Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) July 31, 2019

Tracking control of a heavy chain system

Trajektorienfolgeregelung für das Labormodell „Scheibe mit schwerer Kette“
  • Christoph Hinterbichler

    Christoph Hinterbichler received his diploma in Mechatronics from the Johannes Kepler University Linz (JKU), Austria, in 2016. Since then, he has been pursuing his PhD at the Institute of Automatic Control and Control Systems Technology. His research focuses on the industrial application of advanced control concepts and numerical optimization.

    EMAIL logo
    , Jakob Brunner

    Jakob Brunner received his diploma in Mechatronics from the Johannes Kepler University Linz (JKU), Austria, in 2017. He is currently employed as NVH (Noise, Vibration, Harshness) engineer at BRP Rotax GmbH & Co KG.

    and Kurt Schlacher

    O. Univ.-Prof. Dipl.-Ing, Dr. techn. Kurt Schlacher is head of the Institute of Automatic Control and Control Systems Technology, Johannes Kepler University Linz, Austria. Main research topics and areas of work: Modeling and control of nonlinear lumped and distributed parameter systems having regard to industrial applications and deploying differential-geometric and computer algebra based methods.

Abstract

This paper deals with the tracking control of a particular heavy chain system, which consists of a chain mounted onto a pivoted disk. To this end, the governing system of ordinary differential equations is derived and a trajectory is computed via numerical optimization. As the arising optimization problem is computationally complex, a multithreading algorithm for parallel computation of the required derivatives is presented. Furthermore, a stabilizing feedback controller, based on damping injection and an integrator backstepping approach, is derived. Finally, measurements of a laboratory experiment show an excellent performance of the proposed control concept.

Zusammenfassung

Dieser Beitrag befasst sich mit der Trajektorienplanung und Regelung für das Labormodell „Scheibe mit schwerer Kette“. Bei diesem speziellen Modell ist die Kette an einer drehbar gelagerten Scheibe montiert. Die Trajektorie wird durch numerisches Lösen eines Optimierungsproblems berechnet, welches auf Grund der hohen Modellordnung äußerst komplex ist. Um die Laufzeit des Optimierers signifikant zu verringern, wird ein Multithreading-Algorithmus zur parallelen Berechnung der benötigten Ableitungen vorgestellt. Zur Stabilisierung der berechneten Trajektorie wird eine Kombination aus passivitätsbasiertem Reglerentwurf und einem Backstepping-Regler verwendet. Abschließend wird anhand von Messergebnissen die ausgezeichnete Funktion des vorgeschlagenen Regelungskonzepts demonstriert.

About the authors

Christoph Hinterbichler

Christoph Hinterbichler received his diploma in Mechatronics from the Johannes Kepler University Linz (JKU), Austria, in 2016. Since then, he has been pursuing his PhD at the Institute of Automatic Control and Control Systems Technology. His research focuses on the industrial application of advanced control concepts and numerical optimization.

Jakob Brunner

Jakob Brunner received his diploma in Mechatronics from the Johannes Kepler University Linz (JKU), Austria, in 2017. He is currently employed as NVH (Noise, Vibration, Harshness) engineer at BRP Rotax GmbH & Co KG.

Kurt Schlacher

O. Univ.-Prof. Dipl.-Ing, Dr. techn. Kurt Schlacher is head of the Institute of Automatic Control and Control Systems Technology, Johannes Kepler University Linz, Austria. Main research topics and areas of work: Modeling and control of nonlinear lumped and distributed parameter systems having regard to industrial applications and deploying differential-geometric and computer algebra based methods.

References

1. HSL. A collection of Fortran codes for large scale scientific computation. URL: http://www.hsl.rl.ac.uk/. [Accessed 5.2.2019].Search in Google Scholar

2. Maple 2017. Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.Search in Google Scholar

3. The supercomputer mach-2. URL: https://www3.risc.jku.at/projects/mach2/. [Accessed 5.2.2019].Search in Google Scholar

4. B. Bell. CppAD: A Package for Differentiation of C++ Algorithms. URL: https://www.coin-or.org/CppAD/. [Accessed 5.2.2019].Search in Google Scholar

5. J. Brunner. Simulation und Regelung eines Multipendels. Master’s thesis, Johannes Kepler Universität Linz, 2017.Search in Google Scholar

6. P. Deuflhard and F. Bornemann. Scientific Computing with Ordinary Differential Equations. Springer, 2002.10.1007/978-0-387-21582-2Search in Google Scholar

7. G. Gaël, J. Benoît, et al. Eigen v3. URL: http://eigen.tuxfamily.org, 2010. [Accessed 5.2.2019].Search in Google Scholar

8. D. Gerbet and J. Rudolph. Redundante Koordinaten in der Modellbildung für ein schweres Seil. at – Automatisierungstechnik, 66(7):536–547, 2018.10.1515/auto-2018-0010Search in Google Scholar

9. A. Griewank and A. Walther. Evaluating Derivatives – Principles and Techniques of Algorithmic Differentiation (2nd Ed.). Society for Industrial and Applied Mathematics, 2008.10.1137/1.9780898717761Search in Google Scholar

10. H.K. Khalil. Nonlinear Systems (3rd Ed.). Prentice Hall, 2003.Search in Google Scholar

11. T. Knüppel and F. Woittennek. Control design for quasi-linear hyperbolic systems with an application to the heavy rope. IEEE Transactions on Automatic Control, 60(1):5–18, 2015.10.1109/TAC.2014.2336451Search in Google Scholar

12. T. Knüppel and F. Woittennek. Flatness based control design for a nonlinear heavy chain model. In 8th IFAC Symposium on Nonlinear Control Systems, 2010.10.3182/20100901-3-IT-2016.00260Search in Google Scholar

13. M. Krstić, I. Kanellakopoulos and P. Kokotović. Nonlinear and Adaptive Control Design. John Wiley & and Sons, 1995.Search in Google Scholar

14. P. Ludwig, K. Rieger and K. Schlacher. Modelling, simulation and control of a heavy chain system. In Computer Aided Systems Theory – EUROCAST 2011, 2012.10.1007/978-3-642-27579-1_8Search in Google Scholar

15. A. Machelli. Port Hamiltonian Systems: A unified approach for modeling and control finite and infinite dimensional physical systems. PhD thesis, University of Bologna, 2002.Search in Google Scholar

16. R.M. Murray, M. Rathinam and W. Sluis. Differential flatness of mechanical control systems: A catalog of prototype systems. In ASME International Mechanical Engineering Congress and Exposition, 1995.Search in Google Scholar

17. M. Papageorgiou. Optimierung: Statische, dynamische, stochastische Verfahren für die Anwendung. R. Oldenbourg Verlag, 1991.Search in Google Scholar

18. N. Petit and P. Rouchon. Flatness of heavy chain systems. In Proceedings of the 41st IEEE Conference on Decision and Control, 2002.Search in Google Scholar

19. H. Schättler and U. Ledzewicz. Geometric Optimal Control. Springer, 2012.10.1007/978-1-4614-3834-2Search in Google Scholar

20. M. Schöberl and A. Siuka. On Casimir functionals for field theories in port-Hamiltonian description for control purposes. In 2011 50th IEEE Conference on Decision and Control and European Control Conference, 2011.10.1109/CDC.2011.6160430Search in Google Scholar

21. M. Schöberl and A. Siuka. Modelling and control of infinite-dimensional mechanical systems: A port-Hamiltonian approach. In Multibody System Dynamics, Robotics and Control, chapter 5, pages 75–93. Springer, 2013.10.1007/978-3-7091-1289-2_5Search in Google Scholar

22. M.W. Spong and M. Vidyasagar. Robot Dynamics and Control. John Wiley & Sons, 1989.Search in Google Scholar

23. D. Stürzer, A. Arnold and A. Kugi. Closed-loop stability analysis of a gantry crane with heavy chain and payload. International Journal of Control, 91:1931–1943, 2017.10.1080/00207179.2017.1335439Search in Google Scholar

24. D. Thull, D. Wild and A. Kugi. Infinit-dimensionale Regelung eines Brückenkranes mit schweren Ketten. at – Automatisierungstechnik, 53(8):400–410, 2005.10.1524/auto.2005.53.8.400Search in Google Scholar

25. A. Wächter and L.T. Biegler. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1):25–57, 2006.10.1007/s10107-004-0559-ySearch in Google Scholar

Received: 2019-02-06
Accepted: 2019-05-26
Published Online: 2019-07-31
Published in Print: 2019-08-27

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2019-0014/html
Scroll to top button