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Abstract: The use of machine learning in driver assistance
systems allows to significantly enhance their functional-
ities. In particular, it allows to personalize systems by
evaluating the driver’s past behavior. Such personaliza-
tion is especially relevant for recommendations inmaneu-
verswhere the specificmaneuver embodiment stronglyde-
pends on the driver’s momentary driving style and atten-
tion. Led by this idea, PRORETA 4 developed a prototypi-
cal City Assistant System, which gives the driver a person-
alized recommendation in urban scenarios. To adapt the
recommendations and warnings appropriately, the sys-
tem incorporates the learnedmomentary driving style and
the driver’s gaze behavior. In this work, we describe the
main functional blocks of the system, present our solu-
tions tomajor implementation challenges and also discuss
the safety of the used learning algorithm.
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Zusammenfassung:Der Einsatz vonmaschinellem Lernen
in Fahrerassistenzsystemen ermöglicht es, deren Funktio-
nalitäten deutlich zu verbessern. Insbesondere ermöglicht
es die Personalisierung von Systemen, indem das bishe-
rige Verhalten des Fahrers auswertet wird. Eine solche
Personalisierung ist besonders relevant für Empfehlungen
in Manövern, bei denen die spezifische Ausführung des
Manövers stark vom momentanen Fahrstil und der Auf-
merksamkeit des Fahrers abhängt. Ausgehend von dieser
Idee entwickelte PRORETA 4 einen prototypischen Stadt-
assistenten, der dem Fahrer eine personalisierte Empfeh-
lung in städtischenKreuzungsszenarien gibt. Umdie Emp-
fehlungen undWarnungen entsprechend anzupassen, be-
rücksichtigt das System den erlernten momentanen Fahr-
stil und das Blickverhalten des Fahrers. In dieser Arbeit
werden die wichtigsten Funktionsblöcke des Systems be-
schrieben, Lösungen für die wichtigsten Herausforderun-
gen bei der Implementierung präsentiert und auch die Si-
cherheit des verwendeten Lernalgorithmus diskutiert.

Schlagwörter: Fahrerassistenzsysteme, Online-Adaption,
Fahrermodellierung, Fahrerverhalten, Kreuzungsszenari-
en

1 Introduction

1.1 Motivation

Current statistics from 2017 in Germany show that most
(over 68%) road traffic accidents involving personal injury
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Figure 1: Risks in crossing scenarios: the ego-vehicle (red) has to
give right of way to the other road users (black).

occur within urban areas. More than 60% of the slightly
injured,more than 50%of the seriously injured and about
30%of the killed people have been involved in an accident
in this area. The main type of accidents are (with 28%)
collisions caused by turning into a road or by crossing a
road (see Fig. 1). This is followed by accidents between ve-
hicles following the roadway with 19%, in which a col-
lision occurs between road users moving in the same or
opposite direction. The third most common type are acci-
dents caused by turning off the road (15%). Here a colli-
sion between a road user, who wants to turn, and a road
user from the same or opposite direction at intersections,
junctions or driveways (see Fig. 1a) takes place. Accidents
in which the rear vehicle collides with the preceding ve-
hicle because the front vehicle is decelerating or standing
still waiting to turn count as “turn-off accident” and not
“accident following the roadway” [1].

By comparing these accident statistics from 2017 with
the Advanced Driver Assistance Systems (ADAS) that are
currently available for urban areas, it becomes clear that
there is a lack of actively supporting systems. There are
many systemsavailable fromdifferent vehiclemanufactur-
ers that support the driver in the longitudinal vehicle guid-
ance or warn or even intervene to prevent potential front
collisions [2, 3] or collisions at junctions [3, 4].

However, such systems do not provide active support
in maneuvering decisions, e. g., for turning. For example,
there is currently no system that tells the driver whether
the current gap between two oncoming vehicles suffices
to turn left, or whether the driver should wait for a larger
gap. This is partly due to the fact that for active maneuver
recommendations the individual driving style of the driver
plays a major role. A general design of driver assistance
systems, as it is done in the context of “common” collision

warning systems, is not possible here. If, for example, a
very conservative recommendation is chosen in the system
design for a left-turn recommendation, a sporty driver will
find this patronizing andwill not accept the system. A risk-
avers design in turn would be considered to be too danger-
ous by a cautious driver. This is especially critical since a
cautious driver with her driving skills may not be able to
take a short or small gap between two vehicles in the on-
coming traffic. Also the current attention plays an impor-
tant role. Maybe the driver is distracted if she is waiting for
a suitable gap in oncoming traffic and turns to a side ac-
tivity like looking on her mobile phone. Such a distracted
driver needs a longer time to get back into the situation
and for executing the turn than a driver who constantly
observes the traffic and is immediately ready to go. There-
fore, there is a need for functional customization in terms
of driving style and driver’s attention, in order to develop
systems that actively assist the driver in making the ma-
neuver decision.

TU Darmstadt meets this demand together with Conti-
nentalAG in the researchproject PRORETA4. This research
project was dedicated to the usage of machine learning in
driver assistance systems in order to adapt them individu-
ally to the situation and the driver. The project was sched-
uled from 2015 to 2018 and four research assistants from
three different institutes of TU Darmstadt worked together
on this interdisciplinary project.Within this frame, several
articles comprising new algorithms for driver intention de-
tection and online driver adaptation [5–9], visual localiza-
tion andmapping [10–13] anddriver gaze target estimation
[14–17] have been published as well as articles on safety
approval of machine learning algorithms in the automo-
tive context [18]. Many of the core ideas can be retrieved in
the exemplary prototypical assistance system that is pre-
sented in this work.

1.2 City Assistant System – system overview

As part of the research project, the PRORETA 4 City As-
sistant System was developed which issues an individual,
situation-adapted maneuver recommendation or warning
in urban traffic situations by observing the driver, her cur-
rent condition and the environment. This maneuver rec-
ommendation was implemented for three use cases on a
test vehicle: turning left with oncoming traffic, entering
a roundabout, and approaching and passing a left-yields-
right intersection. In order to emphasize the benefit of
driver adaptation, the credo of the system design is to use
straightforward techniques and approaches to solve each
of the encountered sub-problems but still reach a complex
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Table 1: Overview on the methods used in the City Assistant System and their connection to the research fields in PRORETA 4.

Research Field Realized Solution
for the City Assistant System

Advanced Approach
investigated in PRORETA 4

Localization
& Mapping

Scenery Model: GNSS fused with speed and acceleration, digital HD-map,
see Section 2.1

Camera-based long-term localization
with LLama-SLAM, see [11, 13]

Situation
Comprehension

Situation Model: geometrical assignment of road users to segments of the
situation roads, lane assignment with fuzzy logic, see Section 2.2;
Gap Model: geometrical representation of gaps in a situation coordinate
system, rule-based “lazy” classification of relevant objects, see
Section 2.3

(outside of the project’s focus)

Driver
Adaption

Driving style detection: unsupervised learning using k-Means;
Online adaption: concept of gap acceptance for predicting left turn, see
Section 3.1

Learning the dependency between
maneuver executions for personalization
using LSTM [6]

Safety approval 4-step approach to identify lack of generalizability of learned algorithms,
see Section 3.2

Application to extended scope (to be
published)

Object-of-
Fixation

Driver’s perception as simple threshold model as in [26] (but in 2D) with
minimum fixation time, see Section 4

Tracking the driver’s gaze target with
Bayesian Filter, see [15–17]

System
coordination

Rule based approach with state machine, see Section 5.1 (outside of the project’s focus)

Figure 2: Overview of the function blocks that compose the
PRORETA 4 City Assistant System. Each of the blocks is described
in more detail in the indicated section. The solid arrows depict the
flow of information to generate and deliver the adaptive recom-
mendation to the driver. The dashed arrows indicate the situation
dependent control of the function blocks, which is described in Sec-
tion 5.1.1.

and intelligent system behavior through the interplay of
the function blocks. These different function blocks of the
PRORETA 4 City Assistant System are shown in Fig. 2 and
Tab. 1 lists the approaches taken in a short overview. They
firstly include an environment perception and situation
comprehension module (Section 2). Secondly, a module to
grasp the driver style and infer the individual adaption, is
presented and analyzed under safety aspects (Section 3.1
and 3.2). Thismodule incorporatesmachine learning tech-

niques in the otherwise computational intelligence-based
approach of the overall system. Thirdly, the incorporation
of the driver’s visual behavior is addressed (Section 4).
These three main function blocks are controlled by a be-
havior coordination and planning module (Section 5.1)
that sends out all necessary information to theHumanMa-
chine Interface (HMI). As part of the presentation of the
HMI in Section 5.2, the individual use cases of the assis-
tance system will be described in more detail. Section 6
concludes the key points of the project.

2 Environment model & situation
comprehension

To enable the City Assistant System to give recommenda-
tions in left-turn scenarios, the system has to perceive, an-
alyze and comprehend the oncoming traffic. In our system
this task is performed in a three-step perception and com-
prehension pipeline which is depicted in Fig. 3. Therein
each layer builds upon the preceding layer and enhances
and refines the information. The first layer is called the
SceneryModel and contains the static environment as well
as the position of the ego-vehicle within this environment.
Themedian layer is the SituationModelwhich adds the dy-
namic elements, i. e., the other road users, to the model
and combines them with the scenery to obtain a conve-
nient representation of the present situation. In the third
and final layer, called theGapModel, the information from
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the SituationModel is converted to amoremeaningful rep-
resentation for the actual application, i. e., a list of gaps
between relevant road users is compiled. The following
paragraphs will explain these three layers of the pipeline
inmore detail and highlight themain problems they solve.

2.1 Scenery model

The scenery model provides information about the sur-
rounding static environment. In the case of the City As-
sistant System the static environment is not perceived by
the vehicle’s sensors but solely employs road data from a
digital map. All roads in the used HD-map are represented
as a list of nodes with geographical coordinates and have
a set of attributes. For our application we use the road at-
tributes: connected roads, number of forward or backward
lanes, road width, road class and speed limit. To use this
map data and combine it with objects detected by the vehi-
cle’s sensors, the systemalso needs the position andorien-
tation of the ego-vehicle. This data is providedby aKalman
Filter that fuses GNSS1 readings with speed and accelera-
tion measurements from the vehicle sensors. To improve
the system’s capabilities, the ego-vehicle’s position could
also be determined by a camera-based long-term local-
ization, which was also a research subject in PRORETA 4
[11, 13]. All geographical coordinates inside the map as
well as vehicle position and orientation are transformed
from the commonWGS84 coordinate system with latitude

Figure 3: Environment perception and situation comprehension
pipeline used in the City Assistant System. Each of the three layers
enhances and refines the situation information. The ego-vehicle
is depicted in red and the oncoming traffic in green. The gaps are
colored orange.

1 Global Navigation Satellite System (e. g., GPS, GLONASS, Galileo).

and longitude values in an UTM2-based coordinate sys-
tem. This simplifies the handling of spatial information in
all following steps, since this is a flat Cartesian system and
all coordinates are given in meters.

2.2 Situation model

In the second layer of the environment pipeline, other
road users are added to the model and associated with
the static environment. The City Assistant System uses
a front-mounted long-range radar (Continental ARS) and
two short-range radars (Continental SRR) at the front cor-
ners of the vehicle to detect other road users. The two
short-range radars are rotated ±65 ° to the side to capture
the crossing traffic in roundabout and left-yields-right sce-
narios. Both radar systems provide a preprocessed list of
detected objects which specify the measured position, ori-
entation, dimensions and velocity of each object.

Themain task of this layer is to associate the objects to
specific roads in the scenery model to enable the gap com-
putation in the next layer. Therefor, the object data from
the radars is firstly transformed from the moving sensor
coordinate systems to the stationary coordinate system of
the scenery model using the known position, orientation,
speed and turning rate of the ego-vehicle. Subsequently,
the algorithm determines for each object the nearest road
segment and its position on this segment. Here, a road seg-
ment is the stretch between two nodes of a road in the
scenerymodel, respectively the digital map (see Fig. 3). Af-
ter associating the objects to road segments, the objects’
positions are given in “road coordinates”, i. e., the posi-
tion of an object is specified by a road, a segment on the
road and its longitudinal and lateral position on that seg-
ment (see drawings in Fig. 3). This is very useful for the fol-
lowing gap computation and is also similar to how human
drivers think about the positions of other road users. How-
ever, simply assigning an object always to the next road
does not always result in proper associations, especially
in intersection scenarios. Therefore, we restrict the candi-
date roads for an assignment to a very limited set which
depends on the current situation and is provided by the
behavior planner (compare Section 5.1.1). This set is called
“situation roads” and does contain only the relevant roads
with the right of way in this situation, e. g., the straight

2 TheUniversal TransverseMercator (UTM)Systemenables theusage
of planar coordinates to specify positions on the earth’s surface with
great accuracy. To achieve this, different coordinate projections are
used for different zones of the earth [19, p. 48ff]. In our systemwe use
UTM zone 32 which covers the major part of Germany.
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Table 2: Fuzzy input and output variables of the lane assignment
algorithm.

fuzzy variable linguistic values

in
pu
ts

road setup one lane forward, one lane backward,
two lanes

object orientation in road direction,
in opposite road direction

object speed slow, fast
lateral position left lane, right lane, beside the road

ou
tp
ut lane definitely forward, probably forward,

definitely backward, probably backward,
not on road

ahead road in a left-turn situation or the circle lane in a
roundabout. With this procedure we always have proper
assignments for our use case and also perform a preselec-
tion of relevant objects.

Lane assignment algorithm
Besides the geometric object assignment described above,
we furthermore need to know in which lane an object is
driving. Is it driving on the forward lane, the backward
lane3 or is it not driving on a lane of the road at all (e. g.,
parking)? This question is answered by a lane assignment
algorithm which uses fuzzy logic [20] to combine several
indications of the used lane.

Tab. 2 lists the fuzzy variables which are used by this
algorithm. To determine the used lane, we incorporate the
road setup, the orientation of the object, its speed, and its
lateral position with respect to the road. These input vari-
ables are fuzzifiedwith predefined trapezoid-shaped fuzzy
sets for each linguistic value. An object speed of 15 km/h for
example would result in a fuzzy assignment for the speed
with 66.6% slow and 33.3% fast.

The fuzzy input variables are then interpreted accord-
ing to a set of 28 rules. Listing all these rules would exceed
the scope of this paper, but here are two exemplary rules
to illustrate the concept:
– IF road setup is one lane backward

AND orientation is in opposite road direction
AND speed is fast
AND lateral position is left or right
THEN lane is definitely backward.

– IF road setup is two lanes

3 In this context the terms “forward” and “backward” are defined in
relation to the road direction which is given by the order of the road’s
nodes in the digital map.

AND speed is fast
AND orientation is in road direction
AND lateral position is beside the road
THEN lane is probably forward.

The result of the second rule is probably forward since
in our setup the orientation measurement is much more
trustworthy than the lateral position for fast object speeds.
Therefore,we focus in such cases on theobject orientation.
To compute the output values of the fuzzy system, infer-
ence is performed using the 28 rules with min and max as
fuzzy operators. The result of the inference is a fuzzy dis-
tribution for the variable lane.

In the defuzzification step this fuzzy distribution is
first transformed into the three weights

wF = 1 ⋅ μdefinitely forward + 0.75 ⋅ μprobably forward
+ 0.25 ⋅ μprobably backward,

wB = 1 ⋅ μdefinitely backward + 0.75 ⋅ μprobably backward
+ 0.25 ⋅ μprobably forward,

wN = 1 ⋅ μnot on road + 0.25 ⋅ μprobably forward
+ 0.25 ⋅ μprobably backward,

using the membership degrees μ and afterwards normal-
ized to get

pF =
wF

wF+wB+wN
, pB =

wB
wF+wB+wN

,

and pN =
wN

wF+wB+wN
.

These three pseudo-probabilities for forward (pF), back-
ward (pB) and not-on-road (pN ) are the final output of the
lane assignment algorithm and provide the main criteria
for the object relevance classification in our system.

In conclusion, the Situation Model contains the static
environment represented as roads, a list of objects associ-
ated to segments on this roads and a pseudo-probabilistic
lane assignment for each object. Although this Situation
Model was mainly developed for the computation of gaps
in oncoming traffic, the information provided by this layer
could also be used for other assistant functions, e. g.,
Adaptive Cruise Control or Emergency Braking.

2.3 Gap model

The Gap Model, which is the last layer, converts the infor-
mation provided by the Situation Model to a data repre-
sentation specifically tailored to our application. For the
City Assistant System this is a list of gaps in the oncoming
traffic. Fig. 4a depicts the used definition of the gaps and
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Figure 4: Specification of the used Gap Model. The gap parame-
ters are computed in the situation coordinate system with the path
coordinate s.

their associated parameters. The size S of a gap is the spa-
tial extent of a gap starting from the rear of the leading car
or the target point at s = 0 and ending at the front of the
following car. The distance D of a gap is the distance be-
tween the reference line and the starting point of the gap.
As reference line we choose the middle of the target lane,
i. e., the lane on which the ego-vehicle wants to turn in.
Additionally, the temporal size T and the lag or “waiting
time” L of the gap are computed

T = S
v following

, L = D
v leading
,

where v following is the speed of the vehicle directly before
the gap and v leading is the speed of the vehicle that termi-
nates the gap.

All gap parameters are determined in a bespoke “sit-
uation coordinate system” which is a path coordinate sys-
tem with one single path coordinate s (see Fig. 4). For left-
turn situations the s-curve follows the middle of the op-
posed lane and the s=0-point is the intersection of this
lane with the target lane. With this formulation, our sys-
tem easily generalizes to many different situations includ-
ing intersections with non-straight lanes. The second ben-
efit of this formulation is that a roundabout situation can
be handled by the same algorithm as a left-turn simply by
adapting the used coordinate system. For the roundabout,
the path coordinate s is measured along the middle of the
circle lane and the s=0-point is the intersection of the cir-
cle lane and the ego-lane (see Fig. 4b). Thus the traffic in

the circle lane can be handled exactly like the opposed
traffic in a left-turn situation.

To compile the list of gaps, first all actually relevant
objects, i. e., road users, from the Situation Model have to
be identified. An object is classified as relevant if
– it is associated with the Situation Road,
– it is behind the reference line (s > 0), and
– pF (forward) has maximum probability.

The Boolean variable rc is set to true if all these conditions
are true. However, to avoid noisy classification outputs,we
do not use rc directly but use a method we call lazy clas-
sification which combines rc values from several consec-
utive time steps. The result rL of this lazy classification is
defined as

rL,k =
{{{
{{{
{

true, if rc,k ∧ rc,k−1 ∧ rc,k−2,
false, if rc,k ∧ rc,k−1 ∧ rc,k−2 ∧ rc,k−3 ∧ rc,k−4,
rL,k−1, otherwise,

where k is the index of the time step. With this method,
an object only becomes relevant if all of the above rele-
vance conditions are fulfilled for three consecutive time
steps. Conversely, an object is switched to non-relevant if
the conditions are missed for five consecutive time steps.
We found that this simple measure considerably reduces
floundering recommendations of the system caused by al-
ternating classifications.

Before the gaps are computed, additionally, a “follow-
ing ghost vehicle” is added to the list of relevant vehicles.
It represents a potentially existing, yet undetected vehicle
outside of the sensor range. The front of this ghost vehicle
is always located at the boundary of the specified sensor
range and it has an assumed default speed depending on
the situation, e. g., 55 km/h on a standard inner-city road.
With this trick we can also handle situations where there
is no or only little oncoming traffic, without the necessity
to add special rules for such cases. So an empty opposed
lane would result in a gap starting at s = 0 and ending at
the front of the ghost vehicle respectively the sensor range
boundary.

By combining all these procedures inside the de-
scribed three-layered perception and comprehension
pipeline, we found a way to build a unified Situation
Model that is completely interpretable, efficient and ro-
bust. This Situation Model respectively the refined Gap
Model enables the City Assistant System to comprehend
all the important entities in the current situation and their
relations. This finally allows the system to give the driver
reliable recommendations.
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3 Driver adaptation

3.1 Driving style model

The diversity in driver behaviors is already addressed in
different aspects in the literature [21]. A driver’s behavior
is usually conditioned by environment factors like traffic,
road condition, etc. However, also in similar situations,
different drivers may still behave differently. The individ-
ual behaviors are influenced by the driver’s dispositional
factors like driving skill, driving style, experience, emo-
tion, etc. A generalmodel, which does not consider the dif-
ferences between drivers, leads to discomfort when using
the system and lowers the trust of the driver in the system.

The individual behaviors can be observed when there
is a situation where the driver can choose between differ-
ent options. The left turn situation with right of way for
the oncoming traffic is one of those maneuvers in which
we observe the personalized decision of drivers. In a data
set that we recorded from 32 drivers, the differences in
preferences of choosing a gap in the left turn situation
varies from about five to seven seconds. The data shows
that there are somemore cautious drivers who ignore even
larger gaps whereas other more risk-avers drivers will al-
ways take such gaps. Similar observations on the criti-
cal personal gap are made by [22]. A driver assistant sys-
tem should therefore consider the differences between
drivers and provide personalized support to each individ-
ual driver.

The general approach on personalization is to collect
data from the individual driver and adjust the model ac-
cording to the observations. In practice, this approach re-
quires to collect a certain amount of data in order to up-
date the model efficiently. In the case of a left turn appli-
cation, the system has to firstly collect multiple left turn
maneuvers from the new driver to adjust its model accord-
ingly. With that, the model will need a significant amount
of time to adjust to the driver. If the driver changes her driv-
ing style, e. g., when she answers a phone call and shifts to
a more relaxed driving style, the system needs to observe
some left turn maneuvers before being able to adjust the
model.

To avoid this necessity of several maneuver observa-
tions, in PRORETA 4, we exploit the correlation in be-
haviors of the current driver between different maneuvers
to personalize the system. With the assumption that the
driver’s individual preferences are encoded in each ma-
neuver execution, our approach uses past maneuvers as
clues in order to personalize the prediction of the current
situation (see Fig. 5). This approach allows the system to
early detect intra-individual changes of the same driver

Figure 5: Incorporating past maneuver executions to personalize the
prediction of current situation.Mi−1 is the time series representing
last maneuver, and Si represent the current situation (traffic, gaps,
etc.).

and adapt itself even when the driver has not performed
any left turn maneuvers yet.

There are different ways to exploit the correlation be-
tween maneuver executions for the purpose of personal-
ization. One way is to use supervised learning to directly
learn the effect of past maneuvers on the current situa-
tion. Another approach is using unsupervised learning to
extract features about the driver from previous maneuver
executions.More details about the former approach can be
found in [6], but in thiswork,wewill focuson the latter one
and how the adaption is realized in the vehicle. The idea
of this approach is to classify a maneuver execution into
different driving style groups using a clustering algorithm.
For each cluster, the acceptance curve modeling the prob-
ability that a driver will take a gap of certain size is com-
puted based on the statistics of actually taken and ignored
gaps. The driver’s individual acceptance curve can then be
updated each time the driver executes a maneuver.

In total, we use three different maneuvers for the clas-
sification: driving through a roundabout, approaching an
intersection, and turning left. Eachmaneuver execution is
recordedas a time series of vehicle dynamics. Inparticular,
eachmaneuver contains the sensor values over time of ve-
locity, longitudinal and latitudinal acceleration, yaw rate,
jerk rate and steeringwheel speed.We then extract the sta-
tistical values from each signal and use them as features
for clustering maneuver executions. At the training stage,
we use the k-Means algorithm to separate the maneuver
executions of each type into three groups. Based on the
statistics of actually taken and ignored gaps, the gap ac-
ceptance is computed for each group of every maneuver
type. To compute the probability of a gap being taken two
assumptions aremade: (a) If a driver takes a gap of size t−ϵ
seconds, ϵ >= 0 then she will also take a larger gap (e. g.,
with size of t seconds). (b) If a driver ignores a gap with
size t + ϵ then she will also ignore smaller gaps with size t.
These two assumptions allow the probability of a gap with
size t to be computed even if there is no data for the exact
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Figure 6: Visualization of clustering results and the acceptance
curves.

gap size of t seconds. The probability of a gap with size t
being taken is

P(t) =
∑ni=1[gi ≤ t]

∑ni=1[gi ≤ t] +∑
m
j=1[hj ≥ t]

with n andm being the total number of taken and ignored
gaps respectively and [x] being the counting function that
returns 1 if x is true and 0 otherwise. gi and hj are the size
(in seconds) of taken and ignored gaps respectively.

Fig. 6a shows the clustering of the maneuver execu-
tions of approaching an intersection. The x-axis shows the
mean of velocity and the y-axis shows the mean of lon-
gitudinal acceleration. Each dot is a recorded maneuver
and each color shows the cluster assignment. Note that
the figure is created in two-dimensional space but the ac-
tual clustering algorithm is performed in a higher dimen-
sional space which includes further vehicle dynamic fea-
tures as mentioned above. The cluster C1 contains maneu-
ver executions with higher velocity and high longitudinal
deceleration when approaching an intersection whereas
C3 contains more defensive behaviors with lower veloc-
ity and lower longitudinal deceleration. C2 shows a bal-
anced style between C1 and C3. Fig. 6b shows the cor-

responding acceptance curves for each cluster computed
from the taken and ignored gaps of a left turn within the
same short recording as the respective maneuver. The ac-
ceptance curve specifies the probability of accepting a gap
given the gap’s size, here separated for each driving style
cluster. Therein, the correlation between the clustering as-
signment and the acceptance curve can be observed. The
acceptance curve of C1 is on the left side in comparison
to C2 and especially C3. This means C1 usually accepts
smaller gaps thanC2 andC3. On the other hand,C3 ismore
defensive and mostly takes larger gaps than C1.

When applying the system on the vehicle, whenever
the driver executes one of the three maneuvers, her clus-
ter assignment is computed and the corresponding accep-
tance curve is selected and used to gradually update her
individual acceptance curve. For this, the exponentially
weighted moving average (EWMA) is used to accumulate
the acceptance curves computed from executed maneu-
vers. This update process allows the system to gradually
forget the oldermaneuver executions and putmoreweight
on the newer oneswhere theweighting parameter controls
the momentariness, or respectively the persistence, of the
driving style model.

3.2 Safety considerations on the driver
adaptation

The fact that the learned model is significantly responsi-
ble for the subsequent recommendation of a gap in the on-
coming traffic or at the roundabout leads to a high safety
relevance. Although the City Assistant System is merely
a recommendation and warning system, it has to be ex-
pected that the driver will rely on the recommendation
given when she is getting used to it. If a driver is recom-
mended to take a too small gap compared to her current
driving style, theworst-case scenario is a collisionwith on-
coming traffic. In order to take this fact into account, the
safety of the driving style clustering was examined during
the development of the system. Because of the highdimen-
sionality of most of the learned models like neural net-
works, these are hard to interpret for humans and there-
fore regarded as black boxes. Even with the use of learned
models like the here applied k-Means algorithm,which are
easier to interpret due to the knowledge of how the input
data is mapped to the different clusters, there is no easy
way of interpreting whether the boundaries identified by
the clustering reflect the reality. In [18], different methods
are introduced to increase the interpretability of learned
models. However, an increase in interpretability or the use
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of interpretable algorithms is associated with a loss of per-
formance of the trained model. As a result, other options
were investigated to prove the safety. A critical point in this
proof is the assurance of sufficient generalizability of the
learnedmodel. If the extracted relationships are based, for
example, on non-representative training data, it is possi-
ble that these relationships are only valid for the training
and test data, but not for input data which occur in the
later operation. Regarding the driving style task, a possi-
ble fault in the training data is that there are less driving
styles contained in the training data set as a result of an
unstructured selection of test persons than exist in reality.
Because of this imbalance in data in relation to the differ-
ent clusters, themodel trainedon this datawill produce in-
correct predictions with regard to the current driving style
when the non-contained driving styles occur. To counter-
act this problem as well as to check the presence of and
avoid the causes of the lack of generalizability four con-
secutive steps are recommended:
1. Quality of data, tools, and procedure
2. Cause screening
3. Check on functional effects
4. Check on sensitivity

The first step is to complywith recommendations to ensure
the quality of data, used tools and procedures in order to
avoid causes of missing generalizability as far as possible.
One advice, for example, is to analyze the training data be-
fore the actual training process with regard to their data
distribution and density in order to ensure sufficient rep-
resentativeness of the later operating conditions. Since,
however, not all causes of lack of generalizability can be
reliably avoided during the model development, the sec-
ond step directly examines if several causes are existing in
the learned model (e. g., overfitting). However, since this
does not address all causes, the functionally correct be-
havior of themodel is checked against requirements in the
third step. This verifies the effects of lack of generalizabil-
ity. There must be at least one functional requirement per
feature, which describes the correct behavior of this fea-
ture in relation to the desired output. However, these re-
quirements are limited to two or three dimensions, which
is why the fulfillment of these functional requirements
does not imply a functionally correct behavior and the suf-
ficient generalizability of the entiremodel. For this reason,
besides the functional requirements, robustness require-
ments are also checkedwhich address the sensitivity of the
model against various disturbances. The lack of generaliz-
ability can be proven by only applying step three and four
to a learned model, but the additional use of step one and

step two beforehand decreases the necessary effort in or-
der to remove possible causes.

Applying this approach to the k-Means model of the
City Assistant System, it was shown that it is possible to
identify incorrect behavior caused by the lack of generaliz-
ability by explicitly performing step 3 (check on functional
effects): One functional requirement was that a higher
steer speed during a left turn indicates a more aggressive
driving style. This and other functional requirements are
only fulfilled with a model configuration that uses the jerk
as a feature. The same model without jerk being a feature
violates this requirement even if the acceleration, from
which the jerk is calculated, is contained in the feature set.
Without knowing that a better result regarding the separa-
bility and the overlap of these curves is achieved when us-
ing the feature jerk, the developer would probably be sat-
isfiedwith the result of themodel without jerk. This would
lead to a driver identification which classifies a balanced
driver as a sporty one, resulting in a recommendation of
too small gaps for the driver. T his example shows how im-
portant the proof of functional requirements is in order to
achieve a safe functional behavior.

In addition, applying step 4 (check on sensitivity)with
five different robustness requirements shows for example
that the robustness of the k-Means model against micro-
scopic changes of the input data is high. These micro-
scopic changes could appear in real world due to sensor
noise or a different data preprocessing during the lifetime
of the model (e. g., due to software updates). A change of
the filtering of the training data followed by subsequent
re-training of the k-Means model under same precondi-
tions shows that the basic functionality of the driving style
model is still maintained. The related robustness require-
ment does not include checking of behavior due to adver-
sarial attacks, which is covered in step 2 of the approach.

At the end, the final clustering model, which is used
in the City Assistant System, is proven safe regarding the
checked functional and robustness requirements.

4 Driver visual cues for warning
strategy adaptation

In order to incorporate the driver’s visual behavior as one
source of information into ADAS, the driver’s gaze and
head pose data needs to be mapped with all the other in-
formation necessary for an assistance system, e. g., ego-
speed, position and motion of other road users (compare
Section 2) and even traffic rules. This is a new aspect of
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driver monitoring systems which are until now mainly re-
stricted to distraction or fatigue detection. These existing
system features are standalone functions which are not
coupled to active assistance functions.

In PRORETA 4, the driver’s visual behavior is incorpo-
rated in twoways. For the left-turn and roundabout recom-
mendations, it is analyzed whether the driver is visually
distracted andhas turned to secondary tasks (e. g., texting,
talking to other passengers) when waiting for a gap due to
heavy oncoming traffic. In that case, the systems notifies
the driver when a sufficiently large gap is approaching. For
the detection of distraction, an asynchronous counter is
increased by 2 for each sample inside a predefined “eyes-
on-road” region and decreased by 1 for each sample out-
side over an evaluation time span of the last 1.5 s. If the
counter is negative, the driver is classified distracted. The
reason for this counter is that in order to classify the driver
distracted, a certain time must evolve during which the
driver looks away. When the driver re-involves in the task,
however, the detection latency should be as short as pos-
sible.

Secondly and more importantly, the PRORETA 4 City
Assistant Systemmonitors the driver in left-yields-right in-
tersection scenarios where drivers usually exhibit a typi-
cal behavior consisting of slowing down and visually se-
curing the intersection sufficiently far away from the junc-
tion [23]. The driver’s approaching behavior is observed

Figure 7: Incorporating driver visual cues for the adaption of warn-
ing strategies: If the driver approaches a left-yields-right intersec-
tion, it is not only be checked whether the ego-speed decreases.
Rather, different thresholds (here, 20 ° and 45 ° to either side) at dif-
ferent distances to the intersection are checked for. Additionally, if
a vehicle (or other road user) with right of way approaches from the
right, an early warning can be raised if, e. g., no visual fixations on
the vehicle are detected and the observed TTC of the circular buffer
areas is below a threshold.

and compared to this typical expected behavior. Thus,
it is not only checked whether the ego-speed decreases.
Rather, while approaching the intersection, it is also ver-
ified whether the driver’s gaze exceeds different yaw angle
thresholds at different distances to the intersection, i. e.,
it is checked whether the driver behaves correctly accord-
ing to the situation. Additionally, if a vehicle (or another
road user) with right of way approaches from the right,
it is evaluated whether this object poses a potential traf-
fic hazard and whether the driver visually perceives this
object (see Fig. 7). If the risk exceeds a certain threshold,
a warning would be raised in a common collision avoid-
ance system. Here, risk is defined in terms of a simple 2D
time to collision (TTC)with circular safety buffer [24]. Given
observations of the driver’s gaze, this strategy can be al-
tered. If no fixation on the other road user is measured,
the warning can be given earlier since it is assumed that
the driver might have overlooked the other road user. Con-
trarily, if the driver has seen the other road user, an emer-
gency brake maneuver “in the last moment” could be suf-
ficient.

In order to bring all this information together, we built
upon the scenery and situation description presented in
Section 2. Traffic objects are filtered from the Situation
Model so that only objects relevant for the situation re-
main, since for those a warning strategy is formulated. For
the detection of fixations on objects in real driving setups,
most models use broad tolerance thresholds for the gaze
measurements for increased robustness [25–28] as remote
eye tracking systems in automotive applications often do
not reach the necessary precision to rely solely on themea-
surements themselves [17]. The opening angle of the cone
around the gaze direction vector is commonly set to about
10 ° to 13 ° which corresponds to the parafovea region on
the cornea of the human eye.4 In our system as well, a
tolerance of 6 ° was added around the gaze yaw direction
when computing the intersection with the objects’ bound-
ing boxes. Similar to themodel in [26], aminimumfixation
time was enforced. For increased robustness, only 90% of
the gaze samples need to intersectwith the object’s bound-
ing boxwithin the investigated fixation duration of 250ms
in order to detect a visual fixation. Further promisingwork
in object-of-fixation detection uses tracking assumptions
such that during a fixation, motion and relative geometric
relations of gaze and object should be consistent [15–17].

4 The region of highest acuity is the fovea centralis with about
2 ° opening angle with the surrounding parafovea of approximately
10 ° [29].
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A difficulty, that is out of the scope of gaze target compu-
tation, is the rapid, early and robust detection of relevant
roadusers. In order towarn the driver, the object should be
detected before the driver has seen it. In the case of a sud-
denly appearing object, this time frame can be as short as
the duration of a typical fixation, i. e., a few hundred mil-
liseconds. This however, is part of future research andwas
not tackled in PRORETA 4.

5 System coordination & HMI

5.1 Behavior planner

The Behavior Planner is the central coordination module
of the City Assistant System (see Fig. 2) and has two main
functions described in the following.

5.1.1 Identify the relevant situation and control the
function blocks

In order to give useful recommendations, the system has
to identify firstly if one of the supported use cases is cur-
rently present. To do so, the Behavior Planner analyzes the
road data provided by the digital map in combinationwith
the position of the ego-vehicle (compare Section 2.1). It de-
termines on which road the ego-vehicle is driving and also
the next junction of this road in the current driving direc-
tion. Subsequently, the upcoming junction is categorized
by analyzing the connected roads and the road attributes.
Four junction classes are considered in our system:
a) intersection with left-yields-right,
b) intersection with no right of way for the crossing road,
c) roundabout, and
d) other junction.

Depending on the junction class and the distance to the
junction, the Behavior Planner activates and controls the
three main function blocks of the system. For example,
if the junction is class b) and is less than 90m away, all
blocks are activated and set-up for the left-turn scenario.
Furthermore, the Behavior Planner informs the function
blocks what are the relevant “situation roads” for this sce-
nario (compare Section 2.2). The function blocks are then
analyzing the situation in the background. If additionally
the driver signals her intention by activating the left turn
signal, the HMI is activated and starts issuing recommen-
dations.

5.1.2 Compose the recommendation and control the HMI

The second main function of the Behavior Planner is to
combine the outputs of the function blocks to a recom-
mendation and control the HMI to issue this recommenda-
tion appropriately. For this purpose, the Behavior Planner
merges the gap information from the environment and sit-
uation model (Section 2) with the gap acceptance given by
the driver adaptation (Section 3.1) and labels the gaps in
red and green according to their temporal size, i. e., their
T-value. To stabilize these recommendations, the labels
are assigned following a Schmitt trigger behavior with an
additional safety buffer of 0.4 s on the lower threshold.
Furthermore, the Behavior Planner computes an overall
action recommendation for the driver, like “Wait for Gap”,
“Prepare for Turn” and “Turn” and issues these recom-
mendations with the right timing. Thereby it also incor-
porates the driver’s visual behavior, e. g., distraction (see
Section 4).

The Behavior Planner also estimates the current state
of the driving maneuver and incorporates that state into
the recommendation. So the recommendation is frozen
if the driver starts to execute the turn and is disengaged
when the turn is completed. Furthermore, the Behavior
Planner monitors the state of the whole system.

How the recommendation is actually visualized in the
HMI, respectively issued as auditory output, is described
in more detail in the following section.

5.2 HMI and recommendations

The goal of the PRORETA 4 City Assistant System is to pro-
vide the driver with individual and situation dependent
recommendations and warnings tailored to their needs
and capabilities. This is why also the HMI of the system,
which has been developed at Continental in close collabo-
ration with the PRORETA 4 research team, follows amulti-
modal, holistic approach. In addition to the visual recom-
mendation, one can choose auditory or haptic signals as
well. The general ideas of the City Assistant System, as out-
lined in Section 1, have been realized in three different spe-
cific use cases:
1. Give a recommendation to wait or perform a left-turn

at intersections with oncoming traffic.
2. Give a recommendation to wait or enter a roundabout.
3. Give recommendations and warnings at left-yields-

right intersections when the driver behavior lets to ex-
pect a violation of the way-of-right rules or does not
exhibit cautious elements.
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Figure 8: Recommendations for maneuver execution in the main
HMI of the City Assistant System (left) with an image of the respec-
tive situation (right): The red arrow recommends to let the oncom-
ing/crossing traffic pass. The dynamic visualization of gaps helps
the driver anticipate the arrival of the “green” and thus sufficiently
large gap.

5.2.1 Left-turn and roundabout scenario

For the recommendation of the gap to take, different con-
cepts including static and dynamic visualizations had
been discussed. The final choice fell on a dynamic anima-
tion of the approaching gaps in the oncoming traffic col-
orized by the intuitive and common colors red and green
signalizing whether a gap is too small or large enough
to take (see Fig. 8). This approach actively supports the
driver to anticipate the arrival of the gap to take. It supports
the intuitive and natural expectation that the first gap be-
comes gradually smaller before a new gap opens up. Sim-
ilar dynamic display concepts were investigated in [30],
supporting our design choice. A static interface in con-
trast, might lead to increased reaction times which would
need to be considered in the system behavior by making
use of a larger safety buffer. This in turn, might rather
lead to a rejection instead of the acceptance of the rec-
ommendation system. In situations with dense traffic, the
recommendation system relieves the driver from the stress
of finding an appropriate gap suiting her needs and not
to risk a too small gap. Especially inexperienced drivers
could benefit from such a system.

Additionally to the visual cues depicted in Fig. 8,
which are displayed in the instrument cluster, auditory sig-
nals support the driver. In cases of visual distraction, the
system prompts the driver to focus on the situation when
an appropriate gap arrives soon. Since roundabout scenar-
ios exhibit high dynamics and often only short time win-
dows of “green” gaps, here, the auditory outputs signal-
ing the driver to enter the roundabout are of increased im-
portance. Often, glances to the instrument cluster take too
much timeandagap is gonebefore it canbe taken. In these

Figure 9: Driver profile display in the secondary HMI of the City As-
sistant System: Categorization of the current driving style on the
left (legend on the bottom). The individual time gap threshold for
left turn recommendations is shown on the right in the color of the
predominant cluster assignment.

situations, starting to drive at the sound signal saves the
necessary tenths of a second.

In order to inform the driver about her inferred driving
style, additional information is provided to the driver via
a personal, short-term “driver profile” on the screen in the
center console (see Fig. 9).

5.2.2 Left-yields-right intersection scenario

Giving priority to the right is in many countries with right-
hand driving the fundamental rule of right of way. Often,
these left-yields-right intersections come without the reg-
ulation to come to a full stop, rather it is enough to slow
down to be able to give way to the other road user ap-
proaching the junction from the right. Furthermore, these
junctions are widely used in residential areas due to the
lower speed and generally calm traffic. However, twomain
risk sources can be observed: Firstly, local residents are
often used to their common routes and therefore know
where the expectation of approaching road users is low
leading sometimes to increased speed and sloppy atten-
tion. This habitual effect was also observed in our data set

Figure 10:Warnings for left-yields-right intersections: Depending
on how the driver approaches a left-yields-right intersection, they
receive different HMI recommendations. Depending on the distance
to the intersection, the visual cues are reinforced with an acoustical
signal of increasing frequency.
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where eachdriver drove the same route 30 times. Secondly,
junctions are not necessarily well visible from afar so that
unfamiliar drivers might miss these intersections. When
approaching a left-yields-right intersection, drivers usu-
ally exhibit a typical behavior consisting of slowing down
and visually securing the intersection sufficiently far away
from the junction [23]. Building on these insights, a cas-
cade of prompts andwarnings has been constructed. If the
driver does not slow down or secure visually or even fails
to do both, recommendations according to the indications
shown inFig. 10 are displayedon the instrument cluster re-
inforced by an auditory signal with frequency increasing
the closer the junction gets. When entering the intersec-
tion, it is again checked whether the driver truly secured
the intersection and a feedback in form of a speech output
is generated. Like all modalities (except for the visual out-
puts), the spoken feedback can be activated or deactivated
according to the driver’s needs.

6 Conclusion

Within this article, a prototypical next-generation assis-
tance concept with a comprehensive understanding of
scene, situation and driver has been presented. Within
each of the presented core function blocks, straightfor-
ward approaches for individual sub-problems are imple-
mented in the vehicle to reach the quite complex and in-
telligent system behavior. In the description of each build-
ing block, suggestions from the PRORETA 4 research re-
sults are given on how to continue the system’s develop-
ment. The concept of the PRORETA 4 City Assistant Sys-
tem is based on the observation that especially in complex
urban scenarios, there exists no one-fits-all-configuration
of an assistance system. By observing different meaning-
ful maneuvers, a characteristic short-term description of
the driving style is extracted with machine learning tech-
niques which in turn is used for adaptive recommenda-
tions in other scenarios, e. g., performing a left turn or en-
tering a roundabout. Due to this formof driving style repre-
sentation, it is not necessary to perform the target maneu-
ver (e. g., left-turn) several times, rather it is sufficient to
infer the relevant information from the driving itself and
provide it in a suitable representation. The safety of the
resulting learned model has been analyzed to assure that
the driver does not get a recommendation for too short
gapswhich could lead to collisions. The system is designed
such that it quickly reacts to intra-individual changes of
the driving style so that reasonable driver adaptation can
be reached after a handful of identified maneuvers. By

constantly updating the driving style model, changes in
the driving style, e. g., resulting from a suddenly occur-
ring shortage of time, are effectively captured and the sys-
tem’s behavior is adapted continuously. Additionally to
the driver’s momentary driving style, the driver’s current
visual attentive state is incorporated into the situation un-
derstanding, providing insights whether the driver visu-
ally secures intersections. Based on these insights, the
PRORETA 4 City Assistant System supports the driver in
right of way decisions in a personalized and adaptive way.
The full prototypical system presented in this article was
implemented on a test vehicle provided by Continental
and has been successfully demonstrated on the project’s
two day final event on a test route in real urban traffic.
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Appendix

A video showing the City Assistant System in all use
cases from a driver’s perspective can be found at
www.proreta.de. The video also presents special situa-
tions. Furthermore, an impression of the HMI can be ob-
tained. On the project’s website, additional information
about the project and the final presentation event can as
well be found. The project’s research results beyond the
City Assistant System are published in [5–18].
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