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Abstract: In order to apply control theory in small au-
tonomous vehicles, mathematical models with small num-
bers of states are required for using the limited computa-
tional power in embedded programming. In this paper, we
consider an artificial fishtail as an example for a complex
mechanical system with a second-order large-scale model,
which is derived by using the finite element method. To
meet the above limitations, the several hundreds of thou-
sands of degrees of freedom need to be reduced to merely
a handful of surrogate degrees of freedom.

We seek to achieve this task by various second-order
model order reduction methods. All methods are applied
on the fishtail’s matrices and their results are evaluated
and compared in the frequency domain as well as in the
time domain.

Keywords: model order reduction, artificial fishtail, bal-
anced truncation, moment matching, modal approxima-
tion

Zusammenfassung: Zur Anwendung von Methoden der
Regelungs- und Steuerungstheorie in kleinen autonomen
Fahrzeugen sind mathematische Modelle mit wenigen Zu-
standsvariablen erforderlich, um der begrenzten Rechen-
leistung der eingebetteten Systeme gerecht zu werden. In
diesem Beitrag betrachten wir einen kiinstlichen Fisch-
schwanz als Beispiel fiir ein komplexes mechanisches Sys-
tem mit einem Originalmodell zweiter Ordnung, welches
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mit Hilfe der Finite-Elemente-Methode aufgestellt wird.
Um die oben genannten Einschrdnkungen zu erfiillen,
miissen die mehreren hunderttausend Freiheitsgrade auf
so wenig, wie moéglich Ersatzfreiheitsgrade reduziert wer-
den.

Diese Aufgabe wollen wir durch verschiedene Me-
thoden zur Ordnungsreduktion der Systemmodelle zwei-
ter Ordnung erfiillen. Alle Verfahren werden auf die ver-
Offentlichten Matrizen des Fischschwanzmodells ange-
wandt und ihre Ergebnisse sowohl im Frequenz-, als auch
im Zeitbereich ausgewertet und verglichen.

Schlagworter: Modellordnungsreduktion, Strukturerhalt,
Frequenzbereich, Zeitbereich, Methodenvergleich, Bionik

1 Introduction

In order to monitor the environment and for mapping or
inspection tasks under water [1], autonomous underwa-
ter vehicles (AUVs) are indispensable nowadays. The AUVs
are mostly driven by thrusters, which can disturb other un-
derwater creatures with acoustic emissions. Supplemen-
tary, they have been shown as inefficient [2] and mostly
expensive [3]. Since the evolution of fish shows that the
shape is nearly optimized and the way of locomotion al-
lows an agile, fast and efficient movement in the under-
water environment [2, 4, 5], producing fish-like underwa-
ter vehicles, is obvious.

Approaches from [2] and [6] outline the improvements
of the fish-like actuation compared to conventional ac-
tuation systems with propulsors. Many fish-like robots
(robotic fishes) like, e.g., [7], [8] and [9] have been de-
veloped using a finite number of joints, connected to
servo motors, inside of the fishtail. Different actuation
approaches like [10], with a centralized actuation princi-
ple, or [11], using shape memory alloys, have been devel-
oped over time. This work uses the fish design and mathe-
matical model, introduced in [12], based on the approach
from [13], where the whole is a composition of elastic ma-
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terials and the fluid actuator is distributed all over the fish-
tail.

The mathematical model obtained through, e. g., the
finite element method (FEM) leads to high system dimen-
sions and, as a consequence, to a high computational ef-
fort. In order to enable the model for control and state esti-
mation under real time conditions on the limited hardware
of an AUV, model order reduction is unavoidable.

The main purpose of this endeavor is the comparison
of available (especially as public code package) model or-
der reduction methods for second-order systems on this
type of model. Here, we especially want to compare meth-
ods with a global (in time and frequency domains) per-
spective, such as the several flavors of balanced trunca-
tion for second-order systems [14, 15, 16, 17], or (dominant
pole based) modal truncation, with more localized meth-
ods focusing on the known range of operation frequen-
cies of about 0-10 Hz. The later methods range from sim-
ple moment matching (see, e. g., [18, 19, 20]) approaches
with expansion frequencies in this exact range, over two-
step, or hybrid methods [21, 22] using a moment match-
ing pre-reduction and balancing-based post-processing, to
frequency-limited balancing [23, 24].

Our results show that methods, limiting themselves
to the frequency range of interest, are superior in ap-
proximation quality. Therefore, we exclude a few meth-
ods from our comparison. The second-order iterative ra-
tional Krylov algorithm, e.g., [25], tackles the H,-norm
optimal approximation problem. While there has been
some work on frequency-limited [26, 27] and frequency-
weighted [28, 29] H,-optimal reduction for standard state-
space models of first-order, we are not aware of a structure-
preserving second-order adaption. Moreover, we are not
aware of any stable public implementation. For similar
reasons, we do not consider the Hamiltonian-based ap-
proach of [30]. We also do not consider any training-based
reduction methods, such as the proper orthogonal decom-
position (e. g., [19]).

Regarding model reduction software, we focus on two
open source projects developed for MATLAB® and GNU
Octave. The M-M.E.S.S. toolbox [31] with main focus on
the underlying large and sparse matrix equations and the
MORLAB toolbox [32], a software package for model or-
der reduction of moderate size, densely populated sys-
tems. There are two prominent packages that deliver simi-
lar functionality in MATLAB. MOREMBS (33, 34] is a mainly
proprietary tool, that for the second-order balancing fea-
tures uses the same algorithms as M-M.E.S.S.. The hy-
brid or two-step approaches presented here, are actually
adaptions of methods frequently used therein. The sec-
ond package, that is especially appealing for control en-
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gineers, is the sssMOR [35] toolbox, that lifts many fea-
tures of MATLAB’s Control Systems Toolbox™ functional-
ity to large and sparse systems using again M-M.E.S.S. as
a back-end for the matrix equation solvers. So one should
be able to achieve similar results with those packages. Also
for modeling in ANSYS, the MOR4ANSYS tool [36] provides
a small selection of the discussed methods.

The structure of our manuscript is as follows. In the
following section, we introduce the AUV that serves as the
test case for our comparative study. Section 3 then repeats
some notation for the model order reduction problem, re-
capitulates the existing methods and introduces our new
contributions and modifications. The actual comparison
in terms of the reduction processes and results, evaluated
in both frequency and time domains, is subject of the nu-
merical results in Section 4. Section 5 summarizes our find-
ings.

2 The artificial fishtail

The artificial fishtail has been originally introduced and
modeled in [12] using the approach by [13]. In order to ap-
ply the model order reduction approach on the fishtail,
the mathematical model is a crucial factor for the results.
Based on [12], the design of the fishtail will be described
and a mathematical model will be derived.

2.1 Design

The fishtail is designed using the computer-aided design
software FreeCAD [37] and consists of two different mate-
rials, a smooth silicone hull generated by three ellipses
and a carbon center beam. Fig. 1a shows the fishtail and
its dimensions in the z;z;-plane. The silicone fish hull is
200 mm long and at its thickest point 100 mm high and
70mm thick. It narrows to an ellipse with a height of
20mm and a width of 10 mm at the end. Fig.1b shows
the rear view of the fishtail with the related dimensions.
A 15 mm long mounting part is attached to the front end in-
stead of a fishhead. The diameter of the attached silicone is
10 mm smaller compared to the fishtail. The 0.9 mm wide
carbon beam is placed in the center of the silicon hull to
increase the stability against torsion movements. In longi-
tudinal direction, the center beam starts at the beginning
of the mounting part and stops 10 mm after the hull ends,
such that the protruding part of the center beam enables
the possibility for attaching a fin.

Two separated fluid chamber systems, designed after
the idea of [13], are the basis of the actuation. The actu-
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Figure 1: Sketch of the fishtail with dimensions.

ation principle relies on the expansion of fluid in elastic
chambers, where the pressurization (additional to the at-
mospheric pressure) of a single chamber results in an ex-
pansion of the related chamber in the elastic material. The
mounted end of the fishtail translates the expansion into
a bending movement of the fishtail. Due to the symmetric
placement of the chamber systems, an antisymmetric ac-
tuation (u,(t) = —uy(t)) of the second chamber increases
the bending effect. Fig. 2 shows the actuation principle for
the relaxed state (Fig.2a) with u,(t) = u;(t) = 0 and the
actuated state (Fig. 2b) for u;(t) > 0 and u,(t) < 0. In both
figures, the gray area indicates the center beam, while the
blue area represents the fluid in the chamber. The enclos-
ing area is the silicone hull of the fishtail. Unfortunately,
the actuation method requires a depressurization below
the atmospheric pressure, which requires a vacuum pump
and would lead to a large experimental setup. In order to
achieve an autonomous fishtail, the chambers systems are
pre-pressurized by u,, such that

Uy H(t) = Upre * u(t)

holds and only a single pressure supply is required. Apply-
ing this actuation principle results in a bounded input

0 < u(t) < Upre, forallt > 0.

The fluid chambers are placed on both sides (in 2mm
distance) of the carbon center beam and have a defined
distance to the outer hull. Fig.3 shows the fishtail in
the z,z;-plane with the embedded fluid chamber systems.
Each fluid chamber system consists of 24 chambers, which
are 4 mm thick.
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(a) Unpressurized fluid chamber.

(b) Actuated system.

Figure 2: Fluid chamber in the relaxed and the pressurized state.
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Figure 3: Transparent sketch of the fishtail with embedded fluid
chambers.

2.2 The digital realization

Actuating the fishtail results in a smooth bending of the
whole structure. Thus a partial differential equation (PDE)
is required for describing the behavior in space z and
time t. Due to the complex geometrical structure, the FEM
is used for the mathematical description. It approximates
the structure by simple shapes like tetrahedrons and splits
the time and space depending behavior locally into a time
dependent trial function and a spatial depending shape
function using a weighted residual method. The superpo-
sition of the trial functions is the global approximation of
the partial differential equation [38].

Assuming that the silicon hull as well as the carbon
center beam behave like a linear elastic homogeneous and
isotropic material, all equations in this section hold for
both areas with different material parameters. The the-
ory of linear elastic materials is based on two constitu-
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tive equations for the relations between the displacement
s(t,z), the strain g(t,z) and the stress o(t,z) of the struc-
ture; see [39]. With the kinematic equation for homoge-
neous materials
e(t,z) = 2(Vs(t z)+ Vs, z)),

arelation between the symmetric second-order strain ten-
sor and the first-order displacement tensor is defined [39].
The relation between the strain and the stress for isotropic
materials is given by

o(t,z) = Atrace (e(t, 2)) I + 2ue(t, 2),
see [39], with the second-order identity tensor I and the
Lamé parameters

B vE B E
TUrva-w) T ey

The Lamé parameters are expressed by the elasticity mod-
ule E and the Poisson ratio v; see [39].

The second time derivative of the displacement, for
t >0,z € Q and initial data s(0,z) = sy(z), can be de-
scribed by the divergence of the stress tensor

&’s(t,z)

32 =V-

a(t,z), 1

where p is the constant density of a material with a homo-
geneous mass distribution [39]. The volume Q, for which
the equation of motion is defined, can be divided in the
volume of the silicone hull Q; and the volume of the carbon
center beam Q,. Regarding the whole volume, Q = Q, UQ,
and ¢ = Q; N Q, have to hold.

Analogously, the boundary surfaces can be parti-
tioned into the boundary of the silicone hull I'; and the
boundary of the carbon center beam I',. Assuming a per-
fect connection between the carbon beam and the hull, no
mathematical boundary condition between the two mate-
rials exists (@ = [;NI,). Considering that the mounting part
of the fishtail is clamped, a displacement of the boundary
surface area I'; ¢ Iy ¢ I'is not possible, such that there
exists a Dirichlet boundary condition

s(t,z)=0 zely.
For a homogeneous pressure distribution inside of a single
fluid chamber system, the pressure is equal to the stress in
the normal direction (n)
a(t,z)-n

= Uinp k(0), z €Ty, ke {1,2),
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where I', and I'; 5 are the boundary surface areas of the
two fluid chambers. On the remaining boundary surfaces

g(l’,Z) ‘n= 0, Z € rz U (rl\(rl’l n rl’z n r1’3))

has to hold, because no pressure is applied [39].

In order to use the FEM, the weak formulation of equa-
tion (1) is required; see [38]. The weak formulation can be
obtained by multiplying the equation of motion (in resid-
ual form) with a continuous function v(z) and integrating
over the whole domain

0= IvT(z) <V a(t,z) - p; dQ, @)

i= Qx

o’s(t, Z))

whereby v(z) fulfills the same Dirichlet boundary condi-
tions as s(t, z) [38]. Applying the divergence theorem [40]
reformulates equation (2) into

2 2
_ v} ). 8 52)
0-2[( Vv(z):a(t,z) - v (2)p; 32 )dQ
21
+ZJV (z) (a(t,z) - n) dI.
i= Fx

Here a:b indicates the double contraction of the two
second-order tensors a and b [40].

Inserting the previously described boundary condi-
tions and taking into account that v(z) fulfills the Dirichlet
boundary condition on I'; ; yields

: 2
0=3 [ (-wvieratea) - vTap 557 ) o
=15

|

i=1
1-‘l,i+1

V! (2)Utjnp,(6) .

Under the assumption that the pressure acts in the nega-
tive normal direction of the surface, the actuation bound-
ary condition simplifies to

a(t,z) -n=-nugt), z €T, ke {l,2)
With ujnp g ~Ujpp,, the weak formulation can be ex-
pressed as

3%s(t, z)
<—Vv(z):g(t,z) - vT(z)p,- 32 ) dQ

O
MN

I
—_

le

2
Z( ’*1J (z)nu(t) dT,

1-‘1 i+1

where u(t) € R is the input of the fishtail.
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In order to apply the FEM, the previously introduced
CAD model is subdivided into tetrahedral elements using
the meshing tool TRELIS [41]. The finite element tool FIRE-
DRAKE [42, 43, 44, 45, 46, 47, 48, 49] assembles the ma-
trices by approximating the weak form using a weighted
residual method. The time and space dependency of the
weak form is separated, such that the time dependency
can be factorized [38]. After assembly, FEM results in the
second-order ordinary differential equation (ODE)

MXx(t) + Kx(t) = B u(t), 3)

consisting of the mass matrix M € R™", the stiffness ma-
trix K € R™", the input vector B, € R" and the state vector
x(t) € R" for t > 0 with initial state x(0) = x,.

Applying a pulse like input to the resulting ODE causes
an infinite oscillation of the state, since no damping has
been considered in the mathematical model. In order to
obtain a realistic movement of the fishtail, the velocity pro-
portional Rayleigh damping [50] is used

E=aM +B,K. (4)

Inserting the damping into equation (3) results in the final
full system representation

Mx(t) + Ex(t) + Kx(t) = BLu(t), (5)
for t > 0, and initial value x(0) = x,. For the assembly, the

parameters from Tab. 1 have been used.

Table 1: Material parameters.

Part Parameter Value Unit
P 1.07-1073 kgm™>
Hull E 0.025-10° kgm™!s7?
2 0.48
23 1.4-10° kg m>
Beam E, 2.96-10"° kgm™!s72
173 0.3
a 0.0001 st
Rayleigh dampin '
yielgh damping g 00002 s

Achieving a fish-like movement of the fishtail requires
the control over the end of the carbon center beam (the
fin). Thus a virtual output, called point of interest (POI),
is introduced

ypoi(t) = Cpoix(t)~

The location of the POI (O m, 0 m, 0.21m) is equal to a sin-
gle mesh point, such that the output vector reduces to

DE GRUYTER OLDENBOURG

poi —

S = O
o O O

0]
0
1

o O O
S O =

where the rows represent the displacement in the differ-
ent directions (z;, z, and z3). In order to achieve a good
reconstruction of the full state by prolongation of the re-
duced system state, a group of virtual outputs lying on the
boundary surface with the output equation

y(t) = Cx(t) ©)

has been defined, whereby the POI is included in this
equation. The location of the used mesh-points are given
in Tab. 2.

Table 2: Virtual output locations for the model order reduction.

24 Z Z3

0.05 0.0 0.0
0.0474526 0.0 0.0599584
0.04032111 0.0 0.105274
0.0326229 0.0 0.136726
0.0250675 0.0 0.16107
0.0168069 0.0 0.183588
0.0 0.0 0.21

3 Model order reduction of
second-order systems

As a result from (5) and (6) in the modeling above, we in-
vestigate second-order systems of the form
Mix(t) + Ex(t) + Kx(t) = B,u(t),

@)
y(6) = Cpx(t),

with M, E,K € R™" symmetric and positive definite, B, €
R™™ and C, € RP", withm = 1and p = 21. Using the
Laplace transform, their transfer functions are

H(s) = C,(s’M + sE + K) B, ®)

for s € C. With one exception, the methods below all
fall into the class of second-order projection methods. The
reduced-order models (ROMs) are in those cases repre-
sented as

Mx(t) + Ex(t) + Kx(t) = Bu(t),
y(t) = Cyx(0),
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with
M=W'MV, E=W'EV,
K=W"KV, )
B,=W'B,, C,=C,V,

and V, W ¢ R™,
The companion form first-order formulation

J o], [0 J 0
[O M]Z(t) = [—K —E]Z(t) + [Bu]u(t),
£ A B (10)
y(t) =[C, 0]z(t),
¢

with an arbitrary invertible matrix J € R™", is the basis of
the derivation of V and W in many methods. Also the ex-
ceptional method mentioned above can be interpreted as
a structured projection method applied to this formulation
of the system. While J is generally arbitrary, the literature
mostly uses J = I,, the identity matrix, whereas in our im-
plementations we often use ] = —K. Then A is symmetric,
which can be exploited to reduce the computational effort
in many places.

3.1 Modal approximation

The modal truncation method is one of the oldest model
reduction approaches relying on a similarity transforma-
tion of the system into the so-called modal representation
and a truncation of all undesired modes of the system [51].
Therefore, a projection basis for the reduced-order model
only consists of the eigenvectors corresponding to the de-
sired eigenvalues. In case of second-order systems like (7),
the corresponding quadratic eigenvalue problem has to be
considered

(AZM +AE +K)x =0, (11)

for A € C the eigenvalues and 0 # x € C" the (right) eigen-
vectors. Since the system matrices in (11) are symmetric,
the left and right eigenvectors are the same, i. e., it is suffi-
cient to consider only the right eigenvectors for the projec-
tion basis.

As in [12], the computation of the eigenvalues A can be
simplified by considering the Rayleigh damping (4). There-
fore, the quadratic eigenvalue problem (11) then simplifies
to solving the generalized eigenvalue problem of the form

w’Mx = Kx, (12)

where the original quadratic eigenvalues A can be recon-
structed using w € R, . For the reduction of the model, the
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smallest r eigenvalues of (12) are computed, which corre-
spond to the eigenvalues of (11) with small absolute value.
The corresponding eigenvectors Vi = [xy, ..., X, ] from (12)
are then used for the reduction of the system as in (9) by
setting W =V = V..

For the modal truncation approach, the choice of the
eigenvalues that shall remain in the reduced-order model
is critical. The drawback of taking only the smallest ones
into account is the neglect of input and output matrices,
which have a significant influence on the input-output be-
havior of the system. The extension of the modal trunca-
tion method to a more intelligent choice of the eigenval-
ues is the dominant pole algorithm [52]. Here, the eigen-
values with the strongest influence on the system behav-
ior are computed and then chosen for the reduced-order
model. Adaptations of the dominant pole algorithm to the
case of second-order systems have been done in [53] for
single-input single-output systems and in [54] for multi-
input multi-output systems.

In this paper, we suggest a variation of the second-
order dominant pole algorithm for modally-damped
second-order systems. In general, the system (7) is called
modally damped if M, E and K are symmetric positive def-
inite and EM'K = KM~'E holds. Note that second-order
systems with Rayleigh damping automatically belong to
this class of mechanical systems. As shown in [55], choos-
ing the matrix of eigenvectors X € R™" from

MXQ? = 13)
where Q? = diag(a)f, o wi) and X = [xy,...,x,], such that
X'MX=Q" and X'KX=Q, (14)

allows to additionally diagonalize the damping term
XTEX =25, (15)

with £ = diag(é&;, . .., &,). Using (13)—(15), the transfer func-
tion (8) can be rewritten as

_ 2~-1 = o1
H(s) = C,X(s°Q +25:+Q) X B,
L wiCpx x;
(s=AH)(s-A) A )’
where the eigenvalues A, and A, are given as
A}f = —a)k{k + Wi\ {]? -1 (17)

Note that from (17) it follows that the smallest eigenvalues
of (12) correspond to the eigenvalues of (11) closest to the
imaginary axis. The pole residue formulation of the trans-
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Algorithm 1: Second-Order Modally-Damped Dominant Pole Algorithm (SOMDDPA) [56]

Input: System matrices M =M" > 0,E=E" >0,K =K' > 0 with EM"'K = KM"'E, B,, C,, initial value s,
tolerance O < T « 1, number of wanted eigenvalues k. nteq-
Output: Eigenvector matrix X and dominant eigenvalue pairs A* = [A}, ..., A(].

1 Initialize V=X=[],A*=[],k=0,j=1.

2 Compute the left and right singular vectors y, and u of o, (H(sy)).

3 while k < kynteq dO
4 Solve the linear systems of equations

(sSM+S;E+K)v; =By, and (S;M +SE + K)w; = C, ¥

5 Expand the projection subspace V = orth([V, real(v;), imag(v;), real(w;), imag(w;)]).
6 Compute the most dominant eigentriple (Gj* .07, %) via (13)-(18) of

VMV, V'EV, V'KV, V'B, C,V.
7 Compute the eigenvector and the residual
N N2 N
x=Vx% and 1= ((0]- ) M +6; E+K)xj.
8 if Ir;|l < 7 then
9 Setk =k+1andX = [X,x], A* = [)li,e]-i].
10 Deflate newly found eigentriples.
u Update right and left singular vectors y; and u; of 0,4 (H (l9]fr ))-
12 end
13 Setsj, =0 andj=j+1.
14 Restart if necessary.
15 end

fer function (16) indicates that for a dominant pole algo-
rithm, the pairs of eigenvalues have to be considered. The
direct extension of a dominant pole, as given in [54], reads
as follows: The pole pair (A{,A;) is called dominant if it
satisfies

T
"ijpXij Bu"Z

Re(A")Re(A}) ’

.
||(UkaXka B,l,

Re(/\,:r )Re(/\,:) (18)

for all j # k. The corresponding dominant pole algorithm
then computes the r most dominant pole pairs and the
corresponding eigenvectors, such that the reduced-order
model is given as

L wiCyxixg By

H, = =H >
() kzl c-A06-1) ()

where Vg, = [Xy,...,,] gives a corresponding projection
basis. The resulting method is described in Algorithm 1.

A big advantage of Algorithm 1, compared to the meth-
ods in [53] and [54], is the restriction to one-sided projec-
tions. This preserves the system and eigenvalue structure

in each single step such that the resulting eigenvector ba-
sis will be real and no additional unrelated Ritz values are
introduced in the reduced-order model, which usually dis-
turb the resulting approximation.

For the whole Algorithm 1, we decided to restrict to the
“plus” part of the eigenvalue pairs, since most of the steps
produce the same results independent of the chosen part
of the eigenvalue pairs. However, in some cases it might be
preferred to switch between the parts, e. g., if eigenvalues
are accumulated on one side but not on the other. The def-
inition of dominance (18) can easily be exchanged by, e. g.,
other convenient measures, or used to target certain types
of eigenvalues like only real or imaginary ones.

3.2 Moment matching

The moment matching (see, e.g., [18, 19, 20]) approach
aims to interpolate the transfer function (8) and its deriva-
tives at chosen points in the frequency domain. For
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second-order systems (7), a system interpolating the trans-
fer function in the point 8 € C can be constructed
(e.g., [57, 58, 59]) by projection (9) with satisfying either

(@M + 6E + K) B, < range(V) or
(6?M + 6E +K)'C} ¢ range(W).

The Padé approximation can be seen as a special case
of moment matching, where 8 = 0 is the only expan-
sion point. The projection basis is then build as V, =
(B,,K'B,,....,K“VB,].

As observed in Section 4.3.4 and Section 4.4, the plain
moment matching approach is sufficient for our model. In
the general case, an adaptive method, such as the one dis-
cussed in [60], may improve the approximation.

3.3 Balanced truncation

3.3.1 First-order systems

Originally invented for standard state-space systems, bal-
anced truncation for first-order ordinary differential equa-
tion systems

Ez(t) = Az(t) + Bu(t),  y=Cz(t), (19)
i.e., for invertible E, exploits the energy interpretations
of the two system Gramians Py, E" P.E to identify those
states with little contribution in the input to output en-
ergy transfer in the balanced realization of the system, i. e.,
Py = S = ETP_E diagonal, via the magnitude of the diago-
nal entries in S; see [61].

The matrices Pg, P are computed solving the two ad-

joint Lyapunov equations

APgE" + EPgAT + BB' =0,
A'TPCE+E"P,A+CTC=0.

Their lower triangular Cholesky factors L (of P.), and R
(of Pg) are used in the square root method to simultane-
ously balance and truncate the system for optimal perfor-
mance. To this end, one first computes the singular value
decomposition

T oT:
o o)l ol =IER

EAAY
with S; € R containing the larges r Hankel singular val-
ues of the system and U;, Q; containing the corresponding
(dominant) singular vectors. Then the left (T;) and right
(Ty) truncating transformation matrices, corresponding to
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W and V in the ROM computation analogous to (9), are
computed as

_1
TL =LU1512, TR =RQ1512.

Note that this guarantees T; ETg = I,. Further in case of
large and sparse systems, the Cholesky factors L and R are
replaced by tall and skinny low-rank factors and the SVD
by the economy size SVD. Moreover, asymptotic stability
of the original system guarantees existence and unique-
ness of the two Gramians, minimality of the realization
guarantees their positive definiteness, i. e., the existence
of Cholesky factors L and R, and the #,-norm error of the
system approximation is bounded by twice the sum of the
diagonal entries in S,, i. e., the truncated Hankel singular
values.

3.3.2 Second-order systems

In case of second-order systems, the Gramians of (10) are
subdivided in the same 2 x 2 block fashion and diago-
nal blocks corresponding to the velocity and position por-
tions of the phase space state representation are defined
as the velocity and position Gramians of (7) as described
in, e.g., [16, 17]. The method in [16] now uses these to
form 2n x 2r block-diagonal transformation matrices for
projection of (10). To this end, the square root method
is run twice, with only position Gramians and only ve-
locity Gramians to determine the corresponding diagonal
blocks in the transformation matrices. Subsequently, it es-
tablishes a second-order transfer function to identify the
reduced second-order matrices. Thus in contrast to (9),
here the reduced-order matrices are computed according
to

M=T(W MV,)T", E=T(W EV,)T,
K=T(W/KV,), (20)
B,=T(W,/B,), Cy, =CyVy,

where T = WpT JV,,and Wy, W,, V,, V, are the position and
velocity diagonal blocks in the first-order transformation
matrices. This is actually the first-order projection method
in the discussion above. We refer to it as second-order (so)
balanced truncation following [16, 17].

On the other hand, in [17] projection methods are pre-
sented, according to (9), running the square root method
on combinations of velocity and position second-order
Gramians to determine W and V. This possibly requires
two singular value decompositions (SVDs). The simplic-
ity of this approach has motivated efficient computation
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Table 3: Second-order balancing type methods.

Type SVDs Transformations ROM
1
W=L,U,S,?
v UsQ" = LT MR, v ©)
V=R,Q,S,
1
W=1L,U,5,?
fv UsQ" = L]JR, P ©)
V =R,Q;5,’
1
W=1L,U,S,2
vp UsQ" = L}JR, P ©
V=R,QS,>
1
W=1L,U,S,?
pv UsQ" = L] MR, R ©)
V =R,Q;S;>
1
+SQT = LTJR w=1L,U,S,?
vpv i v vH¥19q ) (9)
U * *:LVMRp V=RVQ1$;7
_1
#»5Q" = L;/Rp w=L,US,*? ©)
p T _1
U**—LVMRV V:RpQ1512
_1
W, = L,Up,S,2
1
U,S,Q! =LTJR V, =RyQ,15,?
0 p2p=p p’"p p pp,12p1 (20)

UVSVQV = L;MRV w,=L,U, 15;%

_1
v, = Rva,lsv,i

strategies [62, 63, 64] available in the M-M.E.S.S. [31] and
MORLAB [32] toolboxes. We call these methods velocity
(v) or free velocity (fv) balancing [14], when only velocity,
or only position Gramians are used. Further, we call them
position-velocity (pv) or velocity-position (vp) balancing,
with the first one referring to the part of the controllability
Gramian. These methods all need only a single SVD. Addi-
tional variants, using two SVDs are the vpv-balancing, that
uses the same right transformation V as in pv-balancing,
but uses only velocity information for the left transforma-
tion W. While position (p) balancing uses the same in-
formation for the left transformation, but both position
Gramians for the right transformation. In both cases, the
SVD for the right transformation determines the singular
values for the truncation.

The transformation formulas and required computa-
tions for all seven types have been collected in Tab. 3.

3.4 Frequency-limited balanced truncation

As described in the previous section, the usual balanced
truncation approach aims for a global approximation of
the system in the frequency- and time-domain. But for the
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practical application at hand, this is not necessary. Here,
it is intended to apply the model only in a certain range
of frequencies, namely between O and 10 Hz. As first dis-
cussed in [65] for this purpose, the frequency-limited bal-
anced truncation method can be applied. The difference
to the classical balanced truncation method lies in the re-
striction of the system Gramians to the chosen frequency
range Q = [wy,w,] U [-w,, —w,]. Considering the case of
first-order systems (19), the limited controllability and ob-
servability Gramians Pg-, ETPE-E are given via the solu-
tions of the following two Lyapunov equations

APE'ET + EPSFAT + BoB™ + BB] = 0,
ATPEE+ETPEA+CIC+CTCy =0,
with By = EFB, Co = CFoE and
F, = Re <% In((A + iw,E) (A + isz))) B

where In(M) denotes the principle branch of the matrix
logarithm of M.

Even though originally constructed for the first-order
case, the method can be extended to second-order sys-
tems (7) by considering the general method in Section 3.3.
A discussion of this extension for some versions of the
second-order balanced truncation method can be found
in [66], but has only been applied to small systems so far.
The application to the large-scale system case can be done
using projection methods [23].

A different concept of the frequency-limited balanced
truncation for the large-scale system case is the applica-
tion of a two-step approach [21, 22]. Therefor, the system
is pre-reduced by a moment matching method choosing
sample points from the frequency range Q = [w;, w,] U
[-w,,—w,]. Afterwards, the frequency-limited balanced
truncation is used on the pre-reduced system. An imple-
mentation of the frequency-limited balanced truncation
suited for such dense medium-scale unstructured systems
can be found in the MORLAB toolbox [32].

4 Numerical experiments

In this section, we compare the methods from Section 3 for
the model described in Section 2. The numerical realiza-
tion of the fishtail, we employ in our tests, has a second-
order state dimension of n = 779232. The model is pre-
pressurized, i.e., it features one input (m = 1), repre-
senting the mass flow between the left and right pressure
chambers. Further, we have picked p = 21 outputs, repre-
senting the displacement into the three spatial directions
of the rear tip of the central carbon beam, as well as the six
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further reference points on the flank of the fishtail, given in
Tab. 2. As described in Section 2, the rear tip is the actual
point of interest, and its motion is dominated by the dis-
placement in the z,-direction (compare Fig. 3.). The addi-
tional points have been added to improve the state recon-
struction in the coordinates of the original model. Earlier
experiments with only the tip-displacement as the output
lead to rather bad reconstructions, with e. g., the balanced
truncation approaches, since they are designed to well ap-
proximate the input output behavior, but make no state-
ments about the interior states.

The generation of the full-order model and all time-
domain computations have been executed on the compute
server described in Tab. 4a at CAU Kiel.

All computations for the generation of the reduced-
order models and frequency domain evaluations have
been executed on a single node of the high performance
compute cluster mechthild at the Max Planck Institute in
Magdeburg. The hardware and software features can be
found in Tab. 4h.

The computation of the Gramian factors, required
for the standard balanced truncation variants, uses
M-M.E.S.S. and implicitly employs (10) with J = -K. On
the other hand, the hybrid approach uses MORLAB and
employs J = I,. For best comparability of the reduction
results, the transfer function sampling and error com-

Table 4: Hardware and Software environments for the experiments.

CPU 2x Intel®Xeon® E5-4110 @ 2.60 GHz
(3.4 GHz Turbo)

Cores 2x8

RAM 64 GB DDR4 with ECC

oS CentOS Linux release 7.5.1804

Platform type x86_64 (64 Bit)

OpenBLAS 0.3.3[67]

FIREDRAKE [68]

Python 3.7.0[69]

NumPy 1.15.4[70]

SciPy 1.1.0[71]

(a) FOM generation and time-domain computations.

CPU 2x Intel®Xeon® Silver 4110 @ 2.10GHz
(3.0 GHz Turbo)

Cores 2x8

RAM 192 GB DDR4 with ECC

0s CentOS Linux release 7.5.1804

Platform type x86_64 (64 Bit)

MATLAB R2108a[72]

MORLAB 4.0 [32]

M-M.E.S.S. 1.01[31]

(with patches from supplemental material)

(b) ROM generation and frequency domain computations.

J. Saak et al., 2nd-order MOR for an artificial fishtail =—— 657

putation is performed with the second-order square root
method from MORLAB for Gramians computed with ] = I,,
and an equivalent modification reflecting ] = -K other-
wise.

Prior to any of the computations, we symmetrized the
model data to get rid of numerical non-symmetry in the
model matrices M, K, and consequently E, exported from
FIREDRAKE. This does not only bring the discretized model
closer to the theoretical properties, but also practically en-
ables MATLAB to exploit symmetry of the matrices wher-
ever possible.

4.1 Data and code availability

The data matrices defining the model (5), (6) are available
as a data package authored by D. Siebelts, A. Kater, and
T. Meurer [73]. They are the basis for all experiments re-
ported in the following. The authors of this paper provide
the MATLAB and Python codes for execution of the experi-
ments reported below in [74]. Since especially the compu-
tation of the Gramian factors for the balancing-based ap-
proaches is time consuming and comes with high memory
demands, we provide all results and intermediate results
as an additional data set [75].

The codes for the experiments in Section 4.3.2 and the
dominant pole approaches in Section 4.3.4 are available as
separate packages in [24] and [56] authored by P. Benner
and S. W. R. Werner.

In case the model should be generated from a different
finite element tool, the mesh data and the measurement
positions for the problem description can be found in [76].

4.2 Structure of the experiments

In the following, we report first on the evaluation of the re-
duction results in the frequency domain. Here, we group
the methods investigated by the general approach first.
These groups represent the subsections of Section 3. We
have eight different methods for plain balanced trunca-
tion, the same amount of variants replacing the full Grami-
ans by frequency-limited Gramians, as well as frequency-
limited Gramians based on a moment matching pre-
reduction of the system. Moreover, we investigate differ-
ent versions of modal approximation, including the ap-
proach used in [12] as a reference and introducing second-
order dominant pole based reduction. Some versions of
Krylov-reduction, including Padé approximation and mo-
ment matching for logarithmically distributed expansion
points complete the picture. In total we compare 57 ROMs.
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In order to keep the presentation limited, among those
we identify a number of significant candidates for further
comparison in Section 4.3.5. These are then also used in
the time domain comparison in Section 4.4.

In all Figures below, the numbers in braces in the leg-
ends depict the reduced order of the corresponding model,
i.e., its state-space dimension r.

4.3 Frequency domain

In some preliminary tests we identified the frequency
range from 1072 to 10* Hz as the most reasonable for fur-
ther investigation. Considering the model at hand, the
most interesting region is up to 10 Hz since one will, likely,
not be able to realize higher frequencies in the propulsion
motion.

In all our experiments, we sample this range with
400 equally distributed points on the logarithmic scale.
The markers in the plots do not directly correspond with
the computed data points, but represent only every 80st
sample point with a shift of 8 points between subsequent
graphs.

Moreover, the dashed vertical lines mark the end of
the frequency range of interest. That means, especially for
the frequency-limited methods, the error right of there is
rather irrelevant for the operation of the system.

4.3.1 Balanced truncation variants

The computation of the low-rank first-order Gramian fac-
tors for the companion form (10) of dimension 1558 464 by
300 (controllability) and 1890 (observability) took about
41 hours, due to the size and bad conditioning of the sys-
tem matrices. Here, the controllability factor, adding only a
single column to the factor in each iteration step, could not
reach the prescribed residual tolerance (10~°) and stopped
after the maximum iteration number. On the other hand,
the observability factor, adding 21 new columns in every
step of the iteration, converged after 90 steps with a final
normalized residual of 7.594584 - 1071°,

In Fig. 4 and Fig. 5 we compare heuristically truncated
ROMs and fixed-order ROMs resulting from the square root
method applied to these Gramian factors and their appro-
priate subblocks for the different methods summarized in
Tab. 3. The heuristic truncation here drops all singular val-
ues (and corresponding singular vectors) starting from the
point, where the sum of the following computed singu-
lar values is smaller than the prescribed tolerance (107%)
times the largest singular value.

DE GRUYTER OLDENBOURG

While in Fig. 4 velocity-position (VP) balancing ap-
pears to be clearly more accurate than the other methods,
one should also observe, that it is of dimension 20, while
the second best (free-velocity balancing (FV) and position
balancing (P)) achieve comparable accuracy with a factor
of four smaller models. This is also clearly reflected in the
fixed ROM-order plots in Fig. 5, where VP balancing is the
second worst and VPV balancing is completely off.

The clear winners here are the free-velocity balanc-
ing and position balancing methods together with second-
order balancing (SO), that has slight difficulties for the
higher frequencies, beyond the actual range of interest. In
general, however, except for VPV balancing, all methods
do an acceptable job for order 8, which is already smaller
than the order 10 of the modal approximation generated
in [12].

4.3.2 Frequency-limited balanced truncation variants

As expected, the frequency-limited Gramian factors are
slightly thinner than the ones from the previous section.
Their column dimensions are 1407 for the observability
and 113 for the controllability. On the one hand, the heuris-
tically truncated models show comparable dimensions,
with the small ones getting slightly larger and the larger
ones a bit smaller than above. On the other hand, the vari-
ance of the results is far smaller but at the same time the
overall approximation quality is considerably worse than
above. Our interpretation of this observation is that the
rather bad conditioning of the matrices, in the elasticity
model used here, is affecting the approximation quality of
the Krylov subspace based computation of the frequency-
limited Gramian factors a lot more than the shifted sys-
tem solves, where the shifts may very well improve the
conditioning, in the computation method for the Grami-
ans above. It is, however, also clearly visible that all meth-
ods miss the original model for frequencies above 100 Hz,
which should be expected, since we limited the frequency
range of interest to 0-10 Hz.

4.3.3 Hybrid frequency-limited balanced truncation
variants

In this test, we compute input and output rational (block)
Krylov subspaces for shifts between 10™ and 10 Hz. Lead-
ing to complex basis matrices of width 2100 and 100. We
then form an orthogonal projection with W = V by con-
catenating the real and imaginary parts of the complex ba-
sis and using a QR decomposition with numerical rank de-
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Figure 6: Reduction results for the various frequency-limited balanced truncation with relative sum truncation.

cision afterwards. This way we generate a Krylov reduced
model of dimension 60. We then compute the frequency-
limited Gramian factors for its companion form using the
sign-function iteration from MORLAB.

Interestingly, although the frequency range is limited
in the same way as in Section 4.3.2 above, here (see Fig. 8

and Fig.9) we observe much better approximations also
for higher frequencies. Also, the reduced orders for the
heuristic truncation are the smallest in the entire com-
parison. Moreover, in the frequency range of interest, the
fixed-order ROMs of only order 5 can achieve compara-
ble accuracy as the order 8 approximations for the un-
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Figure 9: Reduction results for the various hybrid frequency-limited balanced truncation with fixed ROM dimension.

limited case in Section 4.3.1. Here, again position balanc- also position-velocity and second-order balancing are do-
ing is very good and only gets beaten by the first-order ing a good job, while the others are in the range of and
approximation, which however is not structure preserv- above the finite element error we expect for the origi-
ing, in the sense that we can not retrieve a second-order nal model. They should thus be considered with more
model from it. Looking at the fixed-order plots in Fig.9 care.
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4.3.4 Modal approximation and Krylov-based methods

The final group of methods consists of modal truncation
type and Krylov subspace based methods. In Fig. 10, we
compare directly to the modal truncation (MT) of order 10.
The first observation is, that the MT modes are also domi-
nant, such that the dominant pole based truncation meth-
ods DPA_LRP (using the dominance measure (18)) and
DPA_LRPI (restricting to only conjugate complex poles)
can not improve the results here. Also, we can see, that as
expected Padé (PD), or higher order (2/4/10) expansion at
zero, is good for very low frequencies, but then quickly gets
worse. On the other hand, moment matching (MM), with
1/2/5 expansion points logarithmically distributed in the
range between 10~ and 10 Hz, is in this comparison giv-
ing the best results by far. Note that our expansion points
are complex and we always add the real and imaginary
parts to the basis in order to keep the transformation matri-
ces real. This leads to generating systems with 2/4/10 vec-
tors and reduced orders 2/3/7 due to linear dependence.
Note further that the single expansion point version be-
haves (see especially Fig. 10b and Fig. 10c) very similar to
the Padé ROMs and adding additional expansion points
on the other end of the interval of interest is drastically
improving the approximation. Thereby, the accumulated
computation time for the Krylov subspace approaches is
about 35 min.

4.3.5 Comparison

For the comparison, we take the basic modal truncation
(MT (10)) as in [12] as the reference. From the last category,
i. e., the results shown in Fig. 10, we choose the largest mo-
ment matching approximation (MMS5 (7)). From the plain
balanced truncation category with fixed order (r = 8) in
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Fig.5 we add position balancing (P (8)). The frequency-
limited methods are represented by velocity balancing
(FV (8)) from Fig. 6, the position balancing method (P (2))
from the hybrid methods with dynamic truncation (Fig. 8),
as well as the first-order (FO (5)) and position balanc-
ing (P (5)) from the set of hybrid fixed-order experiments
(Fig. 9).

Fig. 11 clearly shows that from a frequency domain
perspective, all selected methods present errors multi-
ple orders of magnitude lower than modal truncation
even though the reduced orders are also smaller in all
cases.

Basically all results in Section 4.3.2 performed worse
than the unconstrained frequency results from Sec-
tion 4.3.1. We think that here the bad conditioning of the
system matrices was less harmful to the alternating direc-
tions implicit (ADI) iteration for computing the standard
Gramian factors than for the Krylov subspace method be-
hind the computation of the frequency-limited Gramian
factors. This issue needs closer investigation in the future.
Interestingly, this picture looks different in the time do-
main experiments below.

4.4 Time domain

We repeat the comparison of the same ROMs in time do-
main. For the time integration of the second-order systems
the SS22 algorithm from [38] is used, while the first-order
time integration is created with the 1soda algorithm pro-
vided by SciPy.integrate.odeint. We compare two sce-
narios differing in the actuation of the system by the in-
put u(t). The first scenario is a typical step response for a
50 mbar pressure change
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Figure 10: Reduction results for the modal approximation and Krylov-based reduction methods.
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Figure 12: Time-domain comparison of reduction results for selected candidates from all reduction methods using 5000 Pa step actuation.

where §(t) is the Heaviside function. In the second sce-
nario, we use a C*([0, 2]) input by the shifted sine

Ugn (t) = 2500 (sin (1071(t — 1.75)) + 1) 6(t - 0.1).  (22)
This removes the non-smooth shock actuation and, at the
same time, brings us closer to an actual actuation scenario
in fish locomotion.

An important issue, that we did not take into account
in the frequency domain, is becoming obvious here. While
classical balanced truncation has guarantees on the er-
ror and stability preservation, this is not true anymore for

the frequency-limited and second-order methods. We have
discussed the error bound above already. Here, we observe
that the (hybrid) frequency-limited approaches do not pre-
serve stability. Therefore, the P (5) and FO (5) curves are ba-
sically missing in Fig. 12 and Fig. 13. They are both leaving
the amplitude ranges in all three sub-figures immediately
after the control gets active at ¢ = 0.1s.

While it is very obvious that moment matching, with
just a few expansion points in the frequency range of inter-
est, is even more clearly the best option for this kind of sys-
tem, the most impressive result is actually that of the hy-
brid frequency-limited position balancing (P (2)). With just
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Figure 13: Time-domain comparison of reduction results for selected candidates from all reduction methods, via smooth sine actuation.

order 2, i. e., a compression factor of 389 616, it achieves a
POI output error slightly worse than that of the other meth-
ods. Looking at the average output error it is even compa-
rable with the other methods that are 4-5 times larger. We
also observe that the frequency is nicely matched and just
the amplitude can not be reproduced with only 2 degrees
of freedom in both Fig. 12 and Fig. 13.

5 Conclusions

We have performed an in-depth investigation of differ-
ent model order reduction methods for the artificial fish-
tail model from [12]. Observing that the transfer func-
tion does not feature significant resonances inside the fre-
quency range of interest, it is little surprising that most
of the methods perform relatively similar. A slightly un-
expected effect was that although from the frequency-
domain perspective most of the methods performed much
better than the simple modal truncation, in time-domain
the only method that performs significantly better than
modal truncation is the plain moment matching with ex-
pansion points spread across the interval of interest. One
feature of this particular model obviously is, that the
smallest eigenvalues turn out to be the most dominant,
as well. Therefore, the dominant pole-based approaches

can not improve over plain modal truncation. For the other
techniques it is noteworthy, that even rather global ap-
proaches such as balanced truncation, which usually tend
to require larger reduced orders, provide a comparably
good approximation with lower orders than modal trun-
cation.

By far the biggest surprise is the very good result that
can be achieved with the order 2 model from the hybrid
frequency-limited approach. Although the final displace-
ment error of a few mm in view of a desired displacement
of about 3 cm may seem rather large, the compression fac-
tor of almost 400 000 is impressive. Moreover, this model
still matches the frequency and phase of the swinging mo-
tion very well such that we expect it to perform well as the
basis for an embedded controller.

Besides that, the moment matching approaches are
the clear winner of the performance comparison. With
computation times of less than twice that of the modal ap-
proximation, they achieve errors that are orders of magni-
tude lower, as soon as more than one expansion point is
taken.

Overall, we think that our experiments state nicely
that the additional effort for the more sophisticated reduc-
tion approaches can very well pay off. Due to the length
of this manuscript in its current form, we have postponed
additional comparisons in terms of, e. g., state reconstruc-
tion to follow-up publications.
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