Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) February 25, 2020

Meta models for intralogistics

Base for topology planning and graph generation of product flow

Metamodelle für die Intralogistik
  • Haitham Elfaham

    Haitham Elfaham received his M. Sc. in Electrical Engineering in 2014 at University of Paderborn. He submitted his Ph. D. in 2019 at the Chair of Process Control Engineering at RWTH Aachen University. Currently, he is holding lectures and conducting research at RWTH Aachen University. His research topics include load adaption, resources usage optimization, redeployment of software components and adaptability in intralogistics.

    EMAIL logo
    and Ulrich Epple

    Prof. Dr.-Ing. Ulrich Epple is head of Department “Process Control Engineering” since 1995 at the RWTH Aachen University. His research topics include search for technical model universals, modeling of automation systems, formal methods in engineering, operation and maintenance, application of model-driven architectures, models @runtime and selfX-technologies in process automation.

Abstract

In industrial automation, adaptability is a key feature that can enhance the degree of autonomy in a plant sparing engineering months and costs. With the introduction of the service oriented architecture in control automation, a topology model is required to identify the vicinity relationships between the devices. Nowadays, due to the absence of the coupling between logistic aspects and control logic, the topology models are manually constructed which consequently affects the autonomy of the procedures generation. In this contribution, we introduce a concept to couple the logistics model with the devices abilities to generate product flow paths and procedures considering adaptable conditions.

Zusammenfassung

In der industriellen Automatisierung ist Wandelbarkeit ein Schlüsselmerkmal, das den Grad an Autonomie in einer Anlage verbessern kann, wodurch Engineering-Monate und Kosten gespart werden können. Für die Einführung einer serviceorientierten Architektur in der Steuerungsautomatisierung wird ein Topologiemodell benötigt, um die Umgebungsbeziehungen zwischen den Geräten zu identifizieren. Aufgrund der fehlenden Kopplung zwischen logistischen Aspekten und Steuerungslogik werden die Topologiemodelle heutzutage manuell erstellt, was sich negativ auf die Autonomie der Prozedurerzeugung auswirkt. In diesem Beitrag stellen wir ein Konzept zur Kopplung des Logistikmodells mit den Fähigkeiten der Geräte vor, um Produktflusspfade und -verfahren unter Berücksichtigung anpassbarer Bedingungen zu generieren.

Award Identifier / Grant number: 01|S16022

Funding statement: The authors were supported by German Federal Ministry of Education and Research in the scope of BaSys 4.0 project (Förderkennzeichen 01|S16022).

About the authors

Haitham Elfaham

Haitham Elfaham received his M. Sc. in Electrical Engineering in 2014 at University of Paderborn. He submitted his Ph. D. in 2019 at the Chair of Process Control Engineering at RWTH Aachen University. Currently, he is holding lectures and conducting research at RWTH Aachen University. His research topics include load adaption, resources usage optimization, redeployment of software components and adaptability in intralogistics.

Ulrich Epple

Prof. Dr.-Ing. Ulrich Epple is head of Department “Process Control Engineering” since 1995 at the RWTH Aachen University. His research topics include search for technical model universals, modeling of automation systems, formal methods in engineering, operation and maintenance, application of model-driven architectures, models @runtime and selfX-technologies in process automation.

References

1. Plattform Industrie 4.0. Exemplification of the Industrie 4.0 Application Scenario Value-Based Service following IIRA Structure, 2017.Search in Google Scholar

2. Theresa Beyer, Nasser Jazdi, Peter Göhner and Ramin Yousefifar. Knowledge-based planning and adaptation of industrial automation systems. In 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA), pages 1–4. IEEE, 2015.10.1109/ETFA.2015.7301635Search in Google Scholar

3. Theresa Beyer, Peter Göhner, Ramin Yousefifar and Karl-Heinz Wehking. Agent-based dimensioning to support the planning of intra-logistics systems. In 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), pages 1–4. IEEE, 2016.10.1109/ETFA.2016.7733647Search in Google Scholar

4. Theresa Beyer, Ramin Yousefifar, Sebastian Abele, Manuel Bordasch, Peter Göhner and Karl-Heinz Wehking. Flexible agent-based planning and adaptation of material handling systems. In 2015 IEEE International Conference on Automation Science and Engineering (CASE), pages 1060–1065. IEEE, 2015.10.1109/CoASE.2015.7294239Search in Google Scholar

5. Juliane Fischer, Marga Marcos and Birgit Vogel-Heuser. Model-based development of a multi-agent system for controlling material flow systems. at-Automatisierungstechnik, 66(5):438–448, 2018.10.1515/auto-2017-0107Search in Google Scholar

6. Thomas Aicher, Daniel Regulin and Birgit Vogel-Heuser. Dynamische Anbindung und automatische Konfiguration modularer Intralogistiksysteme mittels Agenten. Walter de Gruyter GmbH & Co KG, 2018.10.1515/9783110527056-001Search in Google Scholar

7. Daniel Regulin, Daniel Schütz, Thomas Aicher and Birgit Vogel-Heuser. Model based design of knowledge bases in multi agent systems for enabling automatic reconfiguration capabilities of material flow modules. In 2016 IEEE International Conference on Automation Science and Engineering (CASE), pages 133–140. IEEE, 2016.10.1109/COASE.2016.7743371Search in Google Scholar

8. Sebastian Rehberger, Lucas Spreiter and Birgit Vogel-Heuser. An agent-based approach for dependable planning of production sequences in automated production systems. at-Automatisierungstechnik, 65(11):766–778, 2017.10.1515/auto-2017-0040Search in Google Scholar

9. Sten Grüner, Peter Weber and Ulrich Epple. A model for discrete product flows in manufacturing plants. In Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), pages 1–8. IEEE, 2014.10.1109/ETFA.2014.7005158Search in Google Scholar

10. VDI Guideline. 2860. Assembly and handling.Search in Google Scholar

11. Rainer Drath, Arndt Luder, Jorn Peschke and Lorenz Hundt. Automationml-the glue for seamless automation engineering. In 2008 IEEE International Conference on Emerging Technologies and Factory Automation, pages 616–623. IEEE, 2008.10.1109/ETFA.2008.4638461Search in Google Scholar

12. AutomationML association: White paper automationml part 1 – architecture, april 2016.Search in Google Scholar

13. Juha Puttonen, Andrei Lobov and José L Martinez Lastra. Semantics-based composition of factory automation processes encapsulated by web services. IEEE Transactions on industrial informatics, 9(4):2349–2359, 2012.10.1109/TII.2012.2220554Search in Google Scholar

14. David Martin, Mark Burstein, Drew Mcdermott, Sheila Mcilraith, Massimo Paolucci, Katia Sycara, Deborah L Mcguinness, Evren Sirin and Naveen Srinivasan. Bringing semantics to web services with owl-s. World Wide Web, 10(3):243–277, 2007.10.1007/s11280-007-0033-xSearch in Google Scholar

15. Michael Ten Hompel, Volker Sadowsky and Maria Beck. Materialflusssysteme. Springer, 2007.10.1007/978-3-540-73236-5Search in Google Scholar

16. Richard P Paul. Robot manipulators: mathematics, programming, and control: the computer control of robot manipulators. Richard Paul, 1981.Search in Google Scholar

17. Christian Lieberoth-Leden, Juliane Fischer, Johannes Fottner and Birgit Vogel-Heuser. Control architecture and transport coordination for autonomous logistics modules in flexible automated material flow systems. In 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), pages 736–743. IEEE, 2018.10.1109/COASE.2018.8560471Search in Google Scholar

18. Julian Grothoff and Haitham Elfaham. Interoperabilität und wandelbarkeit in cyber physical production systems durch modulare prozessführungskomponenten. I40 Handbook, 2019. DOI: 10.1007/978-3-662-45537-1Search in Google Scholar

19. Julian Alexander Grothoff, Constantin August Wagner and Ulrich Epple. BaSys 4.0: Metamodell der Komponenten und Ihres Aufbaus; 1st ed. Technical Report D-PC2.4, Aachen, 2018. Veröffentlicht auf dem Publikationsserver der RWTH Aachen University.Search in Google Scholar

20. Bruce Silver. BPMN Method and Style, with BPMN Implementer’s Guide: A structured approach for business process modeling and implementation using BPMN 2.0. Cody-Cassidy Press Aptos, 2011.Search in Google Scholar

21. International Electrotechnical Commission et al. Iec 61512 batch control. Parts 1–4, 2000.Search in Google Scholar

Received: 2019-07-22
Accepted: 2019-12-15
Published Online: 2020-02-25
Published in Print: 2020-03-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1515/auto-2019-0083/html
Scroll to top button