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The Energiewende is a paradigm change that can be witnessed at latest
since the political decision to step out of nuclear energy. Moreover, despite
common roots in Electrical Engineering, the control community and the
power systems community face a lack of common vocabulary. In this context,
this paper aims at providing a systems-and-control specific introduction to
optimal power flow problems which are pivotal in the operation of energy
systems. Based on a concise problem statement, we introduce a common
description of optimal power flow variants including multi-stage-problems
and predictive control, stochastic uncertainties, and issues of distributed
optimization. Moreover, we sketch open questions that might be of interest
for the systems and control community.
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1 Introduction
The Energiewende is not an event of the distant future; rather it is a paradigm change
whose matter-of-factness we witness at latest since the political post-Fukushima decision
of the German government to step out of nuclear energy on the of July 1, 2011. The
same day, the German government took the decision to raise the share of so-called
Renewable Energy Sources (res) in the electricity sector up to 80% by 2050, and decided
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to invest massively in the extension of the transmission grid [27]. Important dimensions
and consequences of this transition—which, actually and in the view of greenhouse gas
emission reduction to counteract global warming, affects not only Germany but a large
number of countries world-wide—include the change from a rather small number of
large-scale power plants acting on the high-voltage transmission level towards a large
number of small-scale acting pre-dominantly on the medium to low-voltage distribution
level [14].
Thus, from a control and automation point of view, the wide range of research needs

and challenges induced by the Energiewende entails:

• Development of new power systems hardware, grid-aware market design, flexible
IT solutions, and scada systems overcoming the monolithic structure of current
process automation systems [13, 38].

• Investigation of new decentralized and distributed control methods ensuring stable
operation of distribution grids with a large share of volatile/uncertain renewables
(which implies a large number of controllable devices such as storages and devices
of sector coupling) and allowing for adaptive changes of grid topology (islanding of
subsystems/microgrids) [8, 12, 61, 81].

• Tailoring numerical algorithms that contribute to safe, secure and economically
efficient operation of high-voltage transmission grids, including the structured
consideration of uncertainties (volatile renewables etc.) [10, 65, 82].

We remark that neither does the above list claim completeness nor does the order imply
any prioritization.
In this context, it is worth to be noted that, despite common roots in Electrical

Engineering, the control community and the power systems community face a lack of
common vocabulary. The frequently cited—if not seminal—task-force paper on different
stability notions in power systems and in systems and control is a prime evidence of
the lack of common vocabulary [62]. Furthermore, the lack of widespread knowledge
about the importance of optimal power flow problems in the control community can be
regarded as another evidence.
On a macroscopic level, the present paper aims at contributing towards consistent

notions in power and control systems engineering. On a detailed level, we will not
touch upon the frequently discussed problems of smart-grid control and modeling [85,
90]. Rather, we focus on the so-called Optimal Power Flow (opf) Problem, which
arises in different contexts of operation of electricity grids. One may say that opf is
the most important steady-state optimization problem arising in power systems. For
example, it plays a pivotal role in computing setpoints for grid stabilizing generators
whenever the market solution at the European Energy Exchange (eex) in Leipzig [36] is
incompatible with the physics of the grid. In other words, whenever the market solution
might jeopardize grid stability, the Transmission System Operators (tsos) ramp-up
back-up power plants whose setpoints are determined by solving opf problems. Figure 1
depicts the control regions of the four German tsos (left) and the annual amount of
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Figure 1: (Left) Control areas of German tsos. Source: Bundeszentrale für politische
Bildung, 2013, www.bpb.de. (Right) Annual re-dispatch (in GWh) of German
tsos. Data source: netztransparenz.de

energy re-dispatched by the four German tsos (right) in 2014-2017. Evidently, with
about 11TWh the annual re-dispatch has reached a level inducing substantial economic
costs. For example, in 2015 the re-dispatch costs added up to 402.5Million e [16].1

Within the usual time interval of 15min a power plant can change its setpoint only in-
crementally. Thus, in real-world applications (multi-stage quasi-stationary) opf problems
are subject to hidden constraints that can be expressed as discrete-time dynamics. Put
differently, opf leads naturally to large-scale non-convex discrete-time optimal control
problems. Moreover, as the Energiewende induces uncertainties (volatile renewables,
uncertain future market solutions, ...) there is a tremendous need for scalable methods
tackling opf problems. Hence, in the present paper we aim at providing a unified
framework to multi-stage predictive, distributed and stochastic opf. Moreover, the
paper is meant as an introduction tailored to readers with background in systems and
control who are not yet familiar with opf. This scope implies that we do neither claim
completeness in terms of literature overview, nor do we discuss the most general variants
of opf problems.
We begin with a concise statement of the opf problem in Section 2 commenting on

usual relaxations. Section 3 entails the main contribution of this paper; i.e. a control-
specific formulation of research challenges all of which entail opf problems and variants
thereof at their core. This includes blueprint formulations for multi-stage quasi-stationary
predictive opf, distributed (multi-agent) formulations, opf with stochastic uncertainties,
and comments on further opf variants. Moreover, in Section 4 we sketch control-specific
open problems. Finally, the paper closes with conclusions in Section 5.

1This is one of the reasons for the steep increase in electricity prices in Germany from 21.07 cent/kWh
in 2007 to 30.48 cent/kWh in 2017 [37].
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2 Optimal Power Flow – Problem Statement
There exists a plethora of references on opf, see [19, 22, 26, 40, 102]. Subsequently, we
present a concise formulation of opf problems that enables the statement of control-
specific research challenges in Section 3.

2.1 The Power Flow Equations
We consider balanced electrical ac grids as lumped-parameter systems at steady state,
which can be modeled by the triple (N ,G, Y ), where N = {1, . . . , N} is the set of buses
(nodes), G ⊆ N is the non-empty set of generators, and Y = G + jB ∈ CN×N is the
bus admittance matrix [43]. Moreover, we assume symmetric three-phase ac conditions.
Every bus l ∈ N is described by its voltage phasor vlejθl ∈ C and net apparent power
sl = pl + jql ∈ C, or equivalently by its voltage magnitude vl, voltage phase θl, net active
power pl, and net reactive power ql.

2.1.1 AC Power Flow

The power flow equations describe the steady-state behavior of an ac electrical network
in terms of the voltage phasors and net apparent powers

pl = vl
∑
m∈N

vm(Glm cos(θlm) +Blm sin(θlm)), (1a)

ql = vl
∑
m∈N

vm(Glm sin(θlm)−Blm cos(θlm)), (1b)

where θlm := θl − θm. Observe that in the power flow equations (1) the phase angles θl
occur as pair-wise differences, therefore one bus l0 ∈ N is specified as reference (slack)
bus θl0 = 0 for l0 ∈ N ; w.l.o.g. we consider l0 = 1 in the remainder. For the sake of
simplicity, we assume that there is only one generator per bus (i.e. G ⊆ N ). We describe
the net apparent power of bus l ∈ N by

sl = pl + jql =
{

(pg
l − pd

l ) + j(qg
l − qd

l ), l ∈ G,
−pd

l − jqd
l , otherwise,

where pg
l , q

g
l are controllable power injections for all generator nodes l ∈ G, and pd

l , qd
l

are uncontrollable power sinks/sources for all l ∈ N , cf. Figure 2.
Hence, we define the control input u ∈ Rnu , the disturbance d ∈ Rnd , and the state

x ∈ Rnx as follows

u =
(
pg
l qg

l

)>
l∈G
∈ Rnu , nu = 2|G|, (2a)

d =
(
pd
l qd

l

)>
l∈N
∈ Rnd , nd = 2|N |, (2b)

x =
(
vl θl

)>
l∈N
∈ Rnx , nx = 2|N |. (2c)
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We remark that depending on the specific problem at hand, one may also consider the
voltage of a bus as an additional input variable. Our choice of state and input variables
allows writing the power flow equations (1) in terms of a system of nonlinear algebraic
equations

F : Rnx × Rnu × Rnd → R2N F (x, u; d) = 0, (3)

where the semicolon notation emphasizes the dependency on the exogenous disturbance
d. For the sake of concise notation, we introduce the so-called power-flow manifold

F(d) :=
{

(x u)> ∈ Rnx+nu |F (x, u; d) = 0
}

(4)

describing all solutions to the power-flow equations (1) for a given disturbance d. Since (1)
states 2N equality constraints and we consider 4N variables, the differentiable manifold
F(d) is of dimension 2N . As we will see later, it determines the number of degrees of
freedom remaining for optimization.

Note that in this section we have formulated the power-flow equations in polar coordi-
nates. However, resorting to Cartesian coordinates—i.e. swapping voltage magnitude vl
and phase θl with the imaginary and real part of the voltage—they can equivalently be
written as a set of polynomial equations [40].

2.1.2 DC Power Flow

To the end of obtaining a linear approximation of the power flow equations (1), one
typically assumes the following: lossless lines (rlm ≈ 0 for the Ohmic resistance of the line
connecting buses l and m), small phase differences (θlm = θl − θm ≈ 0), constant voltage
magnitudes (vl ≈ 1). Under these assumptions—which typically hold for high-voltage
transmission systems—the ac active power flow equations (1) simplify to

pl = −
∑

m∈N\{l}
blm(θl − θm) ⇐⇒ p = −Bθ, (5)

where B is the imaginary part of the bus admittance matrix Y . The above equations (5)
are the so-called dc power flow equations [43]. Note that in the absence of shunts
elements the reactive power flows vanish due to the assumptions of small angle differences

pgl , q
g
lpdl , q

d
l

pl, ql

lnode

Figure 2: Power generation, demand and net power at node l.
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and constant voltages. Compared to ac power flow, the control input udc ∈ Rnudc , the
disturbance ddc ∈ Rnddc , and the state xdc ∈ Rnxdc for dc power flow become

udc =
(
pg
l

)>
l∈G
∈ Rnudc , nudc = |G|,

ddc =
(
pd
l

)>
l∈N
∈ Rnddc , nddc = |N |,

xdc =
(
θl
)>
l∈N
∈ Rnxdc , nxdc = |N |.

From this it follows that the net power p is p = udc + ddc. In terms of the compact
notation (3) and (4) we obtain

F dc(xdc, udc; ddc) = udc − ddc +Bxdc = 0,

and
Fdc(ddc) :=

{
(xdc udc)> ∈ Rnxdc+nudc |F dc(xdc, udc; ddc) = 0

}
. (7)

2.2 Optimal Power Flow
Besides the power flow equations (1) engineering requirements are usually considered in
terms of box constraints as follows

u ∈ U =
{(
pg
l qg

l

)>
l∈G
∈ Rnu : pg

l ∈ [pg
l
, pg
l ], qg

l ∈ [qg
l
, qg

l ]
}

(8a)

x ∈ X =
{(
vl θl

)>
l∈N
∈ Rnx : vl ∈ [vl, vl], ∀l ∈ N , θl0 = 0

}
. (8b)

Actually, the constraints (8) are a simplification of the true technical requirements. For
example, generator curves may impose constraints that couple pg

l , q
g
l , and vl at generator

bus l ∈ G; binary constraints may be imposed when shunts and/or generators can be
turned on and off.
Additional constraints comprise limits on the line flows, which are often modeled as

constraints on the magnitude of apparent power

|slm| =
√
p2
lm + q2

lm ≤ |s̄lm|, ∀(l,m) ∈ L, (9a)

where L ⊆ N ×N is the set of lines, with M = |L| being the number of lines. The active
power plm across the line connecting buses l to m, plm, and the corresponding reactive
power qlm are given by

plm = v2
l glm − vlvm(glm cos(θlm) + blm sin(θlm)), (9b)

qlm = −v2
l blm + vlvm(blm cos(θlm)− glm sin(θlm)), (9c)

where blm and glm are line parameters. The line flows (9) depend only on the state x,
and can be written compactly as

c : Rnx → R|L| sline = c(x). (10)
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This allows for the compact notation

C :=
{
x ∈ Rnx | c(x) ≤

(
|s̄lm|

)>
(l,m)∈L

}
⊂ Rnx , (11)

where the inequality is evaluated component-wise.

2.2.1 AC OPF

Typical objectives considered in opf span from the minimization of active power gen-
eration costs via the minimization of transmission losses to suppressing overly large
injections of reactive power, see e.g. [40]. Frequently, the cost function J : Rnu → R is
assumed to be convex (often quadratic) in the argument u. Summarizing all of the above,
the single-stage ac opf problem is given by

min
(x,u)∈Rnx+nu

J(u) (12a)

subject to
(x, u)> ∈ F(d), (12b)

u ∈ U , (12c)
x ∈ X , (12d)
x ∈ C. (12e)

The main challenges in solving the ac opf as given above are: the non-convexity of the
sets F(d) and C, the fact that the objective is not strictly convex in x and u, and the
fact that realistic grid models can easily comprise several thousand nodes [91, 95].
Note that there exist powerful software packages to solving (12) such as Matpower

[103] (which is an open-source Matlab toolbox specific for opf), jump [30] (which is an
open-source Julia nlp package) or CasADi [2] (which is an open-source nlp package
available for Matlab and Python). In general, one can distinguish the following main
approaches to solving (12):

(i) tackling it as a generic nlp [22, 40, 72, 102];

(ii) alternating solution of the power-flow equations (1) and minimizing a quadratic
objective [50, 89];

(iii) polynomial reformulation and semi-definite relaxation of the power-flow equations
(1) [7, 65, 66, 68]; and

(iv) affine approximation of the sets F(d) and C which is discussed next.

2.2.2 DC OPF

For dc power flow conditions, the box constraints for the input udc and the state xdc

are obtained from (8) by removing the entries referring to the reactive power and the
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voltage magnitude respectively

udc ∈ Udc :=
{(
pg
l

)>
l∈G
∈ Rnu : pg

l ∈ [pg
l
, pg
l ] ∀l ∈ G

}
xdc ∈ X dc :=

{(
θl
)>
l∈N
∈ Rnx : θl0 = 0

}
.

Under dc conditions the function cdc : Rnxdc → R|L| in (10)—that maps the state
to the line flows—is obtained from Kirchhoff’s laws as cdc(xdc) = −BbrAx

dc, where
Bbr = diag((blm)>(l,m)∈L) ∈ RM×M is the branch susceptance matrix, and A ∈ RM×N is
the graph incidence matrix. This leads to

Cdc :=
{
xdc ∈ Rnxdc | −BbrAx

dc ≤
(
p̄lm

)>
(l,m)∈L

}
⊂ Rnxdc .

Summing up, the single-stage dc opf problem can be posed as follows

min
(xdc, udc)∈Rnxdc +nudc

J(udc) (14a)

subject to
(xdc, udc)> ∈ Fdc(ddc), (14b)

udc ∈ Udc, (14c)
xdc ∈ X dc, (14d)
xdc ∈ Cdc. (14e)

Observe that, for usual choices of J , (14) is a quadratic program positive definite in udc.
Hence dc opf is structurally considerably simpler than ac opf. Finally, note that it is
straightforward to eliminate the state xdc from (14). This yields smaller optimization
problems that are strictly convex in the decision variable udc.

3 Advanced OPF Variants
After the introduction of the opf problem in its simple single-stage ac and dc variants,
it deserves to be noted that in the power systems community these problems are for the
most part well understood, see [40, 43, 72, 102].2 At the same time Problem (12) and
Problem (14) as such are rarely solved in practice. Indeed, quite often one has to tackle
more advanced variants thereof. The purpose of this section is to provide a tutorial
introduction to selected advanced problems that are of relevance in different operational
contexts (unit commitment, ...). Moreover, we outline how the systems-and-control
approaches could contribute to tackling them.

2One remaining open issue is, for example, the one of uniqueness of solutions [79].
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Figure 3: Time scales in power systems according to [1].

3.1 Multi-Stage and Predictive OPF
From a systems and control perspective, Problem (12) and Problem (14) are steady-
state optimization problems. Due to the well-known time scale separation underlying
the conventional control paradigm of primary, secondary and tertiary control (cf. Fig.
3), opf problems are often solved on the basis of 15min sampling intervals. While
the fast transients of power systems are clearly settling much faster (in the order of
milliseconds up to a few minutes), a large-scale power plant cannot change its setpoint
arbitrarily on a 15min interval. Rather it is subject to ramp constraints that give raise
to (quasi-stationary) multi-stage opf problems.
To the end of concise notation, henceforth the argument ·(k) denotes the time index

k ∈ N of a variable. We consider ramp constraints for the generators, i.e. constraints of
the form

pl(k + 1)− pl(k) ∈ [∆p
l
,∆pl], l ∈ G.

Using the shorthand notation (2a), it is straightforward to see that these constraints can
be expressed in form of the following discrete-time system

u(k + 1) = u(k) + δu(k), u(0) = u0.

Here δu(k) ∈ Rnu is the incremental change of active generator powers constrained by

δU :=×
l∈G

(
[∆p

l
,∆pl]× R

)
⊂ Rnu .

Note that the ramp constraints are typically only imposed on active power and not on
reactive power.
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3.1.1 Multi-Stage AC OPF

The multi-stage AC opf problem can now be stated as

min
(x(·),u(·),δu(·))∈R(nx+2nu)T

∑
k∈T

J(u(k)) + ‖δu(k)‖2Σ (15a)

subject to ∀k ∈ T
u(k + 1) = u(k) + δu(k), u(0) = u0, (15b)
δu(k) ∈ δU , (15c)

(x(k), u(k))> ∈ (X × U) ∩ F(d(k)), (15d)
x(k) ∈ C, (15e)

where T = {0, 1, . . . , k, . . . , T − 1} ⊂ N denotes the set of considered time instants.
Observe that, for the sake of generality, we introduce the quadratic penalty ‖δu(k)‖2Σ

with Σ � 0 to regularize the optimization with respect to the incremental input change
δu(k). Moreover, Problem (15) looks structurally similar to discrete-time optimal control
problems arising in the context of Nonlinear Model Predictive Control (nmpc) [44, 84].
From an nmpc point of view, δu(k) takes the role of the input, u(k) is the dynamic state,
x(k) can be regarded as some kind of algebraic state variable, and d(k) is an exogenous
disturbance signal. Note that inclusion of energy storages (batteries, pumped-hydro, etc.)
will lead to additional dynamics. Due to space limitations, we do not discuss this in detail
here. Moreover, it is easy to see that Problem (15) is non-convex. However, considering
the DC formulation from Section 2.2 convex approximation is straightforward, see e.g.
[48, 49].

Example – IEEE 5 Bus

Next, we consider a simple example of a multi-stage opf problem. Fig. 4 depicts
the modified ieee 5 bus case [64] with time-varying load at node 4 and a generator
ramp constraint at the cheapest generator at node 1. The objective J is given by a
quadratic function J(u) = u>Hu+h>u, H � 0, with H = diag(200, 0, 220, 240, 260,0),
h = (1500, 0, 3000, 4000, 1000,0)>, where 0 is a vector (of appropriate dimensions)
corresponding to zero cost on reactive power injection. Note that we do not consider
regularization with respect to δu(k).
Fig. 5 shows numerical results in case with and without active ramp constraint at

node 1. We formulate the problem as an nlp and solve it via CasADi and ipopt
in Matlab [2]. Therein, the first row depicts the states consisting of phase angles θ
(dashed) and voltage magnitudes v (solid), the second row depicts the controls consisting
of active and reactive power injections p (solid) and q (dashed), and the last row shows
the (time varying) parameter vector p consisting of active and reactive power demands
pd (solid) and qd (dashed). One can observe that the time-varying demand of node 4
is mainly covered by the generators at node 1 and 5 since they are the cheapest and,
hence, generator 5 is almost always on its upper limit. Introducing a ramp constraint
of 3.2 p.u./h for generator 1, the limited ramping capability has to be compensated by
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6 p.u.

1.7 p.u.

3 p.u.

2 p.u.

3 p.u.

pd4

: 3.2
p.u.
h

Figure 4: ieee 5 bus system with time-varying load at node 4 and generator ramp
constraint at node 1.

generator 3 (purple line) which has not been used in the former case. In turn this leads
to higher total cost of 42 930US$ compared to 42 166US$ for the case without ramp
constraints.

3.2 Distributed OPF
Given the size of opf problems (up to several thousands of nodes) and considering their
importance it is not surprising that there exists a large body of literature on distributed
approaches to opf, see e.g. [25, 35, 54, 70, 80].3 However, computational feasibility is
not the sole motivation for distributed solutions to opf problems. Indeed, distributed
algorithms promise grid operation with a reduced need for centralized coordination. In
other words, there is hope that in case of blackouts or other emergencies distributed
entities will show more resilience than centralized approaches [25, 59].

Moreover, the current structure of the power system is inherently interconnected. For
example, Germany’s high-voltage transmission grid is operated by four different tsos,
cf. Figure 1. On a lower level, about 890 Distribution System Operators (dsos) operate
the underlying distribution grids. Thus, the steadily increasing need for coordination of
the different players calls for tailored numerical methods. At the same time it may be
desirable to avoid accumulation of data at a single entity.

In distributed optimization one typically discusses problems with separable objectives
and partially separable constraints, whereby the sole coupling is given by affine equalities

3We remark that in context of numerical optimization for opf problems the notions of distributed
algorithms are not unified: While in the optimization literature distributed algorithms may entail
a central coordinating entity [9], in context of opf such schemes are typically referred to as being
hierarchical [70].
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Figure 5: Results for the ieee 5 bus case without (left) and with (right) ramp constraints.

[9, 11]; i.e. problems of the following form:

min
(x, u)∈Rnu+nx

∑
i∈R

Ji(ui) (16a)

subject to
hi(xi, ui) ≤ 0, i ∈ R, (16b)∑

i∈R
Ai · (xi, ui)> = b. (16c)

The underlying idea is that state and control vectors x and u are partitioned into
R = {1, . . . , R} local state and control vectors xi ∈ Rnxi and ui ∈ Rnui that correspond
to the subproblems.4 These subproblems involve possibly non-convex constraints hi :
Rnxi × Rnui → Rnhi . The objective function should be a sum of local terms depending
on distinct partitions of the controls only; constraint coupling should take place via an
affine so-called consensus constraint (16c). Apparently, one needs to slightly reformulate
Problem (12) to be consistent with Problem (16).

3.2.1 Separable Reformulation of AC OPF

In order to fit into the form of (16), one can reformulate Problem (12) by partitioning the
set of buses N into R = {1, . . . , R} disjoint subsets Ni = {n1

i , . . . , n
Ni
i } ⊂ N such that

4For the sake readability, we suppress the dependence of hi on the parameter vectors di in this section.
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⋃
i∈RNi = N and Ni∩Nj = ∅ for all i 6= j. Then, one introduces two additional so-called

auxiliary nodes in the middle of each line that connects two neighboring partitions. Thus,
the node set N is enlarged to NA = {1, . . . , N, . . . , N + A} which also contains these
auxiliary nodes. Consider an auxiliary node pair with indexes k and l. In order to
maintain equivalence to the original opf problem, all values at these auxiliary node pairs
should match

θk = θl, pk = −pl,
vk = vl, qk = −ql.

Rewriting these equality constraints in matrix form yields Ai and b for the consensus
constraint in (16c). Quite often, the objective of Problem (12) is the sum of squared
generator powers. Hence, the objective function of (16) can be obtained by selecting
(and possibly rearranging) the corresponding blocks to the input partitions ui, cf. [32]
for a tutorial example.5
Partitioning of NA enables splitting the (nonlinear and non–convex) constraints (4)–

(11) into local inequality constraints hi. To this end, the power flow equations (1) are
formulated for all partitions Ni individually obtaining Fi(di) for all i ∈ R. The same
can be done for the line limits (9) and state/input constraint sets X , U obtaining Ci(d),
Xi, and Ui respectively.
Henceforth, for the sake of compact notation, we collect all constraints forming the

constraint sets on local state constraints Xi, input constraints Ui and the nonlinear
power flow/line flow constraints Fi(di) in one vector-valued local inequality constraint
per partition

hi(xi, ui) ≤ 0, i ∈ R

with hi : Rnxi × Rnui → Rnhi completing the opf problem in affine-coupled separable
form (16).

3.2.2 Brief Overview of Existing Approaches

There are several research challenges for the design of distributed opf algorithms [57].
First of all, the algorithms should be able to solve non-convex ac opf problems reliably
even when initialized far from a local minimum; additionally they should converge
sufficiently fast and exchange as little information as possible and, finally they should
comprise a low-complexity coordination step (ideally based on neighbor-to-neighbor
communication). Furthermore, it is desirable to allow considering problem partitions
related to “operational practice”; i.e. to be able to mirror the actual tsos regulation
zones.
Many classical distributed optimization algorithms tailored to convex problems are—

despite a lack of convergence guarantees—often applied to non-convex ac opf problems
directly. Early works employ the Auxiliary Problem Principle [56, 59], the Predictor

5We remark that coupling via phases, voltages and power is just one possible problem formulation. For
example in [35, 46] the coupling is enforced via voltage consensus for auxiliary nodes and their next
neighbors in the interior of each region.
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Corrector Proximal Multiplier Method [58] and more recently the very popular Alternating
Direction of Multipliers Method (admm) [34, 58]. Especially admm has gained significant
attention; thereby performing exhaustive simulation-based convergence analysis [34],
investigating parameter update rules [35], and finally analyzing applicability to large-
scale systems [46]. However, for all the aforementioned algorithms convergence can, in
general, not be guaranteed due to non-convexity. Moreover, the observed convergence is
often slow; especially when tight solution tolerances are needed [9, 11].

Alternatively, a method denoted as Optimality Condition Decomposition is proposed
in [23, 24] and is extended in [5, 55, 80]. This method performs well in many practical
cases, however, there is an ongoing discussion on whether the convergence result of [24]
holds for generic ac opf problems [34].

There are two major research lines dealing with the issue of convergence guarantees:

(i) convexifying ac opf by either the dc opf or by an (inner or outer) convex
approximation of the feasible set and then applying one of the convex optimization
algorithms mentioned before;

(ii) designing new algorithms capable of handling non-convex ac opf problems directly.

With respect to (i) recall that the ac opf problem can be written as a problem with
quadratic equality constraints, see e.g. [40]. Thus it can be cast as a rank-constrained
Semi-Definite Program (sdp) in a higher dimensional space. Dropping the non-convex
rank constraint yields a convex sdp that can be solved with convergence guarantees [7,
25, 71, 82]. One limitation of the sdp approach is that the solution obtained from the
convex relaxation might not satisfy the rank constraint and hence, the solution of the
original problem can not be recovered. However, there exist technical conditions (usually
structural assumptions on grid components like transformers or on the grid topology)
under which the exactness can be guaranteed [63, 65, 66].
Research line (ii) investigates recently developed distributed optimization algorithms

capable of solving non-convex problems directly with convergence guarantees. One can
distinguish two main approaches: Either one distributes distinct steps of centralized
algorithms like interior point or sequential quadratic programming inheriting all their
mathematical properties, or one develops entirely new algorithms which directly ex-
ploit the structure of separable optimization problems. For the former, there exists
approaches for distributing steps of centralized interior point methods [67], or, in the
context of optimal control, there exist methods distributing steps of sequential quadratic
programming [78, 94]. For the latter, [52] presents an approach based on alternating
projections combined with a trust-region globalization. Recently, a subset of the authors
of the present paper proposed to use the Augmented Lagrangian Alternating Direction
Inexact Newton Method (aladin) providing convergence guarantees and fast convergence
behavior [31, 32]. Table 1 provides a summary overview of existing distributed approaches
to opf.
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Table 1: Overview of distributed optimization methods applied to ac opf.

ADMM ADMM-SDP Alternating
Trust Region

ALADIN

Convergence
guarantee

no (yes) yes yes

Observed
convergence
rate

(linear) linear linear quadratic

Communication
effort

low low/medium low/medium medium/high

Selected
references

[34, 46] [25] [52] [31, 32]

3.2.3 Example – IEEE 14 Bus via ALADIN

As an example for solving ac opf (12) in a hierarchical distributed fashion, we apply the
aladin algorithm to the ieee 14 bus test system. We start by briefly recalling aladin,
for a more detailed description of aladin we refer to [53].

In step 1) of Algorithm 1, the local nlps (17) are solved obtaining local optimal inputs
and state vectors zi = (xi, ui) for all i ∈ R. In these nlps an augmented Lagrangian
function is minimized with respect to the consensus constraint of Problem (16). The
Lagrange multipliers λk and z̄ki are treated as fixed parameters. Step 2) computes local
derivatives; i.e. gradients gki , Hessians Hk

i and Jacobians Cki of the active constraints.
The index set of active constraints (inequality constraint holding with equality) at (zki ) is
defined by Ai(zki ) = { j | (hi)j(zki ) = 0 } and communicated to the coordinating entity.
Observe that in many cases these derivatives do not have to be computed explicitly as
they are returned by the solvers applied to (17). In the following step 3), all derivatives
from the local problems are collected, aggregated in global derivatives gk, Hk and Ck,
and an equality constrained coordination qp is solved. This is computationally cheap as
solving this qp leads to a linear system of equations where very efficient solvers exist.
Finally, step 4) updates the solution guesses and performs a line search if necessary (this
step can be omitted in many cases, cf. [32]). The very last step applies a problem-specific
heuristic to update ρ and µ.

Conceptually, aladin can be regarded as a combination of admm and an sqp method;
i.e. the local steps are very similar to the ones of admm, but the coordination step is
similar to sqp. Furthermore, it is possible to express admm as a special case of aladin
by appropriate choice of parameters [53].
We consider the ieee 14 bus test system shown in Fig. 6 as an illustrative example.
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Result: z?
Input: z̄0, λ0, ρ, Σi, µ, k = 0

while
∥∥∥Azk∥∥∥

∞
> ε and ρ

∥∥∥zk − z̄k∥∥∥
∞
> ε do

1) Solve local problems

zki = argmin
zi

fi(zi) + (λk)>Aizi + ρk

2

∥∥∥zi − z̄ki ∥∥∥2

Σi

s.t. hi(zi) ≤ 0 | κki . (17)

2) Compute gradients & Hessians for QP
Obtain gradients gki , Hessian of the Lagrangians Bk

i the Jacobian of the active
constraints Cki

3) Solve coordination QP Solve the coordination qp

min
∆zi,s

∑
i∈R

{1
2∆z>i Bk

i ∆zi + gki
>∆zi

}
+ (λk)>s+ µk

2 ‖s‖
2
2

s.t. Ck∆zi = 0∑
i∈R

Ai(zki + ∆zi) = s | λQP, (18)

obtaining ∆zk and λQP.
4) Line search Update primal and dual variables by

z̄k+1
i ← zki + αk1

(
zki − z̄ki

)
+ αk2∆zki ,

λk+1 ← λk + αk3(λQP − λk),

with αk1 , αk2 , αk3 from [53]. If full step is accepted, i.e. αk1 = αk2 = αk3 = 1,
update ρk and µk by

ρk+1 (µk+1) =
{
rρρ

k (rµµk) if ρk < ρ̄ (µk < µ̄)
ρk (µk) otherwise

.

end
Algorithm 1: aladin algorithm.
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Figure 6: IEEE 14 bus test system with N1 = {1, 2, 5}, N2 = {3, 4, 7 - 9}, N3 =
{6, 10 - 14}.

We divide the grid into R = {1, 2, 3} partitions motivated by geographical considerations.
Due to space limitations, we omit commenting on the parameter tuning for aladin
here. We refer to [31, 32] for an opf–specific discussion. We solve the problem via
CasADi and ipopt in Matlab [2]. Fig. 7 shows the numerical results of aladin for
the described test system. Specifically, we plot the distance to the “true” minimizer
‖zk− z?‖∞, the consensus violation ‖Azk‖—which indicates to which extent the physical
values (active/reactive power and voltages) at the auxiliary nodes match—and the active
power injections p (which partially represents the controls u) over the iteration index k.
For all these indicators, aladin converges to high accuracy in less than 15 iterations.
Compared to admm, this is significantly faster: admm usually needs at least around
hundred iterations to attain medium accuracy for problems of similar size, cf. [32, 35].
However, note that the complexity per iteration of aladin compared to admm is

higher. Whereas admm exchanges local solution guesses zki only, aladin additionally
communicates derivatives of the objective and the constraints which increases the per step
communication need. Furthermore, the coordination step is more complicated because
aladin requires the solution of a linear system of equations whereas for admm this
system can be reduced to the computation of averages [11].

3.3 OPF with Uncertainties
Traditionally, the opf problems (12) and (14) are solved for a fixed value of the disturbance
d ∈ Rnd . However, demand forecasting and the feed-in of renewable energy sources—to
name just a few drivers—call for a structured consideration of uncertainties. In the
presence of uncertainties it may be more adequate to model uncertain feed-in and/or
uncertain demand by random variables.6 Importantly, opf-specific uncertainties can be

6Robust min-max solutions are typically not favored in practice. They imply consideration of worst-case
scenarios and may lead to high operational costs. Moreover, the underlying assumptions are hard to
verify and thus theoretical guarantees may not hold in reality.
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Figure 7: Numerical results for the ieee 14 bus test system.

modeled by Gaussian and non-Gaussian random variables [6, 21, 92].

3.3.1 Conceptual Considerations

To the end of formalizing the opf with random variables, we consider the Hilbert space
of random variables of finite variance. For a given set of outcomes Ω, a σ-algebra A, and
a probability measure P, let (Ω,A,P) denote the corresponding probability space. The
space

L2(Ω,P;R) =
{

x : Ω→ R |
∫

Ω
x(τ)2dP(τ)

}
/ P-almost everywhere (19)

is the set of all equivalence classes of random variables of finite variance [93]. The space
L2(Ω,P;R) according to (19) is a Hilbert space with respect to the scalar product

〈x, y〉 = EP [xy] =
∫

Ω
x(τ)y(τ)dP(τ).

By slight abuse of terminology we refer to the equivalence classes simply as “random
variables.” For Rnx-valued random vectors the following notation is introduced

x ∈ L2(Ω,P;Rnx) ⇐⇒ xi ∈ L2(Ω,P;R) ∀i = 1, . . . , nx.

That is, instead of treating the disturbance d as a real-valued element of Rnd , we view it
as a random vector d ∈ L2(Ω,P;Rnd). Note that so far no specific kind of distribution is
assumed for the disturbance; the probability measure P could be Gaussian, but could
also refer to any other kind of distribution of finite variance. Importantly, multivariate
distributions can be considered in case the Hilbert space L2(Ω,P;R) is viewed as a tensor
product space of appropriate univariate Hilbert spaces [93]. We continue by investigating
the consequences for the opf problem (12) in case of modeling the disturbance as a
random variable.

First, the power flow equations (3) will almost surely be (numerically) violated for any
combination of states x ∈ Rnx and control inputs u ∈ Rnu , because

F : Rnx × Rnu × L2(Ω,P;Rnd)→ R2N : F (x, u; d) 6= 0 a.s. .
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From the numerical point of view, in the presence of uncertainties the power flow
equations will almost surely be violated if the state x and the input u are fixed real-
valued quantities. However, even if the numerical solution (x, u) ∈ Rnx+nu violates
the power flow equations, the real physical system—obeying the laws of physics—of
course attains a state on the power-flow manifold corresponding to the specific input
u ∈ Rnu . Any numerical deviations of the power flow equations have to be accounted
for by lower-level controllers. In the view of hierarchical control of power systems it is
thus desirable to obtain higher-level control inputs u from opf such that the numerical
solution is as close to the physical solution as possible; this ensures fewer control actions
(of lower magnitude) to be taken at the lower levels.

A possible way of achieving this is to consider the power flow equations as a non-
linear mapping from random variables to random variables, i.e. F : L2(Ω,P;Rnx) ×
L2(Ω,P;Rnu)× L2(Ω,P;Rnd)→ L2(Ω,P;R2N ) with

F (x, u; d) = 0 ⇐⇒ ∀ω ∈ Ω : F (x(ω), u(ω); d(ω)) = 0, (20)

and consequently

F(d) :=
{

(x u)> ∈ L2(Ω,P;Rnx)× L2(Ω,P;Rnu) |F (x, u; d) = 0
}
.

In other words, every outcome ω ∈ Ω corresponds to a triple (x(ω), u(ω), d(ω)) comprised
of a realization of the input u(ω), a realization of the state x(ω), and a realization of the
disturbance d(ω). Importantly, this triple should satisfy the power flow equations; in [10]
this notion is referred to as viability. Viability of the power flow equations can thus be
ensured by formally introducing random variables x and u for the state and the input,
respectively. This way, similar to well-known lqg control, any viable random-variable
input u corresponds to a feedback policy with known probabilities of certain control
actions to be taken.

3.3.2 Stochastic OPF

In the presence of stochastic uncertainty surrounding the disturbance d, the goal of
opf is to compute optimal viable feedback policies u—this problem is called stochastic
opf (sopf). Viability can be ensured by enforcing the random-variable power flow
equations (20) as equality constraints. As sopf optimizes over policies u, its cost function
has to map policies to scalars

Ĵ : L2(Ω,P;Rnu)→ R,

e.g. Ĵ(u) = EP [J(u)]. Additionally, the inequality constraints from opf (12) have to
be adjusted, because inequalities in terms of random variables are not meaningful in
general. This can be achieved, for example, by introducing chance constraints. A possible
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formulation for sopf using joint chance constraints for the inequality constraints reads

min
(x,u)∈L2(Ω,P;Rnx+nu )

Ĵ(u) (21a)

subject to
(x u)> ∈ F(d), (21b)

P (u ∈ U) ≥ 1− εu, (21c)
P (x ∈ X ) ≥ 1− εx, (21d)
P (x ∈ C) ≥ 1− εc, (21e)

where εu, εx, εc ∈ [0, 1] are risk levels specified by the user. It is worth to be noted that
any feasible solution to Problem (21) is a viable feedback policy satisfying the inequalities
in the prescribed chance-constrained sense.

3.3.3 Brief Overview of Existing Approaches

There exist various reformulations of opf in the presence of uncertainties: for example
[10, 86, 88] employ individual chance constraints, [97, 98] use joint chance constraint
reformulations and extend the setting to the multistage setting, and [74, 75] formulate
the problem entirely in terms of random variables. The reformulation of the cost function
and the inequality constraints in the presence of uncertainties is neither unique nor is
there consensus in the literature on which one is more preferable than another.
It remains to address how to solve the infinite-dimensional sopf problem (21). For

example, it is possible to solve the chance-constrained optimization problem by means of
multi-dimensional integration [100, 101]. However, by this approach no explicit feedback
policies are obtained. Other lines of research hence focus on reformulating the chance
constraints and parameterizing the infinite-dimensional decision variable to obtain easier-
to-solve deterministic finite-dimensional optimization problems. For reformulations of
chance constraints in the context of power systems see [88]; we refer to [17, 83] for more
general references. Affine parameterizations of the feedback policies are popular for
sopf, especially in the context of dc power flow [10, 86, 87, 88, 96]. How to convert the
infinite-dimensional sopf problem (21) to a finite-dimensional deterministic problem is
shown, for example, in [10, 73]; it is also shown there that for dc power flow conditions
affine policies are always viable. We remark that so far it remains an open question
as to what kind of feedback policies are viable for generic ac opf problems subject to
uncertainties.

Due to space limitations, we do not provide an example on sopf using the sketched L2

approach. Instead we refer to the ones provided in [73, 75, 76].

3.4 Further OPF Variants
In the preceding sections, we discussed different variants of the opf problem. Yet the
list of variants discussed is not exhaustive. Specifically, we have not been touching upon
secure opf variants and variants with discrete decision variables.
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The N − 1 security constrained opf problem takes into account the requirement
that the system should withstand the loss of a single component (which could be a
transmission line, a generator, a transformer etc.) [18, 20, 42]. For the sake of simplicity,
one often considers the most important case of transmission line outages whereby usually
dc-approximations of the power flow equations are used [102].
Moreover, several controllable devices in power systems such as, e.g., transformer

settings can only take discrete (input) values. Thus, discrete decision variables arise
frequently in opf. For example, optimal reactive power dispatch is a variant of opf, where
the active power injections p are assumed to be given (e.g. by an energy market) and
only the remaining variables which mainly are the reactive power injections, transformer
settings, shunt settings or facts set-points are used for minimizing the losses in the grid
[77].

4 Open Research Questions
Given the ac opf Problem (15) and its variants mentioned in Section 3 it remains to
sketch open research challenges for systems and control. We will first comment on the
challenges of the individual subproblems and then we turn towards the overarching ones.

4.1 Multi-Stage OPF and NMPC
Recalling that the multi-stage opf (15) is a discrete-time optimal control problem, it
is evident that nmpc appears to be a promising means of solving it in receding-horizon
fashion. Indeed, several works have already suggested doing so [41, 51, 69]. However,
important conceptual developments of nmpc—in term sof stability analysis and recursive
feasibility analysis—have not yet been transferred to opf. For example, it remains open
how to transfer the considerable existing body of knowledge on efficient real-time iteration
schemes for nmpc, which originally has been developed having in mind process control
applications, to Problem (15)? More precisely, what kind of computational performance
can be expected from real-time iteration schemes such as [28, 29, 99] when applied to
large-scale opf problems?

From a systems theory perspective, we note that the objective of (15) is not a conven-
tional tracking term—i.e. it is not a distance to some pre-computed setpoint. Hence, the
receding-horizon solution of (15) falls into the realm of economic nmpc [39]. Therefore,
it is fair to ask whether one needs to a add stabilizing constraints / terminal penalties
to (15) to enforce convergence and stability in an economic nmpc framework? Or shall
one avoid those constraints and rather analyze (15) in a notion of time-varying turnpike
properties [39, 45]? From a power systems point of view, it would be interesting to analyze
how to combine efficient online optimization with approaches of alternating optimization
and power-flow solution and how to encode additional application requirements (e.g.
maximal islanding time, black start, line switches, ...). With respect to the later issue
elements of a convex reformulation of maximal-islanding-time constraints are presented
in [12]. Finally, the fact that for k ∈ T the non-convex constraint set F(d(k)) depends
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on future (hence uncertain) values of d(k) underpins that uncertainty is always pivotal
in opf Problems.

4.2 Stochastic and Distributed OPF
With respect to opf subject to uncertainties, Section 3.3 has highlighted the conceptual
promise of working with random variables. However, as soon as one moves from single-
stage to multi-stage opf, the time-wise correlation of uncertainties poses considerable
conceptual challenges. Put differently, at the present stage it is unclear how to design
stochastic nmpc for multi-stage ac opf such that the power-flow constraints are viably
satisfied. Even in the single-stage case it is not yet clear how to transfer the dc results
on viable formulations of [75, 76] to the ac setting. Finally, it is also worth investigating
how to solve sopf in distributed fashion. To this end, the combination of aladin with
polynomial chaos is investigated in [33] for small scale problems.

In context of distributed opf there remain open issues with respect to the applicability
of sdp relaxations, with respect to a trade-off between communication effort and number
of iterations, and with respect to the interplay of grid partitioning and convergence
properties.

4.3 Towards Flexible Energy Cells with Partial Autonomy
From the application point of view, advanced optimization-based control of energy
systems promises a structured approach towards clustering, design, and operation of
(partially) autonomous subsystems (so-called energy cells), which is regarded as one
potentially viable option for the future, cf. [15]. Put differently, one is interested in
operating subsystems in a flexible manner such that they can be either coupled to an
upper-level grid and/or such that they may be temporarily disconnected if needed.

First results on scheduling of systems combining res and energy storage show promising
performance while they neglect the underlying grid topology [3, 4]. Moreover, the need
to rely on data-driven forecasts underpins once more the promise of investigating the
confluence of data-driven machine-learning and control.

From a systems-and-control point of view it is tempting to address the design of energy
cells by means of investigating distributed stochastic economic nmpc of energy systems.
While first results on distributed economic nmpc [60] and on scenario-based nmpc [47]
have been presented, an exhaustive analysis is still open. In this context, key aspects
will be the understanding of how to construct data-driven forecasting schemes for power
respectively energy and how to utilize these forecasts for scheduling and control. However,
it is evident that any advanced and/or predictive control of energy systems will have
to rely on control-oriented modeling and will require applicable solutions for the dual
(decentralized/distributed) state estimation problem.
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5 Conclusions
Accelerated by the Energiewende, operation and control of electrical energy systems have
to deal with the increasing in-feed of renewable energy. This leads to a certain vulnerability
of the stability of the energy system owing to increased volatility of generation and, at
the same time, leading to the reduction of inertia of the large generators in the system.
Moreover, there has been a long time span without widespread interaction between
Electrical Engineering, Control Engineering and Mathematical Systems Theory leading
to a lack of common vocabulary.

On this canvas, the present paper focused on Optimal Power Flow problems that are of
tremendous importance for power systems and that arise in several contexts of operation
of such systems. Starting from a brief introduction to ac and dc opf, we presented
three challenging variants in a unified framework: multi-stage opf, distributed opf, and
opf with uncertainties. Furthermore, we presented case-study examples for multi-stage
and distributed opf.
Aiming to foster the interaction between systems-and-control community and the

power-systems community, we commented on open research problems that might be of
interest for the systems-and-control community. We remark that the optimization-based
methods sketched here necessitate concurrent progress on the underlying (fast time-scale)
problems of voltage and frequency stabilization via distributed and decentralized control.

Finally, it is clear that the Energiewende provides a plethora of highly relevant research
challenges for systems and control. Indeed the transition can only be successful if the
ties between communities are strengthened.
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