arXiv:2105.11522v2 [stat.ML] 28 May 2021

Unbiased Estimation of the Gradient of the Log-Likelihood for a Class
of Continuous-Time State-Space Models

BY MARCO BALLESIO & AJAY JASRA

Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology,

Thuwal, 23955, KSA. E-mail: marco.ballesio@kaust.edu.sa, ajay.jasralkaust.edu.sa

Abstract

In this paper, we consider static parameter estimation for a class of continuous-time state-space models.
Our goal is to obtain an unbiased estimate of the gradient of the log-likelihood (score function), which is an
estimate that is unbiased even if the stochastic processes involved in the model must be discretized in time.
To achieve this goal, we apply a doubly randomized scheme (see, e.g., [13, [14]), that involves a novel coupled
conditional particle filter (CCPF) on the second level of randomization [I5]. Our novel estimate helps facilitate
the application of gradient-based estimation algorithms, such as stochastic-gradient Langevin descent. We
illustrate our methodology in the context of stochastic gradient descent (SGD) in several numerical examples
and compare with the Rhee & Glynn estimator [22] 23].

Keywords: Score Function, Particle Filter, Coupled Conditional Particle Filter.

1 Introduction

State-space models are used in many applications in applied mathematics, statistics, and economics (see, e.g., [10]).
They typically comprise a hidden or unobserved Markov chain that is associated with an observation process. In
many cases of practical interest, there are unknown finite-dimensional parameters, # € © C R%, that characterize
the dynamics of the hidden and observed processes. The objective of this paper is to consider the estimation of
these parameters on the basis of a fixed-length dataset, when the observations and hidden process are both diffusion
processes.

There are many challenges in parameter estimation for the class of continuous-time state-space models under
consideration. The first challenge is that in practice, data are not observed in continuous time; thus, it is necessary
to perform time-discretization (e.g., Euler-Maruyama method) of the observation process at the very least. The
second challenge is that the hidden diffusion process may often be unavailable (e.g., for exact simulation) without
also using time discretization. The third challenge is that even under the aforementioned approximations, to
compute the log-likelihood function or its gradient with respect to 6 (the score function), which is the estimation
paradigm that is followed in this paper, it is still not possible to compute these quantities analytically. We proceed
under the assumption that one must time-discretize both the observation and hidden process and that one seeks
the parameters that maximize the log-likelihood function (the result of which is the maximum likelihood estimator
(MLE)). We use a particular identity for the score function that is provided in [9] and based on the Girsanov change
of measure. Alternative identities are discussed in [3] but are not considered in this paper.

Given the problem under study, there exist several mechanisms for computing the MLE; however, but we restrict
ourselves to gradient-based algorithms, that is, iterative algorithms that compute estimates of 6 using the score
function. Then, the objective is to estimate the score function for any given . We remark, however, that to ensure
convergence of the gradient algorithm, it is often preferable to produce an unbiased stochastic estimate of the score.
It is well known that ensuring the convergence of stochastic gradient methods is simpler when the estimate of the
gradient is unbiased (see, e.g., [2]).

In the context of state-space models in discrete and continuous time, there already exists substantial literature
on score estimation (see, e.g., [3, [7, 8, 21]). Most of these techniques are based on sequential Monte Carlo (SMC)
algorithms (see [11] for an introduction), which are simulation-based methods that use a collection of N > 1 samples
generated in parallel and sequentially in time. For the problem of interest, when these algorithms can be applied,
they produce consistent estimates of the score function (in terms of the number of samples N), but they will
typically introduce a bias with respect to the time discretization. The aim of this paper is to address this problem.

Intrinsically, the problem of unbiased estimation of the score function can be placed within the context of exact
estimation of the (ratios of) expectations with respect to diffusion processes. The topic of unbiased estimation
of the expectation associated with diffusion processes has received considerable attention in recent years. The
approaches can be roughly divided into two distinct categories: one that focuses on exact simulation of the diffusion
of interest [4 [5] (see also [6]), and another that is based on randomization schemes [20, 22]. The first class of
methodologies is based on an elegant paradigm constructing unbiased estimators using the underlying properties of
the diffusion process. Due to its nature, however, this class of methodologies cannot be applied for every diffusion

process. The second method is arguably more universally applicable and is the focus in this paper. The approach
of [20, 22] places a probability distribution over the level of time discretization and is sufficient (but not necessary)
to unbiasedly estimate differences of expectations with respect to laws of the time-discretized diffusion process to
obtain an unbiased and finite-variance estimator of the expectation with respect to the law of the original diffusion
process.

As mentioned above, in the case of score estimation, there is no expectation, but rather a ratio of expectations
which takes us out of the original context in [20} 22]. The approach that we use in this paper is to follow [I3} [14] to
consider a so-called doubly randomized scheme. The first level of discretization is as in [20, 22]: however, the second
level of randomization is derived using a new type of coupled conditional particle filter (CCPF) [I5] that provides
an unbiased estimation of (differences of) ratios of expectations of the diffusion processes as required. This principle
was developed in [I4]: however, it was applied for discrete-time observations, not continuous-time observations. The
main contribution of this paper is to extend the methodology of [14] to a new class of models and to implement it
in several challenging examples.

The remainder of this paper is structured as follows. In Section [2, we formalize the problem of interest while
in Section [3] we describe our proposed approach. In Section [4] we present numerical results, which illustrate the
utility of our methodology.

2 Problem

2.1 Notations

Let (X, X) be a measurable space. For ¢ : X — R, we write B,(X) to denote the collection of bounded measurable
functions. Let ¢ : R — R, Lipy., (R?) denote the collection of real-valued functions that are Lipschitz with respect

to ||]l2 (|| - |, denotes the L,-norm of a vector = € R?). That is, ¢ € Lipy.j, (R%) if there exists C' < +oo such that
for any (z,y) € R%
o(2) = p(y)] < Cllz = ylla-

For ¢ € By(X), we write the supremum norm ||| = sup,cx |¢(z)]. P(X) denotes the collection of probability
measures on (X, X). For measure p on (X, X) and ¢ € By(X), the notation pu(¢) = [y ¢(x)u(dz) is used. B(R)
denotes the Borel sets on R%. Let K : X x X — [0,1] be a Markov kernel and g be a measure: then, we use the
notation uK(dy) = [y p(dz)K(x,dy) and for ¢ € By(X), K(¢)(z) = [y o(y)K(x,dy). For A € X, the indicator
is written as T4(z). Ua denotes the uniform distribution on set A. N;(u,X) (resp. vs(z;pu, X)) denotes an s-
dimensional Gaussian distribution (density evaluated at z € R®) of mean p and covariance ¥. If s = 1, we omit
subscript s. For a vector/matrix X, X* is used to denote the transpose of X. For A € X, §4(du) denotes the Dirac
measure of A, and if A = {z} with = € X, we write d,(du). For a vector-valued function in d dimensions (resp. d-
dimensional vector), such as ¢(x) (resp. x), we write the i-th component (i € {1,...,d}) as ¢ (x) (resp. z*). For
a d x ¢ matrix x, we write the (i, j)-th entry as z(#).

2.2 Model

Let (0, F,{F:}+>0,Pg) be a filtered probability space. Let § € © C R% with © compact, dy € N and dp < +o0
such that {Py : 8§ € ©} defines a collection of probability spaces. We consider a pair of stochastic processes {Y; };>0,
{Xi}i>0, with YV, € R¥, X, € R% (d,,d,) € N2, d,,d, < +00, with Xg = x. € R% given:

dYy
dX;

he(X¢)dt + dB (1)
b@(Xt)dt+U<Xt)th (2)

where for each 6 € ©, hg : R% — R%, by : R% — R% o :R% — R%*d with o of full rank, Xy = z, is given,
and {Bi}i>0, {W:}t>0 are independent standard Brownian motions of dimension d, and d,, respectively. Note
that, we can place a probability on X, and if we do, we denote it p (independent of 6) - for now we simply take

p(dxo) = 04,y (do).
To minimize any technical difficulties, the following assumption is made throughout this paper:

(D1) We have the following:

1. o is continuous and bounded, and a(z) := o(x)o(z)* is uniformly elliptic.

2. For each 0 € ©, (hg, bg) are bounded, measurable, and héi) € Lip“_‘h(Rdw), te{l,...,dy}.

3. hg,be are continuously differentiable with respect to 6, and for each 6 € ©, Vghy : R — Rdvxdo,
Vabg : R — Ré=xde with (Vphg, Vgbg) bounded and measurable, and V@hé”) € LipH.HQ(Rdi), (i,5) €
{1,...,dy} x{1,...,ds}.

4. ¢y(x) == [Voby]*(x)a(z)'o(z). For each 6 € O, ¢y7) € Lip.|,(R™), (i,) € {L,...,do} x {1,...,d,}.

Now, we introduce the probability measure Py, which is equivalent to Py defined by the Radon-Nikodym deriva-
tive
dP
Zt79 = Tg
dP@ Ft
with {X;},>0 following the dynamics and {Y;};>0 solving the dynamics dY; = dB, under Py. The Girsanov
theorem states that for any ¢ € By(R%) that satisfies (, it holds that

- exp{/ot ho(X,) Y, — ;/0 ho(X.)*ho(X.)ds }

Eq [@(Xt”yt} = E) {‘P(Xt)zt,ﬂyt} s (3)

where) is the filtration generated by the process {Y;}o<s<:. We define the solution of the Zakai equation for
o € By(R%¥*) as

Ye,0(p) :=Eq [@(Xt)Zt,GWt] .

Our objective is to, almost surely, unbiasedly estimate the gradient of the log-likelihood Vg log(yr,e(1)). Adding
minor regularity conditions on coefficients (see, e.g., [9]),

_ Eo[Ar.0Z1,0| V7]

Volog(hro(L) = =57 =5

(4)

where . . "
Am:/o [Vebe(Xs)]*a(Xs>‘1a(Xs)dWs+/0 [Vehg(Xs)]*dYs—/O [Vohe(X)] ho(Xs)ds.

We assume throughout this paper that T' € N. Note that [3] derives an alternative expression to that does not
require o to be independent of §; however, its approximation is significantly more complex than we consider.

2.3 Discretized Model

In practice, we must work with a discretization of the model in — since an analytic solution of is typically
unavailable. This is because we do not observe data in continuous time and often the exact methods in [4, [5], for
example, cannot be applied. We assume access to the path of data {Y; }o<;<7 up to an (almost) arbitrary level of
time discretization. In practice, this would be a very finely observed path, as the former assumption is not possible.

The exposition below closely follows the presentation in [I7]. Let I > 0 be given, and consider an Euler
discretization of step-size A; = 27!, k € {1,2,...,2!'T}, Xo = 2,

Xiar = Xogena +00(X-1a) A+ o(Xge1ya) [Wia, — Wi—1)a,)- (5)
It should be noted that the Brownian motion in is the same as in under both Py and Py. Set

271
MNro(@o, 20, ar) == Y {[Vebe(ﬂfkm)]*a(xml)*la(ﬁfmz)[W(k+1)Az*WkALH
k=0

Voho(xka)" [Yiksr1)a, — Yea,] — [Vehe(fﬂml)]*he(fﬂml)Al}-

We remark that when considering , /\lTﬂ is a function of (yo,ya,,.-.,yr) (the dependence on the data is omitted
from the notation throughout this paper) and ()?0,)?Al, ... ,)?T), as it holds that
Wia, = We-val = U(X(k—l)A,)_l()N(kAz — [Xr-na, + be(;((kq)a.z)ﬁz])-

Then, for k € {0,1,...,2!'T — 1}, we define

A :
Glo(@ra,) = exp {ho(@ra,) Woerns, = vear) = 5 ho(ea) hol@ra,) } (6)

and note that
2lT—1
ZZT,0(9507 TAps - xT*Az) = H Gécﬂ(xkAz)

2lT—1

T
= eXP{ Z {he Tea) (Y1), — Yra,) — éhe(ﬂfml) he(l‘ml)”
k=

[}

is simply a discretization of Zp 9. We have the discretized approximation of Vg log(yre(1)) as follows:

Eo[Nyg(Xo, Xa,,- -, X1) 25 (X0, X, -, X1)| V1]
E@[TQ(XOaXAla s aXT)‘yT]

Veolog(vr (1)) :=

The following result, which establishes the convergence of our Euler approximation, is proved in [3]. Note that the
rate should be O(4;), however, this is not important in the subsequent development of this paper.

Proposition 2.1. Assume (D1-3) in [3]. Then, for any (T,0) € [0,00) x ©, there exists C < +oo such that for
any | > 0, we have

<on?.

Eo[\r0Zr6|Vr] E@[)\gp’g()?m)?Alw~-»)~(T)Zé~’g()?0:)?Ap~--7)?T)|yT}
Eg[Zr,0|Y7] Eg[ZL o(Xo, Xay, -, X7)| V1]

Remark 2.1. We note that for any real-valued, bounded, and continuous function on the trajectory {Y;}o<i<r, @,
one can establish, using the proof of Proposition[2.1}, that

) Eo[Ar.0Z7 0|V Eo[\y o (X0, XAy - - XT) 28 o(X0, XAy, - X7) | V7]
tim |E l:‘P({Yt}O<t<T){ oA1,0Z71,0|Y7] T,0 . T,0 ! _o

Eo[Zr,0|Y7] Ee[ZlTﬂ()?oJ?A”---,XT)D/T]

2.4 Smoothing Identity

For notational convenience, we drop the ~ notation from the Euler discretization, when referring to the subsequent
smoothing construction. Vg log('le’e(l)) can be rewritten as the expectation of)\lTﬂ (Xo0,XA,,...,X7) with respect
to the smoothing distribution of a discrete-time state-space model.

Define the probability measure on (R%2'7 B(R%2'T)) recalling that zo =

l —
(iTo e o(Tra,)) Hk 1@9((k=1)A;»> ATEA,)
Jrarotr (T2 " Gl p@ra) Ty @b(@(em1yar dara,)

mh(d(zay,- .. o)) = ; (7)

where Qfg is the transition kernel induced from (5|), and the dependence on the data is suppressed in the notation.
Now writing the expectations with respect to wé as Eﬂé , we have

Vo log(1h (1) = By [Nr (@, Xy .., X1)]

It is this latter expectation that we use throughout this paper.

3 Approach

3.1 Debiasing Schemes

Our objective is to compute an almost surely unbiased estimate of Vg log(yr,¢(1)) by only considering Vg log('ylﬂ o(1)).
Our construction considers an enlarged probability space (2*, F*,Pj) associated with (2, F,Py) such that the fol-
lowing holds:

1. E3[Vglog(vyr,e(1))] = Eg[Vglog(yr,e(1))], almost surely and E5[Vy log(vép,@(l))] =Ey[Vy log('yépﬁ(l))].

2. One can compute independent random variables \Il%e, \IllTﬁ7 ... such that, almost surely
Eg[\IIIT,G] :Ewé[)‘lT,G(x*aXAla'“vXT)] _Eﬂ—éfl[)‘ljiel(x*aXAlflv'HvXT” >0 (8)

with E 71[)\T9(x*7XAZ 1)"'7XT)} =0.

3. Let | € Z* be a random variable on (2*, F*) with probability mass function p*, where it is assumed that
p*(1) > 0 for each I > 0. Then, we have

= 1
> el o lB) < +oo.
=0 p

By Proposition we know that
Jim E5[Vg log(v7.6(1))] = Eg[Vg log(vr,6(1))]-
Then, one has the following result (see [22, Theorem 1]; see also |23, Theorem 3]):

*
0

Tro | _ gy, 1
p*(l) - 9[0 og(fYT,a())]

More generally, using this approach, one can deduce that for any real-valued, bounded and continuous function on
the trajectory {Y;}o<i<r, ¢ one has

\I’L
i |y (dosesr)| = B3 [VologGrra()p((¥idosier)|
That is,
Ui
Ej ’ ’yT
’ lp*(L)
is a version of Ej}[Vglog(yr,e(1))|Vr], i.e. it is an almost surely unbiased estimator of Eg[Vglog(yr,e(1))|Vr]. As a
result, our objective is to obtain the random variables \Il(%,g7 \Il%w, ... so that one can calculate \IIIL«,Q/p*(L). This is

the topic of the remainder of the section. In this article, we stress that we have not proved the properties 1.-3. above,
but, it is possible using the analysis in [14]; we leave the rather substantial proof to future work, but some further
discussion is given in Section Note also that we consider the so-called single term estimator here, but that can
be generalized to the independent term estimator also.

Remark 3.1. To actually compute Wk, ,/p*(l), one expects to have access to a data trajectory that is arbitrarily
finely observed (in time), as must be satisfied. Typically, this is not possible in practice; however, we remark
that (as we will see) computing \IllTﬂ/p*(l) is often only possible for | < 50 due to the computational cost. This
drawback is common to all debiasing schemes (as described in [22,[23]) and thus, we only require very high frequency
observations, not an entire trajectory.

3.2 Conditional Particle Filter

The conditional particle filter is a particle filter that runs conditional on a trajectory x(a,.7) € XT with XI' = R2'
and g = 4.

Setting ul[}j:kﬂ] e X forie{l1,...,N},

A1
l . LN L m=0
Fieo (1 Ujyn) = N A1 Ls
Zs:l Hm:() GkJrﬂ’LAz,(’(ukJ,-mAl)
and uﬁc’i e Xyt uiﬂ’i = (uﬁg’io,...,ugfk), ie{l,...,N}, ke{0,1,...,T—1}, uﬁc’fj € X, 7€{0,1,...,k}. We define
the CPF kernel FIT,G : XTI —= P(XT) as

L
Gr+ma, 0 (ukimAl)

Koo (wiacmdiian) = [Fro(waem df™ . uil))
1
Yo Froaels, ulillijlv,Tfl)(s{u;:il} (dfa 1) (9)
se{1,...,N}

with

—1) .
Kz, (x[AHT]’ d(ug"™, .. ,ulT’lflv)) =
N-—-1
LN
Qe x d“o)5{wA 1) (duo)
=1
T—1 N-1 .)
{ H { H Z Fé—1,9(5au§$£{\,fk—1) X Qk,e(uigipduﬁg’z)}fs{wml:k]}}(duff’Nﬂ
k=1 i=1 se{l1,..,N}
probability kernel Qg : XF — P(XEH!), wia 4 € XE
Qk 9(UIA:K] duj (A k+1]) = 5{u[A,:k]}(dqul:k]) X 69 (“?cvdufk+A,:k+1])
where
—1 A
Q@(u;e?du,[k+AL:k+1]> H (k+(m DA] 1’duk+mA) (10)

The simulation of CPF kernel KIT’(, : XTI — P(XF) is described in Algorithm

Algorithm 1 Simulating the CPF kernel.

. =
1. Initialize: For ¢ € {1,..., N — 1} sample uf)’z independently using Q, (sc,) Set ué’N =za,1] k=0.

2. Coupled Resampling: For i € {1,..., N — 1} sample 7} accordingly to F,iﬂ(z uﬁﬁlkN).

3. Coupled Sampling: Set k = k+1. Fori € {1,..., N —1} sample u |u X ’“ ' conditionally independently using

lrk7

6279 (u,C T) Set uéc’N = T[a;:k41)- H k=T —1 go to 4., otherwise go to 2..

. 1
4. Select Trajectories: Sample ! according to F,iﬂ(i, uljllfl\iTil) (as described, for one i in 2.). Return ué’«il.

3.3 Coupled Conditional Particle Filter

We consider the CCPF in [I5] (see also [I9] for extensions) that allows one to compute unbiased estimates of

expectations with respect to the probability . That is, letting [> 0, § € O fixed, and <pl0 RE2'T R, golg being

ﬂé—integrable and measurable, the CCPF produces an estimate of ﬂ'é ((plg) that is equal to ﬂé(gplg) in expectation.
Throughout this review of the CCPF, [> 0 is fixed but finite and 6 € © is also fixed. Given x; € Ré=, i)+AL €

Rdx,xfz € R¥% p<gq p/A €ZF, and q/A; € ZF, we use the notation a:lp:q] = (xi,7mé+m,...7xf]). The time

increment 4; in the subscript is derived from the superscript ! of the vector; when there is no possible confusion,
this superscript is omitted from the notation.

3.3.1 Probability Kernel Coupling

To describe the CCPF, we introduce the following coupling of QL. Suppose that we are given (z,#) € R% x Ré;
then, @ : R% x R4 — P(R% x R?) is a Markov kernel that is simulated as follows:

e Generate W ~ Ny, (0,A;14,).

e Then
X' = z+by(x)A;+o(x)W
X' = d+be()A + o (B)W

Qé((x), (x’,é’c’)) is such that for any (z,%) € R% x R% A € B(R%)

QYA x RE)(z,8) = [Qy.da’) Qh(RY x A)(x, &) = / QY (i, i),
A A

We remark that, clearly, if x = &, then 2’ = '.

3.3.2 CCPF Kernel

We now introduce the CCPF. Although the CCPF is a particular case of the approach in [I5], the coupled resampling
method (also used in [I]) can perform very well in theory [16]. The basic principle is to generate a coupled particle

filter (see, e.g., [16, [I8]) that runs conditionally on a pair of trajectories (z(a,.7], T[a,:1]) € X x XTI X, = RdeZ,
since (zo, Z0) = (2., 2,). We first introduce an underlying probability kernel K/, , : X[x X[" — P(XFNT), which is
critical in defining the CCPF kernel. Let (uji), 50y y) € XPY, k € {0,1,...,T—1}, and for (i, 5) € {1,...,N}?,

I (i LN eLLN)=
W, (4 4, u [kk+1]’ Ulk:k41]

N Fl (i,u YAFL G ablN
. NRT k,0 Ic k k.0 k:k .
(Dot o) A Fra(s it)Y) ([;”N e) @)
s=1 Zs 1{ ()}

llN
kk+1)/\ (S [k k+1]
N FL (i ub?t) — (5, ub! YA F, (iu“N)
k,0\ U, k+1] Fy [k: k+1 [k:k+1]
1_Z{Fk9sukk)/\er(sulkaN)} (>><
(ot [k:k+1] +1]) Zs AF! (s, Lklklil])/\er(s ulklk]il])}

. ol 1:N 1,1:N
<F;i,9(]7u[k:k+1]) kg(]v kk+1])/\Fk,9(J’u[k:k+1])>
N ol,1:N :

1- Zs:l{ k,g() [k k+1]) AF (S,U[k:k+l])}

The probability w! k.0 (i,4,u (k- :klil] 7 fklkjil]) is simply a maximal coupling of the resampling probabilities for particular

particle filters (see, e.g., [18]), which can be performed at O(N) cost.

Now define the probability kernel, for k € {1,.. -1}, Qk gt X — P(X kﬂ)), (

Ua,k) Uagk)) € XPF

Q%c,@((U[Az:k]7ﬁ[Alik]>7d(uEAl:k+1]7’&EAl:k+1])) = 6{U[Al:k]1'&[Al:k]}(d<u{AL:k]’&/[Altk]))X

Qé ((uz,), d(u/[kJrAL:kJrl]v ﬁ/[kJrAL:kH]))

where

QIG ((u?ca a;c)a d(ufk+Al:k+1]v '&Ek-s-Al:k—i-l])) =

1
Al

! / o/
(k+(m nAS LU k+(m—1)A;1)’d(uk+mA;17uk+7nA;1)).

m=1

Then we set, with (l'[Al:T]7303[Al:T]) € XlT X XlT,

o ,1:N ol,1:N ,1:N ol,1:N
Kéf,@ ((-r[AL:T]vx[AL:T])7d((u0 , Ug)7"'?(uT_1 yUp_q))) =
N-1
Li ol LN oI,N
(uOZa u()l))(s{wm,;l],iﬁml:l]} (d(u() » Ug))
=1
T—1 N-1

1 I,1:N Gy
wk—l,&(r’sauk—l,k—lv 1 k— 1)

Qk 0 ((uk 15 ﬁis 1) d(ué’, it z)) }5{06 INHSEEAPNTS); (d(ukN» ﬁﬁfN))} .
Now the CCPF kernel K}, : X?7' — P(X?T) is defined as

KIT,e((x[Az:T]af[Az:T]),d(JJEA,;T]ﬁA,T})) =

. LI:N ol,1:N LI:N ol,1:N
/me Kéf,é((Jf[Al:T]ax[AL:T]),d((uo gt (Y agt 1)))
I L,1:N o1,1:N .
Z wp_1,9(rs S0P oy, Wy 1)5{u;11,ﬁ;i1}(d($fAl:T],ffAl;T}))

(r,s)e{1,...,N}?
The simulation of the CCPF kernel is described in detail in Algorithm

Algorithm 2 Simulating the CCPF kernel.

1. Initialize: For ¢ € {1,...,N — 1} sample uO 7u0 independently using QH((x),) Set (uf)’ ﬁéN)

(T[a,1], Za,))s k= 0.
2. Coupled Resampling: For i € {1,.. — 1} sample k' ~ Upg q7. If

kY < <Z§:1{Flé,0(5 ui@lkN) A F,iﬂ(s ugclkN)}), then sample j* from

G LN L1:N
Flo(Gha) NF (5% 0 5)

kK
1N SN
Y EFL o(s,ug 5 7) A FY p(s, 0357}
and set ri = si = j’. Otherwise, sample ji and j§ from
4 LN G LLN G o LLN
(er(ﬁyukk) — F,ie(]{,ukk)/\F,ie(ﬁ,ukk))
1N CILIIN
1_25:1{Fli,9(5 uyy)/\Fii,e(s)}
i o LN G LLN i oL 1IN
(Fli,G(J%ukk) = Fi (g5, uyy)/\FIiG(qukk))
1N CT1N
1_25:1{Fé,9(5 uy)/\Fii,o(s ukk)}

and set ri = ji and s, = ji.

l,i ol lrkl nl7sk1

3. Coupled Sampling: Set k¥ = k+ 1. For i € {1,...,N — 1} sample u;’, @, |u, "', 4, """ conditionally
independently using Q%,e((uifﬁ ' °ZS’“1 Y,) Set (uiﬁN,ﬁijN) = (x[AL:kH],x[A“kH]). Ifk=T-1go to 4.,
otherwise go to 2..

4. Select Trajectories Sample (1!, s!) according to wh_, 9(7“1 st ulT1 leT 1 ﬁlTl 1.7—1) (as described, for one 7 in

2.). Return (uff 1,1"1@5S 1)-

3.3.3 Initial distribution

In this subsection, we define an initial distribution ulT’e € P(X?T) that we use to initialize the CCPF (X[(ZAO)T], X[(ZA?)T]), .

(X[(l) L X[(i\k)T]) € XlQT, k € Z*. The initialization of the CCPF consists of generating trajectories X[(A’L:)T] and
X EA(;:)T independently using transition kernel Q4. Then, we apply the CPF kernel FZT’O : XTI — P(XT), as in Sec-

tion conditional on trajectory X EA??T]' Thus, from the above discussion, it follows that the initial distribution
ph g € P(OX2T) is formalized as

1 o(d(@a 1) E(aT))) =

(b1y, di)) (ﬁ T(k—1), dwk)) (?lcr,e (Z(a,17» di"[Al:T])-

k=1
3.3.4 Rhee-Glynn estimator

T~
Q

The principle of the CCPF is to use a randomization technique as in [12] (see also [22, [23]) to obtain an unbiased

estimate of 74(¢}) by simulating a Markov chain (X[(LO)T],X[(ZAO)T]) .. of initial distribution ung € P(X?T) and
(Lk) 5 (Lk)

transition kernel K). Defining the meeting time as 7! = inf{k > 1: Xnvr = Ko, 1) } and setting a k* € {2,3,...}

(the choice of this parameter is discussed in [I5]), one generates the Markov Chaln as described up to time M =
max(7!, k*), and considers the estimator

o1

#h(eh) = eh(Xilim) + 2 {eh(Xld) — b (X)) | 13)

k=k*+1

with the second term equal to zero if 7/ — 1 < k* + 1. In [I5], it is demonstrated that under some assumptions,
7 (¢}) is an unbiased estimator) ().
To improve the variance of (13), as described in [I5], we consider the estimator

1 &
o) = Z b(Xid)+
= (14)

1

=1 . * 1 o
L R)]

where k* < m*. The first term on the left-hand side consists of an average between k* and m* of the Markov chain.
To further reduce the variance of the proposed estimators, we evaluate <pl9 (X [lAl:T]) over N trajectories ul[Al [}l]
simulating the CCPF kernel, such that it becomes

1 L1I:N Lol
809(AlT) ZFT 19 Sy Up_y Dep(uz’).
This estimator has the same expectation as (X [Z’A’C;T]). The same procedure can be applied to compute ¢}, (X [l A :T]> .

3.4 Coupling of CCPF (C-CCPF)
Throughout this section [> 1 and 6 € © are both fixed.

3.4.1 Probability Kernel Coupling

1,i—-1

We now introduce a Markov kernel Q;'~' : R1%= — P(X? x X? ;) whose simulation is described in Algorithm

Given the description, it can be easily verified that for any ((ué,ﬁlo) (ub ™tk 1)) € R24 x R2d and any
(A, A) € B(X)) V B(X1-1),

Q7 (X (o), (7)) = Qi) (i)
Q5" 0 A) (i), () = QA ().

where Qle and Qf;l are as detailed .

Algorithm 3 Simulating Q” L

1. Input ((ué,&lo),(uf)_l,ﬁé_l)) € R%d=x x R%d=,

2. Generate W, “&" Na, (0,01g,), ke {1,2...,A7'}
3. For ke {1,2...,A7 '}

Uin, = U(lk—l)Al + ba(U(lk—l)Al)Al + U(U(lk-—l)Al)Wk
Upa, = U(lkq)A, + bG(U(lkq)A,)Al + U(U(lkq)A,)Wk
4. For ke {1,2..., A7 }:
-1 -1 -1 -1
Uin,, = U(k 1A +b9(U(k 1A, _ 1)Alfl +0<U(k DA 1)[W2k71 + Wai]
°rl—1 -1 -1 -1
UkAz_l = U(k 1A, + bO(U(k 1)A;_ 1)Al—l + U(U(k 1A, 1)[W2k—1 + WQk]

5. Output ((uA, il,), - (ull,ul)) € X? and ((WAt), ..,(ulfl,ﬁlfl)> eX? |

3.4.2 C-CCPF Kernel
Now define the probability kernel, for k € {1,...,T—1}, Q” Lo X2hX2k PR 2y (N fA,l) =

o -1 -1 :
((“fm:k]’“l[m:k])’ (“[Al,l:kp (A, 1:k])> e X* x X%fl

~1,0—1 l -1 1/ l 1,/
k,0 ((v[Al:k]7U[Al,l:k])’d(v[A k411 YAy k+1])>
1 -1, =11 1-1/ X -1,
5{1;{&[;,“.],1;{;[171%]}(d(v[m:k]v [Ar_1: k])) x Qg ((, U)’d(”[k+Az:k+1]’U[k+A,,_1:k+1]))'
We now introduce some additional conventions. Set vY7Y = (u" N ITHN) EXN s e {I-1,1}
: (A k4] = [k+A k1] Yt Akt 1] 5 g
ke{0,1...,T—1}. Letforse {{—1,i},ie{1,....,N}, ke {0,1,....,T — 1}
sz _ (uz,i’ oS, 1) c X2(k+1)
wil o= (u, e up)
= (i, 0)

where (ukJ,ﬁZ‘J) € X2 j e {0,1,...,k}. Fori € {1,...,N}, k € {0,.. — 1}, we compute quantities
L,1:N . o L1:N I-1,1:N 1/ ol-1,1:N S1l-1 . LI:N _I—1,1:N
F,iﬂ(z u,), F,iﬂ(z u), Fé 01(2 u,) and Féyol(z,uk’k). Quantltyw ((zl i1 gt 5, Vik Vi)

is associated with the Maximal Coupling of Maximal Couplings as described in Algorlthm M

Algorithm 4 Simulating a Maximal Coupling of Maximal Couplings wl -t ((zl, ittt g, vk}k: s Vik

1. Input: Four Probability Functions F,iﬁ(z uﬁﬁlkN) F,i,e(i, 2 Ny, F,ﬁ 2, u; kl LN, F,éfel(ﬁﬁigkl’lw)
2. Sample two indices from maximal coupling probability wéyg(rﬂsl,ul[};}ﬁl],ilf}i}ﬁl]) and evaluate

- 1(! 1-1,1:N 01—1,1:N)
Wie,o \T5 5 Uit 1) > Wkeikt1]

. I=1¢0 o ,l=1,1:N ol— ol =1
3. Sample U ~ Z/I[O Wk (sl N L) and if U < wj 4 (r',s S Uk > Wk +1]) then return ¢* = r*, =1 = rf,
jt = st j'71 = s, Otherwise move step 4.

. . . . 1e —1/.1-1 1—1 I—1,1:N ol—1,1:N

4. Sample two indices from maximal coupling probability Wy g (r'=ts Uk 1] ’u[k:k+1]) and evaluate
1 -1 1—1 . L1:N ol,1: N
wye(r' ™, s ’u[k:k+1]7u[k:k+1])

. 1 -1 .1—-1 , LN ol,1:N o
5. Sample U ~ Z/I[Ow A l[k iif]v“fk LLN)) and if U > wkﬂ(r)8 ,u[k:kﬂ],u[k:kﬂ]) then return ¢* =
gl — gl =1 _ - 1 -1

rtgt=s"41 , j171 = s!=1. Otherwise return Step 4.

As for the CCPF, we introduce an underlying kernel Ki/; " X27 x X?T, — P(X?” x X?7,) which is critical in
defining a C-CCPF Markov kernel. Set for U[AS:T] = (3 Tia,) & T) EXT s {l— 1,1}, v= (74, 24)

[Ag:T]
S1,1—1 0! LI:N _1—1,1:N LN - 11N _
K7 ((Ufm T)> [A,l 1T]) d((vg™™, vo)y (Vply vy))) =
N-1

IT Q6 (6ot) Yo, (4065747)

SUl=1 (0 1 0-1 -1y JLLN 1-1,1:N
{ { E: Wi 19((7”75,7’ S) Vi 1,k—1 Vi— 1,k—1)><

k=1 =1 (rlstri=1s-1)e{1,... ,N}4

~11—1 Irt olst -1 o1—1,st1 Li _ 1 ILN _I-1,N
L (I), LA) b (R)]
Now the C-CCPF kernel Kj'™" : X2T x X327, — P(X?T x X?T)) is defined as
1,0—1 l -1)/ l 1, L
Ky <(”[A1,:T]7”[Al_lzT])vd(”[A) VA T])) =

10

“1i—1(, 1 -1 LN _I—1,1:N LI:N _I—1,1:N
/xQNT X2NT KT’G ((U[Al:T]’v[Al—liT])’ d((VO Vo)’ (VT 1>Vr—1)))
XA

-1 P 0—-1 -1 L,L1:N _I-1,1:N
§ wn,e ((’I",S,’I") S)7vn,n 7vn,n)

(rt,sl =1 st 1) e{l,..., N}

1/ l 1,/
6{(uiﬂl,aiﬁ’y(utlv”’l,ﬁ’;““)}<d(U[Az:T] A1)

The simulation of the C-CCPF kernel is described in Algorithm [5

Algorithm 5 Simulating the C-CCPF kernel.

1. Initialize: For i € {1,..., N —1} sample v0 7v0 L% independently using QQ ((U, v),) Set (véN,véfl’N) =
! oi=1 _
(V- Mmﬂ)k_u

2. Coupled Resampling rk 7521, ch 1 L L applying Maximal Coupling of Maximal Couplings as Algorithm

3. Coupled Sampling: Set k = kE + 1 For i € {1,...,N — 1} sample
l7 l‘,i 017 l‘,i 1— 1 1—1,1 ol—l, l—1,1 . . .
vfcl,vﬁC L l|(uki"1’1,uki"1’l),(u, 1T’“ ! ,u,€718'°’1) conditionally independently using

=1,1—1 Il Jlsb? -1, 1,8t Tt
k,0 ([(kkll kkll) (e "0l 1)],'>-

-1 ol—1

LN _I-1,N . .
Set (v, vy By = (o T{A k1] fAz:k-‘rl]) (x LA, k1) I[Al—lik+1])). If k=T —1 go to 4., otherwise go to 2..

. . 1o . Li—1 1o
4. Select Trajectories: Sample (r!,s',s'~1, 5!~ 1) according to @,y ((rl,sl,rl Lst=1), yLLN = MN) (as de-

n n nn

ibed. fi .. 2) Ret (Lt ol,st) (1—1,77Y o1—1,8'71
scribed, 1or one ¢ 1m Z.). heturn (Wp_q, Up_q), (Wp_4 ,Up_q

3.4.3 Initial Distribution

For any [> 1, we simulate a Markov chain (V[(AZ’O%,]7 V[Xl_ll’o%}) (V[(l k) Al V[(Al;llk%]) € X x X?T | k € Z7 of initial

distribution ulTlel € P(XIT x X?1)), with ((xo,xé) (xht, b 1))

(T4, T4), (x*,x*)) The initial distribution
consists of generating two pairs of coupled trajectories: (X [(Az)T], X [(élf 02,1]) and (X [(A)T], X [(élf ngl) We build the

first coupled trajectories (X[(l 0) > X[(lA 1L.0) 71) by the CCPF kernel Ky XTI x XE | — P(XF x XTI |), defined as

—l,1—1
Krg ((I[ALIT]7I[AzfliT]%d(‘TEAl:T]VI/[AL,l:T])) =

—l—1 I,I:N __1—-1,1:N I,I:N _I—-1,1:N
/ KTO ((m[Az:Thx[Az71tT])7d((u0 » Ug)7"'7(uT 1,Up)))
XNT 5 XNT

Li—1 I,1:N d-LUN s
W 19(7"311T 1,7—1> Y17 1)

(r,s)e{ 12 {u?r—l uLT 115}(d(mEAliT]’xiAl,yT]))
r,s)e{1,...,N

where, with (z(a,.7], T[a, ,.77) € X[% XL},

—l,l—1
Ko ((@laeroian) d(ag ™ ub), Y up 2))) =
N-—
H zz 1()d(ulz e 11) 5 d(ulN - 1N)
0 » 0 {JE[Al Tia_ 11]} 0 0
=1

T-1 N-—
Li-1 L1:N 1-1,1:N
Wy _ 19(T S U g 17uk—1,k_1)><
k=1 i=1 (r,s)e{l,...,N}2

=l,i-1 Ir 171,5 li _1—1, LN _I-1,N
Qpo ((uk Ly), d(ug’, uy))}5{90 [Ag:k)T(A_ lk]}(d(uk » U))}

11

Algorithm 6 Simulating Qél L

L. Input (ub,ul™t) € R% x R,

2. Generate Wy "% Ny (0,A11y,), k € {1,2.. SATT
3. For ke {1,2...,A; '}

Upa, = U(lk—l)Al + b@(U(lk—l)Al)Al + U(U(lk—l)Al)Wk
4. For k € {1,2...,A;11}:
vl o= Ukt +bo (U ya,)+ o (UG) [Wak—1 + Way]
kA1 (k—1)A_y 0\Y (k—1)A =1 T O WA, JIWV2k-1 2k
5. Output (ulAl, —o,ub) € X and (uAL ul1 HyeX .

—=1,l-1

with probability kernel, for & € {1,...,T—1}, Qg : XFxXE ;= PO xXETY), (uly o ufz)) € XExXE

abi=l(1 -1 1/ -1,
Qy.o ((U[Al:k]7U[Al_lzk])ﬂd(u[Al~k+1]’ Ura,_y: k+1])>
1,/ -1, 1,1—-1 , -1, 1/ l 1,
s (U g A,) X Qg <(wg sy) AUy A) YA, 1k+1]))

l
(TSI

with Markov kernel Qle’l*1 : R?% — P(X; x X;_1), whose simulation is described in Algorithm @ Finally,

Wi 5,1 [k+JXz 1] [I:—iAz,l:k-i-l]) corresponds exactly to the maximum coupling of the previously described re-

sampling probabilities. Kernel Fé’f;l is a CCPF kernel with coupled trajectories on level [and level [— 1. The
algorithm is described in Algorithm [7}

The second pair of trajectories (X &?:)T],X[(ij%ﬂ]) is simply coupled by probability kernel Qé,l L. R2e
P(Xl X Xl 1)

Thus, we define the initial distribution ul e PR x X21)) as

1Ll - - _
NT,e1(d(UfA,:T]anAll_1;T])) = {H Qy 1(Uk 1»“2 11) d(ugc1+Al:k’u§c—11+Al1:k))}

X

Li-1 -1 1 -1
{HQ (Uk 1 Ug—1) d(uk—l-i-Al:kvuk71+Al_1;k))

1,11 _ o o
x Kry (@ [A,:T],mm»d(m{A,:T],fo,_liTp)} (15)

3.5 Estimate

We now describe, on the basis of the approaches presented in Section [3-3}f3.4] how to construct the random variables
\IIOTﬂ, \I!%F)g, ... from Section to compute an almost-sure unbiased estimate of the gradient of the log-likelihood
(1)-

To construct ¥, 0 we simulate a Markov chain (X[(K’O)T])o([(g’OO)T]) (X[(gok)T], X[(g’kzﬂ) € X321 k € Z* of the
initial distribution p%, € P(X3") as in and transition kernel K%e as described in Algorlthm I up to time
M = max(ro, k*) (for k* €{2,3,...} and m* > k*). Then, we set

1 ‘k
0 . 0,k
Wr g = P Z Mo (@ XA)+
k=k*
L min(m* — k4 1,k — k%) 1o
min(m* — k*+ 1,k — k* &

> o N0 (@e, X[X) — /\%e(x*’X[OA)}
k=k*+1

12

Algorithm 7 Simulating the CCPF kernel at level .l — 1, € N.

1. Initialize: For ¢ € {1,..., N —1} sample uf)l, ﬁé L% independently using Ql -1 ((;mx),) Set (ug LN é_l’N) =
(x[Alzl];x[Al,lzl])v k=0.

2. Coupled Resampling: For i € {1,...,N — 1} sample x' ~ Upy. If k' < (Eivzl{in,e(Saugc’,lk:N) A
Fli,_Gl(S ﬁi;lkN)}>, then sample jZ from
LN 111N
Flo(tw i) AFG Gy,)
LN l z 1,1:N
ZS:l{F’iﬁ(s g) A Fk¢91(3 Uy &)}

and set ri = si = j. Otherwise, sample ji and j§ from

i 1N i LN I-1,1:N
<Fk0(]1aukk) F}i,e(h:ukk)/\F/iel(.ha Uy))
1N N
1_25:1{F1i,9(3 uy)/\Fli,el(s ukk)}

-1 l 11N LN -1 1-1,1
(er(h’) — F o5, gy)/\er(ﬁ u))
LN I —
1_25:1{}7}@79(5 u;) A erl(s ukk)}
and set ri = ji and s}, = ji.

3. Coupled Sampling: Set k =k + 1. For ¢ € {1,...,N — 1} sample u,~C ,uz 1

. . 11— I, -1, 1, 1—
independently using Q; 1((kr"l u, 18" Y,) Set (u N7uk l’N) = (T[a;k+1] T[a,_yikyr))- HE=T—1
go to 4., otherwise go to 2..

lﬂ“;i_l l lsk 1 L.
W p U, conditionally

. . _ . -1 LN 1,1:N .
4. Select Trajectories: Sample (r!, s'~1) according to wljlliw(rl =1 uﬁf LT—15 ép {7-1) (as described, for one

iin 2.). Return (ulTT Lub 1151 1)

13

The quantity \I/ 79 corresponds to the Rhee- Glynn estimator, as described in Section of the gradient of the

log-likelihood.
In contrast, W4, o, for [> 0, is based on a Markov chain (V[(Al O)T], V[(Allill’:o%]), o (V[(Al’llfgp], V[(Al;llk%]) € X x X?1

k € Z* of the initial distribution u” e PXET x X2T)) as in and transition kernel Kj'™' as described
in Algorithm |5} I up to time M = max(7*,k*) (for k* € {2,3,...} and m* > k*), given 7* = max(r!,771) and

l=inf{k > 1: X[(if:)T] = (l k) } Then, we set
1
l — Lk -1 -1,k
Vre = R Z)‘Te x*,X[AZ T])_AT,G(x*WX[Al 1T])
k=k*
T =1 .
min(m* —k*+ 1,k — k*) . Lk Lk
+ Z mr —k* + 1 {()‘T,O(x*vX[A T]) ATG(CU*»X[A, T]))
k=k*+1
-1,k I-1,k
(Vo e X[l) = N (e, X3 0)) - (17)

Thus, based on —, when L is sampled from p*, our estimator is as follows:

Ui
= (18)
p*(L)
The main task is now to verify that — have properties 2 and 3 listed in Section
Remark 3.2. In practice, one can use an average estimator. Let L'L™ be mdependent and identically

distributed (i.i.d.) samples from p*. Then, independently, for each L, i € {1 ., M}, obtain \IITQ,z One can then

use
M \I/ 1,1

(19)

to estimate (). Another alternative is the coupled sum estimator in [22]: set P*(l) = > a1 P (p) > 0; then, one
samples L from p* and constructs the estimator

L \I/l
B (20)

=0

3.6 Sketch of Proof of Unbiasedness

To verify that (16))-(L7) have properties 2 and 3 listed in Section one can follow the blueprints in [13} 14]. The
approach in this paper is simply a modification of the methodology in [14]: thus, although the strategy of the proof
may be the same, the process that is considered in this paper is more challenging, as it is necessary to average over
the uncertainty in the data. The stopping time was generally dealt with in [14]; therefore so the main task is to
demonstrate that the expectation of summands in the estimates - is as small as a function of [. The latter
task requires one to consider the intricate properties of the C-CCPF and CCPF on an iteration-by-iteration basis,
which in turn relies on the complex coupled particle filters that underly the iterations. Nonetheless, this has been
achieved for a simpler process in [I4], and we believe that a similar method can be used.

To select the distribution p*, we believe that one can use the recommendations in [22] under Euler discretization
when o is either constant or non-constant. In either case, as in [I4], this leads to an estimator that is unbiased with
finite variance but with infinite expected cost. Nonetheless, with high probability, the estimator has finite cost.

4 Simulations

We discuss two choices of underlying distribution p*(I) in the construction of unbiased estimator . We consider
geometric distribution G(p) with success rate p = 0.6 and p* (1) x All/2(l +1)(logy (2 +1))? as suggested in [14] 22].
Then we compare estimator built over these two underlying distributions with Rhee-Glynn estimator for
an increased number of particles N. We first compare the mean square error (MSE) satisfied by the estimators,
and then visualize how this analysis reflects in a stochastic gradient descent (SGD) procedure to recover unknown
parameters.

14

The workstation has 62.9 GiB of memory and Intel Xeon processor with forty CPUs ES-2680 with 2.80 GHz;
the operating system is Ubuntu 18.04.5 LTS. The numerical test are programmed in python 3.8.5 and the wall clock
times are measured using library timeit.

4.1 Model Settings

The diffusion process we consider is as follows

dY, = he(X,)dt + dB,,
dXt = bg(Xt)dt+U(Xt)th

with 0 < ¢ < T and starting points Xo = z, and Yy = y.. Here {Wi}cpo,r) and {B;}iepo,r) are independent
Brownian motions, and the final time is 7" = 50.

Ornstein-Uhlenbeck (OU)

dYy = 61(p1 — X¢)dt +dBy,
dXt = —92Xtdt + Uth,

with 0 < ¢ < T and parameters ¢; = 0.75, 05 = 0.75, u; = 1, and o = 0.5. The starting points Xy and Y| are
sampled independently from the normal distribution A(0,1.6 - 1073).

Geometric Brownian Motion (GBM)

dY;
ax,

01 (1 — log(Xy))dt + dBy,
92Xtdt + O'Xtth,

with 0 <t < T and parameters 6; = 0.75, 83 = 0.05, u; = 1, and o = 0.05. The starting point X is sampled from
the distribution A/(5,1.6 - 10~3) while Yj is sampled from N(0,1.6 - 1073).

Lorenz Model (LM)

dX1, = —S(Xp1,—1)dt+dWy,,
dXay = (X14— BXy)dt+dWay,
dYi, = kXp,dt+dWs,,
AV, = kXo,dt+dWyy,

with 0 < ¢ < T and parameters S = 10, B = 8/3, and k = 2. The starting points X1, X2,0 and Y7, Y2,
are sampled independently from the distribution N(0,1.6 - 1073). We define {W;+}}_; as an independent one-
dimensional Wiener process.

4.2 Algorithm Settings

Level [corrisponds to discretization A; = 2-(+3) In Algorithms [2f and |5, we perform the resampling step when
the effective sample size (ESS) is lower than N/4. Given iteration k and level [in Algorithm [2| the ESS is defined
as

N -1
ESS = (wa) (21)

with

- LN . o, 1:N
o Flé,@(]a Uy) A Flé,e(% Uy) (22)

wj N TN 1N
Zs:l{Fli,e(Sv) A Ff 4(s,)}

In Algorithm |5} the ESS is defined over weights F]ijgl(., uﬁjkl’l:N)7 FLM ﬁ@j’l:N).

s

15

We consider S = 5 i.i.d. time series Y,® discretized on level [* = 11. For each time series, we perform R = 100
i.i.d. evaluations of the estimators and . We consider £* = 2 and m* = 4, where the method of selecting
these parameters is based on the analysis of hitting times 7 as described in [22].

For OU and GBM, we consider N = {128, 256,512,1024}, while for the LM model, we consider N = {362,512, 724,1024}.
Thus, to compute the MSE given N, we must estimate the variance of both estimators and the bias of the Rhee-
Glynn estimator since estimator 1.) is unbiased.

To compute variance V; of terms ¥ T.0 for [> 0, for each time series, we estimate sample variance V; ; for
N = 1024 over 100 repeats for each time series. Then we average over S quantities to obtain V;. Similarly, to
assess the variance of estimator , for each time series, we compute the sample variance Vi s over 100 repeats
for each time series and we average over S quantities to obtain V. The bias of the Rhee-Glynn estimator is
computed by evaluating (for each time series) the 95% percentile of 100 realizations of \II%’G, and then averaging
over S quantities.

We wish to recover parameter #; in the OU and GBM cases, and parameter k in LM by SGD specified in
Algorithm [8| with N = 2'0. We present the hyper-parameters for each model in Table [l For each time series, we
perform SGD 10 times with different initializations. Coherently with observed data Y;® discretized on level I* =11,

the empirical distribution p*(l) o All/z(l +1)(logy(2 +1))? is normalized over levels [€ {0,...,8}.

Algorithm 8 Stochastic Gradient Descent (SGD)

1. Initialization # given distribution p(-), learning step o, i =0, k =0
2. Compute &, = log(6)
3. While £ <1000 and i < 10:
e Compute @y by or
Update §ky1 = &k + apr exp(&r)
If |exp(&k+1) — exp(&x)| < B, then ¢ =i+ 1, otherwise i =0

If (¢ mod 50) =0 then a = /2
Increase k =k +1

4. return 0 = exp(&)

4.3 Results

In Flgures I !Land E, we display the variance convergence of \Il 79 for I >0, V, respectively for the OU and
GBM cases and LM. The convergence rates are lower than the Euler-Maruyama numerical scheme alone. The
reason is the resampling procedure as described in Algorithm I implemented when ESS is lower than N/4, indeed,
resampling is applied to avoid ensemble collapse, but ruins the variance convergence rate (see e.g. [1§]).

Choosing distribution p*(I) over the level hierarchy is 1mportant to obtain a finite variance estimator .
In Figures . E and [3c| we compute the variance of terms W, 7.0/ P*(1), for two choices of distribution p*(l): a
geometric distribution with success rate p = 0.6 and p*(l) x A1/2(l + 1)(logs(2 + 1))2. For all numerical cases,
variances explode moving on finest levels with p*(I) distribution modeled as geometric distribution, while finite
variance is achieved with empirical distribution. Such a behavior can be explained observing the survival function
decay rate of the distributions in Figure |2l and compare these rates with variance V; convergence rates of \IJT g in
Figures [I] The survival function of the geometric distribution decreases with a rate of about 1.4, while the one of
the empirical distribution decays slower with a rate of about 0.64. While the geometric distribution rate is too high
with respect to V; variance rates, empirical distribution survival function decay rate is lower than OU and GBM
cases, and slighlty higher for the LM case, displaying an overall improvement of the variance of terms \IJZT’H /P*(1)
and estimator . The choice of the empirical distribution does not seem to be optimal for the LM case, but given
the truncation of the level hierarchy for computational feasibility, a finite variance unbiased estimator is achieved
anyways.

We display the MSE in Figures [a] D] and [d for a fixed number of particle ensemble N, respectively, for the
OU and GBM cases and LM for estimators and . We can observe that the MSE achievable by unbiased
estimator with empirical distribution is lower than MSE that unbiased estimator can reach with geometric

16

’ Model ‘ () a Ié] ‘

OU | Ujp.25,1.25] 5-1072 1073
GMB | Uo.25,1.25) 2.5-1072 1073
LM Z/{[O,573,5] 1.5625 - 1073 0.05

Table 1: Parameters used in Algorithm [8| for each model.

distribution, consistently with previous variance analysis. On the other side, we can observe as unbiased estimator
built over the empirical distribution is more computationally expensive than the one built over the geometric
distribution. The reason is that, as can be deduced by the survival function displayed in [2} geometric distribution
has most of the mass on coarser levels, while empirical distribution weights the mass more uniformly on the level
hierarchy. With the geometric distribution, mainly coarser and cheaper levels are sampled to build the unbiased
estimator. In comparison, deeper and more expensive levels occur with higher probability when the empirical
distribution is adopted.

Unbiased estimators are compared with biased Rhee-Glynn estimator built on level [= 0. We can observe
that Rhee-Glynn estimator, since evaluated on level [= 0, results cheaper than unbiased estimators, especially
with respect to the unbiased estimator built over the empirical distribution. The MSE solved by the Rhee-Glynn
estimator is slightly lower than the one solved by the unbiased estimator with empirical distribution for the
OU and LM case and higher for the GBM case. The unbiased estimator with respect to Rhee-Glynn estimator has
the advantage that bias is negligible since probability distributions have mass on levels up to frequency close to
observed data Y,°.

The unknown parameters estimated by SGD algorithm, ¢; for the OU and GBM cases and k for the LM, are in
Tables and The inferred parameters are consistent with the model values. The iterations before meeting
the stopping condition are higher for the unbiased estimator with geometric distribution with respect to the
other two estimators for its higher variance. Unbiased estimator (20)) with empirical distribution and Rhee-Glynn
estimator show a comparable number of iterations as displayed but unbiased estimator with empirical
distribution is more computationally expensive, coherently with previous analysis.

17

Y; 01 Iterations Time [s]
s | Gecom Emp RG | Geom Emp RG | Geom Emp RG
1 0.82 0.82 0.82 | 220.3 222.3 169.5 | 2921 24573 267
2 0.60 0.60 0.60 | 122.5 166.2 60.9 | 1300 17245 86
3] 056 056 056| 87.1 151.6 743 | 1962 16541 100
4 | 061 061 061 | 1409 167.5 879 | 2894 16752 120
5 0.80 0.80 0.80 | 196.1 240.2 185.2 | 495 27935 291
(a) Ornstein-Uhlenbeck (OU).
Y, 01 Iterations Time [s]
s | Gecom Emp RG | Geom Emp RG | Geom Emp RG
1 0.71 0.71 0.71 | 150.7 124.2 108.5 | 1974 16011 212
2 0.65 0.65 0.65 | 136.1 1154 105.4 | 2780 14794 206
31 070 070 0.70 | 164.6 1124 119.7 | 1755 13302 234
4 1 076 076 0.76 | 172. 149.9 143.9 | 2274 19358 281
5 0.70 0.70 0.70 | 172. 142.6 141.4 | 2082 16642 275
(b) Geometric Brownian motion (GBM).
Y; 04 Iterations Time [s]
s | Geom Emp RG | Geom Emp RG | Geom Emp RG
1 2.05 2.06 204 | 256 17.8 157 | 7983 52764 1191
2 205 2.08 204 | 278 193 16.1 | 3958 56554 640
3 195 196 193 | 223 185 14.2| 6933 58394 1070
4 206 2.07 205| 277 21.3 156 | 5859 66665 690
5 1.85 1.88 1.85| 18.7 16.1 15. | 4675 49177 1133

(c) Lorenz model (LM).

Table 2: Given time series Y;® with s = {1,...,5}, we average over 10 i.i.d. repeats of Algorithm [§| to estimate
unknown parameter (6; for Ornstein-Uhlenbeck and Geometric Brownian motion cases, k for Lorenz model), number
of iterations before meeting stop criteria, and computation time in seconds.

18

Level |
(a) Ornstein-Uhlenbeck (OU).

| == —0.69 x 1

'092V|

2t
3t
4t
5t

O P N W b~ O

01 2 3 4
Level |

0 1 2
Level |

(c) Lorenz model (LM).

3

Figure 1: Variance \IllTﬂ for 1 ={0,...,4}.

19

| [—0.87 x [

(b) Geometric Brownian motion (GBM).

mm —(0.62 X[

0.
—21
S -4
a
S -6
L

-8{ ~ -0.64 x |

-1.39 x|

empirical

geometric

1 2 3 4 5 6 71 8
Level |

O 1
1
1

Figure 2: Survival function P*(l) for geometric distribution with success rate p = 0.6 and empirical distribution

pr() oc AP (14 1) (logy (2 + 1))

20

-1 - -1.5
6 5
2 -2
1 4
4 2.5
3
2 , "3 -3
= - 3
& 0 v
& o =] -4
-2 1 -4.5
-4 -2 -6 — -5
-3 | -5.5
-6 -1 -7 - :
e T b
2 o 10 2149 10 9 8
Level 1 log2 Level 1 logs NV
(a) Ornstein-Uhlenbeck (OU)
0 °7 2
2 | -3
2 a 4
-3 7 -5
A -4 N -6 -6
o~ -5 bCB -7
& g 8-
—~ -6 6 -8
-10 - -9
-8 - -
. 12 10
-11
-0 ° -14 ' — 12
a A 'rfﬂﬁ W
3 5 3 2 9
o 10 1 o 10
Level 1 log2 Level 1 log,
(b) Geometric Brownian motion (GBM).
5 4
11 3.5
10 4
5 3
8
3 2.5
—~
6
ioo 5 =25
1.5
4
3 1+ 1
2
0.5
1 0
4 3
2 9 8.5
010 1 ¢ 10 9.5
Level 1 logs IV Level 1 log, N

(c) Lorenz model (LM).

Figure 3: Variance \IflT’g/P*(l) for I = {0,...,4} and N = {27,28,29 210} for OU and GBM cases and N =
{28529 295 2101 for LM case. Left figure: Geometric underlying distribution, success rate p = 0.6. Right figure:
Empirical underlying distribution p*(1) o All/ 2(1+1)(log, (2 + 1))2.

21

log 2(MSE)

log 2(MSE)

mg== Rhee Glynn

mg=m Unbias Est Geom
Unbias Est Emp

mtmm Var Rhee Glynn

log 2(Time[s])

mg== Rhee Glynn
m=p== Unbias Est Geom
Unbias Est Emp

7 8 9 10
log > N

(a) Ornstein-Uhlenbeck (OU).

mg== Rhee Glynn

=== Unbias Est Geom
Unbias Est Emp

=== Var Rhee Glynn

log 2(Time[s])

7 8 9 10
log) N

(b) Geometric Brownian motion (GBM).

P

log 2(MSE)
b

9

9.5
log 5 N

10

mg== Rhee Glynn

==g==Unbias Est Geom
Unbias Est Emp

mg=m Var Rhee Glynn

log 2(Time[s])

=== Rhee Glynn
=== Unbias Est Geom
Unbias Est Emp

14

12

10

0

8.5 9 9.5 10

Iog2 N

(c) Lorenz model (LM).

mg== Rhee Glynn
=== Unbias Est Geom
Unbias Est Emp

Figure 4: Left figure: mean square error (MSE) achieved for fixed N. Right figure: computation time in seconds

for fixed N.

22

1.4 1.4
1.2 1.2
1.0 1.0
&0.8 w 0.8
0.6 0.6
0.4 0.4
0.2 0 40 80 120 160 200 240 280 320 0.2 0 40 80 120 160 200 240 280 320
Iterations Iterations

(a) Ornstein-Uhlenbeck (OU).

1.4 1.4
1.2 1.2
1.0 1.0
0.8 0.8
< <
0.6 0.6
0.4 0.4
0.2 0.2
0 40 80 120 160 200 0 40 80 120 160 200
Iterations Iterations

(b) Geometric Brownian motion (GBM).

4.0 4.0
3.5 3.5
3.0 3.0
2.5 2.5
x 2.0 x 2.0
1.5 1.5
1.0 1.0
0.5 0.5
0.0 0 5 10 15 20 25 30 35 40 45 50 55 60 0.0 0 5 10 15 20 25 30 35 40 45 50 55 60
Iterations Iterations

(c) Lorenz model (LM).

Figure 5: Stochastic gradient descent. Given time series Y;* with s = {1,...,5}, we compute 10 repeats of Algorithm
Rlwith random initialization. Left figure: Algorithm[8]solved by Rhee-Glynn estimator (16]). Right figure: Algorithm
8| solved by unbiased estimator with underlying empirical distribution.

Acknowledgements

The authors were supported by KAUST baseline funding.

References

[1] BALLESIO, M., JASRA, A., VON SCHWERIN, E., & TEMPONE, R. (2020). A Wasserstein coupled particle filter
for multilevel estimation. arXiv preprint.

23

19]

[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

18]

([19]

20]

21]

22]

23]

BENVENISTE, A., METIVIER, M. & PRIOURET, P. (1990). Adaptive Algorithms and Stochastic Approximation.
New York: Springer-Verlag.

BESKOS, A., CRISAN, D., JASRA, A., KANTAS, N. & RuzAYQAT, H. (2021). Score-based parameter estimation
for a class of continuous-time state space models. STAM J. Sci. Comp. (to appear).

BESKOS, A., & ROBERTS, G. (2005). Exact simulation of diffusions. Ann. Appl. Probab., 15, 2422-2444.

BESKOS, A., PAPASPILIOPOULOS, O., ROBERTS, G., FEARNHEAD, P. (2006). Exact and computationally ef-

ficient likelihood-based estimation for discretely observed diffusion processes (with discussion). J. R. Statist.
Soc. Ser. B, 68, 333-382.

BLANCHET, J. & ZHANG, F. (2021). Exact Simulation for Multivariate Ito Diffusions. Adv. Appl. Probab. (to
appear).

DEL MORAL, P., DOUCET, A., & SINGH S. S. (2010). A backward particle interpretation of Feynman-Kac
formuale. M2AN, 44, 947-975.

DEL MoraL, P., Doucer, A., & SINGH S. S. (2010). Forward smoothing using sequential Monte Carlo,
arXiv:1012.5390

CaMPILLO, F. & LE GLAND, F. (1989). MLE for partially observed diffusions: Direct Maximization vs The
EM algorithm. Stoch. Proc. Appl., 33, 245-274.

CAPPE, O., RyDEN, T, & MOULINES, E. (2005). Inference in Hidden Markov Models. Springer: New York.
CHOPIN, N. & PAPASPILIOPOULOS, O. (2020). An Introduction to sequential Monte Carlo. Springer: New York.

GLYNN, P. & RHEE, C. H. (2014). Exact estimation for Markov chain equilibrium expectations. J. Appl.
Probab. 51, 377-389.

HENG, J., JAsrA, A., Law, K. J. H., & TARAKANOV, A. (2021). On unbiased estimation of discretized models.
arXiv preprint.

HENG, J., JASRA, A. & HOUSSINEAU, J. (2021). On unbiased estimation of the score function for a class of
partially observed diffusions. arXiv preprint.

Jacos, P., LINDSTEN, F. & ScHON, T. (2020). Smoothing with couplings of conditional particle filters. J.
Amer. Statist. Assoc. 115, 721-729.

JasraA, A., & Yu, F. (2020). Central limit theorems for coupled particle filters. Adv. Appl. Probab., 52, 942-
1001.

JAsrA, A, YU, F. & HENG, J. (2020). Multilevel particle filters for the non-linear filtering problem in continuous
time. Stat. Comp., 30, 1381-1402.

JAsrA, A., KAMATANI, K., Law K. J. H. & ZHou, Y. (2017). Multilevel particle filters. STAM J. Numer. Anal.,
55, 3068-3096.

LEE, A., SINGH, S. S. & VIHOLA, M. (2020). Coupled conditional backward sampling particle filter. Ann. Stat.,
48, 3066-3089.

McLE1sH, D. (2011). A general method for debiasing a Monte Carlo estimator. Monte Carlo Meth. Appl., 17,
301-315.

PoyiapJis, G., DOUCET, A., & SINGH, S. S. (2011). Particle approximations of the score and observed infor-
mation matrix in state space models with application to parameter estimation. Biometrika, 98, 65-80.

RHEE, C. H. & GLyNN, P. (2015). Unbiased estimation with square root convergence for SDE models. Op.
Res. 63, 1026-1043.

ViHoLA, M. (2018). Unbiased estimators and multilevel Monte Carlo. Op. Res., 66, 448-462.

24

http://arxiv.org/abs/1012.5390

	1 Introduction
	2 Problem
	2.1 Notations
	2.2 Model
	2.3 Discretized Model
	2.4 Smoothing Identity

	3 Approach
	3.1 Debiasing Schemes
	3.2 Conditional Particle Filter
	3.3 Coupled Conditional Particle Filter
	3.3.1 Probability Kernel Coupling
	3.3.2 CCPF Kernel
	3.3.3 Initial distribution
	3.3.4 Rhee-Glynn estimator

	3.4 Coupling of CCPF (C-CCPF)
	3.4.1 Probability Kernel Coupling
	3.4.2 C-CCPF Kernel
	3.4.3 Initial Distribution

	3.5 Estimate
	3.6 Sketch of Proof of Unbiasedness

	4 Simulations
	4.1 Model Settings
	4.2 Algorithm Settings
	4.3 Results

