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Fehr et al. (2010) proposed the first sender-equivocable encryption scheme secure against chosen-ciphertext attacks (NC-
CCA) and proved that NC-CCA security implies security against selective opening chosen-ciphertext attacks (SO-CCA).
The NC-CCA security proof of the scheme relies on security against substitution attacks of a new primitive, the “cross-
authentication code”. However, the security of the cross-authentication code cannot be guaranteed when all the keys used
in the code are exposed. Our key observation is that, in the NC-CCA security game, the randomness used in the generation
of the challenge ciphertext is exposed to the adversary. Based on this observation, we provide a security analysis of Fehr et
al.’s scheme, showing that its NC-CCA security proof is flawed. We also point out that the scheme of Fehr et al. encrypting
a single-bit plaintext can be refined to achieve NC-CCA security, free of the cross-authentication code. Furthermore, we
propose the notion of “strong cross-authentication code”, apply it to Fehr et al.’s scheme, and show that the new version of
the latter achieves NC-CCA security for multi-bit plaintexts.
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1. Introduction

The notion of sender equivocability for a public-key
encryption (PKE) scheme was formalized by Fehr et al.
(2010). It is an important tool to construct PKE schemes
secure against chosen-plaintext/ciphertext selective
opening attacks (SO-CPA/CCA). Sender equivocability
focuses on the ability of a PKE scheme to generate
some “equivocable” ciphertexts which can be efficiently
opened arbitrarily. More specifically, a PKE scheme
is called sender-equivocable if there is a simulator
which can generate non-committing ciphertexts and
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later open them to any requested plaintexts by releasing
some randomness, such that the simulation and real
encryption are indistinguishable. This notion is similar to
non-committing encryption (Canetti et al., 1996). In fact,
Fehr et al. (2010) pointed out that sender-equivocable
encryption secure under chosen-plaintext attacks (CPAs)
is a variant of non-committing encryption defined by
Canetti et al. (1996). Following the notation in the work
of Fehr et al. (2010), the security of a sender-equivocable
encryption scheme against chosen-plaintext/ciphertext
attacks is denoted by NC-CPA/CCA security.

As proved by Fehr et al. (2010), NC-CPA/CCA
security implies simulation-based selective opening
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security against chosen-plaintext/ciphertext attacks
(SIM-SO-CPA/CCA security). This fact suggests an
alternative way of constructing PKE secure against
selective opening attacks, besides the construction from
the lossy encryption proposed by Bellare et al. (2009).

1.1. Discussion and related work. Bellare et al.
(2009) formalized the notion of security against selective
opening attacks (SOA security) for sender corruptions.
This security notion captures a situation that n senders
encrypt their own messages and send the ciphertexts to
a single receiver. Some subset of the senders can be
corrupted by an adversary, exposing their messages and
randomness to the latter. SOA security requires that the
unopened ciphertexts remain secure.

Bellare et al. (2009) proposed two kinds of SOA
security: simulation-based selective opening (SIM-SO)
security and indistinguishability-based selective opening
(IND-SO) security. The relations between the two notions
are figured out by Böhl et al. (2012). Bellare et al.
(2012) showed that the standard security of PKE does not
imply SIM-SO security. Bellare et al. (2009) proposed
that IND-SO-CPA security and SIM-SO-CPA security
can be achieved through a special class of encryption
named lossy encryption, which can be constructed from
lossy trapdoor functions (Peikert and Waters, 2011).
Hemenway et al. (2011) showed more constructions
of lossy encryption, which achieved IND-SO-CCA
security with an a-priori bounded number of challenge
ciphertexts. Hofheinz (2012) proposed a new primitive
called all-but-many lossy trapdoor functions, which
were employed to construct IND-SO-CCA secure and
SIM-SO-CCA secure PKE with an unbounded number of
challenge ciphertexts. Bellare et al. (2011) extended SOA
security from PKE to IBE.

Fehr et al. (2010) presented a totally different
way of achieving SIM-SO-CCA security, also with an
unbounded number of challenge ciphertexts. They
formalized the security notion of sender equivocability
under chosen-plaintext/ciphertext attacks (NC-CPA/CCA
security), and proved that NC-CPA (resp. NC-CCA)
security implies SIM-SO-CPA (resp. SIM-SO-CCA)
security. In the work of Fehr et al. (2010), two PKE
schemes were proposed. The first one, constructed from
trapdoor one-way permutations, is NC-CPA secure, so
it is SIM-SO-CPA secure. The second one (denoted
as the FHKW scheme) is constructed from an extended
hash proof system (Cramer and Shoup, 2002) and a new
primitive, the “cross-authentication code”. They proved
that the FHKW scheme is NC-CCA secure.

With the help of similar techniques as those in the
FHKW scheme, Gao et al. (2012) presented a deniable
encryption scheme. The CCA security of their scheme
was guaranteed mainly by an extended hash proof system
(Cramer and Shoup, 2002) and a cross-authentication

code (Fehr et al., 2010).
In this paper, we will analyze the security proof of

the FHKW scheme and show that its NC-CCA security
cannot be guaranteed by their proof. The GXW scheme
suffers from a similar security problem. Then, we will
offer a refined version of the FHKW scheme for a single
bit with NC-CCA security. To completely fix the problem,
we will introduce the strong notion of cross-authentication
code, apply it to the FHKW scheme, and show that the
new version of the FHKW scheme achieves NC-CCA
security for multi-bit plaintexts.

1.2. Our contribution. In this paper, we focus on
NC-CCA security. First, we provide an analysis of the
security proof of the FHKW scheme (Fehr et al., 2010),
and show that the proof of NC-CCA security (Fehr
et al., 2010) is flawed by showing an attack. The key
observation is that, in the definition of NC-CCA security,
the randomness used in the generation of the challenge
ciphertext C∗ is offered to the adversary. The adversary
is able to use the randomness to forge a ciphertext
and obtain useful information by querying the forged
ciphertext to the decryption oracle. Assume that the
plaintext consists of L bits. We present a PPT adversary
who can always distinguish the real experiment and the
simulated experiment for L > 1. We also show that the
security requirement of “L-cross-authentication codes” is
not enough for the NC-CCA security proof in the work of
Fehr et al. (2010) for any positive integer L.

Second, we refine the FHKW scheme encrypting one
bit. Although we showed that “L-cross-authentication
codes” are generally not sufficient to prove
NC-CCA security, some specific instances of
“1-cross-authentication codes” are helpful to finish
the proof of NC-CCA security of the FHKW scheme
(Fehr et al., 2010), but limited to encryption of a single
bit. We provide a simpler encryption scheme for single-bit
plaintexts, free of any cross-authentication code.

Third, we fix the security proof of the FHKW
scheme by introducing the strong notion of an
L-cross-authentication code and using it to construct the
FHKW scheme instead of the original one. Informally,
a strong L-cross-authentication code requires the
existence of a PPT algorithm to generate another key
indistinguishable from the original one. With this
property, the randomness in the simulated experiment
is different but indistinguishable from that in the real
experiment, which helps the L-cross-authentication
code’s security against substitution attacks work again.

Organization. We start with the notation and definitions
in Section 2. We recall the FHKW scheme in Section
3, and then provide its security analysis in Section 4.
We present a refined version of the FHKW scheme for
single-bit plaintexts in Section 5 and leave the proof
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for Appendices. We introduce the notion of a strong
cross-authentication code in Section 6, and use it to fix the
security proof in Section 7. Finally, we give a summary of
our work in Section 8.

2. Preliminaries

2.1. Notation. Let N denote the set of natural numbers.
We use k ∈ N as the security parameter throughout the
paper. For n ∈ N, let [n] denote the set {1, 2, . . . , n} and
{0, 1}n the set of bitstrings of length n. For a finite set S,
let s ← S denote the process of sampling s uniformly
at random from S. If A is a probabilistic algorithm,
we denote by RA the randomness set of A. Let y ←
A(x1, x2, . . . , xt) denote the process of running A on
inputs {x1, x2, . . . , xt} and inner randomness R ← RA,
and outputting y. If the running time of probabilistic
algorithm A is polynomial in k, then A is a probabilistic
polynomial time (PPT) algorithm.

2.2. Sender-equivocable encryption schemes. The
notion of sender equivocability was formalized by Fehr
et al. (2010). For a public-key encryption scheme Π =
(Gen,Enc,Dec), let A = (A1, A2) denote a stateful
adversary, S = (S1, S2) denote a stateful simulator,
and M denote a plaintext. Let state denote some state
information output by A1 and then passed to A2. Sender
equivocability under adaptive chosen-ciphertext attacks is
defined through the following two experiments.

Experiment ExpNC-CCA-Real
Π,A (k):

(pk, sk)← Gen(1k)
(M, state)← A

Decsk(·)
1 (pk)

R←REnc

C ← Encpk(M ;R)

return A
Decsk(·)
2 (M,C,R, state)

Experiment ExpNC-CCA-Sim
Π,A (k):

(pk, sk)← Gen(1k)
(M, state)← A

Decsk(·)
1 (pk)

C ← S1(pk, 1
|M|)

R← S2(M)

return A
Decsk(·)
2 (M,C,R, state).

In both experiments, A = (A1, A2) is allowed to
access a decryption oracle Decsk(·) with the constraint
that A2 is not allowed to query C.

The advantage of adversary A is defined as follows:

AdvNC-CCA
Π,A,S (k) := | Pr

[
ExpNC-CCA-Real

Π,A (k) = 1
]

− Pr
[
ExpNC-CCA-Sim

Π,A (k) = 1
]
|.

Definition 1. A public-key encryption scheme Π =
(Gen,Enc,Dec) is said to be sender-equivocable under
adaptive chosen-ciphertext attacks (NC-CCA secure) if
there is a stateful PPT algorithm S (the simulator),
such that for any PPT algorithm A (the adversary) the
advantage AdvNC-CCA

Π,A,S (k) is negligible.

2.3. Building blocks of the FHKW scheme. Fehr
et al. (2010) presented a construction of PKE with
NC-CCA security. We will call their scheme FHKW. It
was built using the following cryptographic primitives:
a collision-resistant hash function, a subset membership
problem, an extended version of the hash proof system
(Cramer and Shoup, 2002), and a cross-authentication
code (Fehr et al., 2010).

Definition 2. A family of collision-resistant hash
functions H : D → R consists of two PPT
algorithms (HGen,HEval). Algorithm HGen(1k)
randomly chooses a hash function from the family and
outputs the description of the hash function H. Algorithm
HEval(H, x) produces the hash value H(x) for all x ∈ D.
Furthermore, for any PPT algorithm A, the following
function is negligible in k:

Advcr
H,A(k)

:= Pr

[
H← HGen(1k)
(x, x′)← A(H)

:
x �= x′ ∧

H(x) = H(x′)

]
.

Here we do not distinguish a function H from its
description output by HGen.

Definition 3. A subset membership problem consists of
the following PPT algorithms:

• SmpGen(1k): On input 1k, Algorithm SmpGen
outputs a parameter Λ, which specifies a set XΛ and
its subset LΛ ⊆ XΛ. Set XΛ is required to be easily
recognizable with Λ.

• SampleL(LΛ;W ): Algorithm SampleL samples
X ∈ LΛ using randomness W ∈ RSampleL.

A subset membership problem SMP is hard if, for any
PPT distinguisher D, D’s advantage

AdvSMP,D(k)

:= | Pr

[
Λ← SmpGen(1k)
X ← LΛ

: D(X) = 1

]

− Pr

[
Λ← SmpGen(1k)
X ← XΛ

: D(X) = 1

]
|

is negligible.

Definition 4. A subset membership problem SMP
has the property of subset sparseness if the probability
Pr[Λ ← SmpGen(1k), X ← XΛ : X ∈ LΛ] is
negligible.
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Definition 5. A hash proof system HPS for a
subset membership problem SMP associates each Λ ←
SmpGen(1k) with an efficiently recognizable key space
KΛ and the following PPT algorithms:

• HashGen(Λ): On input Λ, HashGen outputs a
public key hpk and a secret key hsk, both containing
the parameter Λ.

• SecEvl(hsk,X): It is a deterministic algorithm. On
input a secret key hsk and an element X ∈ XΛ, Se-
cEvl outputs a key K ∈ KΛ.

• PubEvl(hpk,X,W ): It is a deterministic algorithm.
On input a public key hpk, an element X ∈ XΛ

and a witness W for X ∈ LΛ, PubEvl outputs
a key K ∈ KΛ. The correctness requires that
PubEvl(hpk,X,W ) = SecEvl(hsk,X) for all
Λ ← SmpGen(1k), (hpk, hsk) ← HashGen(Λ)
and X ← SampleL(LΛ;W ).

An extended hash proof system EHPS is a variation
of a hash proof system HPS, extending the sets XΛ and
LΛ by taking the Cartesian product of these sets with an
efficiently recognizable tag space TΛ. Hence, the tuple
of the three algorithms (HashGen, SecEvl, PubEvl) of
EHPS is changed to (hpk, hsk) ← HashGen(Λ), K ←
SecEvl(hsk,X, t) and K ← PubEvl(hpk,X,W, t), with
t ∈ TΛ.

The public key hpk in a hash proof system HPS
uniquely determines the action of algorithm SecEvl for
all X ∈ LΛ. However, the action of SecEvl for X ∈
XΛ \ LΛ is still undetermined by hpk. This is defined by
a perfectly 2-universal property.

Definition 6. A hash proof system HPS for SMP is
perfectly 2-universal if, for any Λ ← SmpGen(1k), any
hpk from HashGen(Λ), any distinct X1, X2 ∈ XΛ \ LΛ,
and any K1,K2 ∈ KΛ,

Pr[SecEvl(hsk,X2)
= K2 | SecEvl(hsk,X1) = K1]

=
1

|KΛ|
,

where the probability is taken over all possible hsk with
(hpk, hsk)← HashGen(Λ).

Definition 7. A domain D is efficiently samplable and
explainable if there exists two PPT algorithms:

• Sample(D;R): On input a random coin R ←
RSample and a domain D, it outputs an element
uniformly distributed over D.

• Explain(D, x): On input D and x ∈ D, this
algorithm outputs R that is uniformly distributed
over the set {R ∈ RSample | Sample(D;R) = x}.

Definition 8. (Fehr et al., 2010) For any L ∈ N,
an L-cross-authentication code XAC, associated with a
key space XK and a tag space XT , consists of three
PPT algorithms (XGen, XAuth, XVer). Algorithm
XGen(1k) generates a uniformly random key K ∈
XK, XAuth(K1, . . . ,KL) produces a tag T ∈ XT ,
and XVer(K, i, T ) outputs b ∈ {0, 1}. The following
properties are required.

Correctness. The function

failcorrect
XAC (k)
:= max

i∈[L]
Pr[XVer(Ki, i,XAuth((Kj)j∈[L])) �= 1]

is negligible in k, where the maximum is over all
i ∈ [L] and the probability is taken over all possible
K1, · · · ,KL ← XGen(1k).

Security against impersonation and substitution at-
tacks. The advantages Advimp

XAC(k) and Advsub
XAC(k),

defined as follows, are both negligible:

Advimp
XAC(k)

:= max
i,T ′

Pr[K ← XGen(1k) : XVer(K, i, T ′) = 1] ,

where the maximum is over all i ∈ [L] and T ′ ∈ XT .

Advsub
XAC(k)

:= max
i,K �=i,Func

Pr

⎡
⎣

Ki ← XGen(1k)
T = XAuth((Kj)j∈[L])
T ′ ← Func(T )

:
T ′ �= T∧

XVer(Ki, i, T
′) = 1

⎤
⎦

where the maximum is over all i ∈ [L], all K �=i :=

(Kj)j �=i ∈ XKL−1 and all possibly randomized functions
Func : XT → XT .

3. Review of the FHKW scheme

With the above cryptographic primitives, we now present
the FHKW scheme (Fehr et al., 2010).

Let SMP be a hard subset membership problem that
has the property of subset sparseness. Let XΛ, with Λ ←
SmpGen(1k), be efficiently samplable and explainable.
Let EHPS be a perfectly 2-universal extended hash
proof system for SMP with tag space TΛ and key
space (range) KΛ, which is efficiently samplable and
explainable as well. Let H : (XΛ)

L → TΛ be a
family of collision-resistant hash functions, and XAC be
an L-cross-authentication code with key space XK = KΛ

and tag space XT .

FHKW scheme:

Gen(1k): On input 1k, algorithm Gen runs Λ ←
SmpGen(1k), (hpk, hsk) ← HashGen(Λ), H ←
H, and outputs (pk, sk), where pk = (hpk,H) and
sk = (hsk,H).
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Enc(pk,M ;R): To encrypt a plaintext

M = (M1, . . . ,ML) ∈ {0, 1}L

under a public key pk = (hpk,H) with randomness

R = (Wi, R
XΛ

i , RKΛ

i )i∈[L]

∈ (RSampleL ×RSample ×RSample)
L.

Algorithm Enc runs as follows:
For i ∈ [L], set

Xi :=

{
Sample(XΛ;R

XΛ

i ) if Mi = 0,

SampleL(LΛ;Wi) if Mi = 1,

and t := H(X1, . . . , XL). Then for i ∈ [L], set the
keys

Ki :=

{
Sample(KΛ;R

KΛ

i ) if Mi = 0,

PubEvl(hpk,Xi,Wi, t) if Mi = 1,

and the tag T := XAuth(K1, . . . ,KL). Finally,
return C = (X1, · · · , XL, T ) as the ciphertext.

Dec(sk, C): To decrypt a ciphertext

C = (X1, . . . , XL, T ) ∈ XL
Λ ×XT

under a secret key sk = (hsk,H), Algorithm
Dec computes t = H(X1, · · · , XL), for i ∈
[L] sets Ki := SecEvl(hsk,Xi, t) and Mi =
XVer(Ki, i, T ), and returns M = (M1, . . . ,ML) as
the plaintext.

The correctness of the FHKW scheme is proved by
Fehr et al. (2010), and omitted here.

4. Security analysis of the FHKW scheme

According to the definition of NC-CCA security, the
FHKW scheme is NC-CCA secure, if and only if
there exists a simulator S such that for any PPT
algorithm A, the two experiments ExpNC-CCA-Real

FHKW,A (k)

and ExpNC-CCA-Sim
FHKW,A (k), defined in Section 2, are

indistinguishable.
In order to prove NC-CCA security of the FHKW

scheme, Fehr et al. (2010) constructed the following
simulator S = (S1, S2).

Simulator S:

• S1(pk, 1
|M|): Parse pk = (hpk,H). For i ∈

[L], choose W̃i ← RSampleL and set Xi :=

SampleL(LΛ; W̃i). Compute t := H(X1, . . . , XL).
For i ∈ [L], set Ki := PubEvl(hpk,Xi, W̃i, t). Set
T ← XAuth(K1, . . . ,KL). Return the ciphertext
C = (X1, . . . , XL, T ).

• S2(M): Parse M = (M1, . . . ,ML). For i ∈ [L],
if Mi = 1, set Wi := W̃i, and choose RXΛ

i ←
RSample, RKΛ

i ← RSample; otherwise, choose
Wi ← RSampleL, and set RXΛ

i ← Explain(XΛ, Xi),
RKΛ

i ← Explain(KΛ,Ki). Return the randomness

R = (Wi, R
XΛ

i , RKΛ

i )i∈[L].

With the simulator S, Fehr et al. (2010) proved that
the FHKW scheme is NC-CCA secure. However, we will
show that this specific simulator S does not guarantee
NC-CCA security of the FHKW scheme for any positive
integer L.

4.1. Security proof problem. To prove NC-CCA
security, it is essential to show that the decryption oracle
will not leak any useful information to any PPT adversary.
As to the FHKW scheme, given a challenge ciphertext
C = (X1, . . . , XL, T ), an adversary A comes up with
a decryption query C′ = (X1, . . . , XL, T

′), where
T ′ �= T . NC-CCA security expects the decryption
of C′ by the oracle will not help the adversary to
distinguish the two experiments ExpNC-CCA-Real

FHKW,A (k) and

ExpNC-CCA-Sim
FHKW,A (k) (see the proof of Lemma 5 in the work

of Fehr et al. (2010)). This strongly relies on the security
against substitution attacks of the cross-authentication
code, which requires that “given T and K �=i, it is difficult
to output a T ′ �= T such that XVer(Ki, i, T

′) = 1, where
Ki is uniformly distributed”.

However, in the NC-CCA game, adversary A
KNOWs Ki for any i ∈ [L]! The reason is as
follows. Upon returning a plaintext M , adversary A
receives not only a challenge ciphertext C, but also some
related random coins R which are supposed to have been
consumed in the challenge ciphertext generation. With
R and M , adversary A can recover Ki for any i ∈
[L]. Then, it is possible for A to output a T ′ �= T
such that XVer(Ki, i, T

′) = 1. Hence, XAC’s security
against substitution attacks is not sufficient to guarantee
the aforementioned property. That is why the security
proof proposed by Fehr et al. (2010) fails (more precisely,
the proof of Lemma 5 in the work of Fehr et al. (2010)
does).

In fact, this kind of adversary, which can output a
T ′ �= T such that XVer(Ki, i, T

′) = 1 given T and Ki

for any i ∈ [L], does exist. In Section 4.2, we will present
such an adversary A to destroy the security proof of the
FHKW scheme for L > 1.

Deniable scheme. Gao et al. (2012) utilized exactly the
same technique as that in the FHKW scheme to construct
a deniable encryption scheme and “proved” the CCA
security. A similar problem we pointed out above also
exists in their security proof (more specifically, the proof
of Claim 1 in the work of Gao et al. (2012)). As a result,
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our attack in Section 4.2 applies to their scheme and ruins
their proof, too.

4.2. Security analysis of the FHKW scheme: L > 1.
Before going into a formal statement and its proof,
we briefly give a high-level description of our security
analysis for L > 1.

With the aforementioned simulator S, for any L > 1,
our aim is to construct an adversary A = (A1, A2) to
distinguish the two experiments ExpNC-CCA-Real

FHKW,A (k) and

ExpNC-CCA-Sim
FHKW,A (k). The construction of adversary A is as

follows.
In an experiment environment (either

ExpNC-CCA-Real
FHKW,A (k) or ExpNC-CCA-Sim

FHKW,A (k)), upon receiving
pk, A1 returns M = (0, . . . , 0). Then, upon receiving
a ciphertext C = (X1, . . . , XL, T ) and randomness R,
A2 returns C′ = (X1, . . . , XL, T

′) as his decryption
query, where T ′ ← XAuth(K ′

1,K2, . . . ,KL), K ′
1 is

uniformly random chosen from KΛ and K2, . . . ,KL are
all recovered from R. Finally, if the decryption oracle
returns M ′ = (0, . . . , 0), A2 will output b = 1, and
otherwise, A2 will output b = 0.

Now, we consider the probabilities that A outputs
1 in the two experiments. In ExpNC-CCA-Real

FHKW,A (k), for i ∈
[L], Xi (resp. Ki) is chosen uniformly random from XΛ

(resp. KΛ), so the subset sparseness of SMP and the
perfect 2-universality of HPS guarantee that for i ∈ [L],
K ′

i = SecEvl(hsk,Xi, t) is uniformly random in KΛ

from A’s point of view. Due to the security of XAC,
the decryption oracle returns M ′ = (0, 0, . . . , 0) for the
queried ciphertext C′. Consequently, A outputs b = 1
with an overwhelming probability in ExpNC-CCA-Real

FHKW,A (k).

On the other hand, in ExpNC-CCA-Sim
FHKW,A (k), for i ∈

[L], Xi is chosen uniformly random from LΛ and
Ki = PubEvl(hpk,Xi,Wi, t), so the property of HPS
guarantees that, for i ∈ [L], K ′

i = SecEvl(hsk,Xi, t) =
Ki. Due to the correctness of XAC and the facts
that T ′ ← XAuth(K ′

1,K2, . . . ,KL) and M ′
i =

XVer(K ′
i, i, T

′) = 1 for i ∈ {2, 3, . . . , L}, the
decryption oracle returns M ′ = (0, 1, . . . , 1) with an
overwhelming probability. As a result, A outputs b =
1 with negligible probability in ExpNC-CCA-Sim

FHKW,A (k). The

two experiments ExpNC-CCA-Real
FHKW,A (k) and ExpNC-CCA-Sim

FHKW,A (k)
have been distinguished by A with an overwhelming
advantage.

A formal statement of the result and its
corresponding proof are as follows.

Theorem 1. With the aforementioned simulator S, the
FHKW scheme cannot be proved to be NC-CCA secure
for any L > 1. More specifically, there exists an adver-
sary A distinguishing the real and the simulated NC-CCA
experiments, with the advantage

AdvNC-CCA
FHKW,A,S(k)

≥ 1− 2Advimp
XAC(k)− failcorrect

XAC (k).

Proof. For simplicity, we consider the case of L = 2. We
note that this attack is applicable to any L > 1.

Our aim is to construct a specific adversary
A = (A1, A2) to distinguish the two experiments
ExpNC-CCA-Real

FHKW,A (k) and ExpNC-CCA-Sim
FHKW,A (k) with a

non-negligible advantage.
Specifically, given an experiment environment

(either ExpNC-CCA-Real
FHKW,A (k) or ExpNC-CCA-Sim

FHKW,A (k)), the
adversary A = (A1, A2) behaves as follows.

• Upon receiving pk = (hpk,H), A1 returns M =
(0, 0), i.e., M1 = M2 = 0.

• Upon receiving a ciphertext

C = (X1, X2, T )

and randomness

R = ((W1, R
XΛ
1 , RKΛ

1 ),

(W2, R
XΛ
2 , RKΛ

2 )), A2 creates a new ciphertext C′

according to C:

– Set X ′
1 := X1, X ′

2 := X2.

– Set K ′
1 ← KΛ,K

′
2 ← Sample(KΛ;R

KΛ
2 ).

– Compute T ′ ← XAuth(K ′
1,K

′
2).

– Check that T ′ �= T . If T ′ = T , choose
another random value for K ′

1 and repeat the
above steps, until T ′ �= T .

– Set C′ := (X ′
1, X

′
2, T

′).

Then A2 submits C′ to the decryption oracle.

• Let M ′ ← Dec(sk, C′). A2 outputs b, where

b =

{
1 if M ′ = (0, 0),
0 if M ′ �= (0, 0).

Now we analyze the probabilities that A2 outputs
b = 1 in the real and the simulated experiment,

In both experiments, A2 receives a ciphertext C =
(X1, X2, T ) and randomness R = ((W1, R

XΛ
1 , RKΛ

1 ),
(W2, R

XΛ
2 , RKΛ

2 )). The ciphertext created and submitted
to the decryption oracle by A2 is C′ = (X ′

1, X
′
2, T

′) =
(X1, X2, T

′), where T ′ = XAuth(K ′
1,K

′
2) =

XAuth(K ′
1,K2) (due to K ′

2 = K2) and T ′ �= T .

Real experiment. The challenge ciphertext C =
(X1, X2, T ) satisfies X1 ← Sample(XΛ;R

XΛ
1 ),

X2 ← Sample(XΛ;R
XΛ
2 ), and T = XAuth(K1,K2),
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where K1 ← Sample(KΛ;R
KΛ
1 ) and K2 ←

Sample(KΛ;R
KΛ
2 ).

The decryption of C′ by the decryption
oracle Dec(sk, ·) involves the computation of
t′ := H(X ′

1, X
′
2) = H(X1, X2) = t and

K ′
i := SecEvl(hsk,X ′

i, t
′) = SecEvl(hsk,Xi, t),

for i ∈ {1, 2}.
Due to the perfect 2-universality of EHPS, K ′

i is
uniformly random distributed in KΛ. Hence, for i ∈
{1, 2},

Pr
[
XVer(K ′

i, i, T
′) = 1|in ExpNC-CCA-Real

FHKW,A (k)
]

≤ Advimp
XAC(k). (1)

Let M ′ = (M ′
1,M

′
2) denote the decryption result

of C′ by the decryption oracle Dec(sk, ·). Then for
i ∈ {1, 2},

Pr
[
M ′

i = 1 | in ExpNC-CCA-Real
FHKW,A (k)

]

= Pr
[
XVer(K ′

i, i, T
′) = 1 | in ExpNC-CCA-Real

FHKW,A (k)
]

≤ Advimp
XAC(k).

(2)

The probability that A2 outputs b = 1 in the real
experiment is given by

Pr
[
ExpNC-CCA-Real

FHKW,A (k) = 1
]

= Pr
[
M ′ = (0, 0) | in ExpNC-CCA-Real

FHKW,A (k)
]

= 1− Pr
[
M ′ �= (0, 0) | in ExpNC-CCA-Real

FHKW,A (k)
]

= 1− Pr
[
M ′

1 = 1 ∨M ′
2 = 1 | in ExpNC-CCA-Real

FHKW,A (k)
]

≥ 1− 2Advimp
XAC(k).

(3)

Simulated experiment. The ciphertext C =

(X1, X2, T ) satisfies X1 ← SampleL(LΛ; W̃1),
X2 ← SampleL(LΛ; W̃2), and T = XAuth(K1,K2),
where, for i ∈ {1, 2}, W̃i ← RSampleL and

Ki = PubEvl(hpk,Xi, W̃i, t) with t = H(X1, X2).
The decryption of C′ by the decryption

oracle Dec(sk, ·) involves the computation of
t′ = H(X ′

1, X
′
2) = H(X1, X2) = t and

K ′
i = SecEvl(hsk,X ′

i, t
′) = SecEvl(hsk,Xi, t),

for i ∈ {1, 2}. On the other hand, we know that
K ′

2 = K2 and K2 = PubEvl(hpk,X2,W2, t).
Since X2 ∈ LΛ, the property of EHPS guarantees
that SecEvl(hsk,X2, t) = PubEvl(hpk,X2,W2, t),
which means that K ′

2 = K2 = K ′
2. Note that

M ′
2 = XVer(K ′

2, 2, T
′). Hence, we have

Pr
[
M ′

2 = 1 | in ExpNC-CCA-Sim
FHKW,A (k)

]

= Pr
[
XVer(K ′

2, 2, T
′) = 1 | in ExpNC-CCA-Sim

FHKW,A (k)
]

= Pr
[
XVer(K ′

2, 2, T
′) = 1 | in ExpNC-CCA-Sim

FHKW,A (k)
]

≥ 1− failcorrect
XAC (k).

(4)

The probability that A2 outputs b = 1 in the
simulated experiment is given by

Pr
[
ExpNC-CCA-Sim

FHKW,A (k) = 1
]

= Pr
[
M ′ = (0, 0) | in ExpNC-CCA-Sim

FHKW,A (k)
]

= 1− Pr
[
M ′ �= (0, 0) | in ExpNC-CCA-Sim

FHKW,A (k)
]

≤ 1− Pr
[
M ′

2 = 1 | in ExpNC-CCA-Sim
FHKW,A (k)

]

≤ failcorrect
XAC (k).

(5)

The advantage of adversary A is given by

AdvNC-CCA
FHKW,A,S(k)

=
∣∣∣Pr

[
ExpNC-CCA-Real

FHKW,A (k) = 1
]

−Pr
[
ExpNC-CCA-Sim

FHKW,A (k) = 1
]∣∣∣

≥ 1− 2Advimp
XAC(k)− failcorrect

XAC (k).

(6)

Note that both Advimp
XAC(k) and failcorrect

XAC (k) are
negligible. So A’s advantage AdvNC-CCA

FHKW,A,S(k) is
non-negligible (in fact, it is overwhelming), i.e., the
security proof of the FHKW scheme (Fehr et al., 2010)
is incorrect. �

4.3. Security analysis of the FHKW scheme: L = 1.
Note that our attack in the previous section does not apply
to the case L = 1. There upon receiving the ciphertext
C and randomness R, the adversary A recovers K and
switches the first element of K with a random one. If
L = 1, A will get a new K ′ = K ′

1 and then T ′ =
XAuth(K ′

1). Afterwards, A will return C′ = (X1, T
′)

as his decryption query. Then, A will receive M ′ = 0
with overwhelming probability in both ExpNC-CCA-Real

FHKW,A (k)

and ExpNC-CCA-Sim
FHKW,A (k). Hence, the two experiments are

still indistinguishable for A.
As we have pointed out earlier, the security of the

L-cross-authentication code against substitution attacks
is not sufficient for the security proof of the FHKW
scheme for any value of L. But our attack above only
works for L > 1. Therefore, the remaining problem is
whether it is possible for the FHKW scheme to achieve
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NC-CCA security for L = 1, still with the aforementioned
simulator S.

Before solving the problem, we claim that algorithm
XAuth of XAC in the FHKW scheme is deterministic
(this is not explicitly expressed in the work of Fehr et al.
(2010)). That is because R = (Wi, R

XΛ

i , RKΛ

i )i∈[L] is the
only randomness used in the encryption process. In other
words, if XAuth is probabilistic, the inner random number
used by XAuth should be contained in the randomness
R (and then passed to the adversary, according to the
definition of NC-CCA security). On the other hand,
if algorithm XAuth of XAC in the FHKW scheme is
probabilistic, with the aforementioned simulator S, the
FHKW scheme cannot be proved secure in the sense of
NC-CCA for any positive integer L. (See Appendix A for
the proof.)

In fact, the security proof of the FHKW
scheme expected such a property from the
L-cross-authentication code: “given (K1,K2, . . . ,KL)
and T = XAuth(K1, . . . ,KL), it is difficult to output
a T ′ �= T such that XVer(Ki, i, T

′) = 1 for some
i ∈ [L]”. This property generally does not hold
for the L-cross-authentication code. However, it is
true for some special 1-cross-authentication code, for
example, the instance of an L-cross-authentication
code given by Fehr et al. (2010) when constricted to
L = 1. For that special instance, when L = 1, given
K = K1 and T = XAuth(K1) (note that XAuth is
deterministic), it is impossible to find a T ′ �= T such that
XVer(K1, 1, T

′) = 1, since only T = XAuth(K1) itself
could pass the verification. Therefore, with the special
1-cross-authentication code instance (or other instance
with a similar property) as the ingredient, the FHKW
scheme is NC-CCA secure for L = 1.

5. Sender-equivocable encryption scheme
for a single bit

In this section, we will refine the FHKW scheme
for L = 1. Specifically, we will present a PKE
scheme with NC-CCA security for L = 1 without any
L-cross-authentication code.

Our scheme can be seen as a simplified version
of the FHKW scheme instantiated with a special
1-cross-authentication code. As we have pointed earlier,
the special property of a 1-cross-authentication code
requires that each K determine a unique tag T satisfying
XVer(K,T ) = 1. In our scheme, the encryption
algorithm replaces the tag T by the key K directly. In
the decryption, whether the plaintext is 1 or 0 depends
on the equality of K in the ciphertext and K computed
by SecEvl(hsk,X), while in the FHKW scheme the
plaintext bit is determined by whether XVer(K,T ′) = 1
or not.

Below we describe our scheme E =

(GenE ,EncE ,DecE). It consists of a hard subset
membership problem SMP, with subset sparseness, and
its corresponding perfectly 2-universal hash proof system
HPS. We require that for any Λ ← SmpGen(1k), both
XΛ (with respect to SMP) and KΛ (with respect to HPS)
be efficiently explainable. As suggested by Fehr et al.
(2010), the requirement of efficient samplability and
explainability on KΛ imposes no real restriction, and it
was shown in the work of Cramer and Shoup (2002) that
both of the above ingredients can be constructed based on
some standard number-theoretic assumptions, such as the
DDH, DCR and QR assumptions.

Scheme E = (GenE , EncE ,DecE):

GenE(1k): On input 1k, algorithm GenE runs Λ ←
SmpGen(1k), (hpk, hsk) ← HashGen(Λ), and
outputs (pk, sk), where pk = hpk and sk = hsk.

EncE(pk,M ;R): To encrypt a plaintext M ∈ {0, 1}
under a public key pk = hpk with randomness R =
(W,RXΛ , RKΛ) ∈ RSampleL × RSample × RSample,
algorithm EncE sets

X :=

{
Sample(XΛ;R

XΛ) if M = 0,

SampleL(LΛ;W ) if M = 1,

and

K :=

{
Sample(KΛ;R

KΛ) if M = 0,

PubEvl(hpk,X,W ) if M = 1,

then returns ciphertext C = (X,K).

DecE(sk, C): To decrypt a ciphertext C = (X,K) ∈
XΛ × KΛ under a secret key sk = hsk, algorithm
DecE sets K := SecEvl(hsk,X). If K = K , return
M = 1; otherwise, return M = 0.

Correctness. On the one hand, if C = (X,K) is a
ciphertext of M = 1, then K = SecEvl(hsk,X) =
PubEvl(hpk,X,W ) = K due to the property of HPS.
So DecE(sk, C) returns M = 1. On the other hand, if
C = (X,K) is a ciphertext of M = 0, then X ← XΛ,
K ← KΛ and K = SecEvl(hsk,X). So Pr[K = K] =
1/|KΛ|. Hence, with probability 1−1/|KΛ|, DecE(sk, C)
returns M = 0.

Security. As for the security of scheme E , we have
the following theorem. The proof is similar to that of
the FHKW scheme (Fehr et al., 2010). But the key
observation is: Given C = (X,K), it is impossible to
create C′ = (X,K ′), K �= K ′, such that K ′ = K ′. Note
that the security proof of our scheme does not involve
any cross-authentication code. Details of the proof are in
Appendix B.

Theorem 2. Assuming that SMP is a hard subset mem-
bership problem with subset sparseness, and HPS is its
corresponding perfectly 2-universal hash proof system,
scheme E = (GenE ,EncE ,DecE) is NC-CCA secure.
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6. Strong L-cross-authentication codes

In this section, we will introduce a strong version of
L-cross-authentication codes, which will be used to
construct a new version of the FHKW scheme achieving
NC-CCA security. This primitive may find other
cryptographic applications.

The formal definition of a strong
L-cross-authentication code is as follows.

Definition 9. For L ∈ N, an L-cross-authentication code
XAC is strong if there exists a PPT algorithm ReSamp
satisfying the following property: Given K1, . . . ,KL ←
XGen(1k) and T = XAuth((Kj)j∈[L]) such that
XVer(Kj, j, T ) = 1, j ∈ [L], algorithm ReSamp takes
as input i ∈ [L], K �=i := (Kj)j �=i and T , and outputs K ′

i,
which is statistically indistinguishable from Ki, i.e.,

Dist(k)

:=
1

2

∑
K∈XK

|Pr[K ′
i = K|(K �=i, T )]

− Pr[Ki = K|(K �=i, T )]|

is negligible, where K ′
i ← ReSamp(i,K �=i, T ) and the

probabilities are taken over all possible Ki ← XGen(1k)
such that T = XAuth((Kj)j∈[L]), and the randomness of
ReSamp.

Remark 1. Recalling the discussion in Section
4.3, algorithm XAuth is deterministic. The
indistinguishability of ReSamp implies that

XAuth(K1, . . . ,Ki, . . . ,KL)
= XAuth(K1, . . . ,K

′
i, . . . ,KL)

= T,
(7)

with overwhelming probability, where K ′
i ←

ReSamp(i,K �=i, T ).

Remark 2. The requirement that ReSamp is efficient
is very important. Because this algorithm will be used to
construct a simulator S in the next section, and NC-CCA
security requires that the simulator should be a PPT
algorithm.

Remark 3. This “efficient resampling” property
is just a missing element in the security proof of the
FHKW scheme. With this particular property, the strong
cross-authentication code is able to resist the attack
proposed in Section 4, and fill the gap in the security proof
of the FHKW scheme.

Example of a strong L-cross-authentication
code. Quite interestingly, the instance of an
L-cross-authentication code XAC (Fehr et al., 2010)
is also strong. Now we recall the instance
XAC=(XGen,XAuth,XVer) proposed by Fehr et al.
(2010).

Let Fq be a finite field, where q is determined by the
security parameter k. Define XK = F

2
q and XT = F

L
q ∪

{⊥}.

• XGen(1k): Generate a random key (a, b)← F
2
q .

• XAuth(K1, . . . ,KL): For

K1 = (a1, b1), . . . ,KL = (aL, bL) ∈ F
2
q,

XAuth computes a tag T = (T0, . . . , TL−1)
satisfying that for i ∈ [L], polyT (ai) = bi, where
polyT (x) = T0 + T1x + · · · + TL−1x

L−1 ∈ Fq[x].
Note that T can be computed efficiently by solving
a linear equation system AT = B, where A ∈
F
L×L
q is a Vandermonde matrix and its i-th row is

(1, ai, a
2
i , · · · , aL−1

i ) for i ∈ [L], and B ∈ F
L
q is a

column vector with elements b1, · · · , bL. If there are
more than one or no solution for AT = B, XAuth
will output T = ⊥.

• XVer(K, i, T ): For any K = (a, b) ∈ XK, i ∈ [L]
and T ∈ XT , XVer outputs 1 if and only if T �=⊥
and polyT (a) = b.

The code XAC has been proved to be correct and
secure against impersonation and substitution attacks
(Fehr et al., 2010). Here we only show that XAC is strong
as well.

Lemma 1. For any L ∈ N, the L-cross-authentication
code XAC is strong.

Proof. A PPT algorithm ReSamp is constructed as
follows. The input of ReSamp is (i,K �=i, T ), where
Kj = (aj , bj) for j ∈ [L]\{i}, and T satisfies
XVer(Kl, l, T ) = 1 for l ∈ [L]. This implies that
A is non-singular. On input (i,K �=i, T ), ReSamp
chooses a′i ← F\{a �=i}, computes b′i = polyT (a

′
i)

and returns K ′
i = (a′i, b

′
i) as its output. As a result,

Pr [K ′
i = (a′i, b

′
i)] = 1/(q − L+ 1).

On the other hand, conditioned on K �=i and T �= ⊥,
the solution space of Ki = (ai, bi) is given by the set
{(a, b) ∈ F

2
q | polyT (a) = b, a �= aj , j ∈ [L]\{i}}.

Hence

Pr [Ki = (a, b) | (K �=i, T )] =
1

q − L+ 1
,

which has identical probability distribution with K ′
i. �

Relations between the strong and the normal version
of cross-authentication codes. Although the instance
XAC proposed by Fehr et al. (2010) is strong, we cannot
conclude that every cross-authentication code is such.
On the other hand, unfortunately, we cannot provide a
counterexample either, i.e., a cross-authentication code
example that is not strong. Whether the strong and the
normal version are equivalent is still an open question.
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7. Fixing the security proof of
the FHKW scheme with strong
L-cross-authentication codes

Replacing XAC with a strong one, we get a new version
of the FHKW scheme, called the new FHKW scheme.
In other words, the new FHKW scheme is identical with
the original one, except that its building block XAC has
one more algorithm ReSamp which does not appear in
neither of the two versions of the FHKW scheme. The
description of the new FHKW scheme is the same as that
in Section 3, so we will not repeat it again.

Although algorithm ReSamp does not appear in the
new FHKW scheme, it is essential for the strongness
of XAC (and will be needed in the security proof).
The strongness of the cross-authentication code helps its
security against substitution attacks work in the security
proof of the FHKW scheme (see the proof of Lemma 3).
Roughly speaking, when the randomness of a ciphertext is
disclosed to an adversary, all K1,K2, . . . ,KL are known
to the adversary. In this case, security against substitution
attacks does not hold. However, if we replace the output of
ReSamp(i,K �=i, T ) for Ki and open the corresponding
randomness, the adversary can not tell the difference
due to the strongness of the cross-authentication code.
Consequently, security against substitution attacks works:
given K �=i and T , the adversary can not forge a T ′ such
that T �= T ′ and XVer(Ki, i, T

′) = 1 with non-negligible
probability.

Details are as follows. With the help of algorithm
ReSamp of strong L-cross-authentication code XAC, we
construct an NC-CCA simulator S′ as follows.

Simulator S′:

• S′
1(pk, 1

|M|): Parse pk = (hpk,H). For i ∈
[L], choose W̃i ← RSampleL and set Xi :=

SampleL(LΛ; W̃i). Compute t := H(X1, . . . , XL).
For i ∈ [L], set Ki := PubEvl(hpk,Xi, W̃i, t). Set
T = XAuth(K1, . . . ,KL). Return the ciphertext
C = (X1, . . . , XL, T ).

• S′
2(M): Parse M = (M1, . . . ,ML). For i ∈ [L],

if Mi = 1, set Wi := W̃i, R
XΛ

i ← RSample and
RKΛ

i ← RSample; if Mi = 0, generate (Wi, R
XΛ

i )

by Wi ← RSampleL and RXΛ

i ← Explain(XΛ, Xi),
and generate RKΛ

i with the following method:
Run K ′

i ← ReSamp(i,K �=i, T ), set RKΛ

i ←
Explain(KΛ,K

′
i) and update Ki := K ′

i. Finally,
return the randomness R = (Wi, R

XΛ

i , RKΛ

i )i∈[L].

With the help of simulator S′, we have the following
result.

Theorem 3. Let SMP be a hard subset membership
problem with subset sparseness, and EHPS be its corre-

sponding perfectly 2-universal extended hash proof sys-
tem. For any L > 1, assuming that XAC is a strong
L-cross-authentication code, the new FHKW scheme is
NC-CCA secure.

Before going into the formal proof, we briefly give
a high-level description of the following game-based
security proof. This proof is similar to that proposed by
Fehr et al. (2010), but we utilize the strongness of XAC to
help guarantee NC-CCA security, avoiding the problem
pointed out in Section 4.

We start with the real experiment ExpNC-CCA-Real
FHKW,A (k),

for any PPT adversary A, and let Game −2 denote
ExpNC-CCA-Real

FHKW,A (k). First of all, as in the proof in the
work of Fehr et al. (2010), we exclude some collisions
from Game −2 to Game 0. It is easy to see that
Game −2 and Game 0 are indistinguishable. Then, from
Game 0 to Game L, we stepwise replace the challenge
ciphertexts C∗ = (X∗

1 , . . . , X
∗
L, T

∗) and randomness
R∗ = (R∗

1, . . . , R
∗
L) with those generated by simulator

S′, where R∗
i = (Wi, R

XΛ

i , RKΛ

i ) for i ∈ [L]. More
specifically, for 0 ≤ m ≤ L, Game m coincides with
Game 0 except that X∗

i , K∗
i and R∗

i , for all i ≤ m, are
all generated by S′. Note that Game L is identical to the
simulated experiment ExpNC-CCA-Sim

FHKW,A (k). Therefore, what
remains is to prove that, for m ∈ {0, 1, 2, . . . , L − 1},
Game m and Game m + 1 are indistinguishable. We
will show that the strongness of XAC is essential to this
indistinguishability.

Note that the differences between Game m and Game
m + 1 lie in X∗

m+1, K∗
m+1 and R∗

m+1. Similar to the
proof of Theorem 3 in the work of Fehr et al. (2010), we
proceed with the proof in a series of games. Let Gamem.1
denote Game m. In Game m.2, we modify the decryption
oracle Dec(sk, ·) such that it does not make any use of
hsk, i.e., for a decryption query C, rather than verifying
tag T , Dec(sk, ·) returns Mi = 0 directly if Xi /∈
LΛ. Two properties, the perfect 2-universality of EHPS
and the security of XAC against impersonation attacks,
guarantee that Game m.2 and Game m.1 are statistically
indistinguishable. Note that Game m.2 is inefficient.
In Game m.3, if M∗

m+1 = 0, instead of uniformly
choosing, set K∗

m+1 = SecEvl(hsk,X∗
m+1, t

∗). The
subset sparseness of SMP and the perfect 2-universality
of EHPS guarantee that Game m.3 and Game m.2 are
statistically indistinguishable. In Game m.4, we modify
the way of computing K∗

m+1 again, i.e., if M∗
m+1 = 0,

compute K∗
m+1 ← ReSamp(m+ 1,K∗

�=m+1, T
∗).

The strongness of XAC guarantees that Game m.4
and Gamem.3 are statistically indistinguishable. In Game
m.5, we modify the decryption oracle Dec(sk, ·) such
that it works with the original decryption rule. The
perfect 2-universality of EHPS and the security of XAC
against impersonation attacks and substitution attacks
of XAC guarantee that Game m.5 and Game m.4 are
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statistically indistinguishable. Note that Game m.5 is
efficient. In Game m.6, we modify the way of generating
X∗

m+1, i.e., choose X∗
m+1 uniformly random from LΛ

no matter whether M∗
m+1 is 0 or 1. The hardness of

SMP guarantees that Game m.6 and Game m.5 are
computationally indistinguishable. Game m.6 is identical
to Game m+1. Hence, we have the conclusion that Game
m is indistinguishable from Game m+ 1.

The formal proof is as follows.

Proof. Our aim is to prove that, for any PPT
adversary A, the simulated experiment ExpNC-CCA-Sim

FHKW,A (k)
is computationally indistinguishable from the real
experiment ExpNC-CCA-Real

FHKW,A (k). Technically, we denote the
challenge ciphertext and its related plaintext by C∗ and
M∗, and write C∗ := (X∗

1 , . . . , X
∗
L, T

∗) and M∗ :=
(M∗

1 , . . . ,M
∗
L). Denote A’s j-th decryption query by

Cj := (Xj
1 , . . . , X

j
L, T

j), the corresponding plaintext by
M j = (M j

1 , . . . ,M
j
L), and define t∗, tj , K∗

i and Kj
i

similarly. Define K∗
i := SecEvl(hsk,X∗

i , t
∗), Ki

j
:=

SecEvl(hsk,Xj
i , t

j) and denote the final output of A in
Game i by outputA,i. Without loss of generality, we
assume that A always makes q decryption queries, where
q = poly(k).

Game −2: Game −2 is the real experiment
ExpNC-CCA-Real

FHKW,A (k). Hence

Pr
[
outputA,−2 = 1

]
= Pr

[
ExpNC-CCA-Real

FHKW,A (k) = 1
]
.

(8)

Game −1: Game −1 is the same as Game −2, except
that, in the challenge ciphertext generation, the
experiment aborts (with A outputting 1) if there exist
some distinct i, i′ ∈ [L] such that X∗

i = X∗
i′ . By a

union bound, we have that

|Pr
[
outputA,−1 = 1

]
− Pr

[
outputA,−2 = 1

]
|

≤ L(L− 1)

2|LΛ|
. (9)

Game 0: Game 0 is the same as Game −1, except
for the decryption oracle. In Game 0, if A
makes a decryption query Cj with (Xj

1 , . . . , X
j
L) �=

(X∗
1 , . . . , X

∗
L) and tj = H(Xj

1 , . . . , X
j
L) =

H(X∗
1 , . . . , X

∗
L) = t∗, the experiment aborts

(without loss of generality, A outputs 1). Since H
is a collision-resistant hash function, we have that

|Pr
[
outputA,0 = 1

]
− Pr

[
outputA,−1 = 1

]
|

≤ AdvcrH,A′(k) (10)

for a suitable PPT algorithm A′.

�

In the remainder, we will use a hybrid argument to
finish this proof. From Game 0 to GameL, we will replace
the challenge ciphertext C∗ and its related randomness
R∗ with those generated by simulator S′ step by step.
Specifically, for any 0 ≤ m ≤ L, Game m is identical
to Game 0, except that, for any i ≤ m, X∗

i , K∗
i and

their related randomness are all generated by simulator
S′. Note that, in Game L, the whole challenge ciphertext
C∗ and the whole randomness R∗ are both generated by
simulator S′.

Looking ahead, if we can prove that, for any
0 ≤ m ≤ L − 1, Game m and Game m +
1 are indistinguishable, we will have that Game
0 and Game L are indistinguishable. So Game
−2, which is ExpNC-CCA-real

FHKW,A (k), and Game L are
indistinguishable. Note that Game L is indistinguishable
from ExpNC-CCA-Sim

FHKW,A (k). That is because if, in Game L,
we reverse the changes from Game 0 and Game −1, we
will get ExpNC-CCA-Sim

FHKW,A (k). This finishes the whole proof.
Now we prove that, for any 0 ≤ m ≤ L − 1, Game

m and Game m+1 are indistinguishable. This is through
a series of indistinguishable games as well.

Game m.1: Game m.1 is identical with Game m.

Game m.2: Game m.2 is the same as Game m.1,
except for the decryption oracle. In Game m.2,
for any decryption query Cj = (Xj

1 , . . . , X
j
L, T

j)
and for any i ∈ [L], the challenger will
return M j

i = 0 directly if Xj
i /∈ LΛ, and

behave just as in Game m.1, otherwise compute

Ki
j

= SecEvl(hsk,Xj
i , t

j), and return M j
i =

XVer(Ki
j
, i, T j). Note that the decryption oracle

in Game m.2 is inefficient and it does not leak any
information on hsk beyond hpk.

Let badm.2 (resp. badm.1) denote the event that,
in Game m.2 (resp. Game m.1), A makes some
decryption query Cj such that there is an Xj

i /∈ LΛ
but XVer(Ki

j
, i, T j) = 1. Note that Pr[badm.2] =

Pr[badm.1] and that Game m.2 and Game m.1 are
identical unless badm.2 or badm.1 occurs. We
present the following lemma with a postponed proof.

Lemma 2. Pr[badm.2] ≤ qL · Advimp
XAC(k).

With the lemma, we have that

|Pr
[
outputA,m.2 = 1

]
− Pr

[
outputA,m.1 = 1

]
|

≤ Pr [badm.2]

≤ qL · Advimp
XAC(k).

(11)

Game m.3: Game m.3 is the same as Game
m.2, except for the generation of K∗

m+1 in
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the challenge ciphertext. In this game, set
K∗

m+1 := SecEvl(hsk,X∗
m+1, t

∗) if M∗
m+1 = 0,

and the randomness of K∗
m+1 is opened as

Explain(KΛ,K
∗
m+1). When M∗

m+1 = 0, X∗
m+1

is chosen from XΛ. If X∗
m+1 /∈ LΛ, the perfect

2-universality of EHPS implies K∗
m+1 is uniformly

distributed overKΛ, which is exactly like Game m.2.
Let subm.3 (resp. subm.2) denote the event that
X∗

m+1 ∈ LΛ given M∗
m+1 = 0 in Game m.3 (resp.

Game m.2). Note that Pr[subm.3] = Pr[subm.2] and
that Game m.3 and Game m.2 are the same unless
subm.3 or subm.2 occurs. So we have that

|Pr
[
outputA,m.3 = 1

]
− Pr

[
outputA,m.2 = 1

]
|

≤ Pr [subm.2]

=
|LΛ|
|XΛ|

.

(12)

Game m.4: Game m.4 is the same as Game m.3,
except for the generation of K∗

m+1 in the challenge
ciphertext. In this game, the way of computing
K∗

m+1 is modified again. If M∗
m+1 = 0,

compute K∗
m+1 ← ReSamp(m + 1,K∗

�=m+1, T
∗).

The randomness of K∗
m+1 is still opened as

Explain(KΛ,K
∗
m+1). The strongness of XAC

guarantees that K∗
m+1 in Game m.4 and K∗

m+1 in
Game m.3 are statistically indistinguishable. Hence,

|Pr
[
outputA,m.4 = 1

]
− Pr

[
outputA,m.3 = 1

]
|

≤ Dist(k), (13)

where Dist(k) is the statistical distance between
K∗

m+1 in Game m.4 and K∗
m+1 in Game m.3.

Game m.5: Game m.5 is the same as Game m.4, except
that the decryption oracle works with the original
decryption rule. In Game m.5, for any decryption
query Cj = (Xj

1 , . . . , X
j
L, T

j), the challenger

computes Ki
j
= SecEvl(hsk,Xj

i , t
j), and returns

M j
i = XVer(Ki

j
, i, T j). Note that the decryption

oracle in Game m.5 is efficient again. Similarly,
let badm.5 (resp. badm.4) denote the event that,
in Game m.5 (resp. Game m.4), A makes some
decryption query Cj such that there is an Xj

i /∈ LΛ
but XVer(Ki

j
, i, T j) = 1. Note that Pr[badm.5] =

Pr[badm.4] and that Game m.5 and Game m.4 are
identical unless badm.5 or badm.4 occurs. We
present the following lemma with a postponed proof.

Lemma 3. We have

Pr[badm.4]

≤ qL ·max{Advimp
XAC(k),Advsub

XAC(k)}. (14)

With this lemma, we have that

|Pr
[
outputA,m.5 = 1

]
− Pr

[
outputA,m.4 = 1

]
|

≤ Pr [badm.4]

≤ qL ·max{Advimp
XAC(k),Advsub

XAC(k)}.
(15)

Game m.6: Game m.6 is the same as Game m.5,
except that, in the challenge ciphertext generation,
the challenger chooses X∗

m+1 ← LΛ no matter
whether M∗

m+1 is 0 or 1, and X∗
m+1 is opened as

Explain(XΛ, X
∗
m+1), if M∗

m+1 = 0. Now the subset
membership problem SMP can be reduced to the
problem of efficiently distinguishing Gamem.6 from
Game m.5. We have that

|Pr
[
outputA,m.6 = 1

]
− Pr

[
outputA,m.5 = 1

]
|

≤ AdvSMP,A′′(k) (16)

for a suitable PPT algorithm A′′.

Combining the above results, we have that Gamem.1
and Game m.6 are indistinguishable. Now that Game m.6
is identical to Game m + 1, we have that Game m and
Game m + 1 are indistinguishable. What remains is to
prove Lemmas 2 and 3.

Proof. (Lemma 2) Let badj
m.2.i denote the event that A’s

j-th decryption query

Cj = (Xj
1 , . . . , X

j
L, T

j)

satisfies that Xj
i /∈ LΛ but XVer(Ki

j
, i, T j) = 1 in

Game m.2. In Game m.2, A has no information on
hsk beyond hpk. For arbitrary (j, i) ∈ [q] × [L] and
Xj

i /∈ LΛ, the perfect 2-universality of EHPS implies

that Ki
j
= SecEvl(hsk,Xj

i , t
j) is uniformly random in

KΛ from A’s point of view. Therefore,

Pr
[
badj

m.2.i

]
≤ Advimp

XAC(k).

Note that

badm.2 =
∨

(j,i)∈[q]×[L]

badj
m.2.i.

By a union bound, we have that

Pr [badm.2] ≤
∑

(j,i)∈[q]×[L]

Pr
[
badj

m.2.i

]

≤ qL · Advimp
XAC(k).

(17)

�
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Proof. (Lemma 3) Let badj
m.4.i denote the event

that A’s j-th decryption query Cj = (Xj
1 , . . . , X

j
L, T

j)

satisfies that Xj
i /∈ LΛ but XVer(Ki

j
, i, T j) = 1

in Game m.4. Let Khsk
m+1 denote the random variable

SecEvl(hsk,X∗
m+1, t

∗).
For arbitrary fixed (j, i) ∈ [q] × [L], we only

consider Xj
i /∈ LΛ (otherwise there is nothing to prove).

If (Xj
i , t

j) �= (X∗
m+1, t

∗), the perfect 2-universality

of EHPS implies that Ki
j

= SecEvl(hsk,Xj
i , t

j) is
uniformly random in KΛ from A’s point of view. Hence,

Pr
[
badj

m.4.i | (X
j
i , t

j) �= (X∗
m+1, t

∗)
]

≤ Advimp
XAC(k). (18)

If (Xj
i , t

j) = (X∗
m+1, t

∗), then (Xj
1 , . . . , X

j
L) =

(X∗
1 , . . . , X

∗
L), since Game 0 excludes hash collisions.

The decryption query Cj is not equal to the challenge
ciphertext, so T j �= T ∗. Note that, in this case,

Ki
j
= Khsk

m+1. What the adversary knows is given by
(K∗

1 , . . . ,K
∗
m,K∗

m+1,K
∗
m+2, . . . ,K

∗
L) and T ∗.

However, K∗
m+1 = ReSamp(m + 1,K∗

�=m+1, T
∗),

which means that A’s information can be characterized
by K∗

�=m+1 and T ∗. The security against substitution
attack of XAC guarantees that, given K∗

�=m+1 and T ∗, A
produces a T j �= T ∗ such that

XVer(Khsk
m+1, i, T

j) = XVer(Ki
j
, i, T j) = 1

with probability at most Advsub
XAC(k), i.e.,

Pr
[
badj

m.4.i | (X
j
i , t

j) = (X∗
m+1, t

∗)
]
≤ Advsub

XAC(k).

Therefore, we have that

Pr
[
badj

m.4.i

]
≤ max{Advimp

XAC(k),Advsub
XAC(k)}.

Lemma 3 follows from a union bound. �

Remark 4. Recall that Game m.4 is missing in
the original security proof of the FHKW scheme (Fehr
et al., 2010). Without the employment of algorithm
ReSamp in Game m.4, we will have K∗

m+1 =
SecEvl(hsk,X∗

m+1, t
∗). Then the simulator has to

present the adversary the randomness corresponding
to K∗

m+1. Consequently, the adversary is able to
recover K∗

m+1 = SecEvl(hsk,X∗
m+1, t

∗) from the
randomness. But security against substitution attacks
of the L-cross-authentication code assumes that the
adversary knows nothing about K∗

m+1 except for
(K∗

�=m+1, T
∗). That is why the original security proof

(Fehr et al., 2010) fails, and why ours can go through.

8. Conclusion

We provided a security analysis of the FHKW scheme
(Fehr et al., 2010), and showed that the original simulator
constructed by Fehr et al. (2010) is not sufficient to
prove NC-CCA security. We provided a refined version
of the FHKW scheme for a single bit and proved its
NC-CCA security. Our scheme does not involve any
cross-authentication code, avoiding the security problem
that annoys the FHKW scheme. To fix the security
proof of the FHKW scheme, we introduced the notion of
strong cross-authentication code, applied it to the FHKW
scheme, and proved that the new version of the FHKW
scheme is NC-CCA secure for multi-bit plaintexts.

Open questions:

(i) The failure of the simulator proposed by Fehr
et al. (2010) does not rule out the existence of
other simulators working properly for the NC-CCA
security proof of the FHKW scheme. Therefore, it is
still open whether the original version of the FHKW
scheme is NC-CCA secure or not.

(ii) Even if the original version of the FHKW scheme
is not NC-CCA secure, it might still possess
SIM-SO-CCA security. Hence, another question is
whether it is SIM-SO-CCA secure or not.

(iii) It can be interesting to construct an NC-CCA secure
PKE encrypting multiple bits from an NC-CCA
secure PKE encrypting single bits. This question in
the relaxed setting of IND-CCA2 has been answered
by Myers and Shelat (2009). But the selective
opening scenario is much more complicated, and we
believe that the problem is much harder.

(iv) The last open question is whether every
cross-authentication code is also a strong one,
as discussed in Section 6.
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Appendix A

When algorithm XAuth is probabilistic

In Section 4.3, we claimed that, if algorithm XAuth of
XAC in the FHKW scheme is probabilistic, with the
aforementioned simulator S in Section 4, the FHKW
scheme cannot be proved NC-CCA secure for any positive
integer L. Now we show the reason.

Firstly, a slight modification to XAuth is
needed. Because XAuth is probabilistic, there
exists an inner random number RXAuth used
by XAuth during the encryption process (i.e.,
T ← XAuth(K1, . . . ,KL;R

XAuth)). Note that the
aforementioned simulator S should output randomness
R = ((Wi, R

XΛ

i , RKΛ

i )i∈[L], R
XAuth) according to
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the ciphertext C and its related plaintext M . In
the mean time, the original simulator S can recover
(Wi, R

XΛ

i , RKΛ

i )i∈[L]. Therefore, S should generate
RXAuth according to T and (K1, . . . ,KL), which can
be recovered from R = (Wi, R

XΛ

i , RKΛ

i )i∈[L]. Now
we make a modification to XAuth: we require that
XAuth be efficiently “explainable”, which means
that there is an efficient algorithm ExplainXAuth such
that RXAuth ← ExplainXAuth((K1, . . . ,KL), T ). For
simplicity, we still use the original notation S and XAuth
after this modification.

Secondly, with the above modification, consider
our main conclusion of this appendix. As the proof
of Theorem 1, our aim is to construct an adversary
A = (A1, A2) to distinguish the two experiments
ExpNC-CCA-Real

FHKW,A (k) and ExpNC-CCA-Sim
FHKW,A (k). The adversary

A is the same as the one in the proof of Theorem 1,
except that, in the decryption query stage, instead
of choosing a random K ′

1, the adversary A uses the
original K1, which can be recovered from randomness
R = ((Wi, R

XΛ

i , RKΛ

i )i∈[L], R
XAuth). More specifically,

in the first stage, A1 returns M = (0, · · · , 0)
to the challenger, and in the second stage, upon
receiving the ciphertext C = (X1, . . . , XL, T ) and
randomness R, A2 recovers (K1, . . . ,KL) from R,
computes T ′ ← XAuth(K1, . . . ,KL; R̃

XAuth), where
R̃XAuth is uniformly random chosen from RXAuth, and
returns C′ = (X1, . . . , XL, T

′) as his decryption
query. Because XAuth is probabilistic, it is very
easy for A to get a T ′ �= T with the above
method. As a result, with an overwhelming probability,
A2 will receive M ′ = (0, · · · , 0) as the decryption
result of C′ in ExpNC-CCA-Real

FHKW,A (k), and receive M ′ =

(1, · · · , 1) in ExpNC-CCA-Sim
FHKW,A (k). Hence, A can distinguish

ExpNC-CCA-Real
FHKW,A (k) and ExpNC-CCA-Sim

FHKW,A (k).

Appendix B

Proof of Theorem 2

Proof. First, we construct a simulator SE for scheme
E = (GenE ,EncE ,DecE).

Simulator SE:

• SE1(pk, 1): With pk = hpk, choose W̃ ←RSampleL

and set X := SampleL(LΛ; W̃ ). Then set K :=

PubEvl(hpk,X, W̃ ). Return the ciphertext C =
(X,K).

• SE2(M): If M = 1, set W := W̃ and choose
RXΛ ← RSample, RKΛ ← RSample; otherwise
choose W ← RSampleL, and set RXΛ ←
Explain(XΛ, X), RKΛ ← Explain(KΛ,K).
Return the randomness R = (W,RXΛ , RKΛ).

With simulator SE , we will show that, for any PPT
adversary A, the two experiments ExpNC-CCA-Real

E,A (k) and

ExpNC-CCA-Sim
E,A (k) are computationally indistinguishable

through a series of indistinguishable games. Technically,
we denote the challenge ciphertext and its corresponding
plaintext by C∗ and M∗, and write C∗ := (X∗,K∗).
Without loss of generality, we assume that A always
makes q decryption queries, where q = poly(k). For
j ∈ [q], denote A’s j-th decryption query by Cj :=
(Xj ,Kj) and let its corresponding plaintext be M j . At
the same time, we define K∗ := SecEvl(hsk,X∗),
Kj := SecEvl(hsk,Xj) for j ∈ [q], and denote the final
output of A in Game i by outputA,i.

Game 0: Game 0 is the real experiment
ExpNC-CCA-Real

E,A (k). By our notation above,

Pr
[
outputA,0 = 1

]
= Pr

[
ExpNC-CCA-Real

E,A (k) = 1
]
.

(B1)

Game 1: Game 1 is the same as Game 0, except for the
decryption oracle. In Game 1, for any decryption
query Cj = (Xj ,Kj) made by A, if Xj /∈ LΛ,
the challenger will return M j = 0 directly, and if
Xj ∈ LΛ, the challenger will answer the query
as in Game 0: compute Kj = SecEvl(hsk,Xj),
and if Kj = Kj , return M j = 1, otherwise return
M j = 0. Note that the decryption oracle in Game
1 is inefficient and it doesn’t leak any information
on hsk beyond hpk. Let badi denote the event
that in Game i, A makes some decryption query
Cj = (Xj ,Kj) such that Xj /∈ LΛ and Kj = Kj .
Note that Pr[bad1] = Pr[bad0] and that Game 1 and
Game 0 are identical unless events bad1 or bad0

occurs. By the perfect 2-universality of HPS and
a union bound, Pr[bad1] = Pr[bad0] ≤ q/|KΛ|. So
we have

|Pr
[
outputA,1 = 1

]
− Pr

[
outputA,0 = 1

]
|

≤ Pr [bad1]

=
q

|KΛ|
.

(B2)

Game 2: Game 2 is the same as Game 1, except that,
in the challenge ciphertext generation, set K∗ =
SecEvl(hsk,X∗) for M∗ = 0, and then the
randomness of K∗ is opened as Explain(KΛ,K

∗).
In Game 1, if M∗ = 0, K∗ also can be seen as being
opened by Explain(KΛ,K

∗). In Game 2, since the
only information on hsk beyond hpk is released in
the computation of K∗, the perfect 2-universality of
HPS implies that, if X∗ /∈ LΛ, K∗ is uniformly
distributed in KΛ. Let subi denote the event that
in Game i, when M∗ = 0, X∗ ∈ LΛ. Note that
Pr[sub2] = Pr[sub1] and that Game 2 and Game 1
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are the same unless events sub2 or sub1 occurs. So
we have

|Pr
[
outputA,2 = 1

]
− Pr

[
outputA,1 = 1

]
|

≤ Pr [sub2]

=
|LΛ|
|XΛ|

.

(B3)

Game 3: Game 3 is the same as Game 2, except
that the decryption oracle works with the original
decryption rule. In Game 3, for any decryption
query Cj = (Xj ,Kj), the challenger sets Kj =

SecEvl(hsk,Xj), then returns M j = 1 if Kj =

Kj , or returns M j = 0 if Kj �= Kj . Note that the
decryption oracle in Game 3 is efficient. Similarly,
badi denotes the event that in Game i, A makes
some decryption query Cj = (Xj,Kj) such that
Xj /∈ LΛ and Kj = Kj . Note that Pr[bad3] =
Pr[bad2] and that Game 3 and Game 2 are identical
unless events bad3 or bad2 occurs. Since the only
information on hsk beyond hpk is released in the
computation of K∗, by the perfect 2-universality of
HPS and a union bound, Pr[bad3] = Pr[bad2] =
q/|KΛ|. So

|Pr
[
outputA,3 = 1

]
− Pr

[
outputA,2 = 1

]
|

≤ Pr [bad3]

=
q

|KΛ|
.

(B4)

Game 4: Game 4 is the same as Game 3, except that, in
the challenge ciphertext generation, the challenger
choosesX∗ ← LΛ if M∗ = 0. That is to say, choose
X∗ ← LΛ no matter whether M∗ is 0 or 1, and X∗

is opened as Explain(XΛ, X
∗) if M∗ = 0. Since

SMP is hard,

|Pr
[
outputA,4 = 1

]
− Pr

[
outputA,3 = 1

]
|

≤ AdvSMP,A(k). (B5)

Combining all the above results, we have

|Pr
[
outputA,0 = 1

]
− Pr

[
outputA,4 = 1

]
|

≤ 2q

|KΛ|
+
|LΛ|
|XΛ|

+ AdvSMP,A(k).
(B6)

Note that Game 4 is just the experiment
ExpNC-CCA-Sim

E,A (k). So we have

AdvNC-CCA
E,A,S (k)

= | Pr
[
ExpNC-CCA-Real

E,A (k) = 1
]

− Pr
[
ExpNC-CCA-Sim

E,A (k) = 1
]
|

≤ 2q

|KΛ|
+
|LΛ|
|XΛ|

+ AdvSMP,A(k).

(B7)
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