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In order to describe the interconnection among agents with multi-dimensional states, we generalize the notion of a graph
Laplacian by extending the adjacency weights (or weighted interconnection coefficients) from scalars to matrices. More
precisely, we use positive definite matrices to denote full multi-dimensional interconnections, while using nonnegative
definite matrices to denote partial multi-dimensional interconnections. We prove that the generalized graph Laplacian
inherits the spectral properties of the graph Laplacian. As an application, we use the generalized graph Laplacian to
establish a distributed consensus algorithm for agents described by multi-dimensional integrators.
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1. Introduction

There has been great interest in cooperative control of
multi-agent systems, including collective behavior of
flocks and swarms, sensor fusion, random networks,
synchronization of coupled oscillators, formation control
of multi robots, optimization-based cooperative control,
etc. For more detailed information on this line, see the
cornerstone paper by Vicsek et al. (1995), the survey
papers of Olfati-Saber et al. (2007) and Bauer (2008), the
book by Shamma (2008) and the references cited therein.

One significant control issue in cooperative control
is the consensus problem, which means reaching an
agreement regarding a certain quantity of interest that
depends on the state of all agents. There are several
important papers which have made great contribution
to the consensus problem for self-organizing networked
systems (Fax and Murray, 2004; Jadbabaie et al., 2003;
Moreau, 2005; Ren and Beard, 2005; Cai and Ishii, 2012;
Priolo et al., 2014). The approach of achieving consensus
for general linear agents in the framework of matrix
inequalities and stabilization is proposed by Zhai et al.
(2009), and the extension to the consensus problem for
networked nonholonomic systems is dealt with in another
work of Zhai et al. (2010).

It is noted that the basic consensus problem requires

that all agents’ states converge to the same vector, and
the well known existing method is to describe the agents’
information flow (structure) as an interconnected graph
and to use the graph Laplacian as a (negative) state
feedback gain. The graph Laplacian is a matrix whose
elements denote the adjacency weights (or weighted
interconnection coefficients) among the agents. Such a
scalar-weighted interconnection graph or the equivalent
graph Laplacian is enough to describe the interconnection
among one-dimensional agents or multi-dimensional
agents whose states are connected to other agents
uniformly. However, it cannot deal with the agents with
multi-dimensional states where different state variables
have different weights. For example, in the case of
a family of moving vehicles, each agent’s states are
its position and velocity in general, and it may not be
reasonable to describe the interconnection between the
position and the velocity of any two vehicles by a single
scalar. Based on this motivation, we generalize the graph
Laplacian so as to describe the interconnection among
different elements of the state.

Based on the above observation, we generalize the
notion of a graph Laplacian by extending the adjacency
weights from scalars to matrices. More precisely, we use
positive definite matrices to denote full multi-dimensional
interconnections, and nonnegative definite matrices
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to denote partial multi-dimensional interconnections
(including the case of no interconnection, where zero
matrices are used). We show that such a generalized graph
Laplacian includes the graph Laplacian as a special case,
and inherits the spectral properties of the graph Laplacian.
Then, as an application example, we use the generalized
graph Laplacian to establish a distributed consensus
algorithm for agents described by multi-dimensional
integrators.

The remainder of this paper is organized as follows.
In Section 2, we give some preliminaries about the graph
and the graph Laplacian, and state the Schur complement
lemma and an inequality concerning the spectral property
of the addition of two matrices. Section 3 establishes
the generalization of the graph Laplacian, and states one
important in spectral property of the generalized graph
Laplacian. As an application example, in Section 4,
present a new distributed consensus algorithm by using
the concept of a generalized graph Laplacian, together
with a numerical example confirming the effectiveness.
Finally, Section 5 concludes the paper.

2. Preliminaries

2.1. Graph Laplacian. We first review the notion
of a graph Laplacian in the literature. Usually, the
interconnection of a family of agents is represented by
using a directed graph (or a digraph) G = (V,E) with
the set of nodes V = {1, 2, . . . , N} (N is the number of
agents) and edges E ⊂ V × V . The edge (j, i) ∈ E
means that the information of the j-th agent is available
for the i-th agent. If each pair of agents is bidirectional,
i.e., (j, i) ∈ E if and only if (i, j) ∈ E, then we omit
the direction of the edges and use an undirected graph. As
can be seen later, although most of the discussion can be
extended to directed graphs, we focus our attention on the
case of undirected graphs in this paper.

The set of neighbor agents of the i-th agent is defined
as

Ni = {j ∈ V | (j, i) ∈ E}, (1)

which is the index set of the agents from which the i-th
agent can obtain necessary information. Then, the graph
Laplacian of the agents’ structure is defined as L =
[lij ]N×N , where

lij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−aij , j ∈ Ni,
∑

j∈Ni

aij , j = i,

0, otherwise,

(2)

and aij is a positive scalar describing the adjacency
weight, |Ni| denotes the total adjacency weights of
neighbor agents of the i-th agent (or the in-degree of
the i-th agent). If, additionally, aij = aji holds in
the undirected graph, we say the interconnection (or

the graph) is symmetric. Obviously, when a graph is
symmetric, the graph Laplacian is a symmetric matrix.

Using the above definition, the graph Laplacian of
the bidirectional graph in Fig. 1 is

L =

⎡

⎢
⎢
⎢
⎣

a12 + a13 −a12 −a13 0

−a21 a21 0 0

−a31 0 a31 + a34 −a34

0 0 −a43 a43

⎤

⎥
⎥
⎥
⎦
, (3)

and when the weights are the same between any pair of
agents,

L =

⎡

⎢
⎢
⎢
⎣

a12 + a13 −a12 −a13 0

−a12 a12 0 0

−a13 0 a13 + a34 −a34

0 0 −a34 a34

⎤

⎥
⎥
⎥
⎦
. (4)

Fig. 1. Interconnection graph example.

From the definition (2) it is easy to see that all
row-sums of L are zero, and thus L always has a
zero eigenvalue and a corresponding eigenvector 1 =
[1 1 · · · 1]�. It is also known that the other eigenvalues
of L have positive real parts when there is a spanning tree
included in the graph. When the agents are bidirectional
with the same weights (the graph is symmetric), the
graph Laplacian L is a symmetric matrix, and thus it is
nonnegative definite (L � 0). For other spectral properties
of graph Laplacians, see, for example, the work of Mohar
(1991).

In the existing graph Laplacian method for achieving
consensus, the entire controller takes the form of u =
−Lx, where x and u are the collective (group) state
and the collective (group) control input of multi-agents,
respectively. The proof of achieving consensus with this
controller is generally done by discussing the eigenvalues
of the resultant closed-loop system matrix or using
LaSalle’s invariant principle (Khalil, 2002).

2.2. Notation and lemmas. Throughout this paper, the
superscript “�” represents the transpose of a matrix, and
the superscript “−1” represents the inverse of a matrix.
W � 0 (W ≺ 0) means W is symmetric and positive
(negative) definite, and W1 � W2 means W1 −W2 � 0.
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W � 0 (W � 0) means W is symmetric and nonnegative
(nonpositive) definite, and W1 � W2 means W1 −W2 �
0. For a vector v ∈ R

n, ‖v‖ denotes its Euclidean norm.
Denote by λi(A) the i-th eigenvalue of the matrix A,
and use λM (A) (resp. λm(A)) to denote the maximum
(minimum) eigenvalue of the symmetric matrix A. As
used in most textbooks, Re(z) represents the real part of a
complex scalar z.

The following two lemmas are necessary in the next
section.

Lemma 1. (Schur complement lemma) (Gantmacher,
1959). The following statements are equivalent:

(i)

[
A B
B� C

]

� 0 .

(ii) A � 0 and C −B�A−1B � 0 .

(iii) C � 0 and A−BC−1B� � 0 .

Lemma 2. (Gantmacher, 1959) For any real matrices
A,B ∈ R

n×n ,

λm

(
A� +A

2

)

+ λm

(
B� +B

2

)

≤ Re (λi(A+B))

≤ λM

(
A� +A

2

)

+ λM

(
B� +B

2

)

. (5)

When both A and B are symmetric,

λm (A) + λm (B) ≤ λi(A+B)

≤ λM (A) + λM (B) . (6)

3. Generalization of the graph Laplacian

3.1. Definition of the generalized graph Laplacian.
As mentioned in the Introduction, the graph Laplacian
defined in (2) basically deals with all states of every agent
uniformly, which is not practical in real systems. In this
paper, we propose to generalize the graph Laplacian so as
to describe the interconnection among different elements
of the state.

Suppose the dimension of all agents’ dynamics is n
and the entire interconnection graph is connected (there is
no isolated agent). Then, the basic idea of our generalized
graph Laplacian is to replace the adjacency weight aij
with a matrix Aij . In other words, if the i-th agent
can obtain full state information from the j-th agent, we
choose a positive definite matrix Aij (depending on the
real systems) to denote the bidirectional connection. If
the i-th agent can only obtain information of a partial

state from the j-th agent, we choose a nonnegative definite
matrix Aij , which includes the special case of setting
Aij = 0 when the i-th agent cannot obtain any state
information from the j-th agent. The block-diagonal
element is defined similarly as in (2). Therefore,
the generalized graph Laplacian describing the agents’
interconnection is defined as a matrix LG = [Lij ]N×N

with the entire size nN × nN , where

Lij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−Aij , j �= i,

N∑

j=1

Aij , j = i,
(7)

and all the matrices Aij ∈ R
n×n appearing in the above

are appropriate positive (or nonnegative) definite matrices.
When Aij = Aji, ∀i �= j, we call the interconnection (or
the graph) symmetric.

It is to be noted that the adjacency weight matrix
Aij is chosen nonnegative definite since it is a common
sense of extending nonnegative scalars to nonnegative
definite matrices which can represent the “nonnegative
definiteness” in an entire sense. Concerning the individual
elements of Aij , we do not require that they should
be nonnegative in this paper, although they are usually
nonnegative in real applications.

Now, it is natural to define the neighbor agents set of
the i-th agent as

Ni = {j ∈ V | Aij � 0, Aij �= 0} , (8)

which actually consists of the full-connected set (Aij �
0) and the partial-connected set (Aij � 0 but Aij �= 0).
Then, the generalized graph Laplacian takes the form of

Lij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−Aij , j ∈ Ni,

∑

j∈Ni

Aij , j = i,

0, otherwise,

(9)

which is almost the same as (2).
Using the above definition for the agents in Fig. 1,

when all the agents are multi-dimensional, we obtain the
generalized graph Laplacian as

⎡

⎢
⎢
⎢
⎢
⎣

A12 +A13 −A12 −A13 0

−A21 A21 0 0

−A31 0 A31 +A34 −A34

0 0 −A43 A43

⎤

⎥
⎥
⎥
⎥
⎦
. (10)

Remark 1. If we choose simply Aij = aijIn with aij >
0, then the generalized graph Laplacian LG substantially
shrinks to the graph Laplacian in the existing literature.
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Remark 2. As mentioned before, the adjacency weight
matrix Aij should be defined according to practical and
physical requirements. In the case of moving vehicles on a
two-dimensional plane without considering the velocities,
the states are composed of each vehicle’s x-axis position
(the first element) and its y-axis position (the second
element). Then

Aij =

[
1 0
0 0

]

means the x-axis position is available,

Aij =

[
0 0
0 1

]

means the y-axis position is available, and

Aij =

[
1 0
0 2

]

or

Aij =

[
2 1
1 4

]

mean that both the x and y-axis positions are available.

3.2. Spectral property. In this section, we prove
that the generalized graph Laplacian LG defined in (9)
has the same spectral property as the graph Laplacian
(Mohar, 1991). It is known that there is a great difference
between directed graphs and undirected ones. Here, for
simplicity, we focus on the case of symmetric graphs, i.e.,
Aij = Aji, ∀i �= j . Moreover, as in the discussion for the
graph Laplacian, we require that the interconnection graph
be connected, which means there is a path connecting all
the agents in the sense that the adjacency weight matrices
on the path are positive definite.

Theorem 1. When the interconnection graph is con-
nected and symmetric, the generalized graph Laplacian
LG defined in (9) has n zero eigenvalues, and all the other
eigenvalues are positive. Thus, LG is nonnegative definite.

Proof. The n zero eigenvalues of LG can be confirmed
by the following equation:

LG

[
v� v� · · · v�

]�
= 0, (11)

where v is an arbitrary vector in R
n. �

When N = 2, the generalized graph Laplacian is

LG =

[
A12 −A12

−A12 A12

]

, (12)

where A12 is positive definite. Then, according to the
similarity transformation

[
I 0

I I

]−1

LG

[
I 0

I I

]

=

[
0 −A12

0 2A12

]

, (13)

LG has n zero eigenvalues, and the other eigenvalues are
those of the matrix 2A12. Since A12 is positive definite,
the eigenvalues of 2A12 are all positive.

When N = 3, the generalized graph Laplacian is

LG =

⎡

⎢
⎣

A12 +A13 −A12 −A13

−A12 A12 +A23 −A23

−A13 −A23 A13 +A23

⎤

⎥
⎦ ,

(14)

where all the matrices Aij , i �= j are positive (or
nonnegative) definite (and symmetric). Since LG is
symmetric and thus it has only real eigenvalues, the
definiteness of LG is equivalent to that of

L̃G =

⎡

⎢
⎣

I 0 I

0 I I

0 0 I

⎤

⎥
⎦

�

LG

⎡

⎢
⎣

I 0 I

0 I I

0 0 I

⎤

⎥
⎦

=

⎡

⎢
⎣

A12 +A13 −A12 0

−A12 A12 +A23 0

0 0 0

⎤

⎥
⎦ . (15)

It is obvious that L̃G has n zero eigenvalues, and the other
eigenvalues are that of the matrix

Ã =

[
A12 +A13 −A12

−A12 A12 +A23

]

. (16)

Next, we prove that when the graph is connected, the
matrix Ã is positive definite.

Case 1: A12 � 0 and A13 � 0.
Since A23 � 0, it is easy to obtain A12 + A23 � 0 and
thus

A12 +A13 −A12(A12 +A23)
−1A12

� A12 +A13 −A12A
−1
12 A12 = A13 � 0 . (17)

Then, according to part (iii) of the Schur complement
lemma, Ã is positive definite.

Case 2: A12 � 0 and A23 � 0.
Since A13 � 0, it is easy to obtain A12 + A13 � 0 and
thus

A12 +A23 −A12(A12 +A13)
−1A12

� A12 +A23 −A12A
−1
12 A12 = A23 � 0 . (18)

Then, according to part (ii) of the Schur complement
lemma, Ã is positive definite.

Case 3: A13 � 0 and A23 � 0



A generalization of the graph Laplacian with application to a distributed consensus algorithm 357

Split the matrix Ã into two parts Ã = Ã1 + Ã2, where

Ã1 =

[
A13 0

0 A23

]

,

Ã2 =

[
A12 −A12

−A12 A12

]

.

(19)

It is obtained from (13) that the eigenvalues of Ã2 are
nonnegative. Since Ã1 � 0, we use Lemma 2 to obtain

λi(Ã) ≥ λm(Ã1) + λm(Ã2) > 0, (20)

and thus Ã is positive definite.
To summarize, in all cases of N = 3, the matrix Ã is

positive definite, and all the eigenvalues of Ã are positive.
Therefore, the matrix L̃G has n zero eigenvalues, and the
other eigenvalues are positive. Although the eigenvalues
of LG may be different from those of L̃G, the definiteness
properties of LG and L̃G are equivalent, and thus LG also
has n zero eigenvalues, and all the other eigenvalues are
positive.

The case of N > 3 can be proved similarly by
induction, and therefore it is omitted here.

According to Theorem 1, when the interconnection
is connected and symmetric, the generalized graph
Laplacian LG has n zero eigenvalues and n(N − 1)
positive eigenvalues. In much the some way as in the
literature, we call the smallest positive eigenvalue of LG

the algebraic connectivity of the interconnection, which
determines the convergence rate of achieving consensus.

4. Application to a consensus algorithm

4.1. System and controller. As an application
example, we consider N agents which are n dimensional
integrators

Ẋi(t) = Ui(t) , (21)

where Xi(t) ∈ R
n is the state and Ui(t) ∈ R

n is the
control input. We assume that the agents’ interconnection
is characterized by the generalized graph Laplacian LG,
and, for simplicity, assume that the interconnection is
symmetric. The consensus problem is to design the
control input, based on the information of its neighboring
agents and itself, so that the states Xi(t) converge to the
same vector or, in other words,

lim
t→∞ ‖Xi(t)−Xj(t)‖ = 0 . (22)

As in the existing graph Laplacian consensus
algorithm, we express the dynamics of all the agents in
a compact form as

Ẋ(t) = U(t) , (23)

where X(t) = [X�
1 (t) , . . . , X�

N(t)]� is the collective
state, and U(t) = [U�

1 (t) , . . . , U�
N (t)]� is the collective

control input.
Now, we use the generalized graph Laplacian LG to

establish the control input as

U(t) = −LGX(t) (24)

or, equivalently,

Ui(t) =
∑

j∈Ni

Aij (Xj(t)−Xi(t)) . (25)

From (25) it is clear that the control input Ui(t) feedbacks
the states of its neighbor agents and itself, and thus has the
desired distributed structure.

4.2. Consensus analysis. The closed-loop system
composed of (23) and (24) is

Ẋ(t) = −LGX(t) , (26)

for which we consider the Lyapunov-like function
candidate V (X(t)) = X�(t)LGX(t) . It is not difficult
to get

V (X)

=
1

2

∑

Aij �=0

(Xi(t)−Xj(t))
�Aij(Xi(t)−Xj(t)), (27)

and thus it is actually a quadratic disagreement function
concerning consensus among the agents. In other words,
the consensus is completely achieved (X1 = X2 = · · · =
XN ) if and only if V (X) = 0 .

The time derivative of V (X(t)) along the trajectories
of (26) is calculated as

V̇ (X(t)) = Ẋ�(t)LGX(t) +X�(t)LGẊ(t)

= −2(LGX(t))�(LGX(t)) . (28)

If V̇ (X(t)) = 0, we obtain LGX(t) = 0 and thus
V (X) = 0, which is the consensus situation. Otherwise,
it results in V̇ (X(t)) < 0, which means that the
lower-bounded function V (X(t)) is decreasing. It is then
concluded that

lim
t→∞V (X(t)) = 0 , (29)

which leads to the consensus (22).
Furthermore, we obtain from (21) and (25) that

d

dt

N∑

i=1

Xi(t) =
N∑

i=1

∑

j∈Ni

Aij(Xj(t)−Xi(t)) = 0,

(30)

which implies that
∑N

i=1 Xi(t) is an invariant quantity
with the proposed consensus algorithm. Thus, all the
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agents’ states converge to the same vector 1
N

∑N
i=1 Xi(0),

which is the average of the initial states of all agents. As
in the existing graph Laplacian method, it is said that the
average-consensus is achieved.

We summarize the above discussion in the following
theorem.

Theorem 2. The average-consensus is achieved for
the agents (21) with the distributed controller (algorithm)
(25).

From the above discussion it is observed that if there
is a desirable consensus state Xf for the agents, we can
choose appropriate initial states so that 1

N

∑N
i=1 Xi(0) =

Xf . If the initial states cannot be set arbitrarily, we can
consider a virtual leader which has the same dynamics
as the agents and the initial state can be adjusted as
necessary. In addition to that, since the smallest positive
eigenvalue of LG dominates the convergence rate of
achieving consensus, we can modify the distributed
controller (25) as U(t) = −μLGX(t) with a large scalar
μ > 0, whenever it is desired.

Remark 3. Although only the average consensus has
been discussed in the above, other group decision values
can be easily achieved by choosing N positive scalars
d1, . . . , dN and modifying the consensus algorithm
(control input) (25) as

Ui(t) = di
∑

j∈Ni

Aij(Xj(t)−Xi(t)) , i = 1, . . . , N

⇐⇒ U(t) = −ΓdLGX(t) , (31)

where Γd = diag{d1, . . . , dN} ⊗ In . With this control
input, the group decision value is

∑N
i=1 di Xi(0)
∑N

i=1 di
. (32)

Thus, one can choose appropriate scalars di so as to obtain
another desired group decision value.

4.3. Numerical example. Consider the case where
four two-dimensional agents are fully interconnected as
described in Fig. 1, with the adjacency weight matrices:

A12 =

[
10 −4
−4 5

]

, A13 =

[
8 2
2 5

]

,

A34 =

[
12 3
3 6

]

.

(33)

Notice that all these matrices are positive definite.
Moreover, we assume that there are two partial
connections described by the following two nonnegative
matrices

A23 =

[
0 0
0 1

]

, A24 =

[
1 2
2 4

]

. (34)

Apply the distributed controller (25) for all the agents
with the initial states

X1(0) =

[
1
0

]

, X2(0) =

[ −2
3

]

,

X3(0) =

[
3

−5

]

, X4(0) =

[
2

−2

]

. (35)

Then, the differences between the states, ‖X1(t) −
X2(t)‖ , ‖X2(t) − X3(t)‖ , ‖X3(t) − X4(t)‖ , and the
value of the Lyapunov-like function V (X) are depicted in
Fig. 2. Clearly, consensus has been achieved among the
four agents.

Fig. 2. Consensus achieved in the example.

Fig. 3. Average consensus achieved (the second agent).

Furthermore, according to the discussion on the
average-consensus, all the states should converge to the
average of the initial states (X1(0) + X2(0) + X3(0) +

X4(0))/4 = [1 − 1]
�. Figures 3 and 4 depict the

state trajectories of the second and the fourth agent,
respectively, as an example showing that X2(t) =
[X21(t) X22(t)]

� and X4(t) = [X41(t) X42(t)]
�

converge to the average vector.
Finally, for comparison, we show the simulation
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Fig. 4. Average consensus achieved (the fourth agent).

result of using the modified distributed controller

U(t) = −μLGX(t) , (36)

where μ = 10 is used to obtain fast convergence. Figure 5
depicts the same information as described in Fig. 2. It
is clear that although the trajectory curves are similar, the
consensus has been achieved much more quickly with the
controller (36).

Fig. 5. Consensus achieved in the example (µ = 10).

5. Concluding remarks

In this paper, we have generalized the notion of a
graph Laplacian for networked agents by extending
the adjacency weights from positive scalars to positive
(or nonnegative) definite matrices. We have shown
that the generalized graph Laplacian can describe the
interconnection among agents with multi-dimensional
states more practically, and it inherits the spectral
properties of the graph Laplacian. Thus, most of the
existing consensus algorithms can be applied in almost the
same form. As an example, we have used the generalized
graph Laplacian to establish a distributed consensus
algorithm for agents described by multi-dimensional

integrators, and have demonstrated the algorithm with a
numerical example.

There are several open issues in our future research
work. First, the discussion and the results in this paper
are for symmetric network graphs, and the extension to
non-symmetric graphs is desirable in real applications.
Next, although the present generalization of the graph
Laplacian is still valid in the case where time delays
exist in the networked agents, we need some nontrivial
modification when the interconnections among the agents
are time varying. For an example, the connection between
a pair of agents exists “entirely” but the connection
associated with a certain state variable may be lost due
to environmental changes.
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