Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) February 10, 2018

Environment representations for automated on-road vehicles

Umgebungsrepräsentationen für automatisierte Straßenfahrzeuge
  • Matthias Schreier

    Dr.-Ing. Matthias Schreier was with the Control Methods and Robotics Laboratory, TU Darmstadt until May 2015, where he has been responsible for the environment representation, prediction, and criticality assessment within the driver assistance system development PRORETA 3, a joint cooperation with the Continental AG. Afterwards, he joined the Advanced Engineering department of Continental Teves AG & Co. oHG and continued his work on perception, environment modelling, and scene understanding for automated driving. He is a recipient of the IEEE ITSS Best Ph.D. Dissertation Award 2016 (#2) as well as the Best Dissertation Award 2016 of the Department of Electrical Engineering and Information Technology, TU Darmstadt.

    EMAIL logo

Abstract

One of the key challenges of any Automated Driving (AD) system lies in the perception and representation of the driving environment. Data from a multitude of different information sources such as various vehicle environment sensors, external communication interfaces, and digital maps must be adequately combined to one consistent Comprehensive Environment Model (CEM) that acts as a generic abstraction layer for the driving functions. This overview article summarizes and discusses different approaches in this area with a focus on metric representations of static and dynamic driving environments for on-road AD systems. Feature maps, parametric free space maps, interval maps, occupancy grid maps, elevation maps, the stixel world, multi-level surface maps, voxel grids, meshes, and raw sensor data models are presented and compared in this regard.

Zusammenfassung

Eine der Schlüsselherausforderungen des automatisierten Fahrens liegt in der Wahrnehmung und Repräsentation der Fahrumgebung. Daten einer Vielzahl von unterschiedlichen Informationsquellen wie beispielsweise verschiedenen Fahrzeugumfeldsensoren, externen Kommunikationsschnittstellen sowie digitalen Karten müssen in ein konsistentes Umfeldmodell überführt werden, das als generische Abstraktionsschicht zu den Fahrfunktionen dient. Der Übersichtsartikel fasst verschiedene Ansätze aus diesem Gebiet zusammen. Der Schwerpunkt liegt hierbei auf metrischen Repräsentationen der statischen und dynamischen Fahrumgebung für automatisierte Straßenfahrzeuge. Merkmalskarten, parametrische Freiraumkarten, Intervallkarten, Belegungsgitterkarten, Höhenkarten, die Stixelwelt, Mehrebenen-Oberflächenkarten, Voxelgitter, Meshkarten sowie Rohsensordatenmodelle werden vorgestellt und miteinander vergleichen.

About the author

Matthias Schreier

Dr.-Ing. Matthias Schreier was with the Control Methods and Robotics Laboratory, TU Darmstadt until May 2015, where he has been responsible for the environment representation, prediction, and criticality assessment within the driver assistance system development PRORETA 3, a joint cooperation with the Continental AG. Afterwards, he joined the Advanced Engineering department of Continental Teves AG & Co. oHG and continued his work on perception, environment modelling, and scene understanding for automated driving. He is a recipient of the IEEE ITSS Best Ph.D. Dissertation Award 2016 (#2) as well as the Best Dissertation Award 2016 of the Department of Electrical Engineering and Information Technology, TU Darmstadt.

References

1. A. Abramov, C. Bayer, C. Heller, and C. Loy. A Flexible Modeling Approach for Robust Multi-Lane Road Estimation. In Proc. of the IEEE Intelligent Vehicles Symposium, pages 1386–1392, Redondo Beach, CA, USA, June 2017.10.1109/IVS.2017.7995904Search in Google Scholar

2. H. Badino, U. Franke, and D. Pfeiffer. The Stixel World – A Compact Medium Level Representation of the 3D-World. In DAGM Symposium on Pattern Recognition, Jena, Germany, Sept. 2009.10.1007/978-3-642-03798-6_6Search in Google Scholar

3. A. Barth. Vehicle Tracking and Motion Estimation Based on Stereo Vision Sequences. PhD thesis, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany, Sept. 2010.Search in Google Scholar

4. E. Bauer, F. Lotz, M. Pfromm, M. Schreier, S. Cieler, A. Eckert, A. Hohm, S. Lüke, P. Rieth, B. Abendroth, V. Willert, J. Adamy, R. Bruder, U. Konigorski, and H. Winner. PRORETA 3: An Integrated Approach to Collision Avoidance and Vehicle Automation. at – Automatisierungstechnik, 60(12):755–765, Dec. 2012.10.1524/auto.2012.1046Search in Google Scholar

5. S. Bauer, Y. Alkhorshid, and G. Wanielik. Using High-Definition Maps for Precise Urban Vehicle Localization. In Proc. of the IEEE International Conference on Intelligent Transportation Systems, pages 492–497, Rio de Janeiro, Brazil, Nov. 2016.10.1109/ITSC.2016.7795600Search in Google Scholar

6. P. Bender, J. Ziegler, and C. Stiller. Lanelets: Efficient Map Representation for Autonomous Driving. In Proc. of the IEEE Intelligent Vehicles Symposium, pages 420–425, Dearborn, MI, USA, June 2014.10.1109/IVS.2014.6856487Search in Google Scholar

7. E. Bouzouraa. Belegungskartenbasierte Umfeldwahrnehmung in Kombination mit objektbasierten Ansätzen für Fahrerassistenzsysteme. PhD thesis, Technische Universität München, München, Germany, 2011.Search in Google Scholar

8. M. E. Bouzouraa. Modellbasierte Freiraumverfolgung für Fahrerassistenz-systeme. In 8. Workshop Fahrerassistenzsysteme, pages 67–75, Walting, Germany, Sept. 2012.Search in Google Scholar

9. M. E. Bouzouraa and U. Hofmann. Fusion of Occupancy Grid Mapping and Model Based Object Tracking for Driver Assistance Systems Using Laser and Radar Sensors. In Proc. of the IEEE Intelligent Vehicles Symposium, pages 294–300, San Diego, CA, USA, June 2010.10.1109/IVS.2010.5548106Search in Google Scholar

10. A. Broggi, S. Cattani, M. Patander, M. Sabbatelli, and P. Zani. A full-3D Voxel-based Dynamic Obstacle Detection for Urban Scenario Using Stereo Vision. In Proc. of the IEEE International Conference on Intelligent Transportation Systems, pages 71–76, The Hague, The Netherlands, Oct. 2013.10.1109/ITSC.2013.6728213Search in Google Scholar

11. W. Burgard and M. Hebert. World Modeling. In Handbook of Robotics, chapter 36, pages 853–869. Springer, Berlin, Germany, 2008.10.1007/978-3-540-30301-5_37Search in Google Scholar

12. H. I. Christensen and G. D. Hager. Sensing and Estimation. In Springer Handbook of Robotics, chapter 4, pages 87–107. Springer, Berlin, Germany, 2008.10.1007/978-3-540-30301-5_5Search in Google Scholar

13. M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele. The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3213–3223, Las Vegas, NV, USA, Dec. 2016.10.1109/CVPR.2016.350Search in Google Scholar

14. C. Coué, C. Pradalier, C. Laugier, T. Fraichard, and P. Bessière. Bayesian Occupancy Filtering for Multitarget Tracking: An Automotive Application. The International Journal of Robotics Research, 25(1):19–30, Jan. 2006.10.1177/0278364906061158Search in Google Scholar

15. R. Danescu and S. Nedevschi. A Particle-Based Solution for Modeling and Tracking Dynamic Digital Elevation Maps. IEEE Transactions on Intelligent Transportation Systems, 15(3):1002–1015, June 2014.10.1109/TITS.2013.2291447Search in Google Scholar

16. R. Danescu, C. Pantilie, F. Oniga, and S. Nedevschi. Particle Grid Tracking System Stereovision Based Obstacle Perception in Driving Environments. IEEE Intelligent Transportation Systems Magazine, 4(1):6–20, Jan. 2012.10.1109/MITS.2011.2178492Search in Google Scholar

17. M. Darms. Eine Basis-Systemarchitektur zur Sensordatenfusion von Umfeldsensoren für Fahrerassistenzsysteme. Number 653 in VDI Fortschrittsberichte (series 12). VDI, Düsseldorf, Germany, 2007.Search in Google Scholar

18. M. Darms. Fusion umfelderfassender Sensoren. In Handbuch Fahrerassistenzsysteme. Grundlagen, Komponenten und Systeme für aktive Sicherheit und Komfort, chapter 24, pages 493–452. Springer Vieweg, Wiesbaden, Germany, third, revised and extended edition, 2015.Search in Google Scholar

19. M. Darms, M. Komar, and S. Lüke. Map Based Road Boundary Estimation. In Proc. of the IEEE Intelligent Vehicles Symposium, pages 609–614, San Diego, CA, USA, June 2010.10.1109/IVS.2010.5548011Search in Google Scholar

20. K. Dietmayer, D. Nuss, and S. Reuter. Repräsentation fusionierter Umfelddaten. In Handbuch Fahrerassistenzsysteme. Grundlagen, Komponenten und Systeme für aktive Sicherheit und Komfort, chapter 25, pages 453–480. Springer Vieweg, Wiesbaden, Germany, third, revised and extended edition, 2015.10.1007/978-3-658-05734-3_25Search in Google Scholar

21. J. Effertz. Autonome Fahrzeugführung in urbaner Umgebung durch Kombination objekt- und kartenbasierter Umfeldmodelle. PhD thesis, Technische Universität Carolo-Wilhelmina, Braunschweig, Germany, July 2009.10.1007/BF03224005Search in Google Scholar

22. A. Elfes. Sonar-Based Real-World Mapping and Navigation. Journal of Robotics and Automation, 3(3):249–265, June 1987.10.1109/JRA.1987.1087096Search in Google Scholar

23. F. Erbs, B. Schwarz, and U. Franke. From Stixels to Objects – A Conditional Random Field Based Approach. In Proc. IEEE Intell. Veh. Symp., pages 586–591, Gold Coast, Australia, June 2013.10.1109/IVS.2013.6629530Search in Google Scholar

24. J. Fritsch, T. Kühnl, and F. Kummert. Monocular Road Terrain Detection by Combining Visual and Spatial Information. IEEE Transactions on Intelligent Transportation Systems, 15(4):1586–1596, Aug. 2014.10.1109/TITS.2014.2303899Search in Google Scholar

25. D. Geronimo, A. M. Lopez, A. D. Sappa, and T. Graf. Survey of Pedestrian Detection for Advanced Driver Assistance Systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(7):1239–1258, July 2010.10.1109/TPAMI.2009.122Search in Google Scholar PubMed

26. R. Gopalan, T. Hong, M. Shneier, and R. Chellappa. A Learning Approach Towards Detection and Tracking of Lane Markings. IEEE Transactions on Intelligent Transportation Systems, 13(3):1088–1098, Sept. 2012.10.1109/TITS.2012.2184756Search in Google Scholar

27. R. Grewe. Optimierung der Repräsentation von Occupancy-Grids für Fahrerassistenzsysteme. Number 780 in VDI Fortschrittsberichte (series 12). VDI, Düsseldorf, Germany, 2014.Search in Google Scholar

28. R. Grewe, A. Hohm, S. Hegemann, S. Lueke, and H. Winner. Towards a Generic and Efficient Environment Model for ADAS. In Proc. of the IEEE Intelligent Vehicles Symposium, pages 316–321, Alcalá de Henares, Spain, June 2012.10.1109/IVS.2012.6232146Search in Google Scholar

29. M. Hebert, C. Caillas, E. Krotkov, I. S. Kweon, and T. Kanade. Terrain Mapping for a Roving Planetary Explorer. In Proc. IEEE Int. Conf. Robotics and Automation, pages 997–1002, Scottsdale, AZ, USA, May 1989.Search in Google Scholar

30. D. Helmick, A. Angelova, and L. Matthies. Terrain Adaptive Navigation for Planetary Rovers. Journal of Field Robotics, 26(4):391–410, Apr. 2009.10.1002/rob.20292Search in Google Scholar

31. A. Hohm, F. Lotz, O. Fochler, S. Lüke, and H. Winner. Automated Driving in Real Traffic: From Current Technical Approaches Towards Architectural Perspectives. Technical report, SAE Technical Paper 2014-01-0159, 2014.10.4271/2014-01-0159Search in Google Scholar

32. A. Hohm, C. Wojek, B. Schiele, and H. Winner. Multi-Level Sensorfusion and Computer-Vision Algorithms within a Driver Assistance System for Avoiding Overtaking Accidents. In FISITA World Automotive Congress, pages 1–14, Munich, Germany, Sept. 2008.Search in Google Scholar

33. K. Homeier and L. Wolf. RoadGraph: High Level Sensor Data Fusion between Objects and Street Network. In Proc. of the IEEE International Conference on Intelligent Transportation Systems, pages 1380–1385, Washington, DC, USA, Oct. 2011.10.1109/ITSC.2011.6082803Search in Google Scholar

34. F. Homm, N. Kämpchen, J. Ota, and D Burschka. Efficient Occupancy Grid Computation on the GPU with Lidar and Radar for Road Boundary Detection. In Proc. of the IEEE Intelligent Vehicles Symposium, San Diego, CA, USA, June 2010.10.1109/IVS.2010.5548091Search in Google Scholar

35. A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard. OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees. Autonomous Robots, 34(3):189–206, Feb. 2013.10.1007/s10514-012-9321-0Search in Google Scholar

36. M. B. Jensen, M. P. Philipsen, A. Mogelmøse, T. Moeslund, and M. M. Trivedi. Vision for Looking at Traffic Lights: Issues, Survey, and Perspectives. IEEE Transactions on Intelligent Transportation Systems, 17(7):1800–1815, Feb. 2016.10.1109/TITS.2015.2509509Search in Google Scholar

37. R. Kastner. Robust Path Identification for Driver Assistance. Number 746 in VDI Fortschrittsberichte (series 12). VDI, Düsseldorf, Germany, 2011.Search in Google Scholar

38. D. Kochanov, J. Ošep, A. Stückler, and B. Leibe. Scene Flow Propagation for Semantic Mapping and Object Discovery in Dynamic Street Scenes. In Intelligent Robots and Systems, pages 1785–1792, Daejeon, South Korea, Dec. 2016.10.1109/IROS.2016.7759285Search in Google Scholar

39. M. Konrad, M. Szczot, and K. Dietmayer. Road Course Estimation in Occupancy Grids. In Proc. of the IEEE Intelligent Vehicles Symposium, pages 412–417, San Diego, CA, USA, June 2010.10.1109/IVS.2010.5548041Search in Google Scholar

40. M. Konrad, M. Szczot, F. Schüle, and K. Dietmayer. Generic Grid Mapping for Road Course Estimation. In Proc. of the IEEE Intelligent Vehicles Symposium, pages 851–856, Baden-Baden, Germany, June 2011.10.1109/IVS.2011.5940514Search in Google Scholar

41. G. Kraetzschmar, G. P. Gassull, and K. Uhl. Probabilistic Quadtrees for Variable-Resolution Mapping of Large Environments. In Proc. of the 5th IFAC/EURON Symposium on Intelligent Autonomous Vehicles, Lisbon, Portugal, July 2004.10.1016/S1474-6670(17)32056-6Search in Google Scholar

42. T. Kubertschak, M. Maehlisch, and H.-J. Wuensche. Towards a Unified Architecture for Mapping Static Environments. In Proc. of the International Conference on Information Fusion, pages 1–8, Salamanca, Spain, July 2014.Search in Google Scholar

43. F. Liu. Objektverfolgung durch Fusion von Radar- und Monokameradaten auf Merkmalsebene für zukünftige Fahrerassistenzsysteme. PhD thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, Dec. 2009.Search in Google Scholar

44. S. Lüke, D. Waldbauer, M. Darms, and M. Komar. An Assistance System for Construction Sites. In 6th IFAC Symposium Advances in Automotive Control, pages 761–767, Munich, Germany, July 2010.10.3182/20100712-3-DE-2013.00044Search in Google Scholar

45. C. Lundquist and T. B. Schön. Estimation of the Free Space in Front of a Moving Vehicle. In Proc. of the SAE World Congress, Detroit, MI, USA, Apr. 2009.10.4271/2009-01-1288Search in Google Scholar

46. S. Luthardt, C. Han, V. Willert, and M. Schreier. Efficient Graph-Based V2V Free Space Fusion. In Proc. of the IEEE Intelligent Vehicles Symposium, pages 985–992, Redondo Beach, CA, USA, June 2017.10.1109/IVS.2017.7995843Search in Google Scholar

47. T. P. Michalke, C. Gläser, L. Bürkle, and F. Niewels. The Narrow Road Assistant – Next Generation Advanced Driver Assistance in Inner-City. In Proc. of the IEEE International Conference on Intelligent Transportation Systems, pages 2173–2180, The Hague, The Netherlands, Oct. 2013.10.1109/ITSC.2013.6728550Search in Google Scholar

48. T. P. Michalke, C. Gläser, L. Bürkle, and F. Niewels. The Narrow Road Assistant – Evolution Towards Highly Automated Driving in Inner City. In Proc. of the IEEE Intelligent Vehicles Symposium, pages 1192–1198, Gothenburg, Sweden, June 2016.10.1109/IVS.2016.7535541Search in Google Scholar

49. A. Mogelmose, M. M. Trivedi, and T. B. Moeslund. Vision-Based Traffic Sign Detection and Analysis for Intelligent Driver Assistance Systems: Perspectives and Survey. IEEE Transactions on Intelligent Transportation Systems, 13(4):1484–1497, Dec. 2012.10.1109/TITS.2012.2209421Search in Google Scholar

50. H. P. Moravec. Robot Spatial Perception by Stereoscopic Vision and 3D Evidence Grids. CMU-RI-TR-96-34, Robotics Institute Carnegie Mellon University, Pittsburgh, PA, USA, Sept. 1996.Search in Google Scholar

51. M. Munz. Generisches Sensorfusionsframework zur gleichzeitigen Zustands- und Existenzschätzung für die Fahrzeugumfelderkennung. PhD thesis, Ulm University, Ulm, Germany, July 2011.Search in Google Scholar

52. M. Mählisch. Filtersynthese zur simultanen Minimierung von Existenz-, Assoziations- und Zustandsunsicherheiten in der Fahrzeugumfelderfassung mit heterogenen Sensordaten. PhD thesis, Ulm University, Ulm, Germany, Aug. 2009.Search in Google Scholar

53. T.-N. Nguyen, M.-M. Meinecke, M. Tornow, and B. Michaelis. Optimized Grid-Based Environment Perception in Advanced Driver Assistance Systems. In Proc. of the IEEE Intelligent Vehicles Symposium, pages 425–430, Xi’an, Shaanxi, China, June 2009.10.1109/IVS.2009.5164315Search in Google Scholar

54. D. Nuss. A Random Finite Set Approach for Dynamic Occupancy Grid Maps. PhD thesis, Universität Ulm, Ulm, Germany, 2017.Search in Google Scholar

55. D. Nuss, M. Stuebler, and K. Dietmayer. Consistent Environment Modeling by use of Occupancy Grid Maps, Digital Road Maps, and Multi-Object Tracking. In Proc. of the IEEE Intelligent Vehicles Symposium, pages 1371–1377, Dearborn, MI, USA, June 2014.10.1109/IVS.2014.6856516Search in Google Scholar

56. F. Oniga and S. Nedevschi. Processing Dense Stereo Data Using Elevation Maps: Road Surface, Traffic Isle, and Obstacle Detection. IEEE Transactions on Vehicular Technology, 59(3):1172–1182, Mar. 2010.10.1109/TVT.2009.2039718Search in Google Scholar

57. A. Petrovskaya and S. Thrun. Model Based Vehicle Detection and Tracking for Autonomous Urban Driving. Autonomous Robots, 26(2–3):123–139, Apr. 2009.10.1007/s10514-009-9115-1Search in Google Scholar

58. D. Pfeiffer and U. Franke. Modeling Dynamic 3D Environments by Means of the Stixel World. IEEE Intelligent Transportation Systems Magazine, 3(3):24–36, 2011.10.1109/MITS.2011.942207Search in Google Scholar

59. D. Pfeiffer and U. Franke. Towards a Global Optimal Multi-Layer Stixel Representation of Dense 3D Data. In Proc. of the British Machine Vision Conference, pages 1–12, Dundee, Scotland, Aug. 2011.10.5244/C.25.51Search in Google Scholar

60. F. Piewak, T. Rehfeld, M. Weber, and J. M. Zöllner. Fully Convolutional Neural Networks for Dynamic Object Detection in Grid Maps. In Proc. of the IEEE Intelligent Vehicles Symposium, pages 392–398, Redondo Beach, CA, USA, June 2017.10.1109/IVS.2017.7995750Search in Google Scholar

61. Á. C. Prat. Sensordatenfusion und Bildverarbeitung zur Objekt- und Gefahrenerkennung. PhD thesis, Technische Universität Carolo-Wilhelmina, Braunschweig, Germany, Nov. 2010.Search in Google Scholar

62. M. Reichel, M. E. Bouzouraa, A. Siegel, K.-H. Siedersberger, and M. Maurer. Erweiterte Umfelderkennung und Nutzung einer Ausweichanalyse als Grundlage einer aktiven Gefahrenbremsung. In AAET 2010 – Automatisierungssyteme, Assistenzsysteme und eingebettete Systeme für Transportmittel, pages 150–169, Braunschweig, Germany, Feb. 2010.Search in Google Scholar

63. M. Saval-Calvo, L. Medina-Valdés, J. M. Castillo-Secilla, S. Cuenca-Asensi, A. Martínez-Álvarrez, and J. Villagrá. A Review of the Bayesian Occupancy Filter. Sensors, 17(344):1–18, Feb. 2017.10.3390/s17020344Search in Google Scholar PubMed PubMed Central

64. M. R. Schmid, S. Ates, J. Dickmann, F. v. Hundelshausen, and H.-J. Wuensche. Parking Space Detection with Hierarchical Dynamic Occupancy Grids. In Proc. of the IEEE Intelligent Vehicles Symposium, pages 254–259, Baden-Baden, Germany, June 2011.10.1109/IVS.2011.5940476Search in Google Scholar

65. M. R. Schmid, M. Maehlisch, J. Dickmann, and H.-J. Wuensche. Dynamic Level of Detail 3D Occupancy Grids for Automotive Use. In Proc. of the IEEE Intelligent Vehicles Symposium, pages 269–274, San Diego, CA, USA, June 2010.10.1109/IVS.2010.5548088Search in Google Scholar

66. L. Schneider, M. Cordts, T. Rehfeld, D. Pfeiffer, M. Enzweiler, U. Franke, M. Pollefeys, and S. Roth. Semantic Stixels: Depth is Not Enough. In Proc. of the IEEE Intelligent Vehicles Symposium, pages 110–117, Gothenburg, Sweden, June 2016.10.1109/IVS.2016.7535373Search in Google Scholar

67. M. Schreier. Bayesian Environment Representation, Prediction, and Criticality Assessment for Driver Assistance Systems. PhD thesis, Technische Universität Darmstadt, Darmstadt, Germany, Dec. 2015.Search in Google Scholar

68. M. Schreier and R. Grewe. A High-Level Road Model Information Fusion Framework and its Application to Multi-Lane Speed Limit Inference. In Proc. of the IEEE Intelligent Vehicles Symposium, pages 1201–1208, Redondo Beach, CA, USA, June 2017.10.1109/IVS.2017.7995876Search in Google Scholar

69. M. Schreier and V. Willert. Robust Free Space Detection in Occupancy Grid Maps by Methods of Image Analysis and Dynamic B-Spline Contour Tracking. In Proc. of the IEEE International Conference on Intelligent Transportation Systems, pages 514–521, Anchorage, AK, USA, Sept. 2012.10.1109/ITSC.2012.6338636Search in Google Scholar

70. M. Schreier, V. Willert, and J. Adamy. From Grid Maps to Parametric Free Space Maps – A Highly Compact, Generic Environment Representation for ADAS. In Proc. of the IEEE Intelligent Vehicles Symposium, pages 938–944, Gold Coast, Australia, June 2013.10.1109/IVS.2013.6629587Search in Google Scholar

71. M. Schreier, V. Willert, and J. Adamy. Bayesian, Maneuver-Based, Long-Term Trajectory Prediction and Criticality Assessment for Driver Assistance Systems. In Proc. of the IEEE International Conference on Intelligent Transportation Systems, pages 334–341, Qingdao, China, Oct. 2014.10.1109/ITSC.2014.6957713Search in Google Scholar

72. M. Schreier, V. Willert, and J. Adamy. Grid Mapping in Dynamic Road Environments: Classification of Dynamic Cell Hypothesis via Tracking. In Proc. of the IEEE International Conference on Robotics and Automation, pages 3995–4002, Hong Kong, China, June 2014.10.1109/ICRA.2014.6907439Search in Google Scholar

73. M. Schreier, V. Willert, and J. Adamy. An Integrated Approach to Maneuver-Based Trajectory Prediction and Criticality Assessment in Arbitrary Road Environments. IEEE Transactions on Intelligent Transportation Systems, 17(10):2751–2766, Oct. 2016.10.1109/TITS.2016.2522507Search in Google Scholar

74. M. Schreier, V. Willert, and J. Adamy. Compact Representation of Dynamic Driving Environments for ADAS by Parametric Free Space and Dynamic Object Maps. IEEE Transactions on Intelligent Transportation Systems, 17(2):367–384, Feb. 2016.10.1109/TITS.2015.2472965Search in Google Scholar

75. S. Sivaraman and M. M. Trivedi. Looking at Vehicles on the Road: A Survey of Vision-Based Vehicle Detection, Tracking, and Behavior Analysis. IEEE Transactions on Intelligent Transportation Systems, 14(4):1773–1795, Dec. 2013.10.1109/TITS.2013.2266661Search in Google Scholar

76. S. Steyer, G. Tanzmeister, and D. Wollherr. Object Tracking Based on Evidential Dynamic Occupancy Grids in Urban Environments. In Proc. of the IEEE Intelligent Vehicles Symposium, pages 1064–1070, Redondo Beach, CA, USA, June 2017.10.1109/IVS.2017.7995855Search in Google Scholar

77. D. Stüker. Heterogene Sensordatenfusion zur robusten Objektverfolgung im automobilen Straßenverkehr. PhD thesis, Carl von Ossietzky-Universität, Oldenburg, Germany, Feb. 2004.Search in Google Scholar

78. G. Tanzmeister, M. Friedl, A. Lawitzky, D. Wollherr, and M. Buss. Road Course Estimation in Unknown, Structured Environments. In Proc. of the IEEE Intelligent Vehicles Symposium, pages 630–635, Gold Coast, Australia, June 2013.10.1109/IVS.2013.6629537Search in Google Scholar

79. G. Tanzmeister and D. Wollherr. Evidential Grid-Based Tracking and Mapping. IEEE Transactions on Intelligent Transportation Systems, 18(6):1454–1467, June 2016.10.1109/TITS.2016.2608919Search in Google Scholar

80. S. Thrun. Robotic Mapping: A Survey. In Exploring Artificial Intelligence in the New Millennium, pages 1–35. Morgan Kaufmann, 2002.Search in Google Scholar

81. R. Triebel, P. Pfaff, and W. Burgard. Multi-Level Surface Maps for Outdoor Terrain Mapping and Loop Closing. In Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2276–2282, Beijing, China, Oct. 2006.10.1109/IROS.2006.282632Search in Google Scholar

82. S. Ulbrich, T. Nothdurft, M. Maurer, and P. Hecker. Graph-Based Context Representation, Environment Modeling and Information Aggregation for Automated Driving. In Proc. of the IEEE Intelligent Vehicle Symposium, pages 541–547, Dearborn, MI, USA, June 2014.10.1109/IVS.2014.6856556Search in Google Scholar

83. A. Vatavu, R. Danescu, and S. Nedevschi. Stereovision-Based Multiple Object Tracking in Traffic Scenarios Using Free-Form Obstacle Delimiters and Particle Filters. IEEE Transactions on Intelligent Transportation Systems, 16(1):498–511, Feb. 2015.10.1109/TITS.2014.2366248Search in Google Scholar

84. A. Vatavu and S. Nedevschi. Real-Time Modeling of Dynamic Environments in Traffic Scenarios Using a Stereo-Vision System. In Proc. of the IEEE International Conference on Intelligent Transportation Systems, pages 722–727, Anchorage, USA, Sept. 2012.10.1109/ITSC.2012.6338820Search in Google Scholar

85. T. Weiherer, E. Bouzouraa, and U. Hofmann. A Generic Map Based Environment Representation for Driver Assistance Systems Applied to Detect Convoy Tracks. In Proc. of the IEEE International Conference on Intelligent Transportation Systems, pages 691–696, Anchorage, AK, USA, Sept. 2012.10.1109/ITSC.2012.6338658Search in Google Scholar

86. T. Weiherer, E. Bouzouraa, and U. Hofmann. An Interval Based Representation of Occupancy Information for Driver Assistance Systems. In Proc. of the IEEE International Conference on Intelligent Transportation Systems, pages 21–27, The Hague, The Netherlands, Oct. 2013.10.1109/ITSC.2013.6728205Search in Google Scholar

87. T. Weiss, B. Schiele, and K. Dietmayer. Robust Driving Path Detection in Urban and Highway Scenarios Using a Laser Scanner and Online Occupancy Grids. In Proc. of the IEEE Intelligent Vehicles Symposium, pages 184–189, Istanbul, Turkey, June 2007.10.1109/IVS.2007.4290112Search in Google Scholar

88. H. Winner, S. Hakuli, F. Lotz, and C. Singer. Handbuch Fahrer-assistenzsysteme. Grundlagen, Komponenten und Systeme für aktive Sicherheit und Komfort. Springer Vieweg, Wiesbaden, Germany, third, revised and extended edition, 2015.10.1007/978-3-658-05734-3Search in Google Scholar

89. H. Winner, F. Lotz, E Bauer, U. Konigorski, M. Schreier, J. Adamy, M. Pfromm, R. Bruder, S. Lüke, and S. Cieler. PRORETA 3: Comprehensive Driver Assistance by Safety Corridor and Cooperative Automation. In Handbook of Driver Assistance Systems. Basic Information, Components and Systems for Active Safety and Comfort, chapter 25, pages 1449–1469. Springer, Switzerland, 2016.10.1007/978-3-319-12352-3_19Search in Google Scholar

Received: 2017-10-27
Accepted: 2018-1-12
Published Online: 2018-2-10
Published in Print: 2018-2-23

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2017-0104/html
Scroll to top button