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Abstract

In this paper, we consider static parameter estimation for a class of continuous-time state-space models.
Our goal is to obtain an unbiased estimate of the gradient of the log-likelihood (score function), which is an
estimate that is unbiased even if the stochastic processes involved in the model must be discretized in time.
To achieve this goal, we apply a doubly randomized scheme (see, e.g., [13, 14]), that involves a novel coupled
conditional particle filter (CCPF) on the second level of randomization [15]. Our novel estimate helps facilitate
the application of gradient-based estimation algorithms, such as stochastic-gradient Langevin descent. We
illustrate our methodology in the context of stochastic gradient descent (SGD) in several numerical examples
and compare with the Rhee & Glynn estimator [22, 23].
Keywords: Score Function, Particle Filter, Coupled Conditional Particle Filter.

1 Introduction
State-space models are used in many applications in applied mathematics, statistics, and economics (see, e.g., [10]).
They typically comprise a hidden or unobserved Markov chain that is associated with an observation process. In
many cases of practical interest, there are unknown finite-dimensional parameters, θ ∈ Θ ⊂ Rdθ , that characterize
the dynamics of the hidden and observed processes. The objective of this paper is to consider the estimation of
these parameters on the basis of a fixed-length dataset, when the observations and hidden process are both diffusion
processes.

There are many challenges in parameter estimation for the class of continuous-time state-space models under
consideration. The first challenge is that in practice, data are not observed in continuous time; thus, it is necessary
to perform time-discretization (e.g., Euler-Maruyama method) of the observation process at the very least. The
second challenge is that the hidden diffusion process may often be unavailable (e.g., for exact simulation) without
also using time discretization. The third challenge is that even under the aforementioned approximations, to
compute the log-likelihood function or its gradient with respect to θ (the score function), which is the estimation
paradigm that is followed in this paper, it is still not possible to compute these quantities analytically. We proceed
under the assumption that one must time-discretize both the observation and hidden process and that one seeks
the parameters that maximize the log-likelihood function (the result of which is the maximum likelihood estimator
(MLE)). We use a particular identity for the score function that is provided in [9] and based on the Girsanov change
of measure. Alternative identities are discussed in [3] but are not considered in this paper.

Given the problem under study, there exist several mechanisms for computing the MLE; however, but we restrict
ourselves to gradient-based algorithms, that is, iterative algorithms that compute estimates of θ using the score
function. Then, the objective is to estimate the score function for any given θ. We remark, however, that to ensure
convergence of the gradient algorithm, it is often preferable to produce an unbiased stochastic estimate of the score.
It is well known that ensuring the convergence of stochastic gradient methods is simpler when the estimate of the
gradient is unbiased (see, e.g., [2]).

In the context of state-space models in discrete and continuous time, there already exists substantial literature
on score estimation (see, e.g., [3, 7, 8, 21]). Most of these techniques are based on sequential Monte Carlo (SMC)
algorithms (see [11] for an introduction), which are simulation-based methods that use a collection of N ≥ 1 samples
generated in parallel and sequentially in time. For the problem of interest, when these algorithms can be applied,
they produce consistent estimates of the score function (in terms of the number of samples N), but they will
typically introduce a bias with respect to the time discretization. The aim of this paper is to address this problem.

Intrinsically, the problem of unbiased estimation of the score function can be placed within the context of exact
estimation of the (ratios of) expectations with respect to diffusion processes. The topic of unbiased estimation
of the expectation associated with diffusion processes has received considerable attention in recent years. The
approaches can be roughly divided into two distinct categories: one that focuses on exact simulation of the diffusion
of interest [4, 5] (see also [6]), and another that is based on randomization schemes [20, 22]. The first class of
methodologies is based on an elegant paradigm constructing unbiased estimators using the underlying properties of
the diffusion process. Due to its nature, however, this class of methodologies cannot be applied for every diffusion
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process. The second method is arguably more universally applicable and is the focus in this paper. The approach
of [20, 22] places a probability distribution over the level of time discretization and is sufficient (but not necessary)
to unbiasedly estimate differences of expectations with respect to laws of the time-discretized diffusion process to
obtain an unbiased and finite-variance estimator of the expectation with respect to the law of the original diffusion
process.

As mentioned above, in the case of score estimation, there is no expectation, but rather a ratio of expectations
which takes us out of the original context in [20, 22]. The approach that we use in this paper is to follow [13, 14] to
consider a so-called doubly randomized scheme. The first level of discretization is as in [20, 22]: however, the second
level of randomization is derived using a new type of coupled conditional particle filter (CCPF) [15] that provides
an unbiased estimation of (differences of) ratios of expectations of the diffusion processes as required. This principle
was developed in [14]: however, it was applied for discrete-time observations, not continuous-time observations. The
main contribution of this paper is to extend the methodology of [14] to a new class of models and to implement it
in several challenging examples.

The remainder of this paper is structured as follows. In Section 2, we formalize the problem of interest while
in Section 3, we describe our proposed approach. In Section 4, we present numerical results, which illustrate the
utility of our methodology.

2 Problem

2.1 Notations
Let (X,X ) be a measurable space. For ϕ : X→ R, we write Bb(X) to denote the collection of bounded measurable
functions. Let ϕ : Rd → R, Lip‖·‖2(Rd) denote the collection of real-valued functions that are Lipschitz with respect
to ‖ · ‖2 (‖ · ‖p denotes the Lp-norm of a vector x ∈ Rd). That is, ϕ ∈ Lip‖·‖2(Rd) if there exists C < +∞ such that
for any (x, y) ∈ R2d

|ϕ(x)− ϕ(y)| ≤ C‖x− y‖2.

For ϕ ∈ Bb(X), we write the supremum norm ‖ϕ‖ = supx∈X |ϕ(x)|. P(X) denotes the collection of probability
measures on (X,X ). For measure µ on (X,X ) and ϕ ∈ Bb(X), the notation µ(ϕ) =

∫
X
ϕ(x)µ(dx) is used. B(Rd)

denotes the Borel sets on Rd. Let K : X × X → [0, 1] be a Markov kernel and µ be a measure: then, we use the
notation µK(dy) =

∫
X
µ(dx)K(x, dy) and for ϕ ∈ Bb(X), K(ϕ)(x) =

∫
X
ϕ(y)K(x, dy). For A ∈ X , the indicator

is written as IA(x). UA denotes the uniform distribution on set A. Ns(µ,Σ) (resp. ψs(x;µ,Σ)) denotes an s-
dimensional Gaussian distribution (density evaluated at x ∈ Rs) of mean µ and covariance Σ. If s = 1, we omit
subscript s. For a vector/matrix X, X∗ is used to denote the transpose of X. For A ∈ X , δA(du) denotes the Dirac
measure of A, and if A = {x} with x ∈ X, we write δx(du). For a vector-valued function in d dimensions (resp. d-
dimensional vector), such as ϕ(x) (resp. x), we write the i-th component (i ∈ {1, . . . , d}) as ϕ(i)(x) (resp. xi). For
a d× q matrix x, we write the (i, j)-th entry as x(ij).

2.2 Model
Let (Ω,F , {Ft}t≥0,Pθ) be a filtered probability space. Let θ ∈ Θ ⊂ Rdθ , with Θ compact, dθ ∈ N and dθ < +∞
such that {Pθ : θ ∈ Θ} defines a collection of probability spaces. We consider a pair of stochastic processes {Yt}t≥0,
{Xt}t≥0, with Yt ∈ Rdy , Xt ∈ Rdx (dy, dx) ∈ N2, dx, dy < +∞, with X0 = x∗ ∈ Rdx given:

dYt = hθ(Xt)dt+ dBt (1)
dXt = bθ(Xt)dt+ σ(Xt)dWt (2)

where for each θ ∈ Θ, hθ : Rdx → Rdy , bθ : Rdx → Rdx , σ : Rdx → Rdx×dx with σ of full rank, X0 = x∗ is given,
and {Bt}t≥0, {Wt}t≥0 are independent standard Brownian motions of dimension dy and dx, respectively. Note
that, we can place a probability on X0 and if we do, we denote it µ (independent of θ) - for now we simply take
µ(dx0) = δ{x∗}(dx0).

To minimize any technical difficulties, the following assumption is made throughout this paper:

(D1) We have the following:

1. σ is continuous and bounded, and a(x) := σ(x)σ(x)∗ is uniformly elliptic.

2. For each θ ∈ Θ, (hθ, bθ) are bounded, measurable, and h(i)
θ ∈ Lip‖·‖2(Rdx), i ∈ {1, . . . , dy}.
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3. hθ, bθ are continuously differentiable with respect to θ, and for each θ ∈ Θ, ∇θhθ : Rdx → Rdy×dθ ,
∇θbθ : Rdx → Rdx×dθ , with (∇θhθ,∇θbθ) bounded and measurable, and ∇θh(ij)

θ ∈ Lip‖·‖2(Rdx), (i, j) ∈
{1, . . . , dy} × {1, . . . , dθ}.

4. φθ(x) := [∇θbθ]∗(x)a(x)−1σ(x). For each θ ∈ Θ, φ(ij)
θ ∈ Lip‖·‖2(Rdx), (i, j) ∈ {1, . . . , dθ} × {1, . . . , dx}.

Now, we introduce the probability measure Pθ, which is equivalent to Pθ defined by the Radon-Nikodym deriva-
tive

Zt,θ :=
dPθ
dPθ

∣∣∣∣
Ft

= exp
{∫ t

0

hθ(Xs)
∗dYs −

1

2

∫ t

0

hθ(Xs)
∗hθ(Xs)ds

}
with {Xt}t≥0 following the dynamics (2) and {Yt}t≥0 solving the dynamics dYt = dBt under Pθ. The Girsanov
theorem states that for any ϕ ∈ Bb(Rdx) that satisfies (D1), it holds that

Eθ
[
ϕ(Xt)|Yt

]
= Eθ

[
ϕ(Xt)Zt,θ|Yt

]
, (3)

where Yt is the filtration generated by the process {Ys}0≤s≤t. We define the solution of the Zakai equation for
ϕ ∈ Bb(Rdx) as

γt,θ(ϕ) := Eθ
[
ϕ(Xt)Zt,θ|Yt

]
.

Our objective is to, almost surely, unbiasedly estimate the gradient of the log-likelihood ∇θ log(γT,θ(1)). Adding
minor regularity conditions on coefficients (see, e.g., [9]),

∇θ log(γT,θ(1)) =
Eθ[λT,θZT,θ|YT ]

Eθ[ZT,θ|YT ]
(4)

where

λT,θ =

∫ T

0

[∇θbθ(Xs)]
∗a(Xs)

−1σ(Xs)dWs +

∫ T

0

[∇θhθ(Xs)]
∗dYs −

∫ T

0

[∇θhθ(Xs)]
∗hθ(Xs)ds.

We assume throughout this paper that T ∈ N. Note that [3] derives an alternative expression to (4) that does not
require σ to be independent of θ; however, its approximation is significantly more complex than we consider.

2.3 Discretized Model
In practice, we must work with a discretization of the model in (1)-(2) since an analytic solution of (4) is typically
unavailable. This is because we do not observe data in continuous time and often the exact methods in [4, 5], for
example, cannot be applied. We assume access to the path of data {Yt}0≤t≤T up to an (almost) arbitrary level of
time discretization. In practice, this would be a very finely observed path, as the former assumption is not possible.

The exposition below closely follows the presentation in [17]. Let l ≥ 0 be given, and consider an Euler
discretization of step-size ∆l = 2−l, k ∈ {1, 2, . . . , 2lT}, X̃0 = x∗:

X̃k∆l
= X̃(k−1)∆l

+ bθ(X̃(k−1)∆l
)∆l + σ(X̃(k−1)∆l

)[Wk∆l
−W(k−1)∆l

]. (5)

It should be noted that the Brownian motion in (5) is the same as in (2) under both Pθ and Pθ. Set

λlT,θ(x0, x∆l
, . . . , xT ) :=

2lT−1∑
k=0

{
[∇θbθ(xk∆l

)]∗a(xk∆l
)−1σ(xk∆l

)[W(k+1)∆l
−Wk∆l

] +

[∇θhθ(xk∆l
)]∗[Y(k+1)∆l

− Yk∆l
]− [∇θhθ(xk∆l

)]∗hθ(xk∆l
)∆l

}
.

We remark that when considering (5), λlT,θ is a function of (y0, y∆l
, . . . , yT ) (the dependence on the data is omitted

from the notation throughout this paper) and (X̃0, X̃∆l
, . . . , X̃T ), as it holds that

[Wk∆l
−W(k−1)∆l

] = σ(X̃(k−1)∆l
)−1
(
X̃k∆l

− [X̃(k−1)∆l
+ bθ(X̃(k−1)∆l

)∆l]
)
.

Then, for k ∈ {0, 1, . . . , 2lT − 1}, we define

Glk,θ(xk∆l
) := exp

{
hθ(xk∆l

)∗(y(k+1)∆l
− yk∆l

)− ∆l

2
hθ(xk∆l

)∗hθ(xk∆l
)
}

(6)
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and note that

ZlT,θ(x0, x∆l
, . . . , xT−∆l

) :=

2lT−1∏
k=0

Glk,θ(xk∆l
)

= exp
{ 2lT−1∑

k=0

[
hθ(xk∆l

)∗(y(k+1)∆l
− yk∆l

)− ∆l

2
hθ(xk∆l

)∗hθ(xk∆l
)
]}

is simply a discretization of ZT,θ. We have the discretized approximation of ∇θ log(γT,θ(1)) as follows:

∇θ log(γlT,θ(1)) :=
Eθ[λlT,θ(X̃0, X̃∆l

, . . . , X̃T )ZlT,θ(X̃0, X̃∆l
, . . . , X̃T )|YT ]

Eθ[ZlT,θ(X̃0, X̃∆l
, . . . , X̃T )|YT ]

.

The following result, which establishes the convergence of our Euler approximation, is proved in [3]. Note that the
rate should be O(∆l), however, this is not important in the subsequent development of this paper.

Proposition 2.1. Assume (D1-3) in [3]. Then, for any (T, θ) ∈ [0,∞) × Θ, there exists C < +∞ such that for
any l ≥ 0, we have∣∣∣∣∣Eθ

[
Eθ[λT,θZT,θ|YT ]

Eθ[ZT,θ|YT ]
−

Eθ[λlT,θ(X̃0, X̃∆l , . . . , X̃T )ZlT,θ(X̃0, X̃∆l , . . . , X̃T )|YT ]

Eθ[ZlT,θ(X̃0, X̃∆l , . . . , X̃T )|YT ]

]∣∣∣∣∣ ≤ C∆
1/2
l .

Remark 2.1. We note that for any real-valued, bounded, and continuous function on the trajectory {Yt}0≤t≤T , ϕ,
one can establish, using the proof of Proposition 2.1, that

lim
l→∞

∣∣∣∣∣Eθ
[
ϕ
(
{Yt}0≤t≤T

){Eθ[λT,θZT,θ|YT ]

Eθ[ZT,θ|YT ]
−

Eθ[λlT,θ(X̃0, X̃∆l , . . . , X̃T )ZlT,θ(X̃0, X̃∆l , . . . , X̃T )|YT ]

Eθ[ZlT,θ(X̃0, X̃∆l , . . . , X̃T )|YT ]

}]∣∣∣∣∣ = 0.

2.4 Smoothing Identity
For notational convenience, we drop the ·̃ notation from the Euler discretization, when referring to the subsequent
smoothing construction. ∇θ log(γlT,θ(1)) can be rewritten as the expectation of λlT,θ(X0, X∆l

, . . . , XT ) with respect
to the smoothing distribution of a discrete-time state-space model.

Define the probability measure on (Rdx2lT , B(Rdx2lT )), recalling that x0 = x∗:

πlθ
(
d(x∆l

, . . . , xT )) :=

(∏2lT−1
k=0 Glk,θ(xk∆l

)
)∏2lT

k=1Q
l
θ(x(k−1)∆l

, dxk∆l
)∫

Rdx2lT

(∏2lT−1
k=0 Glk,θ(xk∆l

)
)∏2lT

k=1Q
l
θ(x(k−1)∆l

, dxk∆l
)
, (7)

where Qlθ is the transition kernel induced from (5), and the dependence on the data is suppressed in the notation.
Now writing the expectations with respect to πlθ as Eπlθ , we have

∇θ log(γlT,θ(1)) = Eπlθ [λ
l
T,θ(x∗, X∆l

, . . . , XT )].

It is this latter expectation that we use throughout this paper.

3 Approach

3.1 Debiasing Schemes
Our objective is to compute an almost surely unbiased estimate of∇θ log(γT,θ(1)) by only considering∇θ log(γlT,θ(1)).
Our construction considers an enlarged probability space (Ω?,F?,P?θ) associated with (Ω,F ,Pθ) such that the fol-
lowing holds:

1. E?θ[∇θ log(γT,θ(1))] = Eθ[∇θ log(γT,θ(1))], almost surely and E?θ[∇θ log(γlT,θ(1))] = Eθ[∇θ log(γlT,θ(1))].

2. One can compute independent random variables Ψ0
T,θ,Ψ

1
T,θ, . . . such that, almost surely

E?θ[Ψl
T,θ] = Eπlθ [λ

l
T,θ(x∗, X∆l

, . . . , XT )]− Eπl−1
θ

[λl−1
T,θ (x∗, X∆l−1

, . . . , XT )] l ≥ 0 (8)

with Eπ−1
θ

[λlT,θ(x∗, X∆l−1
, . . . , XT )] = 0.
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3. Let l ∈ Z+ be a random variable on (Ω?,F?) with probability mass function p?, where it is assumed that
p?(l) > 0 for each l ≥ 0. Then, we have

∞∑
l=0

1

p?(l)
E?θ[‖Ψl

T,θ‖22] < +∞.

By Proposition 2.1, we know that

lim
l→∞

E?θ[∇θ log(γlT,θ(1))] = Eθ[∇θ log(γT,θ(1))].

Then, one has the following result (see [22, Theorem 1]; see also [23, Theorem 3]):

E?θ

[
Ψl
T,θ

p?(l)

]
= E?θ[∇θ log(γT,θ(1))].

More generally, using this approach, one can deduce that for any real-valued, bounded and continuous function on
the trajectory {Yt}0≤t≤T , ϕ one has

E?θ

[
ΨL
T,θ

p?(L)
ϕ
(
{Yt}0≤t≤T

)]
= E∗θ

[
∇θ log(γT,θ(1))ϕ

(
{Yt}0≤t≤T

)]
.

That is,

E?θ

[
ΨL
T,θ

p?(L)

∣∣∣YT]
is a version of E∗θ[∇θ log(γT,θ(1))|YT ], i.e. it is an almost surely unbiased estimator of Eθ[∇θ log(γT,θ(1))|YT ]. As a
result, our objective is to obtain the random variables Ψ0

T,θ,Ψ
1
T,θ, . . . so that one can calculate ΨL

T,θ/p
?(L). This is

the topic of the remainder of the section. In this article, we stress that we have not proved the properties 1.-3. above,
but, it is possible using the analysis in [14]; we leave the rather substantial proof to future work, but some further
discussion is given in Section 3.6. Note also that we consider the so-called single term estimator here, but that can
be generalized to the independent term estimator also.

Remark 3.1. To actually compute Ψl
T,θ/p

?(l), one expects to have access to a data trajectory that is arbitrarily
finely observed (in time), as (8) must be satisfied. Typically, this is not possible in practice; however, we remark
that (as we will see) computing Ψl

T,θ/p
?(l) is often only possible for l ≤ 50 due to the computational cost. This

drawback is common to all debiasing schemes (as described in [22, 23]) and thus, we only require very high frequency
observations, not an entire trajectory.

3.2 Conditional Particle Filter
The conditional particle filter is a particle filter that runs conditional on a trajectory x[∆l:T ] ∈ XTl with XTl = Rdx2l

and x0 = x?.
Setting ul,i[k:k+1] ∈ Xl for i ∈ {1, . . . , N},

F lk,θ(i, u
l,1:N
[k:k+1]) :=

∏∆−1
l −1

m=0 Gk+m∆l,θ(u
l,i
k+m∆l

)∑N
s=1

∏∆−1
l −1

m=0 Gk+m∆l,θ(u
l,s
k+m∆l

)

and ul,ik ∈ Xk+1
l , ul,ik = (ul,ik,0, . . . ,u

l,i
k,k), i ∈ {1, . . . , N}, k ∈ {0, 1, . . . , T − 1}, ul,ik,j ∈ Xl, j ∈ {0, 1, . . . , k}. We define

the CPF kernel K
l

T,θ : XTl → P(XTl ) as

K
l

T,θ

(
x[∆l:T ], dx

′
[∆l:T ]

)
=

∫
XNTl

KlT,θ
(
x[∆l:T ], d

(
uuul,1:N

0 , . . . ,ul,1:N
T−1

))
∑

s∈{1,...,N}

F lT−1,θ

(
s,ul,1:N

T−1,T−1

)
δ{ul,sT−1}

(
dx′[∆l:T ]

)
(9)
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with
KlT,θ

(
x[∆l:T ], d(ul,1:N

0 , . . . ,ul,1:N
T−1 )

)
=

N−1∏
i=1

Q
l

θ

(
x, dul,i0

)
δ{x[∆l:1]}

(
dul,N0

)
[ T−1∏
k=1

{N−1∏
i=1

∑
s∈{1,...,N}

F lk−1,θ(s,u
l,1:N
k−1,k−1)×Q

l

k,θ

(
ul,sk−1, du

l,i
k

)
}δ{x[∆l:k]}

}(
dul,Nk

)]
probability kernel Q

l

k,θ : Xkl → P(Xk+1
l ), u[∆l:k] ∈ Xkl

Q
l

k,θ

(
u[∆l:k], du

′
[∆l:k+1]

)
:= δ{u[∆l:k]}

(
du′[∆l:k]

)
×Q

l

θ

(
u′k, du

′
[k+∆l:k+1]

)
where

Q
l

θ

(
u′k, du

′
[k+∆l:k+1]

)
=

∆−1
l∏

m=1

Qlθ

(
u′
k+(m−1)∆−1

l

, du′
k+m∆−1

l

)
. (10)

The simulation of CPF kernel K
l

T,θ : XTl → P(XTl ) is described in Algorithm 1.

Algorithm 1 Simulating the CPF kernel.

1. Initialize: For i ∈ {1, . . . , N − 1} sample ul,i0 independently using Q
l

θ

(
x, ·
)
. Set ul,N0 = x[∆l:1], k = 0.

2. Coupled Resampling: For i ∈ {1, . . . , N − 1} sample rik accordingly to F lk,θ(i,u
l,1:N
k,k ).

3. Coupled Sampling: Set k = k+1. For i ∈ {1, . . . , N−1} sample ul,ik |u
l,rik−1

k−1 conditionally independently using

Q
l

k,θ

(
u
l,rik−1

k−1 , ·
)
. Set ul,Nk = x[∆l:k+1]. If k = T − 1 go to 4., otherwise go to 2..

4. Select Trajectories: Sample rl according to F lk,θ(i,u
l,1:N
T−1,T−1) (as described, for one i in 2.). Return ul,r

l

T−1.

3.3 Coupled Conditional Particle Filter
We consider the CCPF in [15] (see also [19] for extensions) that allows one to compute unbiased estimates of
expectations with respect to the probability (7). That is, letting l ≥ 0, θ ∈ Θ fixed, and ϕlθ : Rdx2lT → R, ϕlθ being
πlθ-integrable and measurable, the CCPF produces an estimate of πlθ(ϕ

l
θ) that is equal to πlθ(ϕ

l
θ) in expectation.

Throughout this review of the CCPF, l ≥ 0 is fixed but finite and θ ∈ Θ is also fixed. Given xlp ∈ Rdx , xlp+∆l
∈

Rdx , xlq ∈ Rdx , p ≤ q, p/∆l ∈ Z+, and q/∆l ∈ Z+, we use the notation xl[p:q] := (xlp, x
l
p+∆l

, . . . , xlq). The time
increment ∆l in the subscript is derived from the superscript l of the vector; when there is no possible confusion,
this superscript is omitted from the notation.

3.3.1 Probability Kernel Coupling

To describe the CCPF, we introduce the following coupling of Qlθ. Suppose that we are given (x, x̊) ∈ Rdx × Rdx ;
then, Q̌lθ : Rdx × Rdx → P(Rdx × Rdx) is a Markov kernel that is simulated as follows:

• Generate W ∼ Ndx(0,∆lIdx).

• Then

X ′ = x+ bθ(x)∆l + σ(x)W

X̊ ′ = x̊+ bθ (̊x)∆l + σ(̊x)W

Q̌lθ

(
(x, x̊), d(x′, x̊′)

)
is such that for any (x, x̊) ∈ Rdx × Rdx , A ∈ B(Rdx)

Q̌lθ(A× Rdx)(x, x̊) =

∫
A

Qlθ(x, dx
′) Q̌lθ(Rdx ×A)(x, x̊) =

∫
A

Qlθ (̊x, dx̊
′).

We remark that, clearly, if x = x̊, then x′ = x̊′.
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3.3.2 CCPF Kernel

We now introduce the CCPF. Although the CCPF is a particular case of the approach in [15], the coupled resampling
method (also used in [1]) can perform very well in theory [16]. The basic principle is to generate a coupled particle
filter (see, e.g., [16, 18]) that runs conditionally on a pair of trajectories (x[∆l:T ], x̊[∆l:T ]) ∈ XTl × XTl , Xl := Rdx2l ,
since (x0, x̊0) = (x?, x?). We first introduce an underlying probability kernel KlT,θ : XTl × XTl → P(X2NT

l ), which is
critical in defining the CCPF kernel. Let (ul,1:N

[k:k+1], ů
l,1:N
[k:k+1]) ∈ X2N

l , k ∈ {0, 1, . . . , T−1}, and for (i, j) ∈ {1, . . . , N}2,

ωlk,θ(i, j, ul,1:N
[k:k+1]

, ůl,1:N
[k:k+1]

) =

( N∑
s=1

{F lk,θ(s, ul,1:N
[k:k+1]

) ∧ Fk,θ(s, ůl,1:N
[k:k+1]

)}
)( F lk,θ(i, ul,1:N

[k:k+1]
) ∧ F lk,θ(i, ůl,1:N

[k:k+1]
)∑N

s=1{F lk,θ(s, ul,1:N
[k:k+1]

) ∧ F lk,θ(s, ůl,1:N
[k:k+1]

)}

)
I{i}(j)+

(
1−

N∑
s=1

{F lk,θ(s, ul,1:N
[k:k+1]

) ∧ F lk,θ(s, ůl,1:N
[k:k+1]

)}
)(F lk,θ(i, ul,1:N

[k:k+1]
)− F lk,θ(i, ul,1:N

[k:k+1]
) ∧ F lk,θ(i, ůl,1:N

[k:k+1]
)

1−
∑N
s=1{F lk,θ(s, ul,1:N

[k:k+1]
) ∧ F lk,θ(s, ůl,1:N

[k:k+1]
)}

)
×

(
F lk,θ(j, ůl,1:N

[k:k+1]
)− F lk,θ(j, ul,1:N

[k:k+1]
) ∧ F lk,θ(j, ůl,1:N

[k:k+1]
)

1−
∑N
s=1{F lk,θ(s, ul,1:N

[k:k+1]
) ∧ F lk,θ(s, ůl,1:N

[k:k+1]
)}

)
.

The probability ωlk,θ(i, j, u
l,1:N
[k:k+1], ů

l,1:N
[k:k+1]) is simply a maximal coupling of the resampling probabilities for particular

particle filters (see, e.g., [18]), which can be performed at O(N) cost.
Now define the probability kernel, for k ∈ {1, . . . , T − 1}, Ql

k,θ : X2k
l → P(X

2(k+1)
l ), (u[∆l:k], ů[∆l:k]) ∈ X2k

l

Ql
k,θ

(
(u[∆l:k], ů[∆l:k]), d(u′[∆l:k+1], ů

′
[∆l:k+1])

)
:= δ{u[∆l:k] ,̊u[∆l:k]}(d(u′[∆l:k], ů

′
[∆l:k]))×

Q̌l
θ

(
(u′k, ů

′
k), d(u′[k+∆l:k+1], ů

′
[k+∆l:k+1])

)
where

Q̌l
θ

(
(u′k, ů

′
k), d(u′[k+∆l:k+1], ů

′
[k+∆l:k+1])

)
=

∆−1
l∏

m=1

Q̌lθ

(
(u′
k+(m−1)∆−1

l

, ů′
k+(m−1)∆−1

l

), d(u′
k+m∆−1

l

, ů′
k+m∆−1

l

)
)
. (11)

Then we set, with (x[∆l:T ], x̊[∆l:T ]) ∈ XTl × XTl ,

KlT,θ
(

(x[∆l:T ], x̊[∆l:T ]), d((ul,1:N
0 , ůl,1:N

0 ), . . . , (ul,1:N
T−1 , ů

l,1:N
T−1 ))

)
=

N−1∏
i=1

Q̌l
θ

(
(x, x), d(ul,i0 , ů

l,i
0 )
)
δ{x[∆l:1] ,̊x[∆l:1]}

(
d(ul,N0 , ůl,N0 )

)
[ T−1∏
k=1

{N−1∏
i=1

∑
(r,s)∈{1,...,N}2

ωlk−1,θ(r, s,u
l,1:N
k−1,k−1, ů

l,1:N
k−1,k−1)

Ql
k,θ

(
(ul,rk−1, ů

l,s
k−1), d(ul,ik , ů

l,i
k )
)}
δ{x[∆l:k] ,̊x[∆l:k]}

(
d(ul,Nk , ůl,Nk )

)]
.

Now the CCPF kernel Kl
θ : X2T

l → P(X2T
l ) is defined as

Kl
T,θ

(
(x[∆l:T ], x̊[∆l:T ]), d(x′[∆l:T ], x̊

′
[∆l:T ])

)
=∫

X2NT
l

KlT,θ
(

(x[∆l:T ], x̊[∆l:T ]), d((ul,1:N
0 , ůl,1:N

0 ), . . . , (ul,1:N
T−1 , ů

l,1:N
T−1 ))

)
∑

(r,s)∈{1,...,N}2
ωlT−1,θ(r, s,u

l,1:N
T−1,T−1, ů

l,1:N
T−1,T−1)δ{ul,rT−1 ,̊u

l,s
T−1}

(d(x′[∆l:T ], x̊
′
[∆l:T ])).

The simulation of the CCPF kernel is described in detail in Algorithm 2.
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Algorithm 2 Simulating the CCPF kernel.

1. Initialize: For i ∈ {1, . . . , N − 1} sample ul,i0 , ů
l,i
0 independently using Q̌l

θ

(
(x, x), ·

)
. Set (ul,N0 , ůl,N0 ) =

(x[∆l:1], x̊[∆l:1]), k = 0.

2. Coupled Resampling: For i ∈ {1, . . . , N − 1} sample κi ∼ U[0,1]. If

κi <
(∑N

s=1{F lk,θ(s,u
l,1:N
k,k ) ∧ F lk,θ(s, ů

l,1:N
k,k )}

)
, then sample ji from

F lk,θ(j
i,ul,1:N

k,k ) ∧ F lk,θ(ji, ů
l,1:N
k,k )∑N

s=1{F lk,θ(s,u
l,1:N
k,k ) ∧ F lk,θ(s, ů

l,1:N
k,k )}

and set rik = sik = ji. Otherwise, sample ji1 and ji2 from(
F lk,θ(j

i
1,u

l,1:N
k,k )− F lk,θ(ji1,u

l,1:N
k,k ) ∧ F lk,θ(ji1, ů

l,1:N
k,k )

1−
∑N
s=1{F lk,θ(s,u

l,1:N
k,k ) ∧ F lk,θ(s, ů

l,1:N
k,k )}

)
(
F lk,θ(j

i
2, ů

l,1:N
k,k )− F lk,θ(ji2,u

l,1:N
k,k ) ∧ F lk,θ(ji2, ů

l,1:N
k,k )

1−
∑N
s=1{F lk,θ(s,u

l,1:N
k,k ) ∧ F lk,θ(s, ů

l,1:N
k,k )}

)
and set rik = ji1 and sik = ji2.

3. Coupled Sampling: Set k = k + 1. For i ∈ {1, . . . , N − 1} sample ul,ik , ů
l,i
k |u

l,rik−1

k−1 , ů
l,sik−1

k−1 conditionally

independently using Ql
k,θ

(
(u
l,rik−1

k−1 , ů
l,sik−1

k−1 ), ·
)
. Set (ul,Nk , ůl,Nk ) = (x[∆l:k+1], x̊[∆l:k+1]). If k = T − 1 go to 4.,

otherwise go to 2..

4. Select Trajectories: Sample (rl, sl) according to ωlT−1,θ(r
l, sl,ul,1:N

T−1,T−1, ů
l,1:N
T−1,T−1) (as described, for one i in

2.). Return (ul,r
l

T−1, ů
l,sl

T−1).

3.3.3 Initial distribution

In this subsection, we define an initial distribution µlT,θ ∈ P(X2T
l ) that we use to initialize the CCPF (X

(l,0)
[∆l:T ], X̊

(l,0)
[∆l:T ]), . . . ,

(X
(l,k)
[∆l:T ], X̊

(l,k)
[∆l:T ]) ∈ X2T

l , k ∈ Z+. The initialization of the CCPF consists of generating trajectories X(l,0)
[∆l:T ] and

X
(l,0)

[∆l:T ] independently using transition kernel Qlθ. Then, we apply the CPF kernel K
l

T,θ : XTl → P(XTl ), as in Sec-

tion 3.2, conditional on trajectory X
(l,0)

[∆l:T ]. Thus, from the above discussion, it follows that the initial distribution
µlT,θ ∈ P(X2T

l ) is formalized as

µlT,θ(d(x[∆l:T ], x̊[∆l:T ])) =( T∏
k=1

Qlθ(x(k−1), dxk)
)( T∏

k=1

Qlθ(x(k−1), dxk)
)(
K
l

T,θ

(
x[∆l:T ], dx̊[∆l:T ]

)
.

(12)

3.3.4 Rhee-Glynn estimator

The principle of the CCPF is to use a randomization technique as in [12] (see also [22, 23]) to obtain an unbiased
estimate of πlθ(ϕ

l
θ) by simulating a Markov chain (X

(l,0)
[∆l:T ], X̊

(l,0)
[∆l:T ]), . . . of initial distribution µlT,θ ∈ P(X2T

l ) and

transition kernel Kl
θ. Defining the meeting time as τ l = inf{k ≥ 1 : X

(l,k)
[∆l:T ] = X̊

(l,k)
[∆l:T ]} and setting a k? ∈ {2, 3, . . . }

(the choice of this parameter is discussed in [15]), one generates the Markov chain as described up to time M =
max(τ l, k?), and considers the estimator

π̂lθ(ϕ
l
θ) := ϕlθ

(
X l,k?

[∆l:T ]

)
+

τ l−1∑
k=k?+1

{
ϕlθ

(
X l,k

[∆l:T ]

)
− ϕlθ

(
X̊ l,k

[∆l:T ]

)}
, (13)
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with the second term equal to zero if τ l − 1 ≤ k? + 1. In [15], it is demonstrated that under some assumptions,
π̂lθ(ϕ

l
θ) is an unbiased estimator πlθ(ϕ

l
θ).

To improve the variance of (13), as described in [15], we consider the estimator

π̂lθ(ϕ
l
θ) :=

1

m? − k? + 1

m?∑
k=k?

ϕlθ

(
X l,k

[∆l:T ]

)
+

τ l−1∑
k=k?+1

min(m? − k? + 1, k − k?)
m? − k? + 1

(
ϕlθ

(
X l,k

[∆l:T ]

)
− ϕlθ

(
X̊ l,k

[∆l:T ]

))
,

(14)

where k? < m?. The first term on the left-hand side consists of an average between k? and m? of the Markov chain.
To further reduce the variance of the proposed estimators, we evaluate ϕlθ

(
X l

[∆l:T ]

)
over N trajectories ul,1:N

[∆l:T ]

simulating the CCPF kernel, such that it becomes

ϕlθ

(
X l

[∆l:T ]

)
=

N∑
s=1

F lT−1,θ(s, u
l,1:N
T−1,T−1)ϕlθ(u

l,s
T−1).

This estimator has the same expectation as ϕlθ(X
l,k?

[∆l:T ]). The same procedure can be applied to compute ϕlθ
(
X̊ l

[∆l:T ]

)
.

3.4 Coupling of CCPF (C-CCPF)
Throughout this section l ≥ 1 and θ ∈ Θ are both fixed.

3.4.1 Probability Kernel Coupling

We now introduce a Markov kernel Q̌l,l−1
θ : R4dx → P(X2

l × X2
l−1) whose simulation is described in Algorithm

3. Given the description, it can be easily verified that for any
(

(ul0, ů
l
0), (ul−1

0 , ůl−1
0 )

)
∈ R2dx × R2dx and any

(A, Å) ∈ B(Xl) ∨B(Xl−1),

Q̌l,l−1
θ (A× Xl−1)

(
(ul0, ů

l
0), (ul−1

0 , ůl−1
0 )

)
= Q̌l

θ(A)
(

(ul0, ů
l
0)
)

Q̌l,l−1
θ (Xl × Å)

(
(ul0, ů

l
0), (ul−1

0 , ůl−1
0 )

)
= Q̌l−1

θ (Å)
(

(ul−1
0 , ůl−1

0 )
)
,

where Q̌l
θ and Q̌l−1

θ are as detailed (11).

Algorithm 3 Simulating Q̌l,l−1
θ .

1. Input
(

(ul0, ů
l
0), (ul−1

0 , ůl−1
0 )

)
∈ R2dx × R2dx .

2. Generate Wk
i.i.d.∼ Ndx(0,∆lIdx), k ∈ {1, 2 . . . ,∆−1

l }.

3. For k ∈ {1, 2 . . . ,∆−1
l }:

U lk∆l
= U l(k−1)∆l

+ bθ(U
l
(k−1)∆l

)∆l + σ(U l(k−1)∆l
)Wk

Ů lk∆l
= Ů l(k−1)∆l

+ bθ(Ů
l
(k−1)∆l

)∆l + σ(Ů l(k−1)∆l
)Wk

4. For k ∈ {1, 2 . . . ,∆−1
l−1}:

U l−1
k∆l−1

= U l−1
(k−1)∆l−1

+ bθ(U
l−1
(k−1)∆l−1

)∆l−1 + σ(U l−1
(k−1)∆l−1

)[W2k−1 +W2k]

Ů l−1
k∆l−1

= Ů l−1
(k−1)∆l−1

+ bθ(Ů
l−1
(k−1)∆l−1

)∆l−1 + σ(Ů l−1
(k−1)∆l−1

)[W2k−1 +W2k]

5. Output
(

(ul∆l
, ůl∆l

), . . . , (ul1, ů
l
1)
)
∈ X2

l and
(

(ul−1
∆l−1

, ůl−1
∆l−1

), . . . , (ul−1
1 , ůl−1

1 )
)
∈ X2

l−1.
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3.4.2 C-CCPF Kernel

Now define the probability kernel, for k ∈ {1, . . . , T−1}, Q̌l,l−1
k,θ : X2k

l ×X2k
l−1 → P(X

2(k+1)
l ×X2(k+1)

l−1 ), (vl[∆l:k], v
l−1
[∆l−1:k]) :=(

(ul[∆l:k], ů
l
[∆l:k]), (u

l−1
[∆l−1:k], ů

l−1
[∆l−1:k])

)
∈ X2k

l × X2k
l−1

Q̌l,l−1
k,θ

(
(vl[∆l:k], v

l−1
[∆l−1:k]), d(vl,

′

[∆l:k+1], v
l−1,′

[∆l−1:k+1])
)

:=

δ{vl
[∆l:k]

,vl−1
[∆l−1:k]

}(d(vl,
′

[∆l:k], v
l−1,′

[∆l−1:k]))× Q̌l,l−1
θ

(
(vl,

′

k , v
l−1,′

k ), d(vl,
′

[k+∆l:k+1], v
l−1,′

[k+∆l−1:k+1])
)
.

We now introduce some additional conventions. Set vs,1:N
[k+∆s,k+1] = (us,1:N

[k+∆s:k+1], ů
s,1:N
[k+∆s:k+1]) ∈ X2N

s , s ∈ {l−1, l},
k ∈ {0, 1 . . . , T − 1}. Let for s ∈ {l − 1, l}, i ∈ {1, . . . , N}, k ∈ {0, 1, . . . , T − 1}

vs,ik = (us,ik , ůs,ik ) ∈ X2(k+1)
s

us,ik = (us,ik,0, . . . ,u
s,i
k,k)

ůs,ik = (̊us,ik,0, . . . , ů
s,i
k,k)

where (us,ik,j , ů
s,i
k,j) ∈ X2

s, j ∈ {0, 1, . . . , k}. For i ∈ {1, . . . , N}, k ∈ {0, . . . , T − 1}, we compute quantities

F lk,θ(i,u
l,1:N
k,k ), F lk,θ(i, ů

l,1:N
k,k ), F l−1

k,θ (i,ul−1,1:N
k,k ) and F l−1

k,θ (i, ůl−1,1:N
k,k ). Quantity ω̌l,l−1

k,θ

(
(il, il−1, jl, jl−1),vl,1:N

k,k ,vl−1,1:N
k,k

)
is associated with the Maximal Coupling of Maximal Couplings as described in Algorithm 4.

Algorithm 4 Simulating a Maximal Coupling of Maximal Couplings ω̌l,l−1
k,θ

(
(il, il−1, jl, jl−1),vl,1:N

k,k ,vl−1,1:N
k,k

)
1. Input: Four Probability Functions F lk,θ(i,u

l,1:N
k,k ), F lk,θ(i, ů

l,1:N
k,k ), F l−1

k,θ (i,ul−1,1:N
k,k ), F l−1

k,θ (i, ůl−1,1:N
k,k )

2. Sample two indices from maximal coupling probability ωlk,θ(r
l, sl, ul,1:N

[k:k+1], ů
l,1:N
[k:k+1]) and evaluate

ωl−1
k,θ (rl, sl, ul−1,1:N

[k:k+1] , ů
l−1,1:N
[k:k+1] )

3. Sample U ∼ U[0,ωlk,θ(rl,sl,ul,1:N
[k:k+1]

,̊ul,1:N
[k:k+1]

)] and if U < ωl−1
k,θ (rl, sl, ul−1,1:N

[k:k+1] , ů
l−1,1:N
[k:k+1] ) then return il = rl, il−1 = rl,

jl = sl, jl−1 = sl. Otherwise move step 4.

4. Sample two indices from maximal coupling probability ωl−1
k,θ (rl−1, sl−1, ul−1,1:N

[k:k+1] , ů
l−1,1:N
[k:k+1] ) and evaluate

ωlk,θ(r
l−1, sl−1, ul,1:N

[k:k+1], ů
l,1:N
[k:k+1])

5. Sample U ∼ U[0,ωl−1
k,θ (rl−1,sl−1,ul−1,1:N

[k:k+1]
,̊ul−1,1:N

[k:k+1]
)] and if U > ωlk,θ(r

l−1, sl−1, ul,1:N
[k:k+1], ů

l,1:N
[k:k+1]) then return il =

rl,jl = sl,il−1 = rl−1, jl−1 = sl−1. Otherwise return Step 4.

As for the CCPF, we introduce an underlying kernel Ǩl,l−1
T,θ : X2T

l × X2T
l−1 → P(X2T

l × X2T
l−1) which is critical in

defining a C-CCPF Markov kernel. Set for vs[∆s:T ] = (xs[∆s:T ], x̊
s
[∆s:T ]) ∈ X2T

s , s ∈ {l − 1, l}, v = (x∗, x∗)

Ǩl,l−1
T,θ

(
(vl[∆l:T ], v

l−1
[∆l−1:T ]), d((vl,1:N

0 ,vl−1,1:N
0 ), . . . , (vl,1:N

T−1 ,v
l−1,1:N
T−1 ))

)
=

{N−1∏
i=1

Q̌l,l−1
θ

(
(v, v), d(vl,i0 ,v

l−1,i
0 )

)}
δ{(vl

[∆l:1]
,vl−1

[∆l−1:1]
)}

(
d(vl,N0 ,vl−1,N

0 )
)

[ T−1∏
k=1

{N−1∏
i=1

∑
(rl,sl,rl−1,sl−1)∈{1,...,N}4

ω̌l,l−1
k−1,θ

(
(rl, sl, rl−1, sl−1),vl,1:N

k−1,k−1,v
l−1,1:N
k−1,k−1

)
×

Q̌l,l−1
k,θ

(
[(ul,r

l

k−1, ů
l,sl

k−1), (ul−1,rl−1

k−1 , ůl−1,sl−1

k−1 )], d(vl,ik ,v
l,i
k )
)}
δ{(vl

[∆l:k]
,vl−1

[∆l−1:k]
)}

(
d(vl,Nk ,vl−1,N

k )
)]
.

Now the C-CCPF kernel Ǩl,l−1
θ : X2T

l × X2T
l−1 → P(X2T

l × X2T
l−1) is defined as

Ǩl,l−1
T,θ

(
(vl[∆l:T ], v

l−1
[∆l−1:T ]), d(vl,

′

[∆l:T ], v
l−1,′

[∆l−1:T ])
)

:=
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∫
X2NT
l ×X2NT

l−1

Ǩl,l−1
T,θ

(
(vl[∆l:T ], v

l−1
[∆l−1:T ]), d((vl,1:N

0 ,vl−1,1:N
0 ), . . . , (vl,1:N

T−1 ,v
l−1,1:N
T−1 ))

)
∑

(rl,sl,rl−1,sl−1)∈{1,...,N}4
ω̌l,l−1
n,θ

(
(rl, sl, rl−1, sl−1),vl,1:N

n,n ,vl−1,1:N
n,n

)
δ
{(ul,r

l
n ,̊ul,s

l
n ),(ul−1,rl−1

n ,̊ul−1,sl−1
n )}

(d(vl,
′

[∆l:T ], v
l−1,′

[∆l−1:T ])).

The simulation of the C-CCPF kernel is described in Algorithm 5.

Algorithm 5 Simulating the C-CCPF kernel.

1. Initialize: For i ∈ {1, . . . , N −1} sample vl,i0 ,v
l−1,i
0 independently using Q̌l,l−1

θ

(
(v, v), ·

)
. Set (vl,N0 ,vl−1,N

0 ) =

(vl[∆l:1], v
l−1
[∆l−1:1]), k = 0.

2. Coupled Resampling rl,ik , s
l,i
k , r

l−1,i
k , sl−1,i

k applying Maximal Coupling of Maximal Couplings as Algorithm 4

3. Coupled Sampling: Set k = k + 1. For i ∈ {1, . . . , N − 1} sample

vl,ik ,v
l−1,i
k |(ul,r

l,i
k−1

k−1 , ů
l,sl,ik−1

k−1 ), (u
l−1,rl−1,i

k−1

k−1 , ů
l−1,sl−1,i

k−1

k−1 ) conditionally independently using

Q̌l,l−1
k,θ

(
[(u

l,rl,ik−1

k−1 , ů
l,sl,ik−1

k−1 ), (u
l−1,rl−1.i

k−1

k−1 , ů
l−1,sl−1.i

k−1

k−1 )], ·
)
.

Set (vl,Nk ,vl−1,N
k ) = ((xl[∆l:k+1], x̊

l
[∆l:k+1]), (x

l−1
[∆l−1:k+1], x̊

l−1
[∆l−1:k+1])). If k = T − 1 go to 4., otherwise go to 2..

4. Select Trajectories: Sample (rl, sl, sl−1, sl−1) according to ω̌l,l−1
n,θ

(
(rl, sl, rl−1, sl−1),vl,1:N

n,n ,vl−1,1:N
n,n

)
(as de-

scribed, for one i in 2.). Return (ul,r
l

T−1, ů
l,sl

T−1), (ul−1,rl−1

T−1 , ůl−1,sl−1

T−1 ).

3.4.3 Initial Distribution

For any l ≥ 1, we simulate a Markov chain (V
(l,0)
[∆l:T ], V

(l−1,0)
[∆l−1:T ]), . . . , (V

(l,k)
[∆l:T ], V

(l−1,k)
[∆l−1:T ]) ∈ X2T

l ×X2T
l−1, k ∈ Z+ of initial

distribution µl,l−1
T,θ ∈ P(X2T

l × X2T
l−1), with

(
(xl0, x̊

l
0), (xl−1

0 , x̊l−1
0 )

)
=
(

(x∗, x∗), (x∗, x∗)
)
. The initial distribution

consists of generating two pairs of coupled trajectories:
(
X

(l,0)
[∆l:T ], X

(l−1,0)
[∆l−1:T ]

)
and

(
X̊

(l,0)
[∆l:T ], X̊

(l−1,0)
[∆l−1:T ]

)
. We build the

first coupled trajectories
(
X

(l,0)
[∆l:T ], X

(l−1,0)
[∆l−1:T ]

)
by the CCPF kernel K

l,l−1

θ : XTl × XTl−1 → P(XTl × XTl−1), defined as

K
l,l−1

T,θ

(
(x[∆l:T ], x[∆l−1:T ]), d(x′[∆l:T ], x

′
[∆l−1:T ])

)
=∫

XNTl ×XNTl−1

Kl,l−1

T,θ

(
(x[∆l:T ], x[∆l−1:T ]), d((ul,1:N

0 ,ul−1,1:N
0 ), . . . , (ul,1:N

T−1 ,u
l−1,1:N
T−1 ))

)
∑

(r,s)∈{1,...,N}2
ωl,l−1
T−1,θ(r, s,u

l,1:N
T−1,T−1,u

l−1,1:N
T−1,T−1)δ{ul,rT−1,u

l−1,s
T−1 }

(d(x′[∆l:T ], x
′
[∆l−1:T ]))

where, with (x[∆l:T ], x[∆l−1:T ]) ∈ XTl × XTl−1,

Kl,l−1

T,θ

(
(x[∆l:T ], x[∆l−1:T ]), d((ul,1:N

0 ,ul−1,1:N
0 ), . . . , (ul,1:N

T−1 ,u
l−1,1:N
T−1 ))

)
=

N−1∏
i=1

Ql,l−1
θ

(
(x, x), d(ul,i0 ,u

l−1,i
0 )

)
δ{x[∆l:1],x[∆l−1:1]}

(
d(ul,N0 ,ul−1,N

0 )
)

[ T−1∏
k=1

{N−1∏
i=1

∑
(r,s)∈{1,...,N}2

ωl,l−1
k−1,θ(r, s,u

l,1:N
k−1,k−1,u

l−1,1:N
k−1,k−1)×

Q
l,l−1

k,θ

(
(ul,rk−1,u

l−1,s
k−1 ), d(ul,ik ,u

l−1,i
k )

)}
δ{x[∆l:k],x[∆l−1:k]}

(
d(ul,Nk ,ul−1,N

k )
)]

11



Algorithm 6 Simulating Ql,l−1
θ .

1. Input (ul0, u
l−1
0 ) ∈ Rdx × Rdx .

2. Generate Wk
i.i.d.∼ Ndx(0,∆lIdx), k ∈ {1, 2 . . . ,∆−1

l }.

3. For k ∈ {1, 2 . . . ,∆−1
l }:

U lk∆l
= U l(k−1)∆l

+ bθ(U
l
(k−1)∆l

)∆l + σ(U l(k−1)∆l
)Wk

4. For k ∈ {1, 2 . . . ,∆−1
l−1}:

U l−1
k∆l−1

= U l−1
(k−1)∆l−1

+ bθ(U
l−1
(k−1)∆l−1

)∆l−1 + σ(U l−1
(k−1)∆l−1

)[W2k−1 +W2k]

5. Output (ul∆l
, . . . , ul1) ∈ Xl and (ul−1

∆l−1
, . . . , ul−1

1 ) ∈ Xl−1.

with probability kernel, for k ∈ {1, . . . , T−1}, Q
l,l−1

k,θ : Xkl ×Xkl−1 → P(X
(k+1)
l ×X(k+1)

l−1 ), (ul[∆l:k], u
l−1
[∆l−1:k]) ∈ Xkl ×Xkl−1

Q
l,l−1

k,θ

(
(ul[∆l:k], u

l−1
[∆l−1:k]), d(ul,

′

[∆l:k+1], u
l−1,′

[∆l−1:k+1])
)

:=

δ{ul
[∆l:k]

,ul−1
[∆l−1:k]

}(d(ul,
′

[∆l:k], u
l−1,′

[∆l−1:k]))×Ql,l−1
θ

(
(ul,

′

k , u
l−1,′

k ), d(ul,
′

[k+∆l:k+1], u
l−1,′

[k+∆l−1:k+1])
)
,

with Markov kernel Ql,l−1
θ : R2dx → P(Xl × Xl−1), whose simulation is described in Algorithm 6. Finally,

ωl,l−1(i, j, ul,1:N
[k+∆l:k+1], u

l−1
[k+∆l−1:k+1]) corresponds exactly to the maximum coupling of the previously described re-

sampling probabilities. Kernel K
l,l−1

T,θ is a CCPF kernel with coupled trajectories on level l and level l − 1. The
algorithm is described in Algorithm 7.

The second pair of trajectories (X̊
(l,0)
[∆l:T ], X̊

(l−1,0)
[∆l−1:T ]) is simply coupled by probability kernel Ql,l−1

θ : R2dx →
P(Xl × Xl−1).

Thus, we define the initial distribution µl,l−1
T,θ ∈ P(X2T

l × X2T
l−1) as

µl,l−1
T,θ (d(vl[∆l:T ], v

l−1
[∆l−1:T ])) =

{
T∏
k=1

Ql,l−1
θ

(
(ulk−1, u

l−1
k−1), d(ulk−1+∆l:k

, ul−1
k−1+∆l−1:k)

)}

×

{
T∏
k=1

Ql,l−1
θ

(
(ulk−1, u

l−1
k−1), d(ulk−1+∆l:k

, ul−1
k−1+∆l−1:k)

)
× K

l,l−1

T,θ

(
(x[∆l:T ], x[∆l−1:T ]), d(̊x′[∆l:T ], x̊

′
[∆l−1:T ])

)}
(15)

3.5 Estimate
We now describe, on the basis of the approaches presented in Section 3.3-3.4, how to construct the random variables
Ψ0
T,θ,Ψ

1
T,θ, . . . from Section 3.1 to compute an almost-sure unbiased estimate of the gradient of the log-likelihood

(4).
To construct Ψ0

T,θ, we simulate a Markov chain (X
(0,0)
[∆0:T ], X̊

(0,0)
[∆0:T ]), . . . , (X

(0,k)
[∆0:T ], X̊

(0,k)
[∆0:T ]) ∈ X2T

0 , k ∈ Z+ of the
initial distribution µ0

T,θ ∈ P(X2T
0 ) as in (12) and transition kernel K0

T,θ as described in Algorithm 2 up to time
M = max(τ0, k

?) (for k? ∈ {2, 3, . . . } and m? > k?). Then, we set

Ψ0
T,θ :=

1

m? − k? + 1

m?∑
k=k?

λ0
T,θ(x∗, X

0,k
[∆0:T ])+

τ0−1∑
k=k?+1

min(m? − k? + 1, k − k?)
m? − k? + 1

{λ0
T,θ(x∗, X

0,k
[∆0:T ])− λ

0
T,θ(x∗, X̊

0,k
[∆0:T ])}.

(16)
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Algorithm 7 Simulating the CCPF kernel at level l,l − 1, l ∈ N.

1. Initialize: For i ∈ {1, . . . , N−1} sample ul,i0 , ů
l−1,i
0 independently using Ql,l−1

θ

(
(x, x), ·

)
. Set (ul,N0 ,ul−1,N

0 ) =

(x[∆l:1], x[∆l−1:1]), k = 0.

2. Coupled Resampling: For i ∈ {1, . . . , N − 1} sample κi ∼ U[0,1]. If κi <
(∑N

s=1{F lk,θ(s,u
l,1:N
k,k ) ∧

F l−1
k,θ (s, ůl,1:N

k,k )}
)
, then sample ji from

F lk,θ(j
i,ul,1:N

k,k ) ∧ F l−1
k,θ (ji,ul−1,1:N

k,k )∑N
s=1{F lk,θ(s,u

l,1:N
k,k ) ∧ F l−1

k,θ (s,ul−1,1:N
k,k )}

and set rik = sik = ji. Otherwise, sample ji1 and ji2 from(
F lk,θ(j

i
1,u

l,1:N
k,k )− F lk,θ(ji1,u

l,1:N
k,k ) ∧ F l−1

k,θ (ji1,u
l−1,1:N
k,k )

1−
∑N
s=1{F lk,θ(s,u

l,1:N
k,k ) ∧ F l−1

k,θ (s,ul−1,1:N
k,k )}

)
(
F l−1
k,θ (ji2,u

l−1,1:N
k,k )− F lk,θ(ji2,u

l,1:N
k,k ) ∧ F l−1

k,θ (ji2,u
l−1,1:N
k,k )

1−
∑N
s=1{F lk,θ(s,u

l,1:N
k,k ) ∧ F l−1

k,θ (s,ul−1,1:N
k,k )}

)
and set rik = ji1 and sik = ji2.

3. Coupled Sampling: Set k = k + 1. For i ∈ {1, . . . , N − 1} sample ul,ik ,u
l−1,i
k |ul,r

i
k−1

k−1 ,u
l−1,sik−1

k−1 conditionally

independently using Ql,l−1
k,θ

(
(u
l,rik−1

k−1 ,u
l−1,sik−1

k−1 ), ·
)
. Set (ul,Nk ,ul−1,N

k ) = (x[∆l:k+1], x[∆l−1:k+1]). If k = T − 1

go to 4., otherwise go to 2..

4. Select Trajectories: Sample (rl, sl−1) according to ωl,l−1
T−1,θ(r

l, sl−1,ul,1:N
T−1,T−1,u

l−1,1:N
T−1,T−1) (as described, for one

i in 2.). Return (ul,r
l

T−1,u
l−1,sl−1

T−1 ).

13



The quantity Ψ0
T,θ corresponds to the Rhee-Glynn estimator, as described in Section 3.3.4, of the gradient of the

log-likelihood.
In contrast, Ψl

T,θ, for l > 0, is based on a Markov chain (V
(l,0)
[∆l:T ], V

(l−1,0)
[∆l−1:T ]), . . . , (V

(l,k)
[∆l:T ], V

(l−1,k)
[∆l−1:T ]) ∈ X2T

l ×X2T
l−1,

k ∈ Z+ of the initial distribution µl,l−1
T,θ ∈ P(X2T

l × X2T
l−1) as in (15) and transition kernel Ǩl,l−1

θ as described
in Algorithm 5 up to time M = max(τ?, k?) (for k? ∈ {2, 3, . . . } and m? > k?), given τ? = max(τ l, τ l−1) and
τ l = inf{k ≥ 1 : X

(l,k)
[∆l:T ] = X̊

(l,k)
[∆l:T ]}. Then, we set

Ψl
T,θ :=

1

m? − k? + 1

m?∑
k=k?

λlT,θ(x∗, X
l,k
[∆l:T ])− λ

l−1
T,θ (x∗, X

l−1,k
[∆l−1:T ])

+

τ?−1∑
k=k?+1

min(m? − k? + 1, k − k?)
m? − k? + 1

{(
λlT,θ(x∗, X

l,k
[∆l:T ])− λ

l
T,θ(x∗, X̊

l,k
[∆l:T ])

)
−

(
λl−1
T,θ (x∗, X

l−1,k
[∆l−1:T ])− λ

l−1
T,θ (x∗, X̊

l−1,k
[∆l−1:T ])

)}
. (17)

Thus, based on (16)-(17), when L is sampled from p?, our estimator is as follows:

ΨL
T,θ

p?(L)
. (18)

The main task is now to verify that (16)-(17) have properties 2 and 3 listed in Section 3.1.

Remark 3.2. In practice, one can use an average estimator. Let L1, . . . , LM be independent and identically
distributed (i.i.d.) samples from p?. Then, independently, for each Li, i ∈ {1, . . . ,M}, obtain ΨLi,i

T,θ . One can then
use

1

M

M∑
i=1

ΨLi,i
T,θ

p?(Li)
(19)

to estimate (4). Another alternative is the coupled sum estimator in [22]: set P ?(l) =
∑∞
p=l p

?(p) > 0; then, one
samples L from p? and constructs the estimator

L∑
l=0

Ψl
T,θ

P ?(l)
. (20)

3.6 Sketch of Proof of Unbiasedness
To verify that (16)-(17) have properties 2 and 3 listed in Section 3.1, one can follow the blueprints in [13, 14]. The
approach in this paper is simply a modification of the methodology in [14]: thus, although the strategy of the proof
may be the same, the process that is considered in this paper is more challenging, as it is necessary to average over
the uncertainty in the data. The stopping time was generally dealt with in [14]; therefore so the main task is to
demonstrate that the expectation of summands in the estimates (16)-(17) is as small as a function of l. The latter
task requires one to consider the intricate properties of the C-CCPF and CCPF on an iteration-by-iteration basis,
which in turn relies on the complex coupled particle filters that underly the iterations. Nonetheless, this has been
achieved for a simpler process in [14], and we believe that a similar method can be used.

To select the distribution p?, we believe that one can use the recommendations in [22] under Euler discretization
when σ is either constant or non-constant. In either case, as in [14], this leads to an estimator that is unbiased with
finite variance but with infinite expected cost. Nonetheless, with high probability, the estimator has finite cost.

4 Simulations
We discuss two choices of underlying distribution p?(l) in the construction of unbiased estimator (20). We consider
geometric distribution G(p) with success rate p = 0.6 and p?(l) ∝ ∆

1/2
l (l+ 1)(log2(2 + l))2 as suggested in [14, 22].

Then we compare estimator (20) built over these two underlying distributions with Rhee-Glynn estimator (16) for
an increased number of particles N . We first compare the mean square error (MSE) satisfied by the estimators,
and then visualize how this analysis reflects in a stochastic gradient descent (SGD) procedure to recover unknown
parameters.
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The workstation has 62.9 GiB of memory and Intel Xeon processor with forty CPUs ES-2680 with 2.80 GHz;
the operating system is Ubuntu 18.04.5 LTS. The numerical test are programmed in python 3.8.5 and the wall clock
times are measured using library timeit.

4.1 Model Settings
The diffusion process we consider is as follows

dYt = hθ(Xt)dt+ dBt,

dXt = bθ(Xt)dt+ σ(Xt)dWt

with 0 ≤ t ≤ T and starting points X0 = x? and Y0 = y?. Here {Wt}t∈[0,T ] and {Bt}t∈[0,T ] are independent
Brownian motions, and the final time is T = 50.

Ornstein-Uhlenbeck (OU)

dYt = θ1(µ1 −Xt)dt+ dBt,

dXt = −θ2Xtdt+ σdWt,

with 0 ≤ t ≤ T and parameters θ1 = 0.75, θ2 = 0.75, µ1 = 1, and σ = 0.5. The starting points X0 and Y0 are
sampled independently from the normal distribution N (0, 1.6 · 10−3).

Geometric Brownian Motion (GBM)

dYt = θ1(µ1 − log(Xt))dt+ dBt,

dXt = θ2Xtdt+ σXtdWt,

with 0 ≤ t ≤ T and parameters θ1 = 0.75, θ2 = 0.05, µ1 = 1, and σ = 0.05. The starting point X0 is sampled from
the distribution N (5, 1.6 · 10−3) while Y0 is sampled from N (0, 1.6 · 10−3).

Lorenz Model (LM)

dX1,t = −S(X1,t − 1)dt+ dW1,t,

dX2,t = (X1,t −BX2,t)dt+ dW2,t,

dY1,t = kX1,tdt+ dW3,t,

dY2,t = kX2,tdt+ dW4,t,

with 0 ≤ t ≤ T and parameters S = 10, B = 8/3, and k = 2. The starting points X1,0, X2,0 and Y1,0, Y2,0

are sampled independently from the distribution N (0, 1.6 · 10−3). We define {Wi,t}4i=1 as an independent one-
dimensional Wiener process.

4.2 Algorithm Settings
Level l corrisponds to discretization ∆l = 2−(l+3). In Algorithms 2 and 5, we perform the resampling step when
the effective sample size (ESS) is lower than N/4. Given iteration k and level l in Algorithm 2, the ESS is defined
as

ESS =

(
N∑
j=1

w2
j

)−1

(21)

with

wj =
F lk,θ(j,u

l,1:N
k,k ) ∧ F lk,θ(j, ů

l,1:N
k,k )∑N

s=1{F lk,θ(s,u
l,1:N
k,k ) ∧ F lk,θ(s, ů

l,1:N
k,k )}

. (22)

In Algorithm 5, the ESS is defined over weights F l−1
k,θ (·,ul−1,1:N

k,k ), F l−1
k,θ (·, ůl−1,1:N

k,k ).

15



We consider S = 5 i.i.d. time series Y st discretized on level l? = 11. For each time series, we perform R = 100
i.i.d. evaluations of the estimators (20) and (16). We consider k? = 2 and m? = 4, where the method of selecting
these parameters is based on the analysis of hitting times τ as described in [22].

For OU and GBM, we considerN = {128, 256, 512, 1024}, while for the LMmodel, we considerN = {362, 512, 724, 1024}.
Thus, to compute the MSE given N , we must estimate the variance of both estimators and the bias of the Rhee-
Glynn estimator (16) since estimator (20) is unbiased.

To compute variance Vl of terms Ψl
T,θ for l > 0, for each time series, we estimate sample variance Vl,s for

N = 1024 over 100 repeats for each time series. Then we average over S quantities to obtain Vl. Similarly, to
assess the variance of estimator (20), for each time series, we compute the sample variance VN,s over 100 repeats
for each time series and we average over S quantities to obtain VN . The bias of the Rhee-Glynn estimator (16) is
computed by evaluating (for each time series) the 95% percentile of 100 realizations of Ψ1

T,θ, and then averaging
over S quantities.

We wish to recover parameter θ1 in the OU and GBM cases, and parameter k in LM by SGD specified in
Algorithm 8 with N = 210. We present the hyper-parameters for each model in Table 1. For each time series, we
perform SGD 10 times with different initializations. Coherently with observed data Y st discretized on level l? = 11,
the empirical distribution p?(l) ∝ ∆

1/2
l (l + 1)(log2(2 + l))2 is normalized over levels l ∈ {0, . . . , 8}.

Algorithm 8 Stochastic Gradient Descent (SGD)

1. Initialization θ given distribution µ(·), learning step α, i = 0, k = 0

2. Compute ξ0 = log(θ)

3. While k ≤ 1000 and i < 10:

• Compute ϕk by (16) or (20)

• Update ξk+1 = ξk + αϕk exp(ξk)

• If | exp(ξk+1)− exp(ξk)| < β, then i = i+ 1, otherwise i = 0

• If (k mod 50) = 0 then α = α/2

• Increase k = k + 1

4. return θ = exp(ξk)

4.3 Results
In Figures 1a, 1b, and 1c, we display the variance convergence of Ψl

T,θ for l ≥ 0, Vl, respectively for the OU and
GBM cases and LM. The convergence rates are lower than the Euler-Maruyama numerical scheme alone. The
reason is the resampling procedure as described in Algorithm 4 implemented when ESS is lower than N/4, indeed,
resampling is applied to avoid ensemble collapse, but ruins the variance convergence rate (see e.g. [18]).

Choosing distribution p?(l) over the level hierarchy is important to obtain a finite variance estimator (19).
In Figures 3a, 3b, and 3c we compute the variance of terms Ψl

T,θ/P
?(l), for two choices of distribution p?(l): a

geometric distribution with success rate p = 0.6 and p?(l) ∝ ∆1/2(l + 1)(log2(2 + l))2. For all numerical cases,
variances explode moving on finest levels with p?(l) distribution modeled as geometric distribution, while finite
variance is achieved with empirical distribution. Such a behavior can be explained observing the survival function
decay rate of the distributions in Figure 2, and compare these rates with variance Vl convergence rates of Ψl

T,θ in
Figures 1. The survival function of the geometric distribution decreases with a rate of about 1.4, while the one of
the empirical distribution decays slower with a rate of about 0.64. While the geometric distribution rate is too high
with respect to Vl variance rates, empirical distribution survival function decay rate is lower than OU and GBM
cases, and slighlty higher for the LM case, displaying an overall improvement of the variance of terms Ψl

T,θ/P
?(l)

and estimator (20). The choice of the empirical distribution does not seem to be optimal for the LM case, but given
the truncation of the level hierarchy for computational feasibility, a finite variance unbiased estimator is achieved
anyways.

We display the MSE in Figures 4a, 4b, and 4c for a fixed number of particle ensemble N , respectively, for the
OU and GBM cases and LM for estimators (20) and (16). We can observe that the MSE achievable by unbiased
estimator (20) with empirical distribution is lower than MSE that unbiased estimator can reach (20) with geometric
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Model µ(·) α β

OU U[0.25,1.25] 5 · 10−2 10−3

GMB U[0.25,1.25] 2.5 · 10−2 10−3

LM U[0.5,3.5] 1.5625 · 10−3 0.05

Table 1: Parameters used in Algorithm 8 for each model.

distribution, consistently with previous variance analysis. On the other side, we can observe as unbiased estimator
(20) built over the empirical distribution is more computationally expensive than the one built over the geometric
distribution. The reason is that, as can be deduced by the survival function displayed in 2, geometric distribution
has most of the mass on coarser levels, while empirical distribution weights the mass more uniformly on the level
hierarchy. With the geometric distribution, mainly coarser and cheaper levels are sampled to build the unbiased
estimator. In comparison, deeper and more expensive levels occur with higher probability when the empirical
distribution is adopted.

Unbiased estimators are compared with biased Rhee-Glynn estimator built on level l = 0. We can observe
that Rhee-Glynn estimator, since evaluated on level l = 0, results cheaper than unbiased estimators, especially
with respect to the unbiased estimator built over the empirical distribution. The MSE solved by the Rhee-Glynn
estimator is slightly lower than the one solved by the unbiased estimator (20) with empirical distribution for the
OU and LM case and higher for the GBM case. The unbiased estimator with respect to Rhee-Glynn estimator has
the advantage that bias is negligible since probability distributions have mass on levels up to frequency close to
observed data Y st .

The unknown parameters estimated by SGD algorithm, θ1 for the OU and GBM cases and k for the LM, are in
Tables 2a, 2b, and 2c. The inferred parameters are consistent with the model values. The iterations before meeting
the stopping condition are higher for the unbiased estimator (20) with geometric distribution with respect to the
other two estimators for its higher variance. Unbiased estimator (20) with empirical distribution and Rhee-Glynn
estimator show a comparable number of iterations as displayed in 5 but unbiased estimator (20) with empirical
distribution is more computationally expensive, coherently with previous analysis.
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Yt θ1 Iterations Time [s]
s Geom Emp RG Geom Emp RG Geom Emp RG
1 0.82 0.82 0.82 220.3 222.3 169.5 2921 24573 267
2 0.60 0.60 0.60 122.5 166.2 60.9 1300 17245 86
3 0.56 0.56 0.56 87.1 151.6 74.3 1962 16541 100
4 0.61 0.61 0.61 140.9 167.5 87.9 2894 16752 120
5 0.80 0.80 0.80 196.1 240.2 185.2 495 27935 291

(a) Ornstein-Uhlenbeck (OU).Ornstein-Uhlenbeck (OU).Ornstein-Uhlenbeck (OU).

Yt θ1 Iterations Time [s]
s Geom Emp RG Geom Emp RG Geom Emp RG
1 0.71 0.71 0.71 150.7 124.2 108.5 1974 16011 212
2 0.65 0.65 0.65 136.1 115.4 105.4 2780 14794 206
3 0.70 0.70 0.70 164.6 112.4 119.7 1755 13302 234
4 0.76 0.76 0.76 172. 149.9 143.9 2274 19358 281
5 0.70 0.70 0.70 172. 142.6 141.4 2082 16642 275

(b) Geometric Brownian motion (GBM).Geometric Brownian motion (GBM).Geometric Brownian motion (GBM).

Yt θ1 Iterations Time [s]
s Geom Emp RG Geom Emp RG Geom Emp RG
1 2.05 2.06 2.04 25.6 17.8 15.7 7983 52764 1191
2 2.05 2.08 2.04 27.8 19.3 16.1 3958 56554 640
3 1.95 1.96 1.93 22.3 18.5 14.2 6933 58394 1070
4 2.06 2.07 2.05 27.7 21.3 15.6 5859 66665 690
5 1.85 1.88 1.85 18.7 16.1 15. 4675 49177 1133

(c) Lorenz model (LM).Lorenz model (LM).Lorenz model (LM).

Table 2: Given time series Y st with s = {1, . . . , 5}, we average over 10 i.i.d. repeats of Algorithm 8 to estimate
unknown parameter (θ1 for Ornstein-Uhlenbeck and Geometric Brownian motion cases, k for Lorenz model), number
of iterations before meeting stop criteria, and computation time in seconds.
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(b) Geometric Brownian motion (GBM).Geometric Brownian motion (GBM).Geometric Brownian motion (GBM).
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(c) Lorenz model (LM)Lorenz model (LM)Lorenz model (LM).

Figure 1: Variance Ψl
T,θ for l = {0, . . . , 4}.
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Figure 2: Survival function P ?(l) for geometric distribution with success rate p = 0.6 and empirical distribution
p?(l) ∝ ∆

1/2
l (l + 1)(log2(2 + l))2.
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(a) Ornstein-Uhlenbeck (OU)Ornstein-Uhlenbeck (OU)Ornstein-Uhlenbeck (OU)

(b) Geometric Brownian motion (GBM).Geometric Brownian motion (GBM).Geometric Brownian motion (GBM).

(c) Lorenz model (LM)Lorenz model (LM)Lorenz model (LM).

Figure 3: Variance Ψl
T,θ/P

?(l) for l = {0, . . . , 4} and N = {27, 28, 29, 210} for OU and GBM cases and N =

{28.5, 29, 29.5, 210} for LM case. Left figure:Left figure:Left figure: Geometric underlying distribution, success rate p = 0.6. Right figure:Right figure:Right figure:
Empirical underlying distribution p?(l) ∝ ∆

1/2
l (l + 1)(log2(2 + l))2.
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(a) Ornstein-Uhlenbeck (OU)Ornstein-Uhlenbeck (OU)Ornstein-Uhlenbeck (OU).
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(b) Geometric Brownian motion (GBM).Geometric Brownian motion (GBM).Geometric Brownian motion (GBM).

8.5 9 9.5 10
log

2
 N

0

2

4

6

8

lo
g

2
(M

S
E

)

8.5 9 9.5 10
log

2
 N

0

2

4

6

8

10

12

14

lo
g

2
(T

im
e[

s]
)

(c) Lorenz model (LM)Lorenz model (LM)Lorenz model (LM).

Figure 4: LeftLeftLeft figurefigurefigure: mean square error (MSE) achieved for fixed N . RightRightRight figurefigurefigure: computation time in seconds
for fixed N .
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(a) Ornstein-Uhlenbeck (OU)Ornstein-Uhlenbeck (OU)Ornstein-Uhlenbeck (OU).
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(b) Geometric Brownian motion (GBM).Geometric Brownian motion (GBM).Geometric Brownian motion (GBM).
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(c) Lorenz model (LM)Lorenz model (LM)Lorenz model (LM).

Figure 5: Stochastic gradient descentStochastic gradient descentStochastic gradient descent. Given time series Y st with s = {1, . . . , 5}, we compute 10 repeats of Algorithm
8 with random initialization. LeftLeftLeft figurefigurefigure: Algorithm 8 solved by Rhee-Glynn estimator (16). RightRightRight figurefigurefigure: Algorithm
8 solved by unbiased estimator (20) with underlying empirical distribution.
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