Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) August 10, 2018

Multivariate statistical approaches for an early detection of foaming in a refinery SCOT unit

Multivariate statistische Verfahren zur frühzeitigen Schaumerkennung in einer kontinuierlich betriebenen SCOT-Anlage einer Raffinerie
  • Hassan Enam Al Mawla

    Hassan Enam Al Mawla, M. Sc., is a research associate at the Department of Measurement and Control at the University of Kassel. His research interests include system identification, data-driven process monitoring, and deep neural networks.

    EMAIL logo
    and Andreas Kroll

    Univ.-Prof. Dr.-Ing. Andreas Kroll is head of the Department of Measurement and Control at the University of Kassel. His research areas include nonlinear identification and control methods, computational intelligence, and complex systems.

Abstract

The formation of foam in amine units is an issue that plant operators and field personnel are confronted with on a regular basis. The inability to take proper actions in due time may result in plant downtime and increased emissions. Steep rises in differential pressure indicate foam formation, and are monitored manually in practice. Antifoaming agent is added in order to reduce foaming, but this is usually carried out under time pressure. Hence, plant operating authorities have expressed a strong interest in a data-driven solution capable of providing an early warning against foaming. The classical univariate alarm associated with differential pressure can be ineffective for foaming detection due to high misdetection rates and its lateness of detection. Modern univariate approaches based on pattern recognition techniques may not be suitable either for an early detection, as no universally distinctive features of differential pressure are observed prior to foaming in the present study. In this contribution, the multivariate statistical process monitoring approach based on principal component analysis (PCA) is applied to the early detection of foaming in a continuously operated Shell Claus Off-gas Treating (SCOT) unit of a major refinery in Germany. The results are extended to facilitate fully automated and adaptive modeling based on exponentially weighted recursive principal component analysis (EWRPCA).

Zusammenfassung

Die Bildung von Schaum in Aminanlagen gehört zu den am häufigsten auftretenden unerwünschten Phänomenen. Ohne rechtzeitige Maßnahme führt sie zu Anlagenstillständen und erhöhten Emissionen. Ein plötzlicher Anstieg des Differenzdrucks weist auf Schaumbildung hin und wird in der Praxis manuell überwacht. Um Schaumbildung entgegenzuwirken, wird Anti-Schaummittel eingespritzt, aber dies erfolgt meistens unter Zeitdruck. Deshalb zeigten Anlagenbetreiber ein großes Interesse an einer datengetriebenen Lösung zur Frühwarnung vor Schaumbildung. Der klassische univariate Alarm ist aufgrund der hohen Fehlerkennungsrate und der späten Erkennung zur Früherkennung von Schaumbildung nicht geeignet. Moderne univariate Ansätze basierend auf Methoden der Mustererkennung können ebenfalls ungeeignet sein, da in der vorliegenden Studie keine universellen charakteristischen Merkmale des Differenzdrucks vor dem Schäumen beobachtet wurden. In diesem Beitrag wird das multivariate statistische Verfahren zur Prozessüberwachung auf Basis der Hauptkomponentenanalyse zur Früherkennung von Schaumbildung in einer kontinuierlich betriebenen SCOT-Anlage einer großen Raffinerie in Deutschland eingesetzt. In einem weiteren Schritt wird dieser Ansatz mittels exponentiell gewichteter rekursiver Hauptkomponentenanalyse um die Fähigkeit vollautomatisierter und adaptiver Modellbildung erweitert.

Award Identifier / Grant number: 01IS14006D

Funding statement: The authors are grateful to the German Ministry of Education and Research (BMBF) for partially funding this work under grant number 01IS14006D.

About the authors

Hassan Enam Al Mawla

Hassan Enam Al Mawla, M. Sc., is a research associate at the Department of Measurement and Control at the University of Kassel. His research interests include system identification, data-driven process monitoring, and deep neural networks.

Andreas Kroll

Univ.-Prof. Dr.-Ing. Andreas Kroll is head of the Department of Measurement and Control at the University of Kassel. His research areas include nonlinear identification and control methods, computational intelligence, and complex systems.

Acknowledgment

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the article. The authors are also grateful to PCK Raffinerie GmbH Schwedt for providing the application problem and the process data.

References

1. Al Dhafeeri, M. A. “Identifying sources key to detailed troubleshooting of amine foaming.” In: Oil & Gas Journal 105.32 (2007), S. 56–67.Search in Google Scholar

2. Alhseinat, E., Pal, P., Ganesan, A. and Banat, F. “Effect of MDEA degradation products on foaming behavior and physical properties of aqueous MDEA solutions.” In: International Journal of Greenhouse Gas Control 37 (2015), S. 280–286.10.1016/j.ijggc.2015.03.036Search in Google Scholar

3. Alhseinat, E., Pal, P., Keewan, M. and Banat, F. “Foaming study combined with physical characterization of aqueous MDEA gas sweetening solutions.” In: Journal of Natural Gas Science and Engineering 17 (2014), S. 49–57.10.1016/j.jngse.2013.12.004Search in Google Scholar

4. Engel, D., Williams, S. and Heinen, A. “Manage activated carbon effects on MDEA solution foaming.” In: World Oil 237.7/8 (2016), S. 35–40.Search in Google Scholar

5. Ge, Z., Song, Z. and Gao, F. “Review of recent research on data-based process monitoring.” In: Industrial & Engineering Chemistry Research 52.10 (2013), S. 3543–3562.10.1021/ie302069qSearch in Google Scholar

6. Jackson, J. E. and Mudholkar, G. S. “Control procedures for residuals associated with principal component analysis.” In: Technometrics 21.3 (1979), S. 341–349.10.1080/00401706.1979.10489779Search in Google Scholar

7. Ke, Y., Shen, B., Sun, H., Liu, J. and Xu, X. “Study on foaming of formulated solvent UDS and improving foaming control in acid natural gas sweetening process.” In: Journal of Natural Gas Science and Engineering 28 (2016), S. 271–279.10.1016/j.jngse.2015.11.047Search in Google Scholar

8. Keewan, M., Banat, F., Alhseinat, E. and Pal, P. “Prediction of foaming and surface tension on lean MDEA solutions with corrosion inhibitor (bis(2-hydroxyethyl)cocoalkylamine) in continuous foam fractionation column.” In: Chemical Engineering Communications 205.7 (2018), S. 871–880.10.1080/00986445.2017.1423063Search in Google Scholar

9. Keewan, M., Banat, F., Alhseinat, E., Zain, J. and Pal, P. “Effect of operating parameters and corrosion inhibitors on foaming behavior of aqueous methyldiethanolamine solutions.” In: Journal of Petroleum Science and Engineering 165 (2018), S. 358–364.10.1016/j.petrol.2018.02.046Search in Google Scholar

10. Li, W., Yue, H. H., Valle-Cervantes, S. and Qin, S. J. “Recursive PCA for adaptive process monitoring.” In: Journal of Process Control 10.5 (2000), S. 471–486.10.1016/S0959-1524(00)00022-6Search in Google Scholar

11. Liu, Y., Wu, D., Chen, M., Zhang, B., Chen, J. and Liu, Y. “Identification of methyldiethanolamine degradation products and their influence on foaming properties during the desulfurization process for high-sulfurous natural gas.” In: Industrial & Engineering Chemistry Research 54.21 (2015), S. 5836–5841.10.1021/ie504432dSearch in Google Scholar

12. Qin, S. J. “Statistical process monitoring: basics and beyond.” In: Journal of Chemometrics 17.9 (2003), S. 480–502.10.1002/cem.800Search in Google Scholar

13. Qin, S. J. “Survey on data-driven industrial process monitoring and diagnosis.” In: Annual Reviews in Control 36.2 (2012), S. 220–234.10.1016/j.arcontrol.2012.09.004Search in Google Scholar

14. Tracy, N. D., Young, J. C. and Mason, R. L. “Multivariate control charts for individual observations.” In: Journal of Quality Technology 24.2 (1992), S. 88–95.10.1080/00224065.1992.12015232Search in Google Scholar

15. Valle, S., Li, W. and Qin, S. J. “Selection of the number of principal components: the variance of the reconstruction error criterion with a comparison to other methods.” In: Industrial & Engineering Chemistry Research 38.11 (1999), S. 4389–4401.10.1021/ie990110iSearch in Google Scholar

16. Venkatasubramanian, V., Rengaswamy, R. and Kavuri, S. N. “A review of process fault detection and diagnosis: Part II: Qualitative models and search strategies.” In: Computers & Chemical Engineering 27.3 (2003), S. 313–326.10.1016/S0098-1354(02)00161-8Search in Google Scholar

17. Venkatasubramanian, V., Rengaswamy, R., Kavuri, S. N. and Yin, K. “A review of process fault detection and diagnosis: Part III: Process history based methods.” In: Computers & Chemical Engineering 27.3 (2003), S. 327–346.10.1016/S0098-1354(02)00162-XSearch in Google Scholar

18. Venkatasubramanian, V., Rengaswamy, R., Yin, K. and Kavuri, S. N. “A review of process fault detection and diagnosis: Part I: Quantitative model-based methods.” In: Computers & Chemical Engineering 27.3 (2003), S. 293–311.10.1016/S0098-1354(02)00160-6Search in Google Scholar

19. Von Phul, S. A. and Cummings, A. L. Control of foaming in amine systems. http://www.digitalrefining.com/article/1000436, Control_of_foaming_in_amine_systems.html. 2007.Search in Google Scholar

20. Welford, B. P. “Note on a method for calculating corrected sums of squares and products.” In: Technometrics 4.3 (1962), S. 419–420.10.1080/00401706.1962.10490022Search in Google Scholar

21. Wise, B. M., Ricker, N. L., Veltkamp, D. F. and Kowalski, B. R. “A theoretical basis for the use of principal component models for monitoring multivariate processes.” In: Process Control and Quality 1 (1990), S. 41–51.Search in Google Scholar

Received: 2018-04-10
Accepted: 2018-07-15
Published Online: 2018-08-10
Published in Print: 2018-08-28

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2018-0048/html
Scroll to top button