
Int. J. Appl. Math. Comput. Sci., 2015, Vol. 25, No. 3, 539–546
DOI: 10.1515/amcs-2015-0040

ANALYSIS OF THE DESCRIPTOR ROESSER MODEL WITH THE USE
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A method of analysis for a class of descriptor 2D discrete-time linear systems described by the Roesser model with a regular
pencil is proposed. The method is based on the transformation of the model to a special form with the use of elementary row
and column operations and on the application of a Drazin inverse of matrices to handle the model. The method is illustrated
with a numerical example.
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1. Introduction

Descriptor (singular) linear systems were considered in
many papers and books (Bru et al., 2003; 2000; 2002;
Campbell et al., 1976; Dai, 1989; Dodig and Stosic,
2009; Fahmy and O’Reill, 1989; Gantmecher, 1960;
Duan, 2010; Kaczorek, 2014a; 2011a; 2004; 2013; 2011b;
2011c; 2011d; 1992; Kucera and Zagalak, 1988; Van
Dooren, 1979). The eigenvalues and invariants assignment
by state and output feedbacks was investigated by Fahmy
and O’Reill (1989) as well as Kaczorek (2004; 1992), who
also discussed the minimum energy control of descriptor
linear systems (Kaczorek, 2014b; 2014c). Computation
of Kronecker’s canonical form of the singular pencil was
analyzed by Van Dooren (1979), while positive linear
systems with different fractional orders were addressed
by Kaczorek (2010), along with selected problems in the
theory of fractional linear systems (Kaczorek, 2011d).

Descriptor standard positive linear systems were
addressed with the use of the Drazin inverse by Bru
et al. (2003; 2000; 2002), Campbell et al. (1976), and
Kaczorek (2014a; 2011d; 1992), who also applied the
shuffle algorithm to check the positivity of descriptor
linear systems (Kaczorek, 2011a). The stability of
positive descriptor systems was investigated by Virnik
(2008), while reduction and decomposition of descriptor
fractional discrete-time linear systems were considered
by Kaczorek (2011b), who also introduced a new
class of descriptor fractional linear discrete-time systems

(Kaczorek, 2011c).
The Drazin inverse for finding the solution to the

state equation of fractional continuous-time linear systems
was applied by Kaczorek (2014a), and the controllability,
reachability and minimum energy control of fractional
discrete-time linear systems with delays in state were
investigated by Busłowicz (2014).

In this paper, a Drazin inverse of matrices will be
used in the analysis of descriptor discrete-time 2D linear
systems regular pencils described by the Roesser model.

The paper is organized as follows. In Section 2,
basic definitions and theorems concerning descriptor
discrete-time linear systems with regular pencils are
presented. The problem of the analysis of descriptor
systems described by the Roesser model is formulated and
solved in Section 3. The proposed method is illustrated
with a numerical example in Section 4. Concluding
remarks are given in Section 5.

The following notation will be used: R, the set of real
numbers; Rn×m, the set of n×m real matrices and R

n =
R

n×1; Z+, the set of nonnegative integers; In, the n × n
identity matrix; ker A (im A), the kernel (image) of the
matrix.

2. Descriptor discrete-time linear systems

Consider the descriptor discrete-time linear system

Exi+1 = Axi +Bui, i ∈ Z+, (1)
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where xi ∈ R
n is the state vector, ui ∈ R

m is the input
vector, E,A ∈ R

n×n, B ∈ R
n×m.

It is assumed that detE = 0, but

det[Es−A] �= 0 for some c ∈ C. (2)

Assuming that, for some chosen c ∈ C, det[Ec−A] �= 0
and premultiplying (1) by [Ec−A]−1, we obtain

Ēxi+1 = Āxi + B̄ui, (3a)

where

Ē = [Ec−A]−1E,

Ā = [Ec−A]−1A,

B̄ = [Ec−A]−1B. (3b)

Note that Eqns. (1) and (3a) have the same solution xi,
i ∈ Z+.

Definition 1. (Campbell et al., 1976; Kaczorek, 1992)
The smallest nonnegative integer q is called the index of
the matrix Ē ∈ R

n×n if

rank Ēq = rank Ēq+1. (4)

Definition 2. (Campbell et al., 1976; Kaczorek, 1992) A
matrix ĒD is called the Drazin inverse of Ē ∈ R

n×n if it
satisfies the conditions

ĒĒD = ĒDĒ, (5a)

ĒDĒĒD = ĒD, (5b)

ĒDĒq+1 = Ēq, (5c)

where q is the index of Ē defined by (4).

The Drazin inverse ĒD of a square matrix Ē always
exists and is unique (Campbell et al., 1976; Kaczorek,
1992). If det Ē �= 0, then ĒD = Ē−1. Some methods for
computation of the Drazin inverse are given by Kaczorek
(1992) and Van Dooren (1979), and are summarized in
Appendix.

Theorem 1. (Kaczorek, 1992) The matrices Ē and Ā de-
fined by (3b) satisfy the following equalities:

ĀĒ = ĒĀ, ĀDĒ = ĒĀD,

ĒDĀ = ĀĒD, ĀDĒD = ĒDĀD, (6a)

ker Ā ∩ ker Ē = {0}, (6b)

Ē = T

[
J 0
0 N

]
T−1,

ĒD = T

[
J−1 0
0 0

]
T−1, (6c)

(In − ĒĒD)ĀĀD = In − ĒĒD,

(In − ĒĒD)(ĒĀD)q = 0, (6d)

detT �= 0, J ∈ R
n1×n1 , is nonsingular, N ∈ R

n2×n2 is
nilpotent, n1 + n2 = n.

Theorem 2. (Campbell et al., 1976; Kaczorek, 1992) The
solution of Eqn. (3) is given by

xi = (ĒDĀ)iĒDĒv +

i−1∑
k=0

ĒD(ĒDĀ)i−k−1B̄uk

+ (ĒĒD − In)

q−1∑
k=0

(ĒĀD)kĀDB̄ui+k,

(7)

where v ∈ R
n is arbitrary and q is the index of E.

From (7), for i = 0 we have

x0 = ĒDĒv + (ĒĒD − In)

q−1∑
k=0

(ĒĀD)kĀDB̄uk. (8)

Therefore, for given admissible ui, the consistent initial
conditions should satisfy the equality (8). In a particular
case for ui = 0 we have x0 = ĒDĒv and x0 ∈
Im(ĒDĒ), where Im denotes the image of ĒDĒ.

Theorem 3. Let
P = ĒĒD, (9)

Q = ĒDĀ. (10)

Then
(i)

P k = P for k = 2, 3, . . . ; (11)

(ii)
PQ = QP = Q; (12)

(iii)
PĒD = ĒDP = ĒD; (13)

(iv) if there exists a vector v ∈ R
n such that

vT Ē = 0, (14)
then

vT ĒD = 0. (15)

Proof. Using (9), we obtain

P 2 = ĒĒDĒĒD = ĒĒD = P (16)

since, by (5b), ĒDĒĒD = ĒD and, by induction,

P k = P k−1P = ĒĒDĒĒD = P 2 = P (17)

for k = 2, 3, . . . .
Using (9) and (10), we obtain

PQ = ĒĒDĒDĀ = ĒDĒĒDĀ = ĒDĀ = Q (18)

and

QP = ĒDĀĒĒD = ĒDĒĀĒD

= ĒDĒĒDĀ = ĒDĀ = Q.
(19)
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Using (9), (5a) and (5b), we obtain

PĒD = ĒĒDĒD = ĒDĒĒD = ĒD (20)

and
ĒDP = ĒDĒĒD = ĒD. (21)

Taking into account that Ē = VW (see Appendix)
and

ĒD = V [WĒV ]−1W, (22)

we obtain

vT ĒD = vTV [WĒV ]−1W = 0 (23)

since vTV = 0. �

The following elementary row (resp. column)
operations will be used:

1. Multiplication of the i-th row (resp. column) by a real
number c. This operation will be denoted by L[i× c]
(resp. R[i× c]).

2. Addition to the i-th row (resp. column) of the j-th
row (resp. column) multiplied by a real number c.
This operation will be denoted by L[i+ j × c] (resp.
R[i+ j × c]).

3. Interchange of the i-th and j-th rows (columns). This
operation will be denoted by L[i, j] (resp. R[i, j]).

3. Problem formulation and solution

Consider the descriptor Roesser model

E

[
xh
i+1,j

xv
i,j+1

]
= A

[
xh
i,j

xv
i,j

]
+Bui,j , (24)

where xh
i,j ∈ R

n1 , xv
i,j ∈ R

n2 are the horizontal and
vertical state vectors ui,j ∈ R

m is the input vector and
E,A ∈ R

n×n, B ∈ R
n×m, n = n1 + n2.

It is assumed that det E = 0, but

det

[
E

[
In1z1 0
0 In2z2

]
−A

]
�= 0

for some z1, z2 ∈ C. (25)

It is also assumed that, premultiplying (24) by a
matrix P ∈ R

n×n of the elementary row operations and
introducing the new state vector

[
x̄h
i+1,j

x̄v
i,j+1

]
= Q

[
xh
i,j

xv
i,j

]
,

Q ∈ R
n×n, detQ �= 0, (26)

Eqn. (24) can be written in the following form:

Case 1:
[

Eh 0
0 Ev

] [
x̄h
i+1,j

x̄v
i,j+1

]

=

[
A11 0
A21 A22

] [
x̄h
i,j

x̄v
i,j

]
+

[
B1

B2

]
ui,j . (27a)

Case 2:[
Eh 0
0 Ev

] [
x̄h
i+1,j

x̄v
i,j+1

]

=

[
A11 A12

0 A22

] [
x̄h
i,j

x̄v
i,j

]
+

[
B1

B2

]
ui,j , (27b)

where[
Eh 0
0 Ev

]
= PEQ−1, Eh ∈ R

n1×n1 ,

Ev ∈ R
n2×n2 , detEh = 0, detEv = 0 (27c)[

A11 0
A21 A22

]
= PAQ−1, A11 ∈ R

n1×n1 ,

A21 ∈ R
n2×n1 , A22 ∈ R

n2×n2 , (27d)[
A11 A12

0 A22

]
= PAQ−1, A11 ∈ R

n1×n1

A12 ∈ R
n1×n2 , A22 ∈ R

n2×n2 , (27e)[
B1

B2

]
= PB, B1 ∈ R

n1×m, B2 ∈ R
n2×m. (27f)

In Case 1, from (27a) we have

Ehx̄
h
i+1,j = A11x̄

h
i,j +B1ui,j , (28a)

Evx̄
v
i,j+1 = A21x̄

h
i,j +A22x̄

v
i,j +B2ui,j, (28b)

and, in Case 2, from (27b) we have

Ehx̄
h
i+1,j = A11x̄

h
i,j +A12x̄

v
i,j +B1ui,j , (29a)

Evx̄
v
i,j+1 = A22x̄

v
i,j +B2ui,j . (29b)

From the assumption (25) for Case 1 it follows that

det[Ehz1 −A11] �= 0 for some z1 ∈ C. (30)

Therefore, there exists a number c1 ∈ C such that
det[Ehc1 − A11] �= 0 and, premultiplying (27a) by
[Ehc1 −A11]

−1, we obtain

Ēhx̄
h
i+1,j = Ā11x̄

h
i,j + B̄1ui,j , (31a)

where

Ēh = [Ehc1 −A11]
−1Eh,

Ā11 = [Ehc1 −A11]
−1A11,

B̄1 = [Ehc1 −A11]
−1B1. (31b)

Let ĒD
h (ĀD

11) be the Drazin inverse of the matrix Ēh
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(Ā11). Then, from Theorem 2, we have

x̄h
i,j = (ĒD

h Ā11)
iĒD

h Ēhv1

+

i−1∑
k=0

ĒD
h (ĒD

h Ā11)
i−k−1B̄1uk,j

+ (ĒhĒ
D
h − In1)

q1−1∑
k=0

(ĒhĀ
D
11)

kĀD
11B̄1ui+k,j ,

(32)

where q1 is the index of Ēh and v1 ∈ R
n1 is arbitrary

depending on j.
Substituting (32) into (27b) yields

Evx̄
v
i,j+1 = A22x̄

v
i,j + ûi,j + ŵi, (33a)

where

ûi,j =
i−1∑
k=0

A21Ē
D
h (ĒD

h Ā11)
i−k−1B̄1uk,j

+A21(ĒhĒ
D
h − In1)

×
q1−1∑
k=0

(ĒhĀ
D
11)

kĀD
11B̄1ui+k,j +B2ui,j ,

(33b)

ŵi = A21(Ē
D
h Ā11)

iĒD
h Ēhv1. (33c)

From the assumption (25) it follows that

det[Evz2 −A22] �= 0 for some z2 ∈ C. (34)

Therefore, there exists a number c2 ∈ C such that
det[Evc2−A22] �= 0 and, premultiplying (33) by [Evc2−
A22]

−1, we obtain

Ēvx̄
v
i,j+1 = Ā22x̄

v
i,j + B̄2(ûi,j + ŵi), (35a)

where

Ēv = [Evc2 −A22]
−1Ev,

Ā22 = [Evc2 −A22]
−1A22,

B̄2 = [Evc2 −A22]
−1. (35b)

Let ĒD
v (ĀD

22) be the Drazin inverse of the matrix Ēv

(Ā22). Then, from Theorem 2, we have

x̄v
i,j = (ĒD

v Ā22)
jĒD

v Ēvv2

+

j−1∑
l=0

ĒD
v (ĒD

v Ā22)
j−l−1B̄2(ûi,l + ŵi)

+ (ĒvĒ
D
v − In2)

q2−1∑
l=0

(ĒvĀ
D
22)

l

× ĀD
22B̄2(ûi,j+l + ŵi),

(36)

where q2 is the index of Ēv and v2 ∈ R
n2 is arbitrary

depending on i.

Knowing x̄h
i,j and x̄v

i,j we can find the solution of
Eqn. (27) from (26) and obtain

[
xh
i,j

xv
i,j

]
= Q−1

[
x̄h
i,j

x̄v
i,j

]
. (37)

Therefore, the following result has been proved.

Theorem 4. The solution of Eqn. (27a) is given by (37)
and the vectors x̄h

i,j and x̄v
i,j are defined by (32) and (36),

respectively.

From the assumption (25), for Case 2 it follows that

det[Evz2 −A22] �= 0 for some z2 ∈ C. (38)

Therefore, there exists a number c2 ∈ C such that
det[Evc2 − A22] �= 0 and, premultiplying (27b) by
[Evc2 −A22]

−1, we obtain

Ēvx̄
v
i,j+1 = Ā22x̄

v
i,j + B̄2ui,j , (39a)

where

Ēv = [Evc2 −A22]
−1Ev,

Ā22 = [Evc2 −A22]
−1A22,

B̄2 = [Evc2 −A22]
−1B2. (39b)

Let ĒD
v (ĀD

22) be the Drazin inverse of the matrix Ēv

(Ā22). Then, from Theorem 2, we have

x̄v
i,j = (ĒD

v Ā22)
jĒD

v Ēvv3

+

j−1∑
l=0

ĒD
v (ĒD

v Ā22)
j−l−1B̄2ui,l

+ (ĒvĒ
D
v − In2)

q2−1∑
l=0

(ĒvĀ
D
22)

lĀD
22B̄2ui,j+l,

(40)

where q2 is the index of Ēv and v3 ∈ R
n2 is arbitrary.

Substituting (40) into (27a) yields

Ehx̄
h
i+1,j = A11x̄

h
i,j + ũi,j + w̃j , (41a)

where

ũi,j =

j−1∑
l=0

A21Ē
D
v (ĒD

v Ā22)
j−l−1B̄2ui,l

+A12(ĒvĒ
D
v − In2)

q2−1∑
l=0

(ĒvĀ
D
22)

l

× ĀD
22B̄2ui,j+l +B1ui,j , (41b)

w̃j = A12(Ē
D
v Ā22)

jĒD
v Ēvv3. (41c)

From the assumption (25) it follows that

det[Ehz1 −A11] �= 0 for some z1 ∈ C. (42)
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Therefore, there exists a number c1 ∈ C such that
det[Ehc1 − A11] �= 0 and, premultiplying (41a) by
[Ehc1 −A11]

−1, we obtain

Ẽhx̄
h
i+1,j = Ã11x̄

h
i,j + B̃1(ũi,j + w̃j), (43a)

where

Ẽh = [Ehc1 −A11]
−1Eh,

Ã11 = [Ehc1 −A11]
−1A11,

B̃1 = [Ehc1 −A11]
−1. (43b)

Let ẼD
h (ÃD

11) be the Drazin inverse of the matrix Ẽh

(Ã11). Then, from Theorem 2, we have

x̄h
i,j = (ẼD

h Ã11)
iẼD

h Ẽhv4

+

i−1∑
k=0

ẼD
h (ẼD

h Ã11)
i−k−1B̃1(ũk,j + w̃j)

+ (ẼhẼ
D
h − In1)

q1−1∑
k=0

(ẼhÃ
D
11)

k

× ÃD
11B̃1(ũi+k,j + w̃j),

(44)

where q1 is the index of Ẽh and v4 ∈ R
n1 is arbitrary.

Knowing x̄h
i,j and x̄v

i,j , we can find the solution of
Eqn. (27b) from (37).

Therefore, the following result has been proved.

Theorem 5. The solution of Eqn. (27b) is given by (37)
and the vectors x̄h

i,j and x̄v
i,j are defined by (44) and (40),

respectively.

4. Example

Consider the descriptor discrete-time linear system (24)
with the matrices

E =

⎡
⎢⎢⎣

0 0.5 0 0
0 1 0 0
0 0 0 −1
0 0 0 −2

⎤
⎥⎥⎦ ,

A =

⎡
⎢⎢⎣

0.5 0.5 0 0
0 3 0 0
−1 −1 0 2
−2 0 −1 5

⎤
⎥⎥⎦ ,

B =

⎡
⎢⎢⎣

0
1
−2
4

⎤
⎥⎥⎦ .

(45)

Premultiplying Eqn. (1) with (45) by the matrix

P =

⎡
⎢⎢⎣

2 0 0 0
−2 1 0 0
0 0 −1 0
0 0 −2 1

⎤
⎥⎥⎦ (46)

of the elementary row operationsL[1×2],L[2+1×(−1)],
L[3 × (−1)], L[4 + 3 × 2] and introducing the new state
vector (26) with

Q =

⎡
⎢⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ , (47)

we obtain Eqn. (27a) with

[
Eh 0
0 Ev

]
= PEQ−1 =

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ ,

[
A11 0
A21 A22

]
= PAQ−1 =

⎡
⎢⎢⎣

1 1 0 0
2 −1 0 0
1 1 −2 0
2 0 1 −1

⎤
⎥⎥⎦ ,

[
B1

B2

]
= PB =

⎡
⎢⎢⎣

0
1
2
8

⎤
⎥⎥⎦ .

(48)

Using the procedure presented for Case 1, we obtain
what follows.

For c1 = 0, from (31b) we have

Ēh = [−A11]
−1Eh =

1

3

[ −1 0
−2 0

]
,

Ā11 = [−A11]
−1A11 =

[ −1 0
0 −1

]
,

B̄1 = [−A11]
−1B1 =

1

3

[ −1
1

]
.

(49)

Taking into account that

Ēh = VW, V =
1

3

[ −1
−2

]
, W = [ 1 0 ] (50)

and using Procedure A1 from Appendix, we obtain

ĒD
h = V [WĒhV ]−1W

=
1

3

[ −1
−2

] [
1

9
[ 1 0 ]

[ −1 0
−2 0

] [ −1
−2

]]−1

× [ 1 0 ]

=

[ −3 0
−6 0

]

(51)

and

ĀD
11 =

[ −1 0
0 −1

]
. (52)
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The index q1 of the matrix (49) is equal to one. Using
(32) and taking into account that

ĒD
h Ā11 =

[ −3 0
−6 0

] [ −1 0
0 −1

]
=

[
3 0
6 0

]
,

ĒD
h Ēh =

[ −3 0
−6 0

]
1

3

[ −1 0
−2 0

]
=

[
1 0
2 0

]
,

(53)

we obtain

x̄h
i,j = (ĒD

h Ā11)
iĒD

h Ēhv1(j)

+

i−1∑
k=0

ĒD
h (ĒD

h Ā11)
i−k−1B̄1uk,j

+ (ĒhĒ
D
h − In1 )Ā

D
11B̄1ui,j

=

[
3 0
6 0

]i [
1 0
2 0

]
v1(j)

+

i−1∑
k=0

[ −3 0
−6 0

] [
3 0
6 0

]i−k−1
1

3

[ −1
1

]
uk,j

+

[
0 0
2 −1

] [ −1 0
0 −1

]
1

3

[ −1
1

]
ui,j

=

[
3i 0

2(3)i 0

]
v1(j)

+
i−1∑
k=0

[
3i−k−1

2(3)i−k−1 + 1

]
uk,j +

[
0
1

]
ui,j ,

(54)

where v1(j) is an arbitrary function of j.
Substituting (54) into Eqn. (28b), we obtain (31a)

with

Ev =

[
1 0
0 0

]
, A22 =

[ −2 0
1 −1

]
, (55a)

ûi,j =
i−1∑
k=0

[
3i−k−1

2(3)i−k−1 + 1

]
uk,j +

[
0
1

]
ui,j,

ŵi =

[
3i 0

2(3)i 0

]
v1(j). (55b)

In this case, we choose c2 = 0 and, using (31), we obtain

Ēvx̄
v
i,j+1 = Ā22x̄

v
i,j + B̄2(ûi,j + ŵi), (56a)

where

Ēv = [−A22]
−1Ev =

1

2

[
1 0
1 0

]
,

Ā22 = [−A22]
−1A22 =

[ −1 0
0 −1

]
,

B̄2 = [−A22]
−1 =

1

2

[
1 0
1 2

]
. (56b)

Taking into account that

Ēv = VW, V =
1

2

[
1
1

]
, W = [ 1 0 ] (57)

and using Procedure A1 from Appendix, we obtain

ĒD
v = V [WĒvV ]−1W

=
1

2

[
1
1

] [
1

4
[ 1 0 ]

[
1 0
1 0

] [
1
1

]]−1

[ 1 0 ]

=

[
2 0
2 0

]

(58)

and

ĀD
22 =

[ −1 0
0 −1

]
. (59)

Using (58), (59) and (36), we obtain

x̄v
i,j =

[ −2 0
−2 0

]j
v2(i)

+

j−1∑
l=0

[ −2 0
−2 0

]j−l−1

(ûi,l + ŵi)

+

[
0 0
0 1

]
(ûi,l + ŵi),

(60)

where v2(i) is an arbitrary function of i, x̄h1
i,j and x̄h2

i,j are
the components of x̄h

i,j given by (54).
Knowing the vectors (54), (60) and the matrix (47),

we can find the solution of Eqn. (1) with (45) from (37).

5. Concluding remarks

A method of analysis for a class of descriptor 2D
discrete-time linear systems described by the Roesser
model with a regular pencil has been proposed. The
method is based on transformation of the descriptor
Roesser model (1) to the form (27) with the use of
elementary row and column operations. To find a solution
to Eqn. (27), a method based on application of the
Drazin inverse has been proposed (Theorems 4 and
5). The method has been illustrated with a numerical
example. It can be extended to fractional and fractional
positive descriptor linear systems described by Roesser
models with regular pencils. An extension of the
method to 2D descriptor linear systems described by the
Fornasini–Marchesini and Kurek models constitutes an
open problem.
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Appendix

Procedure for computation of
Drazin inverse matrices

To compute the Drazin inverse ĒD of the matrix
Ē ∈ R

n×n defined by (3b), the following procedure is
recommended.
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Procedure A1.
Step 1. Find a pair of matrices V ∈ R

n×r, W ∈ R
r×n

such that

Ē = VW, rank V = rank W = rank Ē = r. (A1)

As the r columns (rows) of the matrix V (W ), the r
linearly independent columns (rows) of the matrix Ē can
be chosen.

Step 2. Compute the nonsingular matrix

WĒV ∈ R
r×r. (A2)

Step 3. The desired Drazin inverse matrix is given by

ĒD = V [WĒV ]−1W. (A3)

Proof. It will be shown that the matrix (A3) satisfies the
three conditions (5) of Definition 2. Taking into account
that detWV �= 0 and (A1), we obtain

[WĒV ]−1 = [WVWV ]−1 = [WV ]−1[WV ]−1. (A4)

�
Using (5), (A1) and (A4), we obtain

ĒĒD = VWV [WĒV ]−1W

= VWV [WV ]−1[WV ]−1W

= V [WV ]−1W

(A5)

and

ĒDĒ = V [WĒV ]−1WVW

= V [WV ]−1[WV ]−1WVW

= V [WV ]−1W.

(A6)

Therefore, the condition (5) is satisfied.

To check the condition (5), we compute

ĒDĒĒD = V [WĒV ]−1WVWV [WĒV ]−1W

= V [WVWV ]−1WVWV [WĒV ]−1W

= V [WĒV ]−1W = ĒD.

(A7)

Therefore, the condition (5) is also satisfied.
Using (5), (A1), (A3) and (A4), we obtain

ĒDĒq+1 = V [WĒV ]−1W (VW )q+1

= V [WV ]−1[WV ]−1WVW (VW )q

= V [WV ]−1W (VW )q

= VW (VW )q−1

= (VW )q = Ēq,

(A8)

where q is the index of Ē. Therefore, the condition (5) is
also satisfied.
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