continuously to [0, T.

. t_OUu i t _OU
Proof. i) The SDE (%Cﬁﬁts in particular existence in law. Let X be a solution of (%?_To*

prove the first statement, we first show that the laws of §A and X coincide.

- —SDE

For this it is enough to prove that X = Xp_. and the solution ¢ of (%)We identically
L. . X atshreve | _m

distributed. By Problem 6.1 in Chapter 5 in i2§| and by uniqueness of the ODE resp.

8



EZ7ivith initial condition m” (0) (resp. Q¥ (0)), we get E (X,) = m”(t) and Cov (X;) = Q“(t)
X atshreve .
for all t € [0,T]. By Problem 6.2, Chapter 5in |Z§|i X 15 a Gaussian process so

&~ N(m” (8),Q" (), t€[0,T]. (3.21)

d —SDE
By (%ﬁd Theorem 2.1 in @S Xis asolution (in law) of (%)W [0, T'[. Pathwise unique-
lemma

—SDE
ness for (%‘* mplies uniqueness in law on [0, 7] and the first statement of Lemma EPEI is
established.

irect O
ii) We proceed now with the proof of the first statement. Let X be a solution of (%?Wt%\at we

know that W is a Brownian motion independent of X. On the other hand the process
t ~
MY = X, — X —/ b(u, Xy)du, t € [0,T].
0
is an 7 -martingale with quadratic variation

X XT_.uu.
M ,<M>1—/Oz<>d

We have

W= / w)dM;' . (3.22)

Since [W, W], = tI,, by Lévy’s characterization theorem, I is a standard (F;*)-Brownian
motion. We set

. t
Mf =& — & — /0 b(u,&,)du, t € [0,T],

and we denote ¢ := IN a‘l(u)dMg . Taking i) into account and the fact that £ and X have
the same law, then W and W¢ are identically distributed and so W¢ is an F¢-Brownian
motion. Moreover the couple (X, W) has the same distribution as (€0, WE). Consequently

W¢ is an Fé-standard Brownian motion (independent of éo) and the statement 1. follows.

iii) It remains to prove the second statement. For this we show

E </T be <s,§s,m” (s),Q" (s)) ‘ d8> < 0. (3.23)
0

On the one hand, for all ¢ €]0, 77,

be (L& (1),Q" ()| = ‘ (V@ (1) 1\/QV(t)_1<§t—m”(t))‘
< I8l /][ 07 \ @ ( é—mwt))\
_ Bl | o
= o |V« HE-mr )|,

remembering that Q" (¢) belongs to S (R).

9



On the other hand, by (%JEF \i/ Qv () (é‘; —mY (t))‘ ~ |Z| where Z ~ N (0, 1;). Then,

initeMean . X
is verified if we show

(3.24) |finiteMeanBi

T
1
—dt < 0.
/o VIIRY ()]
nondegen

If Q¥ (0) = 0, then for all ¢ €]0, T, for all ¢t €]0, 7|, Remark B.I[implies

L _a <% /OtA(s)_l 2() (A7) ds) AT —3(0).

t—0

If Q¥ (0) # 0, then for all |0, 7], again RemarkW

— +00,

t t—0

- HA(t) (% /0 A S (s) (A(s)_l)Td8> AT

T
where we have also used the fact A (0) = I; and the fact %fg.A(s)_l Y (s) <A(s)_1) ds
tends to % (0) as ¢ tends to 0 thanks to the continuity of 3, . 4~! on [0, 7.

Hence, for all t €]0, 7],

L iQr(0)=0
iVt _ ) e O (3.25)
=0 1QY ()] 0, otherwise.

injteMeanBis injiteMean = SDE
This yields (Eﬁ]) which 1lmplies (Eiil;, consequently the solution X of prolongates to

t =T and item 2. is proved.
O

5
Though, this will not be exploited in the algorithm proposed at Section ﬁ“it is interesting to note
that the process ¢ introduced in (ﬁ@)ﬁn also be seen as the solution of a McKean SDE. Propo-

ean —SDEIntro sSsS_nu
sition %Iow shows that (ﬁ ZJadmits existence and uniqueness if and only if Assumptionﬁl 1S
verified. In particular we have the following.

~SDEInt
Proposition 3.7. 1. There is at most one solution (£, m, Q) of dl i} —
—SDE
2. Suppose the validity of Assumptionﬁ[ssl ot u§ be the unique solution of (%)._Then (&m",Q")isa

. —SDEIntro
solution of .

Proof. 1. Let (£, m, Q) be a solution of TSDgImérlcr)lition, ¢ solves an SDE of type (%Crte;—OU
placing a by a® : s = —a(T —s) = X(T —s)Q(T —s) " and cby ¢ : 5 > —c(T —s) +
S(T —s)Q(T —s) ' m (T —s).

By Problem 6.1 Section 5 in |Z§ |?tfhsgrf?fr$ction t—=E(&)(=m(T —1t)) (resp. t —= Cov (&) (=
Q (T —t))) solves the first line of _n%esp. (%”T%eplacing a by a* and ¢ by c¢*. Then, the
following identities hold for all ¢ €]0, T']:

m(T—t)zE(go)—/O a(T —s)m (T —s)+c(T — s)ds, (3.26)

10



Q(T—t):Cov(fo)—/O Q(T—s)a(T—s)T+a(T—s)Q(T—s)ds—/0 (T — s)ds,
620

remarking that
aEm (T —t)+c&t)=—a(T—t)m(T —t)—c(T —1t),
QI —t)a™ () +a® (T —)Q(t) = —-Q(T —t)a(T —t) —a(T —t)Q (T —t)—2% (T —t).

Applying the change of variable ¢t — T — ¢ in identities (%% (@% show that m
(resp. Q) solves the backward ODE ﬁ:&‘esp. ﬁ)‘ﬁo' which is well-posed. We recall that &
is distributed according to v. Then, m = m” and Q@ = Q", see the beginning of Section%

ongkx

_SDE . .
As a consequence, £ solves (%)ﬁd is uniquely determined thanks to Remark 1S

shows the validity of item 1.

2. Let £ be the unique solution of (%Q% hen, the time-reversed process E solves (%%ﬁglg
1
&r ~ N (m”(0),Q" (0)), thanks to item 1. of Lemma EPEI eﬁmcr)lsv, by Remark ﬁ%e have
E (é) =m" (t), Cov (é) = QV (t) forall t € [0,T]. This concludes the proof of item 2.
]

asOR . . .
Remark 3.8. 1. In ﬁmave discussed existence and uniqueness of more general McKean problems
involving the densities of the marginal laws instead of expectation and covariance matrix, where the

solution is the time-reversal of some (not necessarily Gaussian) diffusion.

OR
2. In particular, in Section 4.5 of Eﬁi?az%e have investigated existence and uniqueness of

v Lo B t divy(Zi,(T—r)pr(Yr))} t B
Y=Y, /Ob(T T,Yr)dT‘i‘/O{ o (V) ie[[l’dﬂdr—i—/oa(T r)dpy,

py density law of p, = law of Yy, t €]0, T,

Yo ~pr =v,
(3.28)
where B is a m-dimensional Brownian motion and ¥ = oo ", whose solution is the couple (Y, p).
Moreover, when the solution exists, there is a probability-valued function u defined on [0, T'] solution
of the Fokker-Planck equation

du = %Zd: 82-2]- ((UO’T)Z'J(t)u> — div (l;(t,aj)u>

L (3.29) |EDPTermOBis
i,j=1

w7l) = v

3. Suppose that v is a Gaussian law on Re. It is possible to show that Assumption ﬁlszz_errﬁivalent to

0Bi -SDEInt
the existence of a probability-valued solution u of (E%ﬁ])e Tt this case the McKean problems (il 7 7 —

t t
(%air% equivalent. In particular the component Y of the solution of (%‘zg_ocaussian.

11
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We continue with a preliminary lemma. Let W be a Brownian motion. For each (s, z) € [0,T] x R,

X** will denote below the process

t
X" i=x +/ o(r)dWy, t € [s,T)].

Lemma 3.9. Suppose the validity of Assumption & Tet v : [0, T] x R? — R of class €} ([0, 7], RY), with
polynomial growth and such that the function H : (t,z) — H (t,z,v (t,x), Vv (t,x)) is continuous
with polynomial growth. Then, the following assertions are equivalent.

E
1. v is a viscosity solution of (%

2. Foreach (s,x) € [0,T] x R,

T
v(s,z) =E </ H(r, X% v (r,X2%), Vo (r, X2%))dr + g (X;x)> : (3.30)

E
3. wis of class C2 ([0, T[,R?) and is a (classical) solution of (%
Proof. Let v as in the lemma statement.

a) We set

w’(s,z) :=E <g(X;x) + /T H"(r, Xﬁ’””)dr) , (s,2) € [0, T[xR% (3.31)

We show first that w" is a (classical) solution in C*2 ([0, T[,R%) N C° ([0, 7] x R?) with poly-
nomial growth of the linear PDE

{ Oyw (t,x) + §Trloo " ()Viw (t,2)] + HY (t,2) =0, (t,z) € [0, T[xR? (3.32)

2U(Tv') =g

Indeed w? can be rewritten as

w(s,z) = / g(2)pr(s,z —x)dz + /T HY (r,2) py (s, 2 — &) dzdr, (s,z) € [0, T[xR?,
e o (3.33)
where for each r € [0,7], s € [0,7[, py (s,-) is the density of the r.v. [] o(u)dW,, ie. a
Gaussian r.v. with mean zero and covariance fsr Y (u) du. Moreover, it is well-known, see
e.g. Remark 3.2 in @%ﬁch r € [0,T], pr : [0,7[xR? — R is a smooth solution of

Opr(t, 2) + %TT (Z(t) Vip, (t,2)) = 0,(t,2) € [0, r[xRY. (3.34)

Consequently, by usual integration theorems allowing to commute derivation and integrals,

in_heat_ PDE
one shows .

in_ heat_ PDE
b) Consequently w" is a viscosity solution (&fﬁ]i.

12
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visco_rem

heat_PDE g
c) If 1. holds then v is also a viscosity solution of (éfﬁ]i By point 1. of Remark equation
in_heat PDE
(ﬁﬁt]i admifs at most one continuous viscosity solution with polynomial growth. So v = w"

which means 2.

h
d) If 2. holds then v = w” and by b) v is a viscosity solution of (ﬁ)e;actl’ﬁ)%‘efore of (%f

e) 3. implies obviously 1. Viceversa, if item 1. holds, a) implies that w” is a classical solution
heat _PDE
of and the uniqueness of viscosity solutions for previous linear equation implies

v=w" and finally item 3.

We state now the announced representation result.

@ Theorem 3.10. Suppose the validity of Assumption B Let v be a Gaussian probability fulfilling Assump-
tion ot associated functions m” and QQ*.
Let v € €% ([0, T],R%; R) with polynomial growth and such that H : (t,z) — H (t,z,v (t,2), Vv (¢, z))
is continuous with polynomial growth. Then, v is a viscosity solution of (%Ezf and only if for all t € [0, T

t t
§t:§0—/0 b(T—s,§5)+bc(T—s,§S,mV(T—s),Q”(T—s))ds+/0 o (T — s)dps,

50’“’/7

0(18) =B ([ 1 (5600 (28) Voo (5.8)) - (3 () Vv (5.8) s+ (&) g)
3.3

~ 5
PDE-Rep | Remark 3.11. The affine drift b remains a degree of freedom of the representation. In Section ﬁ“in the

framework of the Hamilton-Jacobi-Bellman PDEs are given elements to choose rationally b.

RepFormula

1
sco_rem| Remark 3.12. We remark that previous representation (t%ff%iiozgmz}lalzad even if uniqueness does not hold for
. E . ormula X .
the semilinear PDE (% In that case even the equation (ﬁﬂmm admit uniqueness. However,
E
we provide below some typical situations for which (% admits at most one viscosity solution, within

different classes of solutions.

1. Suppose the validity of Assumption B SSuppose also that H is continuous with polynomial growth
in x and linear growth in (y, z). In addition, we suppose that H is Lipschitz in (y, z) uniformly in
(t, z) and suppose that for all R > 0, there exists mp : R — R™, tending to 0 at 0" such that

‘H (t,2',y,2) — H(t,w,y,z)| <mpg (|w’ - x‘ (1+1z])),

dPradR E
forallt € [0,T), = € RYand |z|,|2’|,|y| < R. Then, by Theorem 5.1 in Hél I, zﬁf}alze%othat (%f
admits at most one continuous viscosity solution with polynomial growth. In fact that theorem states

uniqueness even in a wider class of solutions.

13



nsSouganidisJensen
2. The first theorem in ﬁM/ formulates a uniqueness result in a suitable class of bounded uniformly

continuous solutions. Alternative assumptzons are available to ensure unzqueness in different classes
of unbounded functzons

iiKobayasi
n eorem

Proof (of Theorem E i fﬁ)).EiRe

Let v as in the statement.

lemma =
1. Lemma E%l implies that there exists an 7 $_Brownian motion W such that, under P,

t_ ., t
§t=§o+/0 b(s,gs) ds+/0 o (s)dWs, t € [0,T], (3.36)

where & ~ N (m” (0),QV (0)). In particular

E < sup p) < oo, Vp>1. (3.37)
te[0,T

This, together with Assumption Brand the polynomial growth of H" also imply that the r.v.

[ (580 (58) Tav (58)) (5 (:8) Vv () s + o66r)

is square integrable.

&

2. We give now an equivalent formulation of (%%ﬁg a change of probability measure.
Weset L, := o (s)"'b <s, @) , s € [0,T]. We denote by Q, the probability equivalent to P on
Fr ¢ defined by B =¢ (— S L LédWsi)T, being well-defined thanks to Lemma 32222
The goal is to show that v fulfills (%%% only if it fulfills for all ¢t € [0, 7]

o~ T o~ o~ o~ o~ o~
t7 :]E H 1S8sy 1SS 7Vx ' Qs d + . 338 1 i
U( ft) Q </t (8 &, v <S & > v <S & >> s+ g <5T) §t> ( ) ‘RepFormu aBi
We remark that, ,
& =4 +/ o (s)dW,, t € [0,T), (3.39)
0
where

W Wt / Lads, (3.40)
0

h
which is a Brownian motion under Q thanks to Girsanov’s Theorem 5.1 in izdﬁl |?tBSy ifegr; 1.
T ~ ~ ~ o~
| (580(5.80, 90 (5.8.) ) ds + ol
0

is obviously also square integrable under Q.
Weset Hy := H (s,gs,v <s,§s> , Vv <s,§s>> , s € 0,7, for the sake of brevity.
We remark first that for each given s € [0, 77,

<g (s,é\s) , Vv (s,§)> = <a (s)a(s)_lg(s,é) , Vv (s,gs)> = <L8,a( Vv ( 53)2

14

1) |EToBegin



. ~ 1
Then, (%%gc%lbined with the Markov property of £ implies that (Efggi‘ﬁgmgqﬁivalent to

0(18) =B ([ (Ho~ (oo ) Var (5.8))) s+ (&) |5

which can be rewritten

o(1&) =M [ (Ho= (Lo (97 Vv (8))) s

where M is the P-martingale

M, =E (/OTH — (Lo, ()T Vi (5,6) Yds + g (ér)
Similarly, (%%%—&Ll\};em to

v (t,é\t) = M, — /OtHsds,

ff) ,tel0,T). (3.42)

where M is the Q-martingale

T R R
M; = Eq (/ Hyds +g (5T> ff) , te€[0,7]. (3.43)
0

To show the aforementioned equivalence, it suffices now to show

M, — M, = /t <LS,O' (8)T Vv (S,E\S)>d8, t €0,7].
0

K — NP
On the one hand, Theorem 1.7 Chapter 8 in I%% |u1§§f)rll%%ofhat the process M := M+ Z?Zl (M, [, LdW!]
is a Q-local martingale. On the other hand, for each i € [1, d] by Proposition 3.10 in @ we

have
o, [ riawi] = o (8). [ riaw)

= /0 L <0 (s)" Vv <s,§s>>Z ds,

—part
combining (%Lwith the usual properties of covariation for semimartingales. This means
that

M:M—l—/o. <LS,O'(S)TVQCU <S,§s)>d8

is a Q-local martingale. Now,
Mr = M +/ Lg,0(s) Vyvls,&))ds
1=t | (Lo () Voo (s.8))

:/OTHSng(ET),

—mart _ —
thanks to (%f Since M and M are Q-local martingales being equal at ¢ = T, we have
M = M. This shows the validity of point 2.

15
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3. For each (s,z) € [0,7] x R?, we set X*% := z + [ o (r) dW, where W is the Q-Brownian

dewW
motion defined in (%)._eﬁssociated with v, we consider the continuous function
T
w’ (t,z) :=Eq </ H (r, X5 o (r, Xﬁx) , Vv (r, Xﬁx)) dr+g (X;z)> , (t,x) € [O,T]de.
t

We observe that v fulfills (Ef%iiolrfrgﬁaa%irﬁy if for all (t,x) € [0, 7] x R?

v(t,z) =w’ (t, ). (3.44)

Indeed this follows by the freezing lemma of the conditional expectation, the fact that & is
. . t,x
independent of the random field (Xs >t§s§T,gc€Rd and the flow property

Xt& = € s e [t,T].

E
4. It remains to show that (% is satisfied if and only if v is a viscosity solution of (% This
. . Abst £-L .. . . .
is the object of Lemma 3.9 a}r)?)ched ednrrlﬂger the probability Q, in particular to the equivalence

between item 1. and item 3.

4 Representation of stochastic control problems

Let us briefly recall the link between stochastic control and non-linear PDEs given by the Hamilton-
. . . zibogk, Pham09, tougzibook
Jacobi-Bellman (HJB) equation. We refer for instance to [11} 132} 37] for more details.

Let A C R¥ compact and denote by A the set of all A-valued progressively measurable processes

() yeqo,r, namely the set of admissible controls.

We consider now state processes (X;""'")s<i<T.ac4, Starting at time s € [0, 7] with value z € R,
solutions of the controlled SDE

dXt =b (t, Xt, Oét) dt+ o (t) th, (41)

where W is a d-dimensional Brownian motion and b : [0,7] x R? x A + R? is supposed to fulfill

the following.

Assumption 3. The function b is continuous and there exists K > 0 such that

b(t,x2,a) —b(t,x1,0)| < K |xo — 21|, (t,21,22,a) € [0,T] x R x RY x A.

i lcontrol drift_ass _. . . i i .
Note that Assumption Bimplies b to have linear growth in space uniformly in time and in the
lcontrolled SDE | : . . .
control. Consequently, @.I) starting at time s with value  admits a unique solution for each

ibook
a € Ay, for each (s,z) € [0,T] x R?, by the same arguments as in Theorem 3.1 in iﬁ fl ==

16
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We also introduce the cost function J : [0,T] x R? x Ay — R defined by

T
J(s,z,a) :=FE <g(X:sp’m’a) +/ f(r, X;f’x’o‘,ozr)dr> , (s,z,a) € [0,T] x RY x A, 4.2) ‘cost_functio
S

where the function f : [0, 7] x R? x A+ R (running cost) is supposed to fulfill what follows.

sts_ass| Assumption 4. The function f is continuous and there exists m, M > 0 such that

|f (t2,a)] < M (1+ |2[™), (t,2,0) € [0,T] x R? x A.

ontrolcodrib @ssts_ass . SS_ .
Supposing the validity of Assumptions ﬁﬁ‘&togetr\er with Assumption Bron the function
g : R — R (terminal cost), we are interested in minimizing, over control processes a € Ay the

functions a + J (0, z, a) for every z € R%.

To tackle this finite horizon stochastic control problem, the usual approach consists in introducing
the associated value (or Bellman) function v : [0, 7] x RY — R representing the minimum expected
costs, starting from any time ¢ € [0, 7] at any state » € RY, i.e.

v(t,x) = inffl J(t,z,a), (t,x) €[0,T] x R, (4.3)

acAg

Note that the terminal condition is known, which fixes v (T, -) = g, whereas v (0, -) corresponds to

the solution of the original minimization problem.

iy . slgogt dobndroftcesss
RHamilt | Remark 4.1. Suppose the validity ofAssumptzonsﬁLﬂ?z%arm EERREEERE SR

1. The function v is continuous on [0, T] x R and has polynomial growth, see Theorem 5. Chapter 3.
. lov
mn @7*

2. The value function v is a viscosity solution of the Hamilton-Jacobi-Bellman equation

(a1

{ dpo(t,z) + H(t,x, Voo(t,z)) + 3Trloc T () V2u(t, )] = 0, (t,z) € [0, T[xR?
U(T7 ) =9,

where H denotes the real-valued function defined on [0,T] x R? x R by
H(t,x,0) = injf;x {f(t,z,a) + (b(t,z,a),0)}, (t,x,0) € [0,T] x R? x RY, (4.5) |eq:H1
ae

ibook
see for example Theorem 7.4 in Eé% A

3. By definition, it is obvious that (z,z) — H (t, x, z) has polynomial growth uniformly with respect to

t. It is also clear that H is continuous.

. .S 5,00 seg:iHSE . . Lo
4. Under Assumptions 4. 4) admits at most one viscosity solution in the class

iq HJB Li )
of continuous solutions with polynomial growth, see Theorem 11.3 in @%Wmnass polynomial
. . . . . . s HIB .
growth, the value function v is the unique viscosity solution of (ﬁ)‘zﬁ the considered class.

17
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1Control

We formulate below another assumption for the value function v.

Assumption 5. v is of class C™! ([0, T],R?) such that ¥V ,v has polynomial growth.

loptimal contrdRHamilt

Remark 4.2. UnderAssumptzonu using Remark@.I[3. that the function (t,x) — H" (t,x) := H (t,x, Vv (t,z))

is continuous with polynomial growth.

loptimal control
Remark 4.3. 1. Assumption Blis not so restrictive, since whenever g and f are locally Lipschitz with

polynomial growth gradient (in space), then v is locally Lipschitz in the space variable. To prove this,

it suffices to show that .J is locally Lipschitz in x uniformly in t and o. A proof of this fact is given in

Lemma i&sfl sfafeﬁ T the Appendix.

In that context, the value function v is in particular absolutely continuous and for every t € [0,T7],
for almost every x € RY, v (t,-) is differentiable and V ,v(t, -) exists.
2. Suppose in addition that the functions f, g and b are of class C' (in the space variable) and the

rk t trol
validity of Assumption Jﬁfh n%_szl(I;al) lgc?snpg@nomzal growth as we show below. Indeed, by usual

dominated convergence arguments, we can show that for each (t,«) € [0,T] x Ay, v — J (t,z,«)

is differentiable with gradient
T
Ve (t,z,0) = E (Yf:x’avmg (Xfp’w’a> —I—/ YO, f (r, XE5, o) dr> , (4.6)
t
where Y5 is the unique matrix-valued process fulfilling
yhee =, +/ Vb (s, X07%, o) YE™¥ds, r € [t,T),
t
where V ;b := (0, bl)(i,j)eﬂl,d}]?'
h
Combining what precedes with Lemma %tﬁf%ﬂd in the Appendix, we deduce that for all t € [0,T],

for almost every x € R?
Vv (t,z) =V J (tx, o (t,z)), 4.7)

where o* is the Borel function introduced in Assumption [0l
polynomial growth.
nu . .
Corollary 4.4. Let v be a Gaussian probability measure fulfilling Assumption it associated functions
ﬁ_%’ond}kodlrrﬁstas 8S§ d
m"” and Q¥. We suppose the validity of Assumptions Among the functions v : [0,7] x R* — R
loptimal control ormul

fulfilling Assumption l‘2l the value furnction is the unique one which is solution of (%W_tﬁzs framework

H only depends on V v and not on v).

Proof. We recall that H" has polynomial growth by Remark ﬁl_(jfherwme on the one hand,

E-R 1
by Remark &J liana the direct implication in Theorem E If%]i vFufills Es%lio On the other hand, if a
ormula E-Rep . . .
function v fulfills (%The—nby the converse implication of Theoremtgf Iih v'is a viscosity solution
of (ﬁ)_ﬁy Remark v can only be the value function.

O
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control

We introduce a supplementary hypothesis on the value function v.

Assumption 6. There exists a Borel function o* : [0,T] x R? — A such that
H (t, 2,V (t,x) = (b(t,z,a" (t,2)), Vv (t,2)) + f (t,z,a" (t,2)), (t,2) €[0,T] x R%

We state (and show below) a verification type result involving o* without any further regularity
assumptions on the value function. That result is somehow classical, but it is not obvious to find
it in the literature (see e.g. Chapter 5 of @_’ﬁ with our assumptions. So, for the consistency
of the paper we provide a proof. Note to begin that the Borel function b* : (t,z) — b (t,z,a* (t,x))

lcontrol drift_ass
has linear growth thanks to AssumptionBl Asa consequence, the closed loop equation

dXt =" (t, Xt) dt + o (t) AWy, (4.8)

admits a unique strong solution X starting at time 0 with value z, for each € R¢, see Theorem
Veretennikov1982
6in |[|_|J
onbiodrehst
Proposition 4.5. Suppose the validity of Assumptions B E]( &I Lef o Erec the %fzf;esfunctzon defined in
supposed to be of class C% such that (t,z) — H (t,z, Vv (t,x)) has polynomzal growth
markov optimal contr

Then, the Borel function o* introduced in Assumption 6l defines an optimal jeeaback function for the con-
sidered control problem in the sense that for each x & RY,

v (0, ) :J(O,x,a* (-,Xx)). 4.9)

i £
Proof (of Propositionﬁ%[‘et r € RY

1. v is a continuous viscosity solution with polynomial growth of (ﬁ)ﬁd so of (% with
(t,x,y,2z) — H (t,z, z) for the non linearity. By Remark %—eknow that H" is continuous

IAbstract-L
and by assumption it has polynomial growth. So we apply Lemmal[3.9 tcl)f acilceclugren r{ﬁat v is of
:HJB

class C12 ([0, T, R?) and is a classical solution of

2. Applying Itd’s formula to v (-, X*) between 0 and Ty, € [0, 7| and using the fact v is a classical

Imarkov_optimal_ control

solution of (ﬁ)ﬁmbmed with Assumption 6] we obtain

_ Ty _ _
v (0,2) =v (To, XF,) + / f(r, XE o (r,XF)) dr — My, (4.10)
0

where .
M; = / Vv (r, Xf)—ra(r) dw,, t € [0,T1].
0

By the usual BDG (Burkholder-Davies-Gundy) and Jensen’s arguments, sup,c(o 7 |X{’| has
all its moments. So, (ﬁ%mplies that the local martingale M extends continuously to a true
martingale on [0, 7] still denoted by M verifying sup;c(o 7| |[M;| € L'. Indeed v is continuous
on [0, 7] x R? and v (resp. f) has polynomial growth in space (resp. in the second and third
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0
variable). Therefore M is a true martingale. Sending Tj to T, (ﬁ—holds with T replaced
by T and v (Ty, X7, ) replaced by g (X7). Taking the expectation, we obtain

v(0,z) =E <g (XF) + /OTf (r, X7, a" (r, X7)) dr> : (4.11)

3. The process a; := o* (t,X]), t € [0,T], belongs to the set Ay of admissible controls and
. i lcontrolled SDE . i lcontrolled SDE 0 "
X = X7, is a solution of @I). Tnvoking pathwise uniqueness for @], we obfain X"

.. . . rm_opt imal_alpha
coincides with X*. Then, implies )

O

We formulate now a corollary in which is given a representation formula for the value function v

involving the optimal feedback function o*.

Corollary 4.6. Let v be a Gaussian probability measure fulfilling Assumption it associated functions
fodrih
m” and QQ¥. We suppose the validity of Assumptions 5 bmm%n?gm e fiiticions fulfilling Assumptions

loptimmarkomtoptimal control i . X X
Glandlel the value function v is the unique one which is solution of

t

t~
{t:&)—/o b(T—s,fs)—FbC(T—s,gS,m”(T—s),Q”(T—s))ds—i—/ o (T — s)dps,

0
60'\"7/7

&) =5 ([ 1 (s ()~ (H(48) 1 () o () s (@)
(4.12)
forallt € [0,T].

. X RepFormulaControl . X X
Proof. The resultis a direct consequence of Corollary B.4] replacing the function H by its expression
. . . |markov_optimal control
given in Assumption bl O

5 A heuristic algorithm

In this section, we propose a heuristic algorithm to solve the control problem described in Section
lcontrol problem section . . 1 d
B In what follows, the ferminal cost function g is supposed to belong to C* (RY).

Consider a regular time grid with time step 6t := L and grid instants t;, = kdt for any k €

[0,n]. Fork =n—1,n—2,---,0, select arbitrarily ?Lk+1 cche1 € R7and Qpyq € S;’(R),akﬂ €
_ k+1

M4(R) such that Q(tx) := e‘akH‘StQkHe_a;H& - / e~ w1 (57t Y () e~ M1 (7t gg ¢ ST(R).

t .
By Corollary &%E_;}%rh ed substituting [0, 7'] with [tkftk+1], the solution of “on [tk, tk+1], with

20
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terminal condition v(t41, -), can be represented for t € [ty, tx+1] by

1 ~ N(mys1, Qr1)

Y1 = 0(tps1, Epr1)
tet1
my(t) — e +1(tpy1— t)mk—i-l (/ e~ +1(5s—1) 1o Cha1
¢
th
Qk(t) _ e_akﬂ(tkﬂ_t)Qk+1e—az+1(tk+l—t) B / k+1 e~ ak+1(s—t) % (S) 6_a;—+1(s_t)d8
t

T—t

Ser—t = k1 — / (ak18k,s + g1 + be(T — 5, &5 mip(T — ), Qu(T — s))) ds
(k+1)

T—
+/ o(T — s)dBs
bn—(k+1)

kot = &kT—t

. bt . .
U(t, Sk,t) = E </ Fk (Sa Sk,m vxv(sa Sk,s))ds + Yk-i—l
t

In the above recursion, § denotes a d-dimensional Brownian motion on [0, T']; for any k£ € [0,n—1],

(5.1) ‘ eq:discrete

(k,¢)t is a d-dimensional process defined on [t,,_(;41),tn—| While (ém)t denotes the associated

time reversal defined on [t ¢4 1]; the driver F}, defined on [ty tx11] x R? x R? is such that,

Fy(t,x,0) :== H(t,z,0) — (a1 + Ccgs1,0) = Hgﬂ {ft,x,a) + (b(t,x,a),d)} — (ag+12 + Ck+1,0) .

52

The idea now is to apply a classical numerical method based on linear regressions to approximate
discrete

the solution to (E( ili recursively in time from &k = n — 1 to £ = 0. For each time instant k, select

arbitrarily my11, k41 € R and Qpi1 € SJ (R), ap1 € My(R) such that

Qr = e 1 Qy e 1% — N(ty41)0t € ST(R). (5.3)

Then we propose to approximate v(t, -) by v obtained by an explicit time discretization scheme

;discrete
of (ES fiy with time step 0t = L as follows.

Sor1 ~ N(Tugr, Qps1)

Y, = *
k+1 U1 (Ek+1) (5.4) ‘eq:discreteb

&k = &1 — (1€t + ot + be(tert, Eort Mkt1, Qut1)) Ot + o (tpgr) Votey
0p(&) = E(Fi(tet1, Eer1, Vavrrt (Ee+1)) 68 + Vi1 |&x)

where (ex)o<g<n—1 are i.i.d. d-dimensional standard Gaussian variables. As in the classical litera-

T |GohetWarin . . i . . ;discreteb
ture, see e.g. , We propose to approximate the conditional expectation appearing in (Eﬁ]) using
Monte-Carlo least squares regression based on a grid constituted by N independent simulations
(& &hy1)1<i<n for k € [0,n — 1]. In that literature, one generally s1mu1ates forwardly that grid.

. Jeg_,d1m'rdﬂt:§:
The interest of such fully backward representations (B.I)-[.4), whore the grid (&},&)1)1<i<n is

defined backwardly in time, (like the value function), is twofold.
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¢ In terms of computer memory: at each time instant £+ 1, the values of the grid are generated
on the fly, (¢},&;,1)1<i<n. Contrary to the standard approach, there is no need to store the
whole grid over the whole set of grid instants & € [0,n — 1].

¢ In terms of the relevance of the grid: at each grid instant, k£ + 1 the information acquired on
the value function v(tx+1, -) and optimal control strategy o* (¢ 1, -) can be used to adaptively
optimize the grid parameter (axy1, Cit1, Mi+1, Qi 1) in order to explore relevant regions of

the state space.

We develop some arguments to justify the relevance mentioned above. Indeed, as already an-
nounced, the target idea is to generate the grid used for regression computations according to
the optimally controlled process dynamics. If this were possible, the sensitivity of the driver F},
w.r.t. the third variable V, v would vanish. In fact the driver sensitivity w.r.t. V, v is known to be

ctl6
one major cause of the propagation of numerical errors in approximation schemes, see e.g. i ])('_Skl
discreteb
Replacing V, vy 1(£,41) by a perturbation Vv 11 (£x11) + b in the last equation of (Efil) We obtain

op(ér) = E<Fk (tht1 Ehr1s Vet (Err1) + h) 0t + Vi | Ek)-

The impact on vy, (&) can crudely be evaluated by computing the error E[[v} (&) — vi(€x)|?]. Sup-

posing that no perturbation is impacting Y} 1, fact which will be heuristically justified in Remark
Esﬂ i .S,tv(\ere5have
h 2 ; ; ; ; 2
E(lvg (§k) — vk (&e)7) < E(\Fk (thr1 Ekrts Vevre1(Err1)) — Fr(trrts Set1s Vaors1(Epg1) + 1) | )
Suppose from now on the existence of a Borel function (¢, z, §) — a*(t, z, d), such that
H(t,x,0) == {f(t,x,a"(t,2,0)) + (b(t,x,a*(t,x,6)),0)}, (t,2,0) € [0,T] x R x R”. (5.5)

In this case one has o*(t,2) = a*(t,z, V,u(t,x)), (t,2) € [0,T] x R? x R%, where o* was defined
Imarkov_optimal coﬁmp
in Assumpt1on|(zl Coming back to (B.2) we get

Fk(t7$75) = H(t,$,5)—<ak+1$—|—6k+1,5> = {f(t7$7a*(t7$75)) + <b(t7$7a*(t7$75))75>}_<ak+1$+ck+l75>'

59

A suitable application of the envelope theorem gives

%(ta z, 5) = b(ta z, a” (t7 z, 5)) - (ak-i-lx + ck—l—l) ) (57) ‘ eq:partialF ‘
which yields
h 2 8Fk
E (\Uk(fk) — v (&) > < E‘( T — (trg15 Epg 15 VaUkgt (Ep1) + 0h)dO h>‘

1 _ _ _ _ 2
= E‘(/O b(trt1s Err1 @ (g1, Err1, Vatrrt (Epgr) + 0h))dO — (apy1&p41 + chy) h>‘

1 _ _ _ _ 2
< !h\2E‘ / b(trt1, Eet1, " (st Eht1s Vavrs1 (Epg1) + 0h))db — (ap418641 + Ck—l—l)‘
0
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RFBSDEs

m:stepb

The above relation highlights the fact that the original idea consisting in generating the grid ac-
cording to a dynamics approaching the optimally controlled process dynamics reduces the propa-
gation of the error induced by the Monte-Carlo regression scheme in terms of least square criteria.
Remark 5.1. The above relation also shows that previous idea can be read in the more general perspective
of the probabilistic representation of a solution v to a semilinear PDE of the type ?%?E @i EBSDE. In
that general context, one expects the selected drift of the forward process in the FBSDE to reduce the impact

of the sensitivity of the FBSDE driver with respect to V ,v.

Based on that observation, we propose a heuristic algorithm where parameters (ay+1,cxr+1) are

adaptively chosen as
_ _ _ _ 2
(ak+1,cCre1) € arg rglian‘b(tk+17 Ehr1, @ bkt Ehr1s Vatrg1 (hr1)) — (appr +0)| (5.8)

In the above algorithm, the random variables (¢!, k € [0,n — 1] ,i € [1, N]) are i.i.d. according
to NV (0,1,); Proj STR) Sq(R) — ST (R) denotes the Frobenius projection operator on the closed
and convex space of semidefinite matrices; for each p € N, P, (Rd) denotes the set of polynomial

functions on R? with degree p.

Remark 5.2. 1. Note that in Step 4, as soon as Qi € S; (R) then (Y, )i<i<n results from the
update made at previous iteration at Step 8. That updating rule corresponds to the multi-step forward
dynamic programming approach ﬁ]%h‘l?‘ch is well-known for not inducing any additional bias error
that would propagate backwardly during iterations. However, when Qi ¢ S, (R), in Step 4, then
we have to modify Qjy, re-generate new variables (&), 1 )1<i<n i.id. ~ N (g1, Qpy1) and use
the update Y)! | = vy11(&},, ) which adds a bias error. Fortunately, in our numerical simulations it
appeared easy to chose a first covariance matrix Q,, so that for all k € [0,n — 1] we had Q) € S .
In that situation, the error propagation is only due to the sensitivity of the driver w.r.t. Vv which is

precisely minimized by our heuristics.

2. The complexity of Algorithm ﬁl_%compamble to the traditional Monte-Carlo Regression scheme us-
ing a forward grid. Indeed, Algorithm ﬁlr%%uires an additional linear regression calculation of order
O(d?N) at Step 2 which is negligible w.r.t. the polynomial regression computations at Step 7 (oper-
ated by both algorithms) inducing O(d*N) operations in the specific case considered in simulations
where the maximum degree of polynomials is p = 2. When Q. ¢ S, Algorithm lreguires in ad-
dition, at Step 4, to implement: a Frobenius projection Proj st (R)(Qk) (O(d®)), N multiplications
of matrices d x d with vectors d x 1 (O(d?>N)); and N independent generations of d-dimensional
Gaussian random variables. These additional operations induce a complexity of O(d>N') which does

not increase the original O(d*N') complexity.

3. In terms of memory, as already mentioned, we do not have to store the whole regression grid on the

whole time horizon constituted of ndN reals but only to consider dN reals at each instant.
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Algorithm 1 Fully Backward Monte-Carlo Regression scheme

Initialization Set v, = g; k = n — 1; select arbitrarily (m,,Q,) € R x ST (R); generate (&!)1<i<n
iid. ~ N (M, Qn); setY,! = g(&), foralli € [1, NJ.
while £ > 0 do

1.

2.

8.

9.

alpi1 = arg rzlin {f (trt1, &1 a) + (b (tr Ehyrr @), Vaovgsr (€441)) ), forall € [1, N].
ac

(@pt1,Ch1) =  argmin - F > ity |a§}€+1 +c—b (tk+1, Eetts a§€+1)| .
(a,c)EMg(R)xR4

Mg = e~ W10y g — ¢y 0t
— _ T

Qr = e~ W19y e W10 3 (tr41) Ot

o If Qx € SJ (R): set Qr = Qx,
¢ Else :setQp = ProjS;(R) Qr); recompllte Qi1 = e+ (Qp + X(tg+1)0t) W19t
regenerate (&}, )1<i<ny iid. ~ N(mpy1,Qri1); set Yy = vpg1(&, ), forall i €
[1, N].
Sete ,; = art1&q + k1 — b (tey1, Efyys @)y ), foralli € [1, N].
&= &hr — (a1€hpy + 1 +be (tha1, €y Mr1, Qugr)) 0t + o (trg1) €),V/60t, for all i €
[1,N]

k= 1?2%%;3)% Zﬁil |Yki+1 + (f (tk+1752+1’a2+1) - <62+1’ VaUk41 (£Ii+1)>) ot — P (52) |2'
€rp

Vi =Y+ (f (tre1: Grrs @rr) — (€hgrs Vavir (§41))) 0, foralli € [1, N]

k—1<+ k.

end while
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example

Remark 5.3. Suppose that at each time step k € [0,n — 1] the matrix Qy, belongs to ST (R). Then,
Algorithm ﬁ‘z%based on the representation formula appearing in Corollary %Wﬂ%whole time interval
[0, T'] with piecewise constant coefficients a, c such that a(t), c(t) = a1, cry1 for each t €]ty tpt1], for
each k € [0,n — 1].

6 Stochastic control of thermostatically controlled loads

6.1 Model description

With the massive integration of variable renewable energies (like wind farms or solar panels) into
power systems, balancing supply and demand in a real time basis requires to develop new lever-
ages. A technical solution is to develop load control schemes in order to automatically adapt
consumption to generation. In this section, we propose to apply Algorithm ﬁllgnLoorder to control
a large heterogeneous population of air-conditioners on a time horizon [0, 7’| such that the overall
consumption of the population follows a given target profile, while preserving the rooms temper-
atures within users comfort bounds.

We consider a hierarchical control scheme introduced in @%l—v%vl%%e the population is aggregated
into d clusters of N* homogeneous loads (with same air-conditioners and rooms characteristics)
for i€ [1,d]. For each cluster i € [1,d], a local controller decides at each time step to turn ON or
OFF optimally some air-conditioners of cluster ¢, in order to satisfy a prescribed proportion of de-
vices with status ON in the cluster. The prescribed proportion of devices ON in each cluster, at each
time step, is computed by a central controller controlling the average rooms temperatures in each

cluster, X' := N% Z | X where X/ "7 is the room temperature associated to load ] € [[1 ]] of

u,

seqguret

cluster i € [1,d]. ( tZ ’ )0<t<T1s supposed to follow the usual thermal dynamics (see I[I_L |_|J and
references therein)

b)ds + o W telo,T), (6.1)

XtZJ = ‘TZOJ +/0 ( QZ(XZJ - ‘Tout) - ’%ZPrlnax (€78
where for any j € [1,N;], 0%/ > 0, (W) are independent real Brownian motions representing
model errors and temperature fluctuations inside the room due to local behavior (window, door
opening etc.); :L'é is the initial temperature; ' is the heat exchange parameter; z%,, denotes the

outdoor air temperature; 1/ 0 > 0 is the thermal time constant; P:__ > 0 denotes the maximal

max

power consumption; o’ € {0,1} is the status OFF or ON of load (i, j) at time instant s € [0, 7.

We are interested in the problem of the central controller who considers the aggregated state process
. trolStated

X = (X")1<i<d, whose dynamics is obtained by averaging dynamics (ﬁ over jaE [[1 N;], for any

ie[1,d],

t
X;:wzo—i—/( 0'(X! — aly) — K Phaat)ds + o'W, te[0,T], (6.2)
0

where the control process (as = (a!)i<i<a,s € [0, T]) taking values in [0, 1] prescribes the pro-

portions of devices ON in each cluster; zf, = §- Z " xg; (0)? = N%z ij:il(aivj)2; (W%1<i<q is
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a d-dimensional Brownian motion.The central controller problem can be formulated as a specific
t D
instantiation of problem - Wi e ollowing:
e the controlled process X driven by a drift coefficient b := (b');<;<q defined on [0, 7] x R? x
0,1]% s.t. for any i € [1,d] b'(t,x,a) = —0° (z' —a?,,) — k' Pl,a’, with the notation a :=

(a")1<icqg and = := (2")1<i<d;

¢ the terminal cost g(x) := 3 ZZ L |7* — 7> where 7 € R¢ denotes given target values for the

final average temperatures of each cluster;

e the running cost defined on [0, 7] x R¢ x [0, 1]¢,

d 2 d
f(t7x7a) ::)‘<Zpiai_rt> 22( ‘ +77(x _xmax) +77( mln_xi)?i-)ﬂ
=1 =1

where p' 1= % ; 4| pla’ gives the overall current consumption of the population
j=1 ax

as a proportion of the maximum consumption Z;'l:1 NP [0, T] — R} denotes the tar-
get consumption profile for the overall consumption as a proportion of the maximum con-
sumption Z;l:l NI Pr{lax ; A > 0 quantifies the incentive for the overall consumption to track
the target consumption profile r; v* > 0 quantifies the quadratic penalty favoring smooth
consumption profiles for cluster i; i > 0 is a parameter penalizing excursions outside of the

for cluster i average temperature.

comfort interval [z’ C o)

mlH7 z

lcontrol drift_ass lcontrol costs_ass SS_
Note that b verifies AssumptionB] f verifies Assumptionand g Assumption )

6.2 Simulation results

Consider the central controller problem on a time horizon 7' = 3600s, with a population of hetero-
geneous air-conditioners composed of d = 1,2,5,10,15,20 clusters with N* = 20 identical loads
in each cluster. We specify the chosen parameters. In each case, k = 2.5°C/J and o' = 0.1°Cs?;
Tout = 27°C; 0'[s7!] is chosen arbitrarily in [0.1,0.97); P.,.[W] is chosen arbitrarily in [0.5,5];
zo = Z[°C] is chosen arbitrarily in [16,27]; Tmin = Z — 1.5°C; Tmax = 2+ 1.5°C; n = 1(°C) ™% A = 20;
% is chosen arbitrarily in [0.5, 1.5]. The target profile, 7, used in simulations is obtained as the sum
of a nominal profile corresponding to the standard (uncontrolled) behavior of air-conditioners and
a deviation: r = 7"°™ + dev. The standard dynamics of an (uncontrolled) air-conditioner is driven

by a cycling rule of ON/OFF decisions intended to keep the room temperature in [z¢ ;2% . ].
When the air-conditioner is ON, it stays ON at P,

switches OFF until the temperature reaches z ,

! o until the temperature reaches ! ; then it

Then, the air-conditioner turns ON again and

X*

begins a new cycle. The nominal profile r"°™ has been generated by averaging the consumption

of 1000 sets of d clusters of N* heterogeneous air-conditioners simulated independently according
trolstat

to (6.1, With faf Jo<t<T following the cycling rule of ON/OFF dec1s1ons and with independent

initial conditions for temperature 3:0 ~ N (z},1) and ON/OFF status ag’ € {0, 1}. The deviation
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profile dev; = 12000 * sin( 2?) induces a maximal deviation of 20% from the nominal profile and in-

tegrates to zero on the time horizon [0, 7] so that the target profile corresponds to the same energy
consumed on the period [0, 7] as the nominal profile.

The time step is 6t = 60s. We have implemented Algorithm 1 with a backward grid initiated
with N (m,, = Z,Q,, = I). For comparison, we have also implemented the standard Monte-Carlo
regression scheme using a forward grid simulated according to @%ﬁ%atq%etermimstic con-
trol a; approximating the nominal dynamics (according to the ON/OFF cycling rule) described
previously. In both cases, we have used second order polynomials (p = 2) as basis functions
for regressions. We have considered N = 102, 103, 5 x 103, 10%, 2 x 10%, 5 x 10, 10° Monte-
Carlo paths for the regression grids. To evaluate the statistical performances of the forward
and backward grids, we have implemented each algorithm independently Nyiq = 100 times for
each value of N. For each run, i = 1,---, Ngiq, the value functions estimate (v;i)ogkgn (and
the corresponding gradients) was used to implement the associated strategy o’ = (a})o<r<n On
M = 1000 ii.d. simulations of the Brownian motion W, w',--- ,w?, --- ,w™. Then the result-
ing cost J (a',w?) = g(X%xO’ai (W) + fOTf( X0%00" (3, ar)dr has been computed. The ex-
pected cost has been estimated as E[J (o/,w’)] =~ J := — o i G Z L J (', w?) . The vari-
ance of J is estimated by 6’% obtained by replacing, expectations and variances by their empirical
approximation based on the sample, (7 (o', w’), ,z‘ € [1,Ngria] j € [1,M]), in the expression
5% ~ Var(J) = 5 “dE [;/ar(j(oz w) ]a !} + Ngrld Var (E[J(a,w?)|a’]), for each i and j. We
have reported on Table ﬁ'(@ Table e emplrlcal mean J and within parenthesis the em-

pirical standard deviation ¢ ; obtained for each considered pair (d, N) for the forward grid (resp.
backward grid).

One can observe that the backward grid performs surprisingly well providing with high precision
the lowest expected cost achieved by both methods (or almost) with only N = 5 x 10? paths what-
ever the dimension d of the control problem. This is consistent with our intuition based on the
idea that localizing the grid around the optimally controlled process paths would bring efficiency
and reduce the impact of dimension. The particularity of this problem is that the optimally con-
trolled process is naturally localized in a small region of the state space because, on the one hand a
target value, 7, is prescribed for the terminal temperatures (by the terminal cost) and on the other
hand a target profile is assigned for the overall power consumption. The backward grid has the
advantage of being initiated around the target state and of following dynamics approaching the
optimal strategy. This allows to concentrate the backward grid in the small region of interest so
that restricting the regression basis to polynomials of order p = 2 seems already enough to obtain
reasonable results. However, one can observe some cases where the forward grid (for N = 10° and
d < 5) has performed slightly better than the backward grid. This can be interpreted by the fact
that the forward grid knows the initial condition z( while the backward grid has no information
about it. To further improve the performances Algorithmﬁl_z% idea would be to find a way to ex-

ploit that information on the initial condition. This could constitute the subject of future research.
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N d=1 d=2 d=5 d=10 d=15 d=20
102 8.68(0.98) 17.28(1.01) 42.04(1.32) 34.79(0.66) 21.27(0.12) 18.97(0.09)
103 7.61(6e %) 824(0.07) 14.83(0.64) 28.14(0.64) 37.91(0.60) 34.83(0.45)
5x 103 7.603e%) 7.78(2¢73) 8.98(0.21) 19.84(0.52) 35.31(0.71) 33.57(0.52)
104 7.60Be %) 7.77(1e73)  7.69(0.06) 16.06(0.38) 32.20(0.63) 30.66(0.59)
2 x 10% 7.608e%)  7.77(2¢%)  7.37(0.02) 13.58(0.40) 28.97(0.71) 28.17(0.67)
5x 10% 7.60(3e™) 7.79Qe™%) 7.28(2e3) 7.96(0.25) 26.69(0.65) 26.21(0.69)
10° 7.61(3e7%) 7.78(le™?) 7.27(8e %)  6.12(0.08) 22.54(0.56) 23.26(0.59)
tab: fud] Table 1: Mean, J (standard deviation, & ;7) of the simulated cost with the forward grid strategy
N d=1 d=2 d=5 d=10 d=15 d=20
102 7.61(3e~ %) 7.78(7e%) 7.41(6e73) 7.31(0.12) 28.14(0.18) 26.01(0.12)
103 7.61(3e™?) 7.77(e™*) 7.39(1e73) 6.18(3e73) 8.19(6e73) 7.87(1le”2)
5x10% 7.61(3e™%) 7.77(2e7%) 7.38(8e™*) 6.17(1le”3) 8.15(2e73)  7.74(3e73)
104 7.61(Ge ) 7.772e %) 7.38(Ged) 6.17(1e3) 8.15(2e73)  7.73(3e~3)
2 x10* 7.61(3e7%) 7.77(2e7*) 7.38@Be %) 6.17(8e7%) 8.15(le73) 7.73(2¢73)
5x10% 7.603eY) 7.79(le™%) 7.38Q2¢74) 6.16(5¢4) 8.14(8e~%)  7.72(1le~3)
105 7.61(3e™) 7.79(1e”?) 7.39(2e™*) 6.16(4e7*) 8.14(7e )  7.72(9e™*)
Tab:bwd] Table 2: Mean .J (standard deviation, & ;7) of the simulated cost with the backward grid strategy
7 Appendix
7.1 A sufficient condition to obtain an equivalent probability
@ Lemma 7.1. We recall that b was defined in (%) Let W be an (F)ejo,r)-Brownian motion and X be a

solution of
(7.3)

where X is a Gaussian random vector independent of W. Set L; := o )" b(t, X;),t €[0,T). Then, the

d . . d .
Doléans exponential £ (— Z/ Li,de) = exp <—/ Z LidW! — % / |L,? ds) isan (Ft)efo,r)”
= Jo 0 0

1=1

¢ t
Xt:XO—I—/ b(s,Xs)ds+/ o (s)dWs, t €[0,T],
0 0

martingale.

h
Proof. Following Corollary 5.14 in iZﬁ |?t15f is sufficient to find a constant time step subdivision
(tn)nen Of [0,7] such that, for all n € N,

1 tn41 9
E <exp <§/ |Ls| ds>> < 00.
tn
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Combining Jensen’s inequality and Fubini’s theorem, this is fulfilled in particular if for all n € N,

tn+1 2
%/ E(exp (6’28’ >>d8<00,
tn

where § := t, .1 — t,. Let s € [0, T)]. Then,

(> < 26 |0 |2, (llal 21X +1lel %), P—as,

since a, ¢ are bounded and ¢! is also bounded being continuous on [0, T]. Furthermore, by item
*(

[ X is a Gaussian process with mean function m* (resp. covariance
function Q%) solvmg the first line of equation (%Tesp ﬁ)‘ﬁvﬁh initial condition E (Xj) (resp.
Cov (Xp)).

Taking into account the fact that m™ is bounded (since continuous), it suffices to find a subdivision

such that .
E <exp <§K5 ]Z]2>> < 00,

where Z ~ N (0,1;) and K := 4Ha‘1Hio l|al|%, HQXHOO > 0. This is the case in particular if
K6 < 1, which ends the proof. O

7.2 Proof of the local Lipschitz property of the cost functional J

control drift
c_Lip_J| Lemma 7.2. Suppose the validity of Assumption lﬂonbbf(p?poserzln addition that the functions g and x

ftz,a),(t,a) € [0,T] x Ag are locally Lipschitz with polynomial growth gradient (uniformly in t and
). Then, for each (t, o) € [0,T] x Ay,

x = J(tz, a)
is locally Lipschitz, uniformly in t and a.

Proof. We give here a proof of the local Lipschitz property for the term involving the function g

since the other term can be treated in the same way.

Let (t,a) € [0,7] x Ag and x,y in a compact set of R%. Let K be the Lipschitz constant of b. Using

in particular the Cauchy-Schwarz inequality, we get

‘IE (g (X;xOf)) -E (g (Xé:yvo‘»‘ < /01 E (‘ng (aX;nga +(1—a) XégyvOC)‘ ‘X%x,a — Xé;yvaD da

< fT /01 E (‘ng (aXélx’a +(1—a) Xéiy’a> D da |z -yl

(7.4) ‘ interm-ineg

where we have used the estimate ‘Xt Y XY O“ < efT |z —

y|, following from the identity
s
| X5 — XP9O| < |lo—y| + K/t | XLme — X0V ds, r € [t,T),
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env_thm

together with Gronwall’s lemma. In view of 1& ]ﬁli? rfﬁmé l}?&nt is proved if

) da

is bounded uniformly in ¢, z, y, a. This follows from polynomial growth of Vg, classical moment
1
, 2 € R? (see for example Corollary 2.5.12 in iialioavnd the fact z,y

lie in a compact set. 0

/01 g (‘VI‘Q (aX%x’a +(1—a) X?%oc)

estimates for SUPselt, 7] ‘Xﬁ’z’a

7.3 A simplified version of the envelope theorem

Lemma 7.3. Let A be an arbitrary set and O be an open subset of R%. Let x € R% Let F : O x A — R
such that forall X\ € A, F'(-,\) and V : x > supycp F' (x, \) are differentiable at the point x. Suppose
also that A* (x) = {\ € A,V (z) = F (z, \)} is not empty. Then,

V.V (x) =ViF(z,\}),
for every A € A* (x).

Proof. Let z as in the proposition statement and i € R% Let A% € A* (z). Then, using in particular
the differentiability of F' (-, A}) at the point z, we get

V(z+h)=V(x)>F(x+hA\)—F(z,A\))
= (Vo F (2,A7) , h) + oo(|R]). (7.5)

By the differentiability of V' at the point z, ﬁ%ﬁlplies
(VaV (&) = Vo F (,X3) b} = oo (JA). 7.6)
' 1
Setting h to —h in (ﬁgﬁd proceeding as before, we obtain
(VaV (2) = Vo (2,A7) ,h) < oo (|h]) - (7.7)
ineg 1 ineg_2
Combining (EfE]i and (EfZIi, we get
VoV (2) = VuF (2, 00), - ) — 0
S VA

which forces V,V (z) = V,F (z, \}). This ends the proof.
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