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Convergence of Langevin-Simulated Annealing algorithms with

multiplicative noise II: Total Variation

Pierre Bras∗† and Gilles Pagès∗

Abstract

We study the convergence of Langevin-Simulated Annealing type algorithms with multiplicative
noise, i.e. for V : Rd → R a potential function to minimize, we consider the stochastic differential
equation dYt = −σσ⊤∇V (Yt)dt+ a(t)σ(Yt)dWt + a(t)2Υ(Yt)dt, where (Wt) is a Brownian motion,
where σ : Rd → Md(R) is an adaptive (multiplicative) noise, where a : R+ → R

+ is a function
decreasing to 0 and where Υ is a correction term. Allowing σ to depend on the position brings
faster convergence in comparison with the classical Langevin equation dYt = −∇V (Yt)dt+ σdWt.
In a previous paper we established the convergence in L1-Wasserstein distance of Yt and of its
associated Euler scheme Ȳt to argmin(V ) with the classical schedule a(t) = A log−1/2(t). In the
present paper we prove the convergence in total variation distance. The total variation case appears
more demanding to deal with and requires regularization lemmas.

Keywords– Stochastic Optimization, Langevin Equation, Simulated Annealing, Neural Networks
MSC Classification– 62L20, 65C30, 60H35

1 Introduction

Langevin-based algorithms are used to solve optimization problems in high dimension and have gained
much interest in relation with Machine Learning. The Langevin equation is a Stochastic Differential
Equation (SDE) which consists in a gradient descent with noise. More precisely, let V : Rd → R

+ be
a coercive potential function, then the associated Langevin equation reads

dXt = −∇V (Xt)dt+ σdWt, t ≥ 0,

where (Wt) is a d-dimensional Brownian motion and where σ > 0. Under standard assumptions, the
invariant measure of this SDE is the Gibbs measure νσ2 of density proportional to e−2V (x)/σ2

and for
small enough σ, this measure concentrates around argmin(V ) [Dal17] [Bra21]. Adding a small noise
to the gradient descent allows to explore the space and to escape from traps such as local minima
or saddle points appearing in non-convex optimization problems [Laz92] [DPG+14]. Such methods
have been recently brought up to light again with Stochastic Gradient Langevin Dynamics (SGLD)
algorithms [WT11] [LCCC16], especially for the deep learning and the calibration of large artificial
neural networks.

The Langevin-simulated annealing SDE is the Langevin equation where the noise parameter is
slowly decreasing to 0, namely

dXt = −∇V (Xt)dt+ a(t)σdWt, t ≥ 0, (1.1)
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where a : R
+ → R

+ is non-increasing and converges to 0. The idea is that the "instantaneous"
invariant measure νa(t)σ which is the Gibbs measure of density ∝ exp(−2V (x)/(a(t)2σ2)) converges
itself to argmin(V ). Although the additive case i.e. where σ is constant has been extensively studied,
little attention has been paid to the multiplicative case i.e. where σ : Rd → Md(R) depends on Xt.

The objective of the present paper is to study the convergence in total variation of the Langevin-
Simulated annealing SDE, i.e. (1.1) with non-constant σ. Following [PP20, Proposition 2.5], we need
to add a correction term in the drift, giving

dYt = −(σσ⊤∇V )(Yt)dt+ a(t)σ(Yt)dWt +


a2(t)




d∑

j=1

∂j(σσ
⋆)(Yt)ij



1≤i≤d


 dt, (1.2)

a(t) =
A√

log(t+ e)
, (1.3)

so that νa(t) is still the the "instantaneous" invariant measure. We also study the convergence of
its Euler-Maruyama scheme Ȳt with decreasing steps and with noisy gradient estimates coming from
stochastic gradient algorithms. We assume in particular the convex uniformity of the potential V
outside a compact set (but we do not assume that the potential is convex) and the ellipticity and the
boundedness of σ.

We studied this SDE and proved the convergence in L1-Wasserstein distance of Y and Ȳ to ν⋆

which is the limit measure of νa as a → 0, in a previous paper [BP21], which the present paper is a
companion paper of. More precisely, we proved that W1(Yt, ν

⋆) is of order a(t) as t → ∞ and that
W1(Yt, ν(a(t))) is of order t−α for every α ∈ (0, 1). For more details, we refer to the introduction of
[BP21]. In particular, for applications to optimization problems arising in Stochastic Optimization
and in Machine Learning and for choices of σ : Rd → Md(R) used by practitioners, we refer to [BP21,
Section 3].

The proof for the total variation distance case relies on the same strategy developed in [BP21].
We first introduce the process X where the coefficient (a(t)) is "by plateaux" i.e. non-increasing and
piecewise constant on time intervals [Tn, Tn+1]. Then we give bounds on dTV(Xt, Yt) using a domino
strategy [BP21, (1.2)]. However the main difference with the L1-Wasserstein distance concerns the
total variation distance between X and Y in small time as in general, it is more difficult to give bounds
in small time for the total variation distance between two processes with close coefficients. Indeed,
considering the functional characterization and comparing it with the L1-Wasserstein distance, if x
and y ∈ R

d are close to each other and if f : Rd → R is Lipschitz-continuous, then we can bound
|f(x) − f(y)| by [f ]Lip|x − y|; however if f is measurable bounded, then we cannot directly bound
|f(x) − f(y)| in terms of |x − y|. Instead, the common strategy of proof in the literature is to use
Malliavin calculus in order to perform an integration by parts and to use bounds on the derivatives
of the density. In this context, [PP20] relies on a highly technical Malliavin approach inducing a
"regularization from the past" (see [PP20, Theorem 3.7 and Appendix C]).

We give bounds in small time relying on the recent paper [BPP21] and we adapt some of the proofs
to the non-homogeneous Markovian setting. These bounds rely on estimates of the density of the
solutions to SDE’s and their derivatives [Fri64]. The strategy of proof is the following: we first reduce
to the null drift case using a Girsanov change of measure. Then we introduce an artificial regularization
in order to perform a Malliavin-type integration by parts and we use Aronson’s bounds on the density
and its derivatives; we need to pay attention to the dependency in the parameter a, controlling the
ellipticity of the SDE and which converges to 0, of the constants that appear in the Aronson bounds.
Moreover, we rely on [DMR18] to give bounds on the total variation between two Gaussian laws.

Contrary to the L1-Wasserstein distance, we do not prove the convergence as t → ∞ of Yt and
Ȳt to ν⋆ since in most of the cases, ν⋆ is supported by a finite number of points and then if Yt has a
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density then dTV(Yt, ν
⋆) = 2. Instead, we prove the convergence in total variation of Yt and Ȳt to their

"instantaneous invariant measure" νa(t) which itself converges to ν⋆ (in law, for the L1-Wasserstein
distance etc, see for example [Hwa80, Theorem 2.1] and [BP21, Lemma 4.6]) and we give bounds on
dTV(Yt, νa(t)) and on dTV(Ȳt, νa(t)) as t→ ∞.

The paper is organized as follows. In Section 2 we give the setting and assumptions of the problem
we consider and state our main results of convergence with convergence rates. This setting is the same
as in [BP21]. In Section 3 we establish bounds in small time for dTV(Xt, Yt) and for dTV(Xt, Ȳt), in
inspired from [BPP21]. In Section 4, we prove the convergence of the plateaux SDEX using exponential
contraction properties. Using this convergence, the convergences of dTV(Yt, νa(t)) and dTV(Ȳt, νa(t))
are proved in Section 5 and 6 respectively.

Notations

We endow the space R
d with the canonical Euclidean norm denoted by | · | and we denote by 〈·, ·〉

the associated canonical inner product. For x ∈ R
d and for R > 0, we denote B(x,R) = {y ∈ R

d :
|y − x| ≤ R}.

For M ∈ (Rd)⊗k, we denote by ‖M‖ its operator norm, i.e. ‖M‖ = supu∈Rd×k, |u|=1M · u. If

M : Rd → (Rd)⊗k, we denote ‖M‖∞ = supx∈Rd ‖M(x)‖. We say that M is Cr
b for some r ∈ N ∪ {0} if

M is bounded and has bounded derivatives up to the order r.
For k ∈ N and if f : Rd → R is Ck, we denote by ∇kf : Rd → (Rd)⊗k its differential of order k. If

f is Lipschitz-continuous, we denote by [f ]Lip its Lipschitz constant.
We denote the total variation distance between two distributions π1 and π2 on R

d:

dTV(π1, π2) = 2 supA∈B(Rd) |π1(A)− π2(A)|.

Without ambiguity, if Z1 and Z2 are two R
d-valued random vectors, we also write dTV(Z1, Z2) to

denote the total variation distance between the law of Z1 and the law of Z2. We have as well

dTV(π1, π2) = sup

{∫

Rd

fdπ1 −
∫

Rd

fdπ1, f : Rd → [−1, 1] measurable

}
.

Moreover, we recall that if π1 and π2 admit densities with respect to some measure reference λ, then

dTV(π1, π2) =

∫

Rd

∣∣∣∣
dπ1
dλ

− dπ2
dλ

∣∣∣∣ dλ.

We denote the Lp-Wasserstein distance between two distributions π1 and π2 on R
d:

Wp(π1, π2) = inf

{(∫

Rd

|x− y|pπ(dx, dy)
)1/p

: π ∈ P(π1, π2)

}
,

where P(π1, π2) stands for the set of probability distributions on (Rd×R
d,Bor(Rd)⊗2) with respective

marginal laws π1 and π2. For p = 1, let us recall the Kantorovich-Rubinstein representation of the
Wasserstein distance of order 1 [Vil09, Equation (6.3)]:

W1(π1, π2) = sup

{∫

Rd

f(x)(π1 − π2)(dx) : f : Rd → R, [f ]Lip = 1

}
.

For x ∈ R
d, we denote by δx the Dirac mass at x.

In this paper, we use the notation C and c to denote real positive constants, which may change
from line to line.
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2 Assumptions and main results

2.1 Assumptions

Let us briefly recall the setting adopted in [BP21]. Let V : Rd → (0,+∞) be a C2 potential function
such that V is coercive and

(x 7→ |x|2e−2V (x)/A2
) ∈ L1(Rd) for some A > 0. (2.1)

Then V admits a minimum on R
d. Moreover, let us assume that

V ⋆ := min
Rd

V > 0, argmin(V ) = {x⋆1, . . . , x⋆m⋆}, ∀ i = 1, . . . ,m⋆, ∇2V (x⋆i ) > 0, (2.2, HV 1)

i.e. minRd V is attained at a finite number m⋆ of points and at each point the Hessian matrix is positive
definite. We then define for a ∈ (0, A] the Gibbs measure νa of density :

νa(dx) = Zae
−2(V (x)−V ⋆)/a2dx, Za =

(∫

Rd

e−2(V (x)−V ⋆)/a2dx

)−1

(2.3)

Following [Hwa80, Theorem 2.1], the measure νa converges weakly to ν⋆ as a → 0, where ν⋆ is the
weighted sum of Dirac measures:

ν⋆ =




m⋆∑

j=1

(
det∇2V (x⋆j )

)−1/2




−1
m⋆∑

i=1

(
det∇2V (x⋆i )

)−1/2
δx⋆

i
. (2.4)

Following [BP21, Lemma 4.6], νa also converges to ν⋆ as a→ 0 for the L1-Wasserstein distance.

We consider the following Langevin SDE in R
d:

Y x0
0 = x0 ∈ R

d, dY x0
t = ba(t)(Y

x0
t )dt+ a(t)σ(Y x0

t )dWt, (2.5)

where, for a ≥ 0, the drift ba is given by

ba(x) = −(σσ⊤∇V )(x) + a2




d∑

j=1

∂j(σσ
⊤)ij(x)



1≤i≤d

=: −(σσ⊤∇V )(x) + a2Υ(x), (2.6)

where W is a standard R
d-valued Brownian motion defined on a probability space (Ω,A,P), where

σ : Rd → Md(R) is C2 and

a(t) =
A√

log(t+ e)
(2.7)

where A is defined in (2.1) and with log(e) = 1. This equation corresponds to a gradient descent on
the potential V with preconditioning σ and multiplicative noise ; the second term in the drift (2.6) is
a correction term (see [PP20, Proposition 2.5]) which is zero for constant σ.

We make the following assumptions on the potential V :

|∇V |2 ≤ CV and sup
x∈Rd

||∇2V (x)|| < +∞, (2.8, HV 2)

which implies in particular that V has at most a quadratic growth. Let us also assume that

σ is bounded and Lipschitz-continuous, ∇2σ is bounded, ∇(σσ⊤)∇V is bounded, (2.9, Hσ)
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and that σ is uniformly elliptic, i.e.

∃
¯
σ0 > 0, ∀x ∈ R

d, (σσ⊤)(x) ≥
¯
σ20Id. (2.10)

Assumptions (2.8, HV 2) and (2.9, Hσ) imply that Υ is also bounded and Lipschitz-continuous and
that ba is Lipschitz-continuous uniformly in a ∈ [0, A]. Let the minimal constant [b]Lip be such that:

∀a ∈ [0, A], ba is [b]Lip-Lipschitz continuous. (2.11)

We make the non-uniform dissipative (or convexity) assumption outside of a compact set: there
exists α0 > 0 and R0 > 0 such that

∀x, y ∈ B(0, R0)
c,
〈(
σσ⊤∇V

)
(x)−

(
σσ⊤∇V

)
(y), x− y

〉
≥ α0|x− y|2. (2.12, Hcf )

Taking y ∈ B(0, R0)
c fixed, letting |x| → ∞ and using the boundedness of σ, (2.12, Hcf ) implies

that |∇V | is coercive. Using (2.8, HV 2) and the boundedness of σ, there exists C > 0 (depending on
A) such that:

∀a ∈ [0, A], 1 + |ba(x)| ≤ CV 1/2(x).

Let (γn)n≥1 be a non-increasing sequence of varying positive steps. We define Γn := γ1 + · · · + γn
and for t ≥ 0:

N(t) := min{k ≥ 0 : Γk+1 > t} = max{k ≥ 0 : Γk ≤ t}. (2.13)

We make the classical assumptions on the step sequence, namely

γn ↓ 0,
∑

n≥1

γn = +∞ and
∑

n≥1

γ2n < +∞ (2.14, Hγ1)

and we also assume that

̟ := lim sup
n→∞

γn − γn+1

γ2n+1

<∞. (2.15, Hγ2)

For example, if γn = γ1/n
η with η ∈ (1/2, 1) then ̟ = 0; if γn = γ1/n then ̟ = γ1.

In stochastic gradient algorithms, the true gradient is measured with a zero-mean noise ζ, which law
only depends on the current position. That is, let us consider a family of random fields (ζn(x))x∈Rd,n∈N

such that for every n ∈ N, (ω, x) ∈ Ω × R
d 7→ ζn(x, ω) is measurable and for all x ∈ R

d, the law of
ζn(x) only depends on x and (ζn(x))n∈N is an i.i.d. sequence independent of W . We make the following
assumptions:

∀x ∈ R
d, ∀p ≥ 1, E[ζ1(x)] = 0 and E[|ζ1(x)|p] ≤ CpV

p/2(x). (2.16)

We then consider the Euler-Maruyama scheme with decreasing steps associated to (Yt):

Ȳ x0
0 = x0, Ȳ x0

Γn+1
= ȲΓn + γn+1

(
ba(Γn)(Ȳ

x0
Γn

) + ζn+1(Ȳ
x0
Γn

)
)
+ a(Γn)σ(Ȳ

x0
Γn

)(WΓn+1 −WΓn), (2.17)

We extend Ȳ x0
·

on R
+ by considering its genuine continuous interpolation:

∀t ∈ [Γn,Γn+1), Ȳ
x0
t = Ȳ x0

Γn
+ (t− Γn)

(
ba(Γn)(Ȳ

x0
Γn

) + ζn+1(Ȳ
x0
Γn

)
)
+ a(Γn)σ(Ȳ

x0
Γn

)(Wt −WΓn). (2.18)
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2.2 Main results

Theorem 2.1. (a) Let Y be defined in (2.5). Assume (2.2, HV 1), (2.8, HV 2), (2.9, Hσ), (2.10) and
(2.12, Hcf ). Then, for every α ∈ (0, 1), if A is large enough, then for every x0 ∈ R

d and for
every t > 0:

dTV

(
Y x0
t , νa(t)

)
≤ CeC

√
log(t)(1+|x0|2)t−α. (2.19)

(b) Let Ȳ be defined in (2.17). Assume (2.2, HV 1), (2.8, HV 2), (2.9, Hσ), (2.10) and (2.12, Hcf).
Assume furthermore that σ ∈ C2r

b . Assume furthermore (2.14, Hγ1) and (2.15, Hγ2), that V is
C3 with ‖∇3V ‖ ≤ CV 1/2 and that σ is C3 with ‖∇3(σσ⊤)‖ ≤ CV 1/2. Then, for every α ∈ (0, 1),
if A is large enough, then for every x0 ∈ R

d and for every t > 0:

dTV

(
Ȳ x0
t , νa(t)

)
≤ C

(
log1/2(t)max

[
V 2(x0), 1 + |x0|

]
t−α + eC

√
log(t)(1+|x0|2)tC/A2

γ
r/(2r+1)
N(Ct)

)
.

(2.20)

Remark 2.2. Depending on the step sequence (γn), we can compare the two terms arising in the
right-hand side of (2.20). For example, if γn = γ1n

−η for some η ∈ (1/2, 1], then

• If η = 1, then γN(Ct) ≍ e−Ct and the first term is the dominating term.

• If η ∈ (1/2, 1) then γN(Ct) ≍ (Ct)−η/(1−η).

2.3 Extensions and interpolations of the processes

Let us define the following processes that will be used as auxiliary tools in the proofs.
• We define (Xt) as the solution the following SDE where the coefficients piecewisely depend on

the time; X is then said to be "by plateaux":

Xx0
0 = x0, dXx0

t = bak+1
(Xx0

t )dt+ ak+1σ(X
x0
t )dWt, t ∈ [Tk, Tk+1], (2.21)

where ba is defined in (2.6) and the time schedule (Tn) is defined by

Tn := C(T )n
1+β, (2.22)

where C(T ) > 0, β > 0 and an := a(Tn). More generally, we define (Xx,n
t ) as the solution of

Xx,n
0 = x, dXx,n

t = bak+1
(Xx,n

t )dt+ ak+1σ(X
x,n
t )dWt, t ∈ [Tk − Tn, Tk+1 − Tn], k ≥ n, (2.23)

i.e. (Xx,n
t ) has the conditional law of (XTn+t)t≥0 given XTn = x. We have Xx

t = Xx,0
t . The Markov

transition kernel associated to X ·,n denoted PX,n
t reads on Borel functions f : Rd → R

+, PX,n
t f(x) =

E[f(Xx,n
t )].

• Considering now the original SDE (2.5), we also define for every x ∈ R
d and every fixed u ≥ 0:

Y x
0,u = x, dY x

t,u = ba(t+u)(Y
x
t,u)dt+ a(t+ u)σ(Y x

t,u)dWt, (2.24)

so that Y x = Y x
·,0. We define the Markov transition kernel associated to Y between the times t and

t+ u by P Y
t,u such that for all Borel functions f : Rd → R

+, P Y
t,uf(x) = E[f(Y x

t,u)].

• Considering finally (2.17) and (2.18), we define for every n ≥ 0, (Ȳ x
t,Γn

)t≥0, first at times Γk −Γn,
k ≥ n, by

Ȳ x
0,Γn

= x, Ȳ x
Γk+1−Γn,Γn

= Ȳ x
Γk−Γn,Γn

+ γk+1

(
ba(Γk)(Ȳ

x
Γk−Γn,Γn

) + ζk+1(Ȳ
x
Γk−Γn,Γn

)
)

+ a(Γk)σ(Ȳ
x
Γk−Γn,Γn

)(WΓk+1
−WΓk

), (2.25)
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then at every time t by the genuine interpolation on the intervals ([Γk −Γn,Γk+1 −Γn))k≥n as before.
In particular Ȳ x = Ȳ x

·,0. Still more generally, we define Ȳ x
t,u where u ∈ (Γn,Γn+1) as

Ȳ x
0,u = x, Ȳ x

t,u =

{
x+ t(ba(x) + ζn+1(x)) + a2(u)σ(x)(Wt −WΓu) if t ∈ [u,Γn+1]

= Ȳ
Ȳ x
Γn+1−u,u

t−(Γn+1−u),Γn+1
if t > Γn+1.

For n, k ≥ 0, for u ∈ [Γk,Γk+1) and γ ∈ [0,Γk+1−u], let P Ȳ
γ,u be the Markov transition kernel associated

to Ȳ·,u between the times 0 and γ i.e. for all Borel functions f : Rd → R
+, P Ȳ

γ,uf(x) = E[f(Ȳ x
γ,u)].

3 Bounds in total variation for small t

In this section we give bounds for the total variation distance between the processes X, Y and Ȳ .
Although such bounds are straightforward for Lp-distances, they are more difficult to establish for
dTV. To this end we adopt a strategy similar to [BPP21].

For x ∈ R
d and for a ∈ R

+ we define the "cut" drift b̃xa : Rd → R
d which is the drift ba which

is null outside a compact set centred on x. More precisely, we choose R > 0 and we consider a C∞

decreasing function ψ : R+ → R
+ such that ψ = 1 on [0, R2] and ψ = 0 on [(R+1)2,∞) and we define

b̃xa(y) := ba(y)ψ(|y − x|2), so that |b̃xa| is bounded by C(1 + |x|) since ba is Lipschitz-continuous.
For σ : Rd → Md(R), we denote the martingale:

M(σ)x0 = x, dM(σ)xt = σ(M(σ)xt )dWt (3.1)

with its associated one-step Euler-Maruyama scheme:

M̄(σ)xt = x+ σ(x)Wt. (3.2)

Lemma 3.1. Let Z be solution of the following SDE:

dZx
t = u(t)σ

Z
(Zx

t )dWt,

where u : R+ → (0,∞) is C1 and bounded. Then (Zt) ∼ (M(σ)F (−1)(t)), where F : R+ → R
+ is

solution of the differential equation

F (0) = 0, F ′(t) =
1

u2(F (t))

and where F (−1) denotes the (continuous) inverse function of F .

Proof. First, F is well defined and is strictly increasing with F (t) → ∞ as t→ ∞ since u is bounded,
so that F (−1) : R+ → R

+ is well defined as well. We have

d
(
Zx
F (t)

)
= u(F (t))σ

Z
(Zx

F (t))d
(
WF (t)

)
= F ′(t)1/2u(F (t))σ

Z
(Zx

F (t))dW̃t = σ
Z
(Zx

F (t))dW̃t.

where W̃ is the Brownian motion defined by W̃t =
∫ t
0 (F

′(s))−1/2dWF (s).

3.1 Total variation bound in small time for the Euler-Maruyama scheme

Proposition 3.2. Assume that σ ∈ C2r
b . There exists C > 0 such that for every n, k ≥ 0, for every

u ∈ [Γk,Γk+1) and every t > 0 such that u ∈ [Tn, Tn+1], t ≤ Γk+1 − u and u+ t ∈ [Tn, Tn+1],

dTV(X
x,n
t , Ȳ x

t,u) ≤ CeCa−1
n+1(1+|x|2)tr/(2r+1) + Ca−2

n (an − an+1). (3.3)
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Proof. We apply a strategy of proof similar to [BPP21, Theorem 2.2]. However we need to pay attention
to the dependency of the constants in the bounds in (an). Let us write

dTV(X
x,n
t , Ȳ x

t,u) ≤ dTV(X
x,n
t , X̃x,n

t ) + dTV(X̃
x,n
t , Zx,n

t ) + dTV(Z
x,n
t , Z̄x,n

t )

+ dTV(Z̄
x,n
t , X̄x,n

t ) + dTV(X̄
x,n
t , Ȳ x

t,u), (3.4)

where

X̃x,n
0 = x, dX̃x,n

t = b̃xan+1
(X̃x,n

t )dt+ an+1σ(X̃
x,n
t )dWt,

Zx,n
0 = x, dZx,n

t = an+1σ(Z
x,n
t )dWt,

Z̄x,n
0 = x, Z̄x,n

t = x+ an+1σ(x)Wt.

• Using [BPP21, Lemma 3.2], we have

dTV(X
x,n
t , X̃x,n

t ) ≤ C(1 + |x|2)t,

where the constant C does not depend on n.

• We use [QZ04, Theorem 2.4] and we rework the bound from [BPP21, Lemma 3.5] to make explicit
the dependency in an. Reworking [BPP21, Lemma 3.4], we have for q ≥ 1:

E

[
sups∈[0,t] |Ux,n

s |2q
]
≤ CeCqa

−1
n+1(1+|x|2), (3.5)

Ux,n
0 = 1, dUx,n

s = a−1
n+1U

x,n
s

〈
σ−1(Zx,n

s )b̃xan+1
(Zx,n

s ), dWs

〉
.

Moreover, following Lemma 3.1 we have (Zx,n
t ) ∼ (M(σ)x

F (−1)(t)
) where the process (M(σ)t) does not

depend on n and where F (−1)(t) = a2n+1t. Thus following [Fri64, Chapter 9, Theorem 7] (also see
[BPP21, Theorem 3.1] for the application to SDE’s) and since σ ∈ C2

b we have

|∇xpM(σ)
(t, x, y)| ≤ C

t(d+1)/2
e−c|y−x|2/t (3.6)

and then

|∇xpZ
(t, x, y)| = |∇xpM(σ)

(a2n+1t, x, y)| ≤
Ca

−(d+1)
n+1

t(d+1)/2
e−ca−2

n+1|y−x|2/t ≤ Ca
−(d+1)
n+1

t(d+1)/2
e−c|y−x|2/t.

Then using [BPP21, Lemma 3.5] with the adapted bound on Ux,n
s (3.5) along with [QZ04, Theorem

2.4], we obtain

dTV(X̃
x,n
t , Zx,n

t ) ≤ CeCa−1
n+1(1+|x|2)t1/2. (3.7)

The same way, we obtain

dTV(Z̄
x,n
t , X̄x,n

t ) ≤ CeCa−1
n+1(1+|x|2)t1/2.

• Following Lemma 3.1, we have (Zx,n
t ) ∼ (M(σ)x

a2n+1t
) and (Z̄x,n

t ) ∼ (M̄(σ)x
a2n+1t

), where both

processes M(σ) and M̄(σ) do not depend on n. We then use [BPP21, Theorem 2.2] to get

dTV(M(σ)xt , M̄(σ)xt ) ≤ CeC|x|2tr/(2r+1)

which implies

dTV(Z
x,n
t , Z̄x,n

t ) ≤ CeC|x|2a
2r/(2r+1)
n+1 tr/(2r+1) ≤ CeC|x|2tr/(2r+1).
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• Let us now investigate dTV(X̄
x,n
t , Ȳ x

t,u). Conditionally to ζ(x), both random vectors are Gaussian
vectors with

X̄x,n
t ∼ N

(
x+ tban+1(x), a

2
n+1tσσ

⊤(x)
)

and Ȳ x
t,u ∼ N

(
x+ tba(u)(x) + tζ(x), a2(u)tσσ⊤(x)

)
.

Then, conditionally to ζ(x) we have

dTV(X̄
x,n
t , Ȳ x

t,u) ≤ dTV

(
N
(
x+ tban+1(x), a

2
n+1tσσ

⊤(x)
)
,N
(
x+ tba(u)(x) + tζ(x), a2n+1tσσ

⊤(x)
))

+ dTV

(
N
(
x+ tba(u)(x) + tζ(x), a2n+1tσσ

⊤(x)
)
,N
(
x+ tba(u)(x) + tζ(x), a2(u)tσσ⊤(x)

))

=: D1 +D2.

We then refer to [DMR18] which gives bounds on the total variation between two Gaussian laws, first
in the case d > 1. Using [DMR18, Theorem 1.1] with λ1 = · · · = λd = (a(u)2 − a2n+1)/a

2
n+1, we have

D2 ≤ C

(
a2(u)− a2n+1

a2n+1

)
≤ Ca−1

n (an − an+1).

Using [DMR18, Theorem 1.2], since the ρi’s are bounded independently of n and since for every y ∈ R
d,

y⊤σσ⊤(x)y ≥
¯
σ20 |y|2, we have

D1 ≤ C
√
ta−1

n+1(1 + |ζ(x)|1/2).

Now, integrating over the law of ζ(x) and using that E|ζ(x)| ≤ CV (x), we obtain

dTV(X̄
x,n
t , Ȳ x

t,u) ≤ Ca−1
n (an − an+1) + C

√
t(1 + V 1/2(x)).

In the case d = 1, we use [DMR18, Theorem 1.3] and obtain the same bounds.

• Conclusion: Considering (3.4), we get

dTV(X
x,n
t , Ȳ x

t,u) ≤ C(1 + |x|2)t+ CeCa−1
n+1(1+|x|2)t1/2 + CeC|x|2tr/(2r+1)

+Ca−1
n (an − an+1) +C

√
t(1 + V 1/2(x))

≤ CeCa−1
n+1(1+|x|2)tr/(2r+1) + Ca−1

n (an − an+1).

3.2 Total variation bound in small time for the continuous SDE

Proposition 3.3. Assume that σ ∈ C2r
b and let γ̄ > 0. There exists C > 0 such that for all ε > 0,

n ≥ 0, u, t ≥ 0 such that u ∈ [Tn, Tn+1], u+ t ∈ [Tn, Tn+1] and t ≤ γ̄,

dTV(X
x,n
t , Y x

t,u) ≤ CeCa−1
n+1(1+|x|2)t1/2 + Ca

−(d+r)
n+1 (a(u) − an+1)

2r/(2r+1). (3.8)

Proof. We have

dTV(X
x,n
t , Y x

t,u) ≤ dTV(X
x,n
t , X̃x,n

t ) + dTV(X̃
x,n
t , Zx,n

t ) + dTV(Z
x,n
t , Z̃x

t,u)

+ dTV(Z̃
x
t,u, Ỹ

x
t,u) + dTV(Ỹ

x
t,u, Y

x
t,u) (3.9)

where

dX̃x,n
t = b̃xan+1

(X̃x,n
t )dt+ an+1σ(X̃

x,n
t )dWt,
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dZx,n
t = an+1σ(Z

x,n
t )dWt,

dZ̃x
t,u = a(u+ t)σ(Z̃x

t,u)dWt,

dỸ x
t,u = b̃xa(u+t)(Ỹ

x
t,u)dt+ a(u+ t)σ(Ỹ x

t,u)dWt.

Using [BPP21, Lemma 3.2], we have

dTV(X
x,n
t , X̃x,n

t ) + dTV(Ỹ
x
t,u, Y

x
t,u) ≤ C(1 + |x|2)t.

Using (3.7) again, we have

dTV(X̃
x,n
t , Zx,n

t ) ≤ CeCa−1
n+1(1+|x|2)t1/2.

Moreover, using [QZ04, Theorem 2.4] (with an immediate adaptation to the non-homogeneous case)
and establishing the same bounds as in [BPP21, Lemma 3.5], we also have

dTV(Z̃
x
t,u, Ỹ

x
t,u) ≤ CeCa−1

n+1(1+|x|2)t1/2. (3.10)

We now turn to dTV(Z
x,n
t , Z̃x

t,u). Using Lemma 3.1 as in (3.6) we have

|∇2r
y pZ

(t, x, y)| = |∇2r
y pM(σ)

(a2n+1t, x, y)| ≤ C
a
−(d+r)
n+1

t(d+r)/2
e−c|x−y|2/t.

To bound pZ̃ we use the change of time F satisfying F ′(t) = a−2(u+ F (t)) so that

a−2
n t ≤ F (t) ≤ a−2

n+1t and a2n+1t ≤ F (−1)(t) ≤ a2nt

and then

|∇2r
y pZ̃

(t, x, y)| = |∇2r
y pM(σ)

(F (−1)(t), x, y)| ≤ C
a
−(d+r)
n+1

t(d+r)/2
e−c|x−y|2/t.

We prove as in [BP21, Lemma 6.2] that

‖Zx,n
t − Z̃x

t,u‖1 ≤ C(a(u)− an+1)t
1/2

and then using [BPP21, Proposition 2.3] we get for every ε > 0:

dTV(Z
x,n
t , Z̃x

t,u) ≤ Ca
−(d+r)
n+1 εrt−r + Cε−1/2(a(u)− an+1)t

1/2.

Choosing ε = (a(u)− an+1)
2/(2r+1)t yields

dTV(Z
x,n
t , Z̃x

t,u) ≤ Ca
−(d+r)
n+1 (a(u)− an+1)

2r/(2r+1).

• Conclusion: considering (3.9), we get

dTV(X
x,n
t , Y x

t,u) ≤ C(1 + |x|2)t+ CeCa−1
n+1(1+|x|2)t1/2 +Ca

−(d+r)
n+1 (a(u)− an+1)

2r/(2r+1).

Remark 3.4. As in [BPP21, Theorem 2.3], we could improve the dependency in |x| in (3.3) and (3.8),
at the expanse of further assumptions on V . However it would require to track the dependency in the
ellipticity (in an) in the bounds proved in [MPZ21], which rely on Malliavin calculus. We believe that
it would considerably increase the length and the technicality of the present article, while bringing no
significant improvement to our final results.
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4 Convergence of the plateau SDE Xt in total variation

In this section, we prove the convergence of the plateau SDE (Xt) defined in (2.21).

4.1 Exponential contraction in total variation

We first show that the property of exponential contraction that holds for the L1-Wasserstein distance
under the setting described in Section 2.1 (see [BP21, Theorem 4.2]) also holds for the total variation
distance.

Theorem 4.1. Let X be the solution to

Xx
0 = x, dXx

t = ba(X
x
t )dt+ aσ(Xx

t )dWt, (4.1)

with a ∈ (0, A] and where ba is defined in (2.6), so that νa defined in (2.3) is the unique invariant
distribution of X ([PP20, Proposition 2.5]). Let t0 ∈ (0, 1]. Under the assumption (2.12, Hcf),

(a) For every x, y ∈ R
d and for every t ≥ t0 we have

dTV(X
x
t ,X

y
t ) ≤ Ca−1eC1/a2e−ρat|x− y|, ρa := e−C2/a2 . (4.2)

(b) For every x ∈ R
d and for every t ≥ t0 we have

dTV(X
x
t , νa) ≤ Ca−1eC1/a2e−ρatνa(|x− ·|). (4.3)

Proof. (a) Following [BP21, Theorem 4.2], we have

∀x, y ∈ R
d, W1 (X

x
t ,X

y
t ) ≤ CeC1/a2 |x− y|e−ρat.

Let t ≥ t0 and let f : Rd → R a Borel bounded function. Then

E[f(Xx
t )]− E[f(Xy

t )] = E[PX
t0 f(X

x
t−t0)]− E[PX

t0 f(X
x
t−t0)],

where PX denotes the kernel associated to X. But using [PP20, Proposition 3.1] we have for every z1
and z2 ∈ R

d,

PX
t0 f(z2)− PX

t0 f(z1) = 〈∇PX
t0 f(ξ), z2 − z1〉 =

1

t0
E

[
f(Xξ

t )

〈∫ t0

0
(a−1σ−1(Xξ

s )Y
ξ
s )

⊤dWs, z2 − z1

〉]
,

where ξ ∈ (z1, z2) and (Y ξ
s )s≥0 denotes the tangent process of (Xξ

s ), i.e.

Y ξ
0 = Id, dY ξ

s = ∇ba(Xξ
s )Y

ξ
s ds+ a∇σ(Xξ

s )Y
ξ
s ⊗ dWs. (4.4)

Since ∇σ and ∇ba are bounded (uniformly in a), we have

supξ∈Rd,s∈[0,t0] E‖Y
ξ
s ‖22 < +∞,

where the bound does not depend on a. So that

PX
t0 f(z2)− PX

t0 f(z1) ≤ C||f ||∞|z2 − z2|a−1 sup
ξ∈Rd,s∈[0,t0]

E‖Y ξ
s ‖2,

and then [PX
t0 f ]Lip ≤ Ca−1‖f‖∞. Then we obtain

dTV(X
x
t ,X

y
t ) ≤ Ca−1W1(X

x
t−t0 ,X

y
t−t0) ≤ Ca−1eC1/a2e−ρat|x− y|.

(b) As νa is the invariant distribution of the diffusion (4.1) we have

dTV (Xx
t , νa) ≤

∫

Rd

dTV (Xx
t ,X

y
t ) νa(dy) ≤ CeC1/a2e−ρat

∫

Rd

|x− y|νa(dy)

≤ CeC1/a2e−ρatνa(|x− ·|).
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4.2 Convergence of the plateau SDE

Let (Tn) be the time schedule defined in (2.22) and by a slight abuse of notation we define

an := a(Tn) =
A√

log(Tn + e)
and ρn := ρan = e−C2/a2n . (4.5)

We recall that [BP21, Lemma 4.3]

0 ≤ an − an+1 ≍ (n log3/2(n))−1. (4.6)

Proposition 4.2. Let νa, a ∈ (0, A], be the Gibbs measure defined in (2.3). Assume that V is coercive,
that (x 7→ |x|2e−2V (x)/A2

) ∈ L1(Rd) and (2.2, HV 1). Then for n ≥ 2,

dTV(νan , νan+1) ≤
C

n log(n)
. (4.7)

Moreover, for every s, t ∈ [an+1, an], we have

dTV(νs, νt) ≤
C

n log(n)
. (4.8)

The proof is given in the Appendix A.1.
We now prove the convergence of the SDE "by plateaux" for the total variation distance.

Theorem 4.3. Let X be the process defined in (2.21) and (2.23). Let t0 be defined as in Theorem 4.1.
If A > max(

√
(1 + β−1)C2,

√
(1 + β)C1) where C1 and C2 are defined in (4.2), then for all x0 ∈ R

d

and for all C ′
(T ) < C(T ), for all large enough n ≥ n(C ′

(T )), on the time schedule (Tn) we have

dTV(X
x0
Tn
, νan) ≤ Ca−1

n n−1+(β+1)C1/A2
exp

(
−(C ′

(T ))
1−C2/A2

(β + 1)nβ−(β+1)C2/A2
)
(1 + |x0|) (4.9)

and for every t ∈ R
+ \ (⋃n≥1[Tn, Tn + t0]) we have

dTV(X
x0
t , νa(t)) ≤

C(1 + |x0|)
t(1+β)−1−C1/A2 log(t+ e)

. (4.10)

Proof. For fixed x ∈ R
d and using Theorem 4.1, we have for every bounded Borel function f : Rd → R,

E[f(Xx,n
Tn+1−Tn

)]− E[f(Zan+1)] ≤ Ca−1
n+1e

C1/a2n+1e−ρan+1 (Tn+1−Tn)‖f‖∞E|x− Zan+1 |,

where Zan+1 ∼ νan+1 . Now integrating x with respect to the law of Xx0
Tn

yields

dTV(X
x0
Tn+1

, νan+1) ≤ Ca−1
n+1e

C1/a2n+1e−ρan+1 (Tn+1−Tn)
(
W1(X

x0
Tn
, νan) +W1(νan+1 , νan)

)

≤ C
a−1
n+1µn+1

n log3/2(n)
(1 + |x0|),

µn := eC1/a2n+1e−ρan+1(Tn+1−Tn) (4.11)

where we used [BP21, Theorem 5.1] and [BP21, Proposition 4.4]. We use the bound on µn given by
[BP21, (5.5)]. Then to bound dTV(X

x0
t , νan+1) for any t ∈ (Tn + t0, Tn+1), we apply Theorem (4.1) on

the time interval [Tn, t] which length is not smaller than t0 and we conclude as in the proof of [BP21,
Theorem 5.1].

Remark 4.4. The condition that t does not belong in any interval [Tn, Tn + t0] is a technical condition
which is specific to our strategy of proof. However this condition is not a problem for the convergence
of Yt and Ȳt since for these two processes, the time schedule (Tn) is only a tool for the proof.
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5 Convergence of Yt in total variation

We now consider (Yt) as defined in (2.5) with extended definition (2.24).

5.1 Preliminary lemmas

Lemma 5.1. Let λ ∈ R
+. There exists C > 0 such that for every n ≥ 0, u ≥ 0 and every x ∈ R

d:

sup
t≥0

E

[
eλ|X

x,n
t |2

]
≤ Ceλ|x|

2
and sup

t≥0
E

[
eλ|Y

x
t,u|

2
]
≤ Ceλ|x|

2
. (5.1)

Sketch of proof. By Itō’s Lemma, we have for k ≥ n and for t ∈ [Tk − Tn, Tk+1 − Tn):

d
(
eλ|X

x,n
t |2

)
= λeλ|X

x,n
t |2 (2〈Xx,n

t , dXx,n
t 〉+ d〈Xx,n〉t) + 2λ2|Xx,n

t |2eλ|Xx,n
t |2d〈Xx,n〉t

= λeλ|X
x,n
t |2

(
− 2〈σσ⊤∇V (Xx,n

t ),Xx,n
t 〉dt+ 2a2n+1〈Xx,n

t ,Υ(Xx,n
t )〉dt

+ 2an+1〈Xx,n
t , σ(Xx,n

t )dWt〉+ a2n+1 Tr(σσ
⊤(Xt))dt

)

+ 2λ2eλ|X
x,n
t |2a2n+1(X

x,n
t )⊤σσ⊤(Xx,n

t )Xx,n
t dt

the "dominating" term is −〈σσ⊤∇V (Xx,n
t ),Xx,n

t 〉dt which makes E[eλ|X
x,n
t |2 ] decrease. Using assump-

tion (2.12, Hcf ), we have for |Xx,n
t | large enough,

−〈σσ⊤∇V (Xx,n
t ),Xx,n

t 〉 ≤ −C
¯
σ20α0|Xx,n

t |2.

Moreover, using the facts that Υ and σ are bounded, that an → 0, that |∇V | ≤ CV 1/2 and that
σσ⊤ ≥

¯
σ20Id, for large enough |Xx,n

t | and large enough n, the coefficient in dt in the last equation is
negative. We deal with the cases where |Xx,n

t | is not large enough or where n is not large enough the
same way as in the proof of [BP21, Lemma 6.1] and [BP21, Lemma 7.1], where more details can be
found.

The proof is the same for Y , replacing ak+1 by a(u+ t).

Proposition 5.2. Let T , γ̄ > 0. There exists C > 0 such that for every Borel bounded function
f : Rd → R and every t ∈ (0, T ], for all n ≥ 0, for all γ < γ̄ such that u ∈ [Tn, Tn+1] and u+ t+ γ ∈
[Tn, Tn+1],

∣∣∣E
[
PX,n
t f(Y x

γ,u)
]
− E

[
PX,n
t f(Xx,n

γ )
]∣∣∣ ≤ Ca−2

n+1(an − an+1)‖f‖∞γt−1V (x). (5.2)

Proof. We apply [BP21, Proposition 6.4] to gt := PX,n
t f with t > 0. Following [PP20, Proposition

3.2(b)], we have

Φgt(x) ≤ C‖f‖∞a−2
n+1t

−1max

(
V 1/2(x),

∣∣∣∣∣

∣∣∣∣∣ sup
ξ∈(Xx,n

γ ,Y x
γ,u)

V 1/2(ξ)

∣∣∣∣∣

∣∣∣∣∣
2

, V 1/2(x)

∣∣∣∣∣

∣∣∣∣∣ sup
ξ∈(x,Xx,n

γ )

V 1/2(ξ)

∣∣∣∣∣

∣∣∣∣∣
2

)
.

We conclude as in the proof of [BP21, Proposition 6.5].
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5.2 Proof of Theorem 2.1(a)

More precisely, we prove that for all β > 0, if

A > max
(√

(β + 1)(2C1 + C2),
√

(1 + β−1)C2

)
, (5.3)

then

dTV

(
Y x0
t , νa(t)

)
≤ CeC

√
log(t)(1+|x0|2)

t(1+β)−1−(2C1+C2)/A2 . (5.4)

Proof. We follow the proof of [BP21, Theorem 2.1(b)] in [BP21, Section 7.3] based on a domino strategy
with respect to some decreasing step sequence (γn), even though Y is not an Euler-Maruyama scheme.
In this case, the step sequence (γn) is only a tool for the proof. This way we can choose freely the
sequence (γn) in this section. We use Theorem 4.1 in place of [BP21, Theorem 4.2] and Proposition
5.2 in place of [BP21, Proposition 7.4]. For f : Rd → R bounded measurable and for x ∈ R

d we write

∣∣∣Ef(Xx,n
Tn+1−Tn

)− Ef(Y x
Tn+1−Tn,Tn

)
∣∣∣ ≤

∣∣∣(P Y
γinit,Tn

− PX,n
γinit) ◦ PX,n

Tn+1−ΓN(Tn)+1
f(x)

∣∣∣

+

N(Tn+1−T )∑

k=N(Tn)+2

∣∣∣P Y
γinit,Tn

◦ P Y
γN(Tn)+2,ΓN(Tn)+1

◦ · · · ◦ P Y
γk−1,Γk−2

◦ (P Y
γk ,Γk−1

− PX,n
γk

) ◦ PX,n
Tn+1−Γk

f(x)
∣∣∣

+

N(Tn+1)−1∑

k=N(Tn+1−T )+1

∣∣∣P Y
γinit,Tn

◦ P Y
γN(Tn)+2,ΓN(Tn)+1

◦ · · · ◦ P Y
γk−1,Γk−2

◦ (P Y
γk ,Γk−1

− PX,n
γk

) ◦ PX,n
Tn+1−Γk

f(x)
∣∣∣

+

∣∣∣∣P
Y
γinit,Tn

◦P Y
γN(Tn)+2,ΓN(Tn)+1

◦ · · · ◦P Y
γN(Tn+1)−1,ΓN(Tn+1)−2

◦(P Y
γend+γN(Tn+1)

,ΓN(Tn+1)−1
−PX,n

γend+γN(Tn+1)
)f(x)

∣∣∣∣

=: (cinit) + (a) + (b) + (cend),

where

γinit := ΓN(Tn)+1 − Tn ≤ γN(Tn)+1 and γend := Tn+1 − ΓN(Tn+1) ≤ γN(Tn+1)+1.

Then we have

(a) ≤ Ca−3
n+1e

C1a
−2
n+1e−ρn+1Tn+1‖f‖∞V (x)(an − an+1)

N(Tn+1−T )∑

k=N(Tn)+2

γke
ρn+1Γk

≤ Ca−3
n+1e

C1a
−2
n+1‖f‖∞(an − an+1)V (x)ρ−1

n+1.

We obtain likewise

(cinit) ≤ Ca−3
n+1e

−ρn+1(Tn+1−Tn)‖f‖∞(an − an+1)γN(Tn)V (x).

Applying Proposition 5.2 yields

(b) ≤ Ca−2
n+1(an − an+1)‖f‖∞V (x)

N(Tn+1)−1∑

k=N(Tn+1−T )+1

γk
Tn+1 − Γk

≤ Ca−2
n+1(an − an+1)‖f‖∞V (x) log(1/γN(Tn+1)).

Applying Proposition 3.3 with r = 1 along with Lemma 5.1 yields

(cend) ≤ C‖f‖∞
(
eCa−1

n+1(1+|x|2)γ
1/2
N(Tn)

+ a
−(d+1)
n+1 (a(Tn+1 − γN(Tn+1))− an+1)

2/3
)
.

14



But we have

a(Tn+1−γN(Tn+1))− an+1 = a(Tn+1−γN(Tn+1))− a(Tn+1) ≤ C
da

dt
(Tn+1) · γN(Tn+1) ≤

CγN(Tn+1)

Tn+1
.

We now choose γn = γ1n
−2/3 so that γN(Tn) ≍ n−2 and then

(cend) ≤ CeCa−1
n+1(1+|x|2)n−1.

This way we obtain for every x ∈ R
d:

|Ef(Xx,n
Tn+1−Tn

)− Ef(Y x
Tn+1−Tn,Tn

)| ≤ C‖f‖∞ a−3
n+1e

C1a
−2
n+1(an − an+1)V (x)ρ−1

n+1︸ ︷︷ ︸
=:vn+1

eCa−1
n+1(1+|x|2). (5.5)

We integrate this inequality with respect to the laws of Xx0
Tn

and Ȳ x0
Tn

and obtain, temporarily setting
xn := Xx0

Tn
and yn := Y x0

Tn
and using [BP21, Lemma 6.1] and Lemma 5.1,

dTV(X
x0
Tn+1

, Y x0
Tn+1

) ≤ dTV(X
xn,n
Tn+1−Tn

,Xyn,n
Tn+1−Tn

) + dTV(X
yn,n
Tn+1−Tn

, Y ȳn
Tn+1−Tn,Tn

)

≤ Ca−1
n+1e

C1a
−2
n+1e−ρn+1(Tn+1−Tn)

︸ ︷︷ ︸
:=µ′

n+1=a−1
n+1µn+1

dTV(X
x0
Tn
, Y x0

Tn
) + Cvn+1e

Ca−1
n+1(1+|x0|2)

︸ ︷︷ ︸
:=wn+1

,

where µn is defined in (4.11). Iterating this inequality yields

dTV(X
x0
Tn+1

, Y x0
Tn+1

) ≤ C(wn+1 + µ′n+1wn + · · ·+ µ′n+1 · · ·µ′2w1) ≤ Cwn+1,

where we used, since A satisfies (5.3), that µ′n = O(e−Cnη
) for some η > 0 (see [BP21, (5.5)]) and that

wn is bounded as it converges to 0. Moreover using Theorem 4.3 we have

dTV(Y
x0
Tn
, νan) ≤ dTV(X

x0
Tn
, Y x0

Tn
) + dTV(X

x0
Tn
, νan) ≤

CeC
√

log(n)(1+|x0|2)

n1−(β+1)(C1+C2)/A2 . (5.6)

Finally, let us bound dTV(X
x0
t , Y x0

t ) for any t ∈ [Tn, Tn+1]. If t ∈ [Tn + t0, Tn+1] then we can apply
Theorem 4.1 and we proceed as in the end of [BP21, Section 6.3]. If t ∈ [Tn, Tn + t0], then we consider
another shifted time schedule T̄n := C(T )n

1+β + 2t0 such that

∞⋃

i=0

[Tn, Tn + t0] ∩
∞⋃

i=0

[T̄n, T̄n + t0] = ∅.

Making use of the new time schedule we obtain as before a bound on dTV(Y
x0
t , νa(t)) for every t /∈⋃∞

i=0[T̄n, T̄n + t0]. Since the time schedules (Tn) and (T̄n) are only tools for the proof of convergence
of Yt, we then obtain a bound on dTV(Yt, νa(t)) for every t ∈ R

+.

6 Convergence of the Euler-Maruyama scheme in total variation

We now consider (Ȳn) as in (2.17) with extended definition (2.25).
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6.1 Preliminary lemmas

Lemma 6.1. Let λ ∈ R
+. There exists a constant C > 0 such that for every k ≥ 0, for every

u ∈ [Γk,Γk+1) and for every x ∈ R
d:

sup
n≥k+1

E

[
eλ|Y

x
Γn−u,u

|2
]
≤ Ceλ|x|

2
. (6.1)

Proof. The prove is the same as for Lemma 5.1. For the adaptation to discrete time, we refer to the
proof of [BP21, Lemma 7.1].

Proposition 6.2. Let T > 0. There exists C > 0 such that for every Lipschitz continuous function
f and every t ∈ (0, T ], for all n ≥ 0, for all γ such that Γk ∈ [Tn, Tn+1], γ ≤ γk+1 and Γk + t + γ ∈
[Tn, Tn+1],

∣∣E
[
Ptf(Ȳ

x
γ,Γk

)
]
− E

[
Ptf(X

x,n
γ )

]∣∣

≤ C‖f‖∞V 2(x)
(
a−2
n+1t

−1
(
γ2+(a(Γk)−an+1)γ

)
+ a−3

n+1t
−3/2

(
γ2+γ3/2(a(Γk)− an+1)

))
. (6.2)

Proof. The proof is the same as the proof of Proposition 5.2, using [BP21, Proposition 7.3]. We also
remark that we can directly improve the bound in (an − an+1) into (a(Γk)− an+1).

6.2 Proof of Theorem 2.1(b)

More precisely, we prove that for all β > 0, if σ ∈ C2r
b and if

A > max
(√

(β + 1)(2C1 + C2),
√

(1 + β−1)C2

)
(6.3)

and if A is large enough so that

n(β+1)C1/A2
γ
r/(2r+1)
N(Tn)

−→
n→∞

0, (6.4)

then

dTV(Ȳ
x0
t , νa(t)) ≤ C

(
log1/2(t)max

[
V 2(x0), 1 + |x0|

]

t(β+1)−1−(2C1+C2)/A2 + eC
√

log(t)(1+|x0|2)tC1/A2
γ
r/(2r+1)
Ct

)
. (6.5)

Proof. We still follow the proof of [BP21, Theorem 2.1(b)] in [BP21, Section 7.3] based on a domino
strategy, using Theorem 4.1 in place of [BP21, Theorem 4.2] and Proposition 6.2 in place of [BP21,
Proposition 7.4]. Let n ≥ 0, for f : R

d → R bounded measurable, we split |Ef(Xx,n
Tn+1−Tn

) −
Ef(Ȳ x

Tn+1−Tn,Tn
)| into four terms (cinit), (a), (b), (cend).

Using Theorem 4.1, [BP21, Lemma 7.1] and Proposition 6.2 we get as in [BP21, Section 7.3]:

(a) ≤ Ca−4
n+1e

C1a
−2
n+1‖f‖∞(an − an+1)V

2(x)ρ−1
n+1.

(cinit) ≤ Ca−4
n+1e

C1a
−2
n+1e−ρn(Tn+1−Tn)‖f‖∞(an − an+1)γN(Tn)+1V

2(x).

Using Proposition 6.2 and [BP21, Lemma 7.1], we obtain

(b) ≤ Ca−3
n+1

(
γN(Tn+1−T )+

√
γN(Tn+1−T )(an−an+1)

)
‖f‖∞V 2(x)

N(Tn+1)−1∑

k=N(Tn+1−T )+1

γk
(Tn+1−Γk)3/2

+ Ca−2
n+1




N(Tn+1)−1∑

k=N(Tn+1−T )+1

γN(Tn+1−T )γk

Tn+1 − Γk
+

N(Tn+1)−1∑

k=N(Tn+1−T )+1

γk(a(Γk)−an+1)

Tn+1 − Γk


 ‖f‖∞V 2(x).
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But we remark that

a(Γk)− an+1 = a(Γk)− a(Tn+1) ≤ C
da

dt
(Tn+1) · (Γk − Tn+1) ≤

C(Γk − Tn+1)

Tn+1 log
3/2(Tn+1)

and then

(b) ≤ Ca−3
n+1

(
γN(Tn+1−T ) +

√
γN(Tn+1−T )(an−an+1)

)
‖f‖∞V 2(x)

∫ Tn+1−γN(Tn+1)

Tn+1−T

du

(Tn+1−u)3/2

+ Ca−2
n+1

(
γN(Tn+1−T )

∫ Tn+1−γN(Tn+1)

Tn+1−T

du

Tn+1−u
+

1

Tn+1

∫ Tn+1−γN(Tn+1)

Tn+1−T
du

)
‖f‖∞V 2(x)

≤ Ca−3
n+1

(
γN(Tn+1−T ) +

√
γN(Tn+1−T )(an − an+1)

)
‖f‖∞V 2(x)γ

−1/2
N(Tn+1)

+ Ca−2
n+1

(
γN(Tn+1)| log(γN(Tn+1))|+ T−1

n+1

)
‖f‖∞V 2(x)

≤ Ca−3
n+1

(
γ
1/2
N(Tn+1)

+ (an − an+1)
)
‖f‖∞V 2(x).

Applying Proposition 3.2 along with Lemma 6.1 yields

(cend) ≤ C‖f‖∞
(
eCa−1

n+1(1+|x|2)γ
r/(2r+1)
N(Tn+1)

+ a−2
n (an − an+1)

)
.

We finally obtain for every x ∈ R
d:

|Ef(Xx,n
Tn+1−Tn

)−Ef(Ȳ x
Tn+1−Tn,Tn

)| ≤ C‖f‖∞
(
a−4
n+1e

C1a
−2
n+1(an−an+1)V

2(x)ρ−1
n+1+e

Ca−1
n+1(1+|x|2)γ

r/(2r+1)
N(Tn+1)

)
.

The same way as in Section 5.2 we get

dTV(Ȳ
x0
Tn+1

, νan+1) ≤ C
(
a−4
n+1e

C1a
−2
n+1(an−an+1)max

[
V 2(x0), 1 + |x0|

]
ρ−1
n+1 + eCa−1

n+1(1+|x0|2)γ
r/(2r+1)
N(Tn+1)

)

and, for t ∈ [Tn, Tn+1],

dTV(Ȳ
x0
t , νa(t)) ≤ CeC1a

−2
n+1

(
a−4
n+1e

C1a
−2
n+1(an−an+1)max

[
V 2(x0), 1 + |x0|

]
ρ−1
n+1+e

Ca−1
n+1(1+|x0|2)γ

r/(2r+1)
N(Tn+1)

)
.

A Appendix

A.1 Proof of Proposition 4.2

Proof. We use the characterization of the total variation distance as the L1-distance between the
densities, which reads

dTV(νan , νan+1) =

∫

Rd

∣∣∣Zane
−2(V (x)−V ⋆)/a2n −Zan+1e

−2(V (x)−V ⋆)/a2n+1

∣∣∣ dx

≤ Zan+1

∫

Rd

∣∣∣e−2(V (x)−V ⋆)/a2n − e−2(V (x)−V ⋆)/a2n+1

∣∣∣ dx+ |Zan −Zan+1 |
∫

Rd

e−2(V (x)−V ⋆)/a2ndx

= Zan+1a
d
n+1

∫

Rd

∣∣∣e−2(V (an+1x)−V ⋆)/a2n − e−2(V (an+1x)−V ⋆)/a2n+1

∣∣∣ dx

+

∣∣∣∣1−
Zan

Zan+1

∣∣∣∣Zan+1a
d
n

∫

Rd

e−2(V (anx)−V ⋆)/a2ndx.

Using [BP21, (B.3)] and [BP21, (B.5)], the first term is bounded by

C
an − an+1

an

∫

Rd

e−2(V (an+1y)−V ⋆)/a2n
V (an+1y)− V ⋆

a2n
dx ≤ C

an − an+1

an
,

because the integral converges by dominated convergence as for the proof of [BP21, (B.3)]. Using
[BP21, (B.3)] and [BP21, (B.4)], the second term is bounded by C(n log(n))−1.
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