Using Alert Verification to Identify Successful Intrusion
Attempts

Christopher Kruegel William Robertson Giovanni Vigna
Reliable Software Group
University of California, Santa Barbara

{chris,wkr,vigna}@cs.ucsb.edu

Abstract: An important task of alert correlation is the aggregatioalefts to provide
a high-level view (i.e., the “big picture”) of malicious adty on the network. Unfor-
tunately, when the correlation process receives falsdipesias input, the quality of
the results can degrade significantly. Correlating alés tefer to failed attacks can
easily result in the detection of whole attack scenariosah@non-existent.

The idea of alert verification is to discriminate betweencessful and failed in-
trusion attempts (both false and non-relevant positivEkjs is important for the cor-
relation process, because, although a failed attack itediaaalicious intent, it does
not provide increased privileges or any additional infatiora(other than that an at-
tacker learned that the particular attack is ineffectiVéle goal of the alert verification
component is to identify and appropriately tag (or even nehalerts that represent
failed attacks. This allows other correlation componentseduce the influence of
these alerts on their decision process.

This paper describes the different issues involved in aksification and presents
a tool that perform real-time verification of attacks deteldby an intrusion detection
system. The experimental evaluation of the tool shows tadfiwation can dramati-
cally reduce both false and non-relevant alerts.

1 Introduction

Recently, intrusion detection systems (IDSs) have beemasingly brought to task for
failing to meet the expectations that researchers and vemdere raising. Promises that
IDSs would be capable of reliably identifying maliciousiaity never turned into reality.
While virus scanners and firewalls have visible benefits amdain virtually unnoticed
during normal operation, intrusion detection systems arew for producing a large
number of alerts that are either not related to maliciouwiactfalse positives) or not
representative of a successful attack (non-relevantipesjt Although tuning and proper
configuration may eliminate the most obvious spurious s|datte problem of the vast
imbalance between actual and false or non-relevant aksrtains.

One problem is the fact that intrusion detection systemsoéten run without any (or
very limited) information of the network resources thatytipeotect. Marty Roesch, the
developer of Snort [Sno, R099], routinely brings up thisnpan his whitepaper [RNA]

and posts to security mailing lists [Sec] and calls for an tb& possesses knowledge of
the network components it defends. The classic exampleMhdty uses is the scenario
of a Code Red attack that targets a Linux web server. It is i \atack that is seen
on the network, however, the alert that an IDS raises is of s®hecause the service
is not vulnerable (as Code Red can only exploit vulnerabditn Microsoft’s IS web
server). To mitigate this problem, Roesch introduces a epincalled RNA, real-time
network awareness [RNA]. RNA is based on passive networkitmamg to establish an
overview of the hosts and services that are being prote€tdd.overview contains enough
contextual information to distinguish between Linux anchdéws servers, thus enabling
a “network-aware” IDS to discard a Code Red attack againghad.machine.

The problem is that the concept of network-awareness is noagicbenough to completely
capture the complexity that is at the core of excessive atsafifalse alarms. When a
sensor outputs an alert, there are three possibilities.

1. The sensor has correctly identified a successful attatks dlert is most likely
relevant (i.e., a true positive).

2. The sensor has correctly identified an attack, but thelaftaled to meet its objec-
tives (i.e., non-relevant positive).

3. The sensor incorrectly identified an event as an attac& aldrt represents incorrect
information (i.e., a false positive).

Most people/sites are only interested in type-1 alerts,ith@orrect detections. Although
some sites might be interested in failed attack attemppe(8), the corresponding alert
should be differentiated from a successful instance. Tladesa of alert verification is to
distinguish between successful and failed intrusion gttsrtboth false and non-relevant
positives). While contextual information can be helpfupgrform this distinction (as we
have seen in the example with the Code Red worm above), itti@laays sufficient.
Consider a Code Red worm attacking a patched Microsoft Il&seln this case, it is not
enough to know which operating system the host is using,thsiailso required to know
which application is running and which patches have beetieapp

Alert verification is a term that we use for all mechanismg tten help to determine
whether an attack was successful or not. This informatigrassed to the intrusion de-
tection system to help differentiate between type-1 almtstype-2/type-3 alerts. When
the success of an attackaspriori impossible (e.g., no vulnerable service is running) or
the verification process determines that the attack hasew®n buccessful (e.g., because
incorrect buffer overflow offsets were used), the IDS carctr@acordingly and suppress
the alert or reduce its priority.

The next section classifies different mechanisms to impigrakert verification. In Sec-
tion 3, we present our implementation, which is based on iéefdes] and Snort [Sno].
With this configuration, we demonstrate how Snort, an opmiree network intrusion
detection system, was modified to utilize information pded by Nessus, a popular vul-
nerability scanner, to significantly improve Snort's déi@t accuracy. Section 4 gives
more details on our experience with the deployed tool. 8edidiscusses related work

and potential areas where the presented system could bedppl Section 6 concludes
and outlines future work.

2 Alert Verification

Alert verification is defined as the process of verifying thiecess of attacks. That is,
given an attack (and a corresponding alert raised by ansiotmudetection system), it is
the task of the alert verification process to determine wdrethis attack has succeeded or
not.

There are different techniques that can be used to perfasmehification. One possibility

is to compare the configuration of the victim machine (e.ggrating system, running
services, service version) to the requirements for a sstesttack. When the victim is

not vulnerable to a particular attack (because the configurdoes not satisfy the attack
requirements), then the alert can be tagged as failed. leonjgbe, a certain exploit might
require that the victim is running a vulnerable version of &idsoft IS server. When

the victim’s configuration shows that it is running an Apaskever on Linux, the exploit

cannot possibly succeed.

Another possibility is to model the expected “outcome” dheks. The “outcome” de-

scribes the visible and verifiable traces that a certairckti@aves at a host or on the
network (e.g., a temporary file or an outgoing network cotinay. When an alert has to
be verified, the system can check for these traces.

An important distinction between different alert verificet mechanisms is whether they
are active or passive. Active verification mechanisms are defined as mechanisats th
gather configuration data or forensic traces after an akmtis. Passive mechanisms,
on the other hand, gather configuration data once (or ataggdheduled intervals) and
have data available before the attack occurs. Both actidepassive techniques can be
used to check attack requirements against victim configurat To check for traces that
might be left after an attack, only active mechanisms canrpl@&yed. Note that the
distinction between active and passive mechanisms isysbéded on theoint in time
when the configuration or forensic data is collected. Passiechanisms collect data
about a protected netwotbefore an alert is received, while active mechanisms perform
verification in real-time, as a reaction to a received alert.

The most important requirement for the alert verificatioogess isaccuracy. An accurate
verification process will significantly reduce the numbebofh false negatives (i.e., alerts
that are marked as non-relevant, when in fact they are) dsel f@sitives (i.e., alerts that
are marked as relevant, although they are not). There dexetit factors that influence
accuracy. One factor is the quality of the data that is gatherAnother factor is its
timeliness. Both factors are critical; it is not sufficienthave high quality data that is
out-of-date, but it is also unsatisfactory when incorrextbds collected, even though the
data is collected frequently.

Another requirement is to keep the cost of the verificatioocpss low, where cost is
measured along two axes. One axis reflects the cost of degl@yid maintaining the

alert verification system. The other axis reflects the cokimpact of the verification
process on the normal operation of the network. This costides whether it necessary
to shut down regular network operations to perform alerifieation, or whether the alert
verification process has adverse effects on the runningcsstv

In the following, we describe the different ways to verifethuccess of attacks in more
detail, and highlight the corresponding advantages aratdantages. Note that the fol-
lowing description present each approach separately. HAawit is possible to combine

techniques to compensate for drawbacks of individual tiegles and to combine their

advantages.

2.1 Passive Verification

As mentioned above, passive verification mechanisms depeadgriori gathered infor-
mation about the hosts, the network topology, and the iestakervices. A description of
the network installation is required and can be, for exargpecified in a formal model
such as M2D2 [MMDDO02] or using hypergraphs [ViO3].

Given an alert, it is possible to verify whether the targethaf attack exists and whether
a (potentially vulnerable) service is running. For remdtacks, it is also possible to

check whether malicious packets can possibly reach thettagiyen the network topol-

ogy and the firewall rule configuration. Also it is possibleverify whether the target

host reassembles the packets as expected by the intrugen@ng the tool by Shankar
and Paxson [SP03]). The real-time network awareness agpradvocated by Marty

Roesch [RNA] would also fall into this class.

One advantage of passive mechanisms is that they do ndeirgerith the normal oper-
ation of the network. In addition, passive mechanisms daemquire additional tests that
delay the notification of administrators or the start ohaetiountermeasures. On the other
hand, passive mechanisms have the disadvantage that tyegiynan outdated data. New
services might have been installed or the firewall rules iiiglve been changed without
updating the knowledge base. This can lead to attacks tkalgged as non-relevant,
even though a vulnerable target actually exists. Anothgadliantage is the limitation of
the type of information that can be gathered in advance. Weesignature of an attack is
matched against a packet sent to a vulnerable target, tekatbuld still fail for a number
of other reasons (e.g., incorrect offset for a buffer overgxploit). To increase the con-
fidence in verification results, it is often required to aeljvcheck audit data recorded at
the victim machine or other type of data that may provide tusice evidence about the
effectiveness of an attack.

2.2 Active Verification

Active alert verification mechanisms do not rely arpriori gathered information. In-
stead, the verification process actively initiates the imi@tion gathering process when

an alert is received. This information-gathering process check the current configura-
tion of the victim host (see Section 2.2.1), or scan for &ttaaces (see Section 2.2.2 and
Section 2.2.3).

2.2.1 Active Verification with Remote Access

Mechanisms in this group require that a network connectmagiablished to the victim
machine. One active verification mechanism with remote e based on the use of
vulnerability scanners. A vulnerability scanner is a peogispecifically designed to search
a given target (piece of software, computer, network, dir)weaknesses. The scanner
systematically engages the target in an attempt to asse=g Wie target is vulnerable to
certain known attacks. When an attack has been detectednaesccan be used to check
for the vulnerability that this attack attempts to expldiote that a vulnerability scanner
could also be used in a passive setup. In this case, the figeraf scans would be run in
advance (or at regular intervals).

A network connection permits scanning of the attack target allows one to assess
whether a target service is still responding or whetherstiiecome unresponsive. It also
enables the alert verification system to check whether unkrports accept connections,
which could represent evidence that a back-door is installe this case, however, care
must be taken to prevent false positives that stem from dicediy allocated ports. To
this end, one could use black-lists of well-known back-doants, white-lists that specify
port ranges for well-known applications (e.g., X serveas)service fingerprinting (such
as the one recently added to nmap [Fy]) to detect legitimadications. Also, the active
verification system can keep a list of applications that Weuad running during the last
scan and raise an alert when this list changes.

Active alert verification has the advantage that the infdiomagathered to verify an at-
tack’s outcome is current. This allows one to assess thesstdtthe target host and the
attacked service in a more reliable way when compared taveassrification techniques.
In particular, it is possible to recognize changes at thémibost that might serve as an
indication of an attack.

Although the information is current, however, it might netdbmpletely accurate. One has
to consider that a vulnerability scanner can also have fadsitives and false negatives.
When an alert is verified, if the vulnerability scanner detigies that the service is vulner-
able when in fact it is not, the alert is simply reported by fiR8&. In this case, the alert is
a false positive (because the service is not vulnerablejtanderification mechanism has
failed. However, the security of the system is not affected] without verification, the
alert would have been reported as well. A more significanblem are false negatives. In
this case, a valid alert is suppressed because the vulligrabanner determines that the
target is not vulnerable when, in fact, it is. Although sucécanario is very undesirable,
it is not very likely to occur frequently. The reason is thaténerability scanner actually
launches a basic instance of the attack. When this attalsk itas very improbable that a
more sophisticated instance succeeds.

Another drawback is the fact that active actions are visibléhe network and it is possible

that scanning has an adverse effect on the hosts of the fdteetwork. For example,
port scanning consumes network bandwidth and resourcég acanned host. To mini-
mize the impact on an operational network, results can bleethfor some time. This is
especially important when an intruder runs scripts tha¢atthe same attack with differ-
ent parameters. Note, however, that caching involves & {odftchetween resource usage
and accuracy. When results are cached for too long, the taty@of active verification is
reduced. As scans are only initiated on a per-alert basenibt necessary to run all tests
that a vulnerability scanner includes, but at most a singkefor each alert (minus those
for which cached results are available).

In addition, tests run by a vulnerability scanner might brasservice. More precisely,
a vulnerability scanner can perform tests iman-intrusive or in anintrusive manner.
When running non-intrusive tests, a vulnerability is notuadly exploited, but inferred
from the type and version of a running service (e.g., by atiafythe service’s banner
information). When running an intrusive test, the vulndighis actually exploited. While
this approach delivers more accurate results, it mighttesuthe crash or disruption of
the service being tested. Sometimes, the crash of a semdacegs can be tolerated, for
example, when the service is implemented using multipkegitis (such as Apache’s thread
pool). In this case, the failure of a single thread does ne¢ laanegative impact, because
other threads are still available to serve further requdstaddition, the failed thread is
automatically restarted after a short period of time. Ondtier hand, when the crash
of a service process interrupts the whole service, then eheegponding test should be
excluded altogether from the active verification processs @lso helps to prevent attacks
that exploit the verification process itself. More speclficaan attacker may attempt to
trigger an alert to have the alert verification system cheek/mlidity of the attack and, as a
consequence, crash the service. The problem of selectrapitropriate tests is a result of
the trade-off between the goal of getting accurate resulistiae goal of having minimal
impact on the operational network. While intrusive teses imore reliable in obtaining
proper results, the risk of affecting services in a negatigg is greater.

Note that the alert verification mechanism should only belusecheck alerts raised by
packets that can possibly reach their destination. Thahésintrusion detection system
(together with the alert verification system) should be fedabehind a firewall. This
makes sure that only relevant packets are scanned for sttackhe IDS and are later
checked by the verification mechanisms. Otherwise, ankataould potentially bypass
the firewall and launch attacks by means of the alert verifinatystem itself.

The scope of remote scans is also limited, in that the ideatitin of some evidence
associated with an attack might require local access toittervmachine. In addition,

one has to make sure that the alerts generated in respohgedctivity of the vulnerability

scanner are excluded from the correlation process.

2.2.2 Active Verification with Authenticated Access

Mechanisms in this group gather evidence about the resatt aftack using authenticated
access to the victim host. The difference with respect tgtlegious group of techniques
is the fact that the alert verification system presents autittettion credentials to the target

host.

Active verification with authenticated access can be implet®d by creating dedicated
user accounts with appropriate privilege settings at ttgetanachines. The alert verifica-
tion system can then remotely log in and execute scriptssiesycommands. This allows
one to monitor the integrity of system files (e.g., the paseMite or system-specific bina-
ries) or check for well-known files that are created by attgekg., executable files left by
worms). In addition, programs that retrieve interestingfic data such as open network
connections, open files, or running processes can also bkddy

The advantage of mechanisms in this group is the access tequiglity data gathered
directly from a target machine. One downside is the need mfigiare each machine for
authenticated remote access. This might be cumbersomege teetwork installations
or when hosts with several different operating systems aeel.u On the other hand, in
large networks, such accounts may already exist for maamesmpurposes and can be also
leveraged for gathering forensic evidence. Another probiéth this approach is that the
information provided by general user-space tools mightogoas complete and accurate
as it is possible with specialized tools. For example, Kelewel tools may provide much
more detailed information with respect to other monitotimgjs such asetstat , Isof
orps.

2.2.3 Active Verification with Dedicated Sensor Support

Mechanisms in this group require, in addition to authemtideaccess, special auditing
support installed at the target machines. This auditinggsttcan be provided by oper-
ating system extensions or special purpose tools, suchsisbheed intrusion detection
systems. The differences between using standard toolslndg on dedicated sensors is
that standard tools are common in most distributions. Iritead dedicated sensors often
need complex configuration.

Dedicated sensors can be used to monitor system calls issuesker applications. This
allows one to check for the spawning of suspicious proce@sgs shell invocations) or
for accesses to critical files (e.g., thetd.conf file). In addition, auditing facilities
can keep a record of malicious activity, while standard rrairig tools provide only a
shapshot of the system. Therefore, monitoring mechanisovide the verification system
with access to events that are only visible for a short pesfduine, which could be missed
by a snapshot.

The advantage of dedicated sensor support is the abilityaaige the most detailed and
accurate audit records. The drawback is the effort requareédstall and configure these
sensors, and the fact that certain sensors are not avditatz platforms.

2.2.4 General Issues in Active Verification

One issue that affects all active verification mechanisntkdésproblem that information
is gathered directly from the victim machine. It can be adyilmat an attacker can tamper
with the compromised system to eliminate suspicious traceat least, hide her activ-

ity from the auditing system. This is particularly true whise information is gathered
remotely (e.g., using a vulnerability scanner).

There are different approaches to addressing this prob@ne possibility is to operate
in a best-effort mode and attempt to scan the potentialmibtist as fast as possible after
the alert is received. This, of course, offers a small winddwulnerability that can be
exploited by the attacker. A more secure option is to delakets that have raised an alert
until the verification mechanism has finished. This makes that the victim host has not
been compromised by this attack, but it requires an in-ltision detection system.

Another option can be used when data is directly gatheredhervictim machines via
scripts or dedicated sensors. Here, audit tools should matrieast with privileges that
require administrative (i.erpot) access to be turned off. By doing this, the integrity of
the sensor is preserved even if the intruder obtains acecessmmages to crash a service.
In this case, the sensors operate in a best-effort mode dndrdiccurate results as long
as possible. Also, simply disabling auditing is a suspisiagtion by itself. A more
secure option is the use of a more restrictive access caystém such as LIDS [LID]
or Security-Enhanced Linux [LS01]. These systems can pitethee administrator from
interfering with the audit facility, so that physical aceds the machine is required to
change or disable security settings.

3 Implementation

After the general discussion about various alert verifizathechanisms in the previous
section, the remainder of the paper presents the impletiemtnd the evaluation of our
verification tool. The tool implements active verificatiomomanisms with remote access
and active verification mechanisms with authenticatedsscc&he system is realized as
an extension to Snort [Sno, Ro99] and can be downloaded &[SA

The alert verification tool consist of an addition to Snoafsrt-processing pipeline. The
alerts produced by Snort are queued for processing by a peetification threads. This
design allows Snort to continue processing events whild adification takes place in
the background. An overview of the architecture of the aurimplementation is depicted
in Figure 1. In addition, the Snort rule language was extdridénclude new keywords to
perform forensic checks at the target hosts.

Because our verification system is implemented as a parteoStiort sensor, both the
intrusion detection analysis and the verification procesparformed by the same process.
However, this is not a requirement of active verificatiord &would also be possible to
have a separate verification system that receives alertsrroltiple sensors. In this case,
the alert verification tool could be integrated into a ceitteal alert collection framework.

Note that, because we implemented the verification proceaswodule of the Snort sen-
sor, if multiple Snort sensors are used then multiple vetiii process will be executed
for attacks that are detected by more than one sensor.Végpanéid that this would not be
a problem, because the performance impact of the verificatial is low.

Unverified alerts

Verification threads
Target host / network v
~A_ = >
Alert plugins

Figure 1: Architecture of the Alert Verification Module fon&rt

3.1 Active Verification with Remote Access

The component that performs active verification with renaateess relies on NASL [Ar02]

scripts written for the Nessus [Nes] vulnerability scanihdore precisely, the component
is implemented as a patch to Snort, which integrates theuUdeasinerability scanner

into Snort’s core to perform verification of alerts. Nessusswhosen as a verification
mechanism because of the high quality of its vulnerabilitgaks, its minimal impact on

production networks, and the ease with which it could begirstted into Snort.

For each alert that is processed by a verification thread;ahesponding Common Vul-
nerabilities and Exposures identifier [CVE] is extracted aeed as an index into Nessus’
collection of NASL scripts. NASL is the scripting languagesijned for the Nessus secu-
rity scanner. Its aim is to allow one to easily and quicklyterplug-ins to test for security
holes.

When an appropriate NASL script is found, the script is exediby an embedded NASL
interpreter against the victim host or network identifiedhy alert. The vulnerable status
of the target is extracted from the NASL interpreter’s owgnd is used to flag the detected
attack as eithesuccessful or unsuccessful. The alert is then queued for output by subse-
guent alert plug-ins that have been enabled in Snort. Thit@each verification is also
cached for a period of time in order to reduce load on the nétw&hen no appropriate
NASL script is found, the alert is flagged asdetermined.

3.2 Active Verification with Authenticated Access

The component that is responsible for active verificatiothvaiuthenticated access per-
forms checks for the “known” outcome (i.e., evidence) of #ack at the target host. To

this end, Snort rules can be augmented with simple rule sites that specify foren-

sic evidence to be looked for on the victim host or networkth@ current version, the

following extensions have been implemented.

¢ |t can be checked whether a certain file exists (or does nst)érithe victim host's
file system. For example, this extension can be used to effiles that are often
left by worms in well-known places.

e It can be checked whether a process with a certain hame isngifor not run-
ning) on the target machine. For example, this can be useetézithe crash of a
particular network service or the existence of a suspicprosess.

e The content of a file can be checked for the occurrence of aingrattern (defined
as a regular expression). This can, for example, be used#sssvhether a certain
entry is present in a log file.

Consider the following example of a Snort rule with extensio

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS 443
(content:"TERM=xterm"; flow:to_server,established;
nocase; host_file_exists:/tmp/.uubugtraqg;)

This rule augments the standard Snort rule for the Linux @amorm with a check for
the existence of the worm executablen(p/.uubugtraq) on the target host, using the
keywordhost file _exists . If the specified file exists, the attack was successful and
the corresponding alert is tagged appropriately.

Whenever a Snort rule extended with forensic specificatiiggers, the verification thread
consults the Snort configuration file to check whether thgetaof the attack has been
setup for authenticated access. If no authenticated abhesdseen prepared, then the alert
is tagged asindetermined. Otherwise, the verification system logs into the targethiree
and performs the necessary checks. When all host-basekischersuccessful (i.e., evi-
dence of the attack is found) then the alert is taggesliesessful, otherwise it is tagged as
unsuccessful. In the current system, we have implemented two modulesHragestablish
remote access to Unix and Windows machines via secure gigklium the appropriate
commands there. However, it is straightforward to add meslitiiat can run the necessary
remote tests via different mechanisms (e.g., Windows Teath8ervices).

3.2.1 Alert Post-processing

The verification subsystem marks each alert as either ssfttesnsuccessful, or unde-
termined. Post-processing systems (e.g., alert comelatigines or system administrator

10

scripts) can then utilize this additional information whagrforming their analysis upon
the alert stream generated by verification-enabled Snososs.

4 Evaluation

The current implementation of our alert verification toot iieeen evaluated on an experi-
mental test bed with regards to its effectiveness in redpSimort’s false alarm rate. Three
machines were present on this test bed:

1. an attacker machine,
2. atarget machine,

3. amachine with a Snort sensor extended with the alert vatibin tool.

A variety of known vulnerabilities were introduced on thegiet machine, and correspond-
ing signatures to detect attacks using these vulnera&silitiere enabled on the sensor ma-
chine. A wide range of attacks were then run against the tdrgehe attacker. The
attacks were run twice, once with alert verification enalglad once with alert verifica-
tion disabled, to compare the number of false positivesyred by Snort. Attack traffic
was generated from a mix of Nessus runs and publicly-aMailkploits. The results are
shown in Table 1.

H Alerts ‘ True Positives‘ False Positives
Stand-alonj 6,659‘ 24 ‘ 99.64%

Verification enable 24 24 00.00%

Table 1: Alert Verification — Evaluation Results.

As one can see, with Snort running in stand-alone mode, 66&6ka against the target
machine were reported. However, because either no vulleesalvices were actually
present on the target or the targeted services were notraldiee most of these attacks
could not have been successful and can thus be considere@ieoant. Only 24 of the
alerts produced by Snort were true positives, and we artigefalse positive rate (or, to
be more precise, a non-relevant positive rate) of 99.64%h Wlert verification enabled,
however, alerts which attempted to exploit missing or nam&rable services were tagged
as such. By doing this, the false alarm rate for Snort witht akification enabled dropped
to 0% and only the 24 actual attacks were reported. Manupétt®n of the alert stream
was used to verify that no false positives or non-relevasrtalvere produced.

It is important to note in interpreting these results thabti®and Nessus are open to gen-
erating both true and false positives and negatives. Thadptlowing scenarios are pos-
sible:

11

1. true positive / true positive
In this scenario, the attack is correctly detected, andehgce is correctly reported
as vulnerable.

2. true positive / false positive
Here, the attack is correctly detected, and the serviceriactly reported as vul-
nerable.

3. true positive / true negative
Under this scenario, the attack is correctly detected, hedservice is correctly
detected as non-vulnerable.

4. true positive / false negative
In this scenario, the attack is correctly detected, but #neise is incorrectly deter-
mined to be non-vulnerable.

5. false positive / true positive
With this scenario, benign traffic is misreported as an &itand the service is
reported as vulnerable to the reported attack.

6. false positive / false positive
In this case, benign traffic is misreported as an attack, laadérvice is incorrectly
reported as vulnerable to the reported attack.

7. false positive / true negative
Under this scenario, benign traffic is misreported as arclattand the service is
correctly determined to be non-vulnerable.

8. false positive / false negative
In this scenario, benign traffic is misreported as an attaol, the service is incor-
rectly determined to be non-vulnerable.

9. false negative / true positive
In this case, an attack is not detected by the IDS, but thécsewould have been
reported as vulnerable by the vulnerability scanner.

10. false negative / false negative

Here, an attack goes undetected by the IDS, and the servide Wwave been misre-
ported as non-vulnerable by the vulnerability scanner.

Clearly, from the above list one can see that the ideal saeare 1 and 3, where alert ver-
ification either correctly reinforces confidence in IDS tder suppresses incorrect alerts,
respectively. Scenarios 2, 5, and 6 correspond to a falgéveosom an IDS that is as-
sociated with incorrect alert verification. Therefore, #uglition of alert verification does
not degrade the effectiveness of the IDS. Scenarios 9 andri@spond to a successfully

12

evaded IDS without alert verification; since alert verifioattriggers on IDS alerts, the
technique cannot help in these scenarios. In scenario r valéfication is successful in
suppressing a false positive that would be otherwise regdsy an IDS. In scenario 8,
although it is unfortunate that both components fail, the esult is that no successful
attack occurs, and, furthermore, a false positive from @ is suppressed. Therefore,
it is not a cause for concern outside of the inaccuracy of B &4nd vulnerability scan-
ner. Thus, the only scenario in which alert verification magrde the effectiveness of a
stand-alone IDS is 4. However, because of the relative dagetimg correct vulnerability
assessment checks when compared to writing intrusion titatesignatures, the probabil-
ity of this scenario occurring in the real world is not highdditionally, in our evaluation
manual inspection was used to verify that no scenariostiegtih false negatives were
present.

To gather real-world attack traffic and assess the amouted§ahat the system is capable
of identifying as non-relevant in a more realistic scenawe deployed two honeypots.
One of the honeypot machines was running a standard Red®hirux installation, the
other one was running an unpatched version of Microsoft \Wiwvel2000 Server. Both
hosts had a considerable amount of services with known vathilgies. The network link
to both honeypots was monitored by Snort-2.0.2, using itspiete set of 2625 rules.

During a period of 14 days, Snort reported 164,415 raw afefesring to attacks against
the RedHat Linux machine and 79,198 raw alerts referringtécks against the Windows
machine. Among these raw alerts, we noticed a large amouattatks related to the

Slammer and Nachia worms. Also, a large amount of scan gcéigainst ports commonly

used by web proxy and socks proxy servers was registered. iy that these scans
are performed by spammers that use these proxies as mai reiven the raw alerts,

the alert verification process was capable of tagging 1&ldttcks against the Linux
host (98.3%) and 78,785 attacks against the Windows host¥®%as unsuccessful. This
tagging was manually verified, and we concluded that alck#ahat have been tagged
as unsuccessful actually failed (the manual checks coulgeb®rmed reliably because
most attacks targeted non-existent services). Althougifaudt installation of Snort was

used, the numbers clearly indicate that real-world attaafi¢ produces many false or
non-relevant positives that can be suppressed using &lefication.

The results shown above demonstrate that alert verificatigmoves the false positive
rate of NIDS implementations. However, the current alerifigation implementation for
Snort suffers from several limitations. A first problem istlthe granularity of CVE IDs,
which is somewhat needed by the choice of Nessus as the aédficomponent, reduces
the effectiveness of the tool as a whole. This stems from dbk bf other additional
information, such as host architecture, revision of thengtdble program, etc., which
could result in the vulnerability testing script reportihg service as non-vulnerable when
in fact it is. It is also worth noting that this limitation geralizes to the fact that, barring
implementation flaws, active alert verification is only a®das the available verification
scripts, just as the quality of a signature-based IDS dependhe quality of its signatures.

Another issue is that the classification scheme of vulnetaidt vulnerable, or undeter-
mined may not be expressive enough to capture informatianishrelevant to network
security officers, as members of the focus-ids mailing 8&d] have pointed out.

13

5 Related Work

Several vendors and researchers [Gu02, De03, RNA] haveogedpto include vulnera-
bility analysis data when processing IDS alerts. The idea igilize previously gathered
information to reduce the noise of the alert stream prodbgedtrusion detection sensors
and disambiguate their results. These methods are altgiffecalizations of passive alert
verification techniques as described in Section 2. In thigepaon the other hand, an ac-
tive alert verification mechanism is proposed. We query thtential victim in response
to the sign of an attack to get the current configuration oi/them that either supports or
refutes the hypothesis that a successful intrusion hasieztu

An important, related analysis process that also takesmg the alerts produced by in-
trusion detection systemsaert correlation. Its main task is the aggregation of alerts to
provide a high-level view (i.e., the “big picture”) of mailizis activity on the network. A
major problem for correlation systems are false positivdgch can degrade the quality
of their results significantly. It is evident that corretagialerts that refer to failed attacks
can result in the detection of whole attack scenarios tieaaetually non-existent.

Previous work [CM02, NCRO2] states that alert correlatian be used both to reduce
the total number of alerts and to reduce the number of fatstsalThe latter, namely the
reduction of false alerts, is directly related to our goatwdver, the correlation systems
mentioned above assume that real attacks trigger more tisamgke alert. As a result,
the systems can focus on alert clusters and discard als dlext have not been correlated.
Unfortunately, this assumption has not been substantiayeskperimental data or sup-
ported by a rigorous discussion. We claim, therefore, thatréduction of false alerts is
an importanprerequisite to achieve good correlation results instead of an outcontieeof
correlation process itself. Also, a recent paper on alaretation [NX03] mentions that
“false alerts generated by IDSs have a negative impact’s $Shpports our assumption
that alert verification can act as a pre-processing stepoioelation systems, cleaning the
input stream from spurious alerts and thus improving theltes$ the correlation analysis.

6 Conclusions and Future Work

We propose alert verification as a process that is launchegsponse to an alert raised by
an intrusion detection system to check whether the corratipg attack has succeeded or
not. When the attack has not succeeded, the alert can be sifhgressed or its priority
reduced. This provides an effective mean to lower the nurobéalse alarms that an
administrator has to deal with. It also improves the resfiert correlation systems by
cleaning their input data from spurious attacks.

We have developed an active verification system based ort 8ndiNessus. As the cur-
rent implementation stands, it is a useful tool for redudimg false-alarm rate of Snort.
There is, however, always room for improvement, and in thigtsve have planned some
future directions for further development of our alert fiedtion tool. One issue to be
addressed is the coarse granularity of CVE IDs, which we patackle by extending

14

Nessus. Another planned area of development is the integraf ana priori knowl-
edge base along with passive information gathering tect@siqo supplement the active
verification techniques.

7 Acknowledgment

We would like to thank our shepherd Roland Buschkes for himerous comments and
the thorough reviews that helped to improve the quality &f gaper. This research was
supported by the Army Research Office under agreement DAAI12-0484 and by the
National Science Foundation under grants CCR-0209065 @&R-@238492. The U.S.
Government is authorized to reproduce and distribute meépfor Governmental purposes
notwithstanding any copyright annotation thereon.

References

[Ar02]

[CMO02]

[CVE]

[De03]

[Fy]
[Gu02]

[LID]
[LSO01]

[MMDDO2]

[NCRO2]

[Nes]

Arboi, M.: The Nessus Attack Scripting Language Reference Guide. 2002. http:
IlIwww.nessus.org/doc/nasl2_reference.pdf

Cuppens, F. und Miege, A.: Alert Correlation in a Cedgttive Intrusion Detection
Framework. In:Proceedings of the IEEE Symposium on Security and Privacy. Oak-
land, CA. May 2002.

Common Vulnerabilities and Exposurdstp://www.cve.mitre.org/

Desai, N. IDS Correlation of VA Data and IDS Alerts. http://www.
securityfocus.com/infocus/1708 . June 2003.

Fyodor. Nmap: The Network Mappehttp://www.insecure.org/nmap/

Gula, R.: Correlating IDS Alerts with Vulnerabilitpformation. Technical report.
Tenable Network Security. December 2002.

Linux Intrusion Detection Systemhttp://www.lids.org/

Loscocco, P. und Smalley, S.: Integrating Flexibigort for Security Policies into
the Linux Operating System. Irfreenix Track of Usenix Annual Technical Confer-
ence. 2001.

Morin, B., Me, L., Debar, H., und Ducasse, M.: M2D2 Formal Data Model for
IDS Alert Correlation. In:Proceedings of the International Symposium on the Recent
Advancesin Intrusion Detection. S. 115-137. Zurich, Switzerland. October 2002.

Ning, P., Cui, Y., und Reeves, D.: Constructing Akt&cenarios through Correla-
tion of Intrusion Alerts. In:Proceedings of the ACM Conference on Computer and
Communications Security. S. 245-254. Washington, D.C. November 2002.

Nessus Vulnerabilty Scanndattp://www.nessus.org/

15

[NX03]

[RNA]

[R099]

[SAV]

[Sec]

[Snho]

[SPO3]

[ViO3]

Ning, P. und Xu, D.: Learning Attack Strategies fromtrusion Alert. In:Proceed-
ings of the ACM Conference on Computer and Communications Security (CCS’03).
Washington, DC. October 2003.

RNA - Real-time Network Awareness. http://www.sourcefire.com/
technology/whitepapers.html

Roesch, M.: Snort - Lightweight Intrusion Detectilam Networks. In:Proceedings
of the USENIX LISA ' 99 Conference. November 1999.

Snort Alert Verification.http://www.cs.ucsh.edu/"wkr/projects/ids_
alert_verification/

SecurityFocus Mailing Lists Archive. http://www.securityfocus.com/
archive

Snort - The Open Source Network Intrusion Detectiost&y. http://www.
snort.org

Shankar, U. und Paxson, V.: Active Mapping: RegishihDS Evasion Without Alter-
ing Traffic. In: Proceedings of the IEEE Symposium on Security and Privacy. 2003.

Vigna, G.: A Topological Characterization of TCP/8&curity. In:Proceedings of the

12" International Symposium of Formal Methods Europe (FME ’03). Number 2805
in LNCS. S. 914-940. Pisa, Italy. September 2003. Sprivgeag.

16

